
Large Language Models for
Code Intelligence Tasks

LYU2301

Supervisor: Professor Michael R. Lyu

Presenter: Canran Liu, Xingyun Ma

Contents
1. Introduction

• Recap

• Updates

2

• What we did last term?
Ø Proposed timeEval benchmark.

3

Introduction - Recap

 110 Problems: Python

- --> Canonical solution for each problem

 Test cases for each question

- A framework for automated measurement of code efficiency

APPS
Dataset

timeEval
Dataset

• What we did last term?
Ø Proposed timeEval benchmark.

Ø On our benchmark, we did several experiments to test the performance of different methods in

terms of code efficiency.

4

Introduction - Recap

• What we did last term?
Ø Proposed timeEval benchmark.

Ø On our benchmark, we did several experiments to test the performance of different methods in

terms of code efficiency.

Ø Tried several frameworks to improve the efficiency of generated code.

5

Introduction - Recap

Experiment Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Self-refinement + One-shot 58.9 22 19.1 25.5 35.4

Self-refinement + One-shot +CoT 35.8 55.4 8.8 60.0 84.8

Self-refinement + One-shot +CoT + Test cases 40.8 49.9 9.3 53.6 72.5

• What we updated this term?
Ø Updated timeEval benchmark.

6

Introduction - Update

 111 Problems: Python, C++, Java

 Canonical solution for each problem
- -->

 Low-time-complexity solution for each problem

 Test cases for each question

- A framework for automated measurement of code efficiency:

- Redesign the metrics

APPS Dataset
&

CodeContests

timeEval
Dataset

• What we updated this term?
Ø Updated timeEval benchmark.

Ø On our updated benchmark, we did empirical studies of self-refine and multi-agent collaboration
to test the efficiency of generated code.

7

Introduction - Update

"SELF-REFINE: Iterative
Refinement with Self-Feedback" "Self-collaboration Code Generation via ChatGPT"

• What we updated this term?
Ø Updated timeEval benchmark.

Ø On our updated benchmark, we did empirical studies of self-refine and multi-agent collaboration
to test the efficiency of generated code.

Ø Proposed our frameworks to improve the efficiency of generated code.

8

Introduction - Update

Self-Refine-Executor Multi-Agent-Executor

Contents
2. Analyzing existing datasets

9

Analyzing existing datasets for Code Generation

10

Name Time Author Language Source Difficulty #Train #Te
st #Valid Avg Tes

t Cases

Avg Prob
lem Wor

ds

Avg
LOC Solut

ion
Paper Code

APPS 20 May 2021 Dan Hendrycks
(UC Berkeley) et al. Python Codeforces competition 5000 500

0 - 13.2 293.2 18.0 Measuring Coding Challenge
Competence With APPS Github

HumanEval 7 Jul 2021 OpenAI Python - Simple Softw
are Interview 164 - 7.7 23 6.3 Evaluating Large Language Models

Trained on Code GitHub

MBPP 16 Aug 2021 Google Research Python - entry-level 374 500 90 3.0 15.7 6.7 Program Synthesis with Large
Language Models Github

CodeContest
s 8 Feb 2022 DeepMind Python2&3,

C++, Java

CodeChef, Codefo
rces, HackerEarth,

AtCoder, Aizu
Competition 13328 165 117 95.9 - 59.8 Competition-Level Code Generation

with AlphaCode Github

DS-1000 18 Nov 2022 Yuhang Lai (HKU)
et al. Python StackOverflow - - 100

0 - 1.6 140 3.6
DS-1000: A Natural and Reliable

Benchmark for Data Science Code
Generation

Github

HumanEval+ 2 May 2023 Jiawei Liu et al. Python - Simple Softw
are Interview - 164 - 774.8 23 6.3

Is Your Code Generated by ChatGPT
Really Correct? Rigorous Evaluation of

Large Language Models for Code
Generation

Github

ClassEval 3 Aug 2023 Xueying Du (FDU)
et al. Python - class-level - 100 - 33.1 - 45.7

ClassEval: A Manually-Crafted
Benchmark for Evaluating LLMs on Class-

level Code Generation

GitHub

https://arxiv.org/abs/2105.09938v3
https://arxiv.org/abs/2105.09938v3
https://github.com/hendrycks/apps
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://github.com/openai/human-eval
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://github.com/google-research/google-research/tree/master/mbpp
https://arxiv.org/abs/2203.07814v1
https://arxiv.org/abs/2203.07814v1
https://github.com/deepmind/code_contests/
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://github.com/xlang-ai/DS-1000
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://github.com/evalplus/evalplus/releases
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://github.com/FudanSELab/ClassEval
https://github.com/FudanSELab/ClassEval

Contents

11

3. Dataset Processing &

Enhancement

Dataset Processing & Dataset Enhancement

12

Old dataset: Python New dataset

• Python

• C++

• Java

Dataset Processing & Dataset Enhancement

13

Code_contests dataset

• 13,610 coding problems in total.

• More than 30 test cases for each problem

• There are more than 30 ground truth solutions for
each problem in each language.

• Support Python2, Python3, Java, and C++

14

Dataset Processing & Dataset Enhancement

Dataset cons: Too difficult.

15

Dataset Processing & Dataset Enhancement

Step 1:
Find the canonical solution
among the first 20th ground
truth solutions in the dataset:

16

Dataset Processing & Dataset Enhancement

Step 2:
Test the generated solution:

17

Dataset Processing & Dataset Enhancement

Step 3:
Keep all the questions that
were slow but correct in the

previous step.

Filter conditions:
Passed all the testcases

&&
opt time/ total time <=0.5

18

Dataset Processing & Dataset Enhancement

File structure

19

Dataset Processing & Dataset Enhancement

Supported Language Number of Problems

C++ only 52

Java only 18

Python only 32

Python and C++ 1

Java and C++ 7

C++, Java and Python 1

Total 111

Statistical data of our dataset

20

Bechmark Creation

• Metrics

• Code Execution Framework

• Total Time (TT)

• Efficiency Level (EL)

• Timeout Rate (TR)

• Pass@1

• Optimal solution ratio (Opt)

21

Bechmark Creation

• Total Time (TT)

• Efficiency Level (EL)

Metrics

22

Bechmark Creation

• Timeout Rate (TR)

• Pass@1

• Optimal solution ratio (Opt)

Metrics

23

Bechmark Creation
Code Evaluation Framework

Contents

4. Empirical Study

• Self-Refine
• Multi-Agent Collaboration

24

25

Self-refine: Overview
• "SELF-REFINE: Iterative Refinement with Self-Feedback"

• Initialization Phase:
- The model is first provided with a correct yet slow version of code, and it is tasked to
directly generate an optimized version of this code.

• Feedback Phase:
- The optimized version of code is given back to the model to obtain feedback.

• Refine Phase:
- Refine the code based on the feedback.

26

Self-refine: Process

• Initialization Prompt (few-shot):

slower version:
{Slow code}
optimized version of the same code:
{Optimized code}
END

More examples...

slower version:
{The correct but slow code provided by timeEval}
optimized version of the same code:

27

Self-refine: Prompt

Few-shot
examples

• Feedback Prompt (few-shot):

{slow code}
Why is this code slow?
{feedback}
END

More examples...

{The correct but slow code provided by TimeEval}
Why is this code slow?

28

Self-refine: Prompt

Few-shot
examples

• Refine Prompt (zero-shot):

{The correct but slow code provided by TimeEval}

Why is this code slow?

{Feedback from the model}

How to improve this code? Please provide the improved version of the code.

29

Self-refine: Prompt

30

Self-refine: Result

Language Experiment Total Time
(TT)

Efficiency
Level (EL)

Timeout
Rate (TR) pass@1 %opt

(Optimality)

Python
baseline 6.0 31.5 0 100 8.8

Self-refine 7.0 41.9 2.5 61.8 11.8

C++
baseline 3.5 40.4 0 100 16.4

Self-refine 4.3 63.4 2.2 52.5 37.7

Java
baseline 12.6 24.0 0 100 3.8

Self-refine 7.5 30.7 2.6 46.1 7.3

• Wrong when initialization: 12/20

• Wrong when 1st round of self-refine: 5/20

• Wrong when 2nd round of self-refine: 1/20

• Wrong when 4th round of self-refine: 2/20

31

Self-refine: Case Study

• "Self-collaboration Code Generation via ChatGPT"

32

Multi-Agent Collaboration: Overview

• Analysis Phase:
- The task is first given to the Analyst, who then writes a high-level plan based on the task
requirements.

• Coding Phase:
- Then, this plan is passed on to the Coder, who writes the corresponding code according
to the plan.

• Testing and Iteration Phase:
- The completed code is handed over to the Tester for testing, and the Tester summarizes
the test results into a report.
- If the code passes the test, the process ends, and the correct code is output.
- If the test fails, the test report is fed back to the Coder, who then tries to correct the
code.

33

Multi-Agent Collaboration: Process

• Role Instruction

34

Multi-Agent Collaboration: Prompt

35

Multi-Agent Collaboration: Result

Language Experiment Total Time
(TT)

Efficiency
Level (EL)

Timeout
Rate (TR) pass@1 %opt

(Optimality)

Python
baseline 6.0 31.5 0 100 8.8

Multi-Agent
Collaboration 24.6 53.0 17.0 20.1 5.9

C++
baseline 3.5 40.4 0 100 16.4

Multi-Agent
Collaboration 11.9 39.8 6.0 55.7 16.4

Java
baseline 12.6 24.0 0 100 3.8

Multi-Agent
Collaboration 16.0 39.0 6.7 57.7 3.8

• Prompt of Tester:

Tester = team description + user requirement +
“I want you to act as a quality assurance tester on our development team. You will receive code
from a developer. Your job is:
1. Test the functionality of the code to ensure it satisfies the requirements.
2. Test the efficiency of the code to ensure it has good time complexity.
3. Write reports on any issues or bugs you encounter.
4. If the code or the revised code has passed your tests, write a conclusion ’Code Test Passed’.
Remember, the report should be as concise as possible, without sacrificing clarity and
completeness of information. Do not include any error handling or exception handling suggestions
in your report.” + “The code from a developer is: {script}”.

ARISE Template 2022 36

Multi-Agent Collaboration - Adjust

Language Experiment Total Time (TT) Efficiency
Level (EL)

Timeout
Rate (TR) pass@1

%opt
(Optimalit

y)

Python

baseline 6.0 31.5 0 100 8.8
Multi-Agent

Collaboration 24.6 53.0 17.0 20.1 5.9

Multi-agent collaboration
with new Tester 21.8 46.7 14.3 26.5 5.9

C++

baseline 3.5 40.4 0 100 16.4
Multi-Agent

Collaboration 11.9 39.8 6.0 55.7 16.4

Multi-agent collaboration
with new Tester 8.3 39.0 4.1 50.8 18.0

Java

baseline 12.6 24.0 0 100 3.8
Multi-Agent

Collaboration 16.0 39.0 6.7 57.7 3.8

Multi-agent collaboration
with new Tester 16.0 39.0 6.7 57.7 3.8

37

Multi-Agent Collaboration: Result

Type Number

Correct but low-efficient plan, timeout code, and useless tester 6

Correct but low-efficient plan, wrong code, and useless tester 11

Wrong plan, wrong code, and useless tester 1

Others 2

38

Multi-Agent Collaboration: Case Study

Contents

39

5. Methodology

• Generative Executor Module

• Self-Refine-Executor Framework

• Multi-Agent-Executor Framework

40

Generative Executor Module

Generative Executor

41

Generative Executor Module

Phase 1: Testcases generation

42

Generative Executor Module

Phase 2: Unit test and feedback generation

• The feedback phase only focuses on code efficiency, which often lead to errors
in the refined code.

• The subsequent self-refinements cannot correct the errors, leading to the worse
code.

43

Self-Refine-Executor Framework - Motivation

44

Self-Refine-Executor Framework - Design

45

Self-Refine-Executor Framework - Design
• Initialization Phase:

- The model is first provided with a correct but slow version of code, and it is tasked to
directly generate an optimized version of this code.

• Execution Phase:
- Submit the code for testing by the execution module.
- If the test result is “pass”, the code is retained.
- If it fails, the code is discarded, and the previous correct code is used for the next

feedback and refinement.

• Feedback Phase:
- The optimized version of code is given back to the model to obtain feedback.

• Refine Phase:
- Refine the code based on the feedback.

• The plans given by the Analyst are generally correct but often inefficient;

• The Tester is not able to effectively detect obvious errors and judge the efficiency of
the code.

46

Multi-Agent-Executor Framework - Motivation

47

Multi-Agent-Executor Framework - Design

48

Multi-Agent-Executor Framework - Design
• Initialization Phase:

- The task is firstly given to the Coder, who will write code according to the requirements
of users.

- The code will then be passed to the Executing Phase directly.
- If the execution result of this initial code is “Pass”, it then goes to the Testing Phase.
- If the code fails, the Analyst would be called to give a high-level plan for this task.

• Coding Phase:
- This plan is passed back to the Coder, and then the Coder will write the code according
to the plan.

49

Multi-Agent-Executor Framework - Design
• Executing Phase:

- The code will be executed through the external “Generative Executor module”.
- The module returns a result, indicating “Pass” if the code passes all test cases, or “Fail”

along with the test cases that failed and any error information (if available).

• Testing and Iteration Phase:
- The execution result is given to the Tester.
- If the result is “Pass”, the Tester analyzes whether there is room to improve the efficiency of the

code;
- If the result is “Fail”, the Tester drafts a report based on the error information.
- If the code is correct and the Tester believes it is efficient enough, the iteration ends.

• Repairing Phase:
- If the test is not passed, the test report is sent back to the Coder, who revises the code according

to the report.

Contents

50

6. Experiment
• Baseline Experiment
• Self-Refine-Executor
• Multi-Agent-Executor
• In-context Learning
• Others

• Prompt:

- Please generate {language} code that can be run directly to solve the following

programming problem. Do not add any text description!

51

Baseline

• Prompt:

- Please generate {language} code that can be run directly to solve the following

programming problem. Do not add any text description!

• Result:

52

Baseline

Language Experiment Total Time(TT) Efficiency
Level (EL)

Timeout
Rate (TR) pass@1 %opt

(Optimality)

Python baseline 6.0 31.5 0 100 8.8

CPP baseline 3.5 40.4 0 100 16.4

Java baseline 12.6 24.0 0 100 3.8

53

Self-Refine-Executor

54

Self-Refine-Executor: Result

Language Experiment Total Time(TT) Efficiency
Level (EL)

Timeout
Rate (TR) pass@1 %opt

(Optimality)

Python

baseline 6.0 31.5 0 100 8.8

Self-refine 7.0 41.9 2.5 61.8 11.8

Self-refine-executor 7.1 40.2 2.3 91.2 17.6

CPP

baseline 3.5 40.4 0 100 16.4

Self-refine 4.3 63.4 2.2 52.5 37.7

Self-refine-executor 3.4 53.8 0.7 90.1 29.5

Java

baseline 12.6 24.0 0 100 3.8

Self-refine 7.5 30.7 2.6 46.1 7.3

Self-refine-executor 7.6 33.2 0.9 87.3 4.4

55

Self-Refine-Executor: Result
Language Experiment Total Time(TT) Efficiency

Level (EL)
Timeout

Rate (TR) pass@1 %opt
(Optimality)

Python
baseline 6.0 31.5 0 100 8.8

Self-refine 7.0 41.9 2.5 61.8 11.8
Self-refine-executor 7.1 40.2 2.3 91.2 17.6

CPP
baseline 3.5 40.4 0 100 16.4

Self-refine 4.3 63.4 2.2 52.5 37.7
Self-refine-executor 3.4 53.8 0.7 90.1 29.5

Java
baseline 12.6 24.0 0 100 3.8

Self-refine 7.5 30.7 2.6 46.1 7.3
Self-refine-executor 7.6 33.2 0.9 87.3 4.4

• Why is the pass@1 not 100%?

- After self-refine, the efficiency of the code actually decreased, but the executor-generated test cases were not
large enough to detect timeout situations.

- After self-refine, the optimized code had errors, but the executor-generated test cases were not comprehensive
enough to detect these errors.

56

Multi-Agent-Executor

57

Multi-Agent-Executor
Language Experiment Total Time

(TT)
Efficiency
Level (EL)

Timeout
Rate (TR) pass@1 %opt

(Optimality)

Python

baseline 6.0 31.5 0 100 8.8
Multi-Agent

Collaboration 24.6 53.0 17.0 20.1 5.9

Multi-agent collaboration with new Tester 21.8 46.7 14.3 26.5 5.9

Multi-Agent-Executor 10.2 53.2 4.6 73.5 14.7

C++

baseline 3.5 40.4 0 100 16.4
Multi-Agent

Collaboration 11.9 39.8 6.0 55.7 16.4

Multi-agent collaboration with new Tester 8.3 39.0 4.1 50.8 18.0

Multi-Agent-Executor 8.9 63.7 3.4 70.2 32.8

Java

baseline 12.6 24.0 0 100 3.8
Multi-Agent

Collaboration 16.0 39.0 6.7 57.7 3.8

Multi-agent collaboration with new Tester 16.0 39.0 6.7 57.7 3.8

Multi-Agent-Executor 15.8 45.5 8.0 59.1 7.4

58

Experiment

In-Context-Learning

Positive

Positive Negative

LLMs

LLMs

Question + Positive Example

Question + Positive Example + Negative Example

59

Experiment

In-Context-Learning

60

Language Experiment Total Time
(TT)

Efficiency
Level (EL)

Timeout
Rate (TR) pass@1

%opt
(Optimality

)

Python

baseline 6.0 31.5 0 100 8.8
ICL (1 positive

example) 7.4 32.1 6.8 26.5 2.9

ICL (2 positive
example) 3.1 36.4 2.0 50 8.8

ICL (4 positive
example) 3.4 32.5 2.5 50.0 8.8

ICL (1 positive
and negative

example)
3.3 30.1 2.5 50.0 11.7

ICL (2 positive
and negative

example)
3.7 39.3 2.0 58.8 8.8

ICL (4 positive
and negative

example)
6.2 34.3 4.3 50.0 5.9

Experiment

61

Experiment

Language Experiment Total Time
(TT)

Efficiency
Level (EL)

Timeout
Rate (TR) pass@1

%opt
(Optimality

)

Java

baseline 12.6 24.0 0 100 3.8
ICL (1 positive

example) 10.3 29.8 2.6 65.4 0

ICL (2 positive
example) 8.8 28.4 1.5 73.0 0

ICL (4 positive
example) 7.3 23.9 0.5 69.2 3.8

ICL (1 positive
and negative

example)
9.6 27.4 2.0 65.3 3.8

ICL (2 positive
and negative

example)
9.2 26.4 1.5 69.2 0

ICL (4 positive
and negative

example)
7.0 26.2 0 76.9 0

62

Experiment

Language Experiment Total Time
(TT)

Efficiency
Level (EL)

Timeout
Rate (TR) pass@1

%opt
(Optimality

)

C++

baseline 3.5 40.4 0 100 16.4
ICL (1 positive

example) 5.6 38.6 1.1 81.8 21.2

ICL (2 positive
example) 5.2 57.1 1.3 90.2 42.6

ICL (4 positive
example) 6.7 50.8 1.9 83.6 39.3

ICL (1 positive
and negative

example)
5.4 48.9 1.3 85.2 26.2

ICL (2 positive
and negative

example)
5.3 49.1 1.3 83.6 31.1

ICL (4 positive
and negative

example)
5.6 48.5 1.4 80.3 23.0

63

Experiment

Change Prompt

64

Experiment

Language Experiment Total Time
(TT)

Efficiency
Level (EL)

Timeout
Rate (TR) pass@1 %opt

(Optimality)

Python
baseline 6.0 31.5 0 100 8.8

Change
Prompt 7.49 42.2 5.2 67.7 11.7

C++
baseline 3.5 40.4 0 100 16.4

Change
Prompt 4.8 50.1 0.6 80.3 37.7

Java
baseline 12.6 24.0 0 100 3.8

Change
Prompt 11.0 31.1 2.4 80.7 7.7

65

Experiment

Chain of Thought (CoT)

66

Experiment

Language Experiment Total Time
(TT)

Efficiency
Level (EL)

Timeout
Rate (TR) pass@1 %opt

(Optimality)

Python
baseline 6.0 31.5 0 100 8.8

CoT 14.6 40.5 11.3 50.0 2.9

C++
baseline 3.5 40.4 0 100 16.4

CoT 3.2 54.9 0.7 77.0 31.1

Java
baseline 12.6 24.0 0 100 3.8

CoT 9.6 39.8 2.0 69.2 3.8

67

Conclusion
• Measure and process code contests dataset.

• We have improved the timeEval benchmark.

• We did the empirical study of the existing method.

• We proposed several frameworks and finally achieved
satisfactory results.

68

Q&A Session

Thank you

