Large Language Models for
Code Intelligence Tasks

LYU2301
Supervisor: Professor Michael R. Lyu

Presenter: Canran Liu, Xingyun Ma

HEFTXXF
coPrr The Chinese University of Hong Kong

1. Introduction

* Recap

 Updates

3 Introduction - Recap

 What we did last term?

» Proposed timeEval benchmark.

" 110 Problems: Python

APPS __ timeEval __

Dataset ~~~ Dataset Canonical solution for each problem

—— Test cases for each question

- Aframework for automated measurement of code efficiency

3 Introduction - Recap

 What we did last term?

» Proposed timeEval benchmark.

» On our benchmark, we did several experiments to test the performance of different methods in

terms of code efficiency.

3 Introduction - Recap

 What we did last term?

» Proposed timeEval benchmark.

» On our benchmark, we did several experiments to test the performance of different methods in

terms of code efficiency.

» Tried several frameworks to improve the efficiency of generated code.

I) e e

Self-refinement + One-shot 58.9 19.1 255 354
Self-refinement + One-shot +CoT 35.8 55.4 8.8 60.0 84.8
Self-refinement + One-shot +CoT + Test cases 40.8 49.9 9.3 53.6 72.5

3 Introduction - Update

* What we updated this term?
» Updated timeEval benchmark.

— 111 Problems: Python,

APPS Dataset . Canonical solution for each problem
i & __> ftimeEval _

Dataset

_ Test cases for each question

- Aframework for automated measurement of code efficiency:

- Redesign the metrics

3 Introduction - Update

* What we updated this term?
» Updated timeEval benchmark.

» On our updated benchmark, we did empirical studies of self-refine and multi-agent collaboration
to test the efficiency of generated code.

Feedback Refine
"SELF-REFINE: lterative
Refinement with Self-Feedback” "Self-collaboration Code Generation via ChatGPT"

7

3 Introduction - Update

* What we updated this term?
» Updated timeEval benchmark.

» On our updated benchmark, we did empirical studies of self-refine and multi-agent collaboration
to test the efficiency of generated code.

» Proposed our frameworks to improve the efficiency of generated code.

Initial correct but slow code

@@M End If “pass’
—‘ Execution }47
feedback
Refine "E@m end
Improved code @B
Execution
Self-Refine-Executor Multi-Agent-Executor 8

2. Analyzing existing datasets

Contents

2» Analyzing existing datasets for Code Generation

#Te Ave Tes Avg Prob Avg
Name Time Author Language Source Difficulty | #Train st #Vvalid t Cgases lem Wor | LOC Solut Paper Code
ds ion
Dan Hendrycks . 500 Measuring Coding Challenge .
APPS 20 May 2021 (UC Berkeley) et al. Python Codeforces competition | 5000 0 - 13.2 293.2 18.0 Competence With APPS Github
HumanEval | 7Jul 2021 OpenAl Python - Simple Softw 164 - 7.7 23 6.3 Evaluating Large Language Models | gy,
are Interview Trained on Code —
MBPP 16 Aug 2021 | Google Research Python - entry-level 374 | 500 90 3.0 15.7 6.7 Program Synthesis with Large Github
Language Models E—
CodeChef, Codefo . .
CodeContest| g toh 2022 DeepMind | "YON283, 1 oo HackerEarth, | Competition | 13328 | 165| 117 95.9 . s9g | <comeetitionLevelCodeGeneration |
s C++, Java) with AlphaCode Github
AtCoder, Aizu
. DS-1000: A Natural and Reliable
DS-1000 18 Nov 2022 YuhanStL:; (HKU) Python StackOverflow - - 180 - 1.6 140 3.6 Benchmark for Data Science Code Github
) Generation
Is Your Code Generated by ChatGPT
. p— .
HumanEval+ | 2 May2023 | lJiawei Liu et al. Python ; Simple Softw | |0/ - 774.8 23 6.3 Really Correct? Rigorous Evaluationof | o\
are Interview Large Language Models for Code —
Generation
. ClassEval: A Manually-Crafted .
ClassEval 3 Aug 2023 Xueylnegtlzlu (FDU) Python i class-level - 100 - 33.1 - 45.7 Benchmark for Evaluating LLMs on Class- GitHub
) level Code Generation
10

https://arxiv.org/abs/2105.09938v3
https://arxiv.org/abs/2105.09938v3
https://github.com/hendrycks/apps
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://github.com/openai/human-eval
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://github.com/google-research/google-research/tree/master/mbpp
https://arxiv.org/abs/2203.07814v1
https://arxiv.org/abs/2203.07814v1
https://github.com/deepmind/code_contests/
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://github.com/xlang-ai/DS-1000
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://github.com/evalplus/evalplus/releases
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://github.com/FudanSELab/ClassEval
https://github.com/FudanSELab/ClassEval

Y,

3. Dataset Processing &

Enhancement

11

3 Dataset Processing & Dataset Enhancement

Old dataset: Python

—>

New dataset

m—

* Python

e CH++

« Java

12

3 Dataset Processing & Dataset Enhancement

* 13,610 coding problems in total.

Code contests dataset ° More than 30 test cases for each problem

* There are more than 30 ground truth solutions for
each problem in each language.

« Support Python2, Python3, Java, and C++

13

3 Dataset Processing & Dataset Enhancement

Dataset cons: Too difficult.

Rank Model Set Set

Jestier® P valser YaISel paper Code Result Year '°b°

Site URL Source

Aizu https://judge.u-aizu.ac.jp CodeNet

AtCoder https://atcoder.jp CodeNet

CodeChef https://www.codechef.com description2code

Codeforces https://codeforces.com description2code and Codeforces

HackerEarth https://www.hackerearth.com description2code

1 J

14

3 Dataset Processing & Dataset Enhancement

solution_result_cpp > = 00022_result.txt
solution_1.cpp:
Results: [False, False, False, False, True, False, False, True, True, True, True, True, True, False,
Outputs: ['8\n5 3 -3 4 -4 1 -1 2\n3\nl -1 2\n5\n5 4 3 2 1\n', '8\n5 3 -3 4 -4 1 -1 2\n3\nl -1 2\n5\n5
Passed tests: 18
Failed tests: 12
Execution time: 0.64 seconds

solution_2.cpp:
Results: [False, False, False, False, False, False, False, False, False, False, False, False, False,
Outputs: ['8\n5 1 -1 3 -3 4 -4 2\n1\n2\n5\n5 4 3 2 1\n', '8\n5 1 -1 3 -3 4 -4 2\n1\n2\n5\n5 4 3 2 1\n
Passed tests: 0
Failed tests: 30

Step 1 . Execution time: 0.84 seconds

solution_3.cpp:
Results: [False, False, False, False, False, False, False, False, False, False, False, False, False,

Flnd the Canonlcal SOlutlon Outputs: ['8\n2 1 -1 3 -3 4 -4 5\n3\n1 -1 2\n5\n5 4 3 2 1\n', '8\n2 1 -1 3 -3 4 -4 5\n3\n1 -1 2\n5\n5

Passed tests: 0

among the first 20th ground Rl Gt 7

Execution time: 0.67 seconds

truth solutions in the dataset:

Results: [True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, T
Outputs: ['8\n2 3 -3 4 -4 1 -1 5\n3\nl -1 2\n5\n5 4 3 2 1\n', '8\n2 3 -3 4 -4 1 -1 5\n3\nl -1 2\n5\n5
Passed tests: 30

Failed tests: 0

Execution time: 0.66 seconds

solution_5.cpp:
Results: [False, False, False, False, False, False, False, False, False, False, False, False, False,
Outputs: ['8\n2 1 -1 4 -4 3 -3 5\n3\nl -1 2\n5\n5 4 3 2 1\n', '8\n2 1 -1 4 -4 3 -3 5\n3\nl -1 2\n5\n5
Passed tests: 0
Failed tests: 30
Execution time: 0.63 seconds

15

3 Dataset Processing & Dataset Enhancement

test_result_java > = 00008_result.txt
canonical_solution.java:
Results: ['True', 'True', 'True', 'True', 'True', 'True', 'True', 'True', 'True', 'True', 'True', 'True',
Outputs: ['2\n', '1\n', '@\n', '4\n', 'O\n', '6\n', '5\n', '4\n', 'I\n', '9\n', '3\n‘', '6\n', '1\n', '2\n’,
Passed tests: 179
Wrong answers: @

Ste 2. Time limit exceeded: 0
F) L] Execution times: ['0.050', '0.043', '0.044', '0.042', '0.045', '0.043', '0.043', '0.043', '0.043', '0.043',

Total time: 7.51 seconds

Test the generated solution:

Results: ['False', 'False', 'True', 'False', 'True', 'False', 'False', 'False', 'False', 'False', 'False',

Outputs: ['@\n', '@O\n', 'O\n', '@\n', 'O\n', 'O\n', '@O\n', 'O\n', 'O\n', 'O\n', 'O\n', 'O\n', 'O\n', 'O\n',
Passed tests: 30

Wrong answers: 149

Time limit exceeded: 0

Execution times: ['0.080', '0.088', '0.082', '0.096', '0.092', '0.094', '0.091', '0.078', '0.072', '0.064',
Total time: 11.77 seconds

16

Me78 % Ix
A C D E F
1 | problen v wrong answer.T|time limit exceed(-T| total time |~ | opt time opt time / total time|- 1
372] 1340 0 0 97.05
419, 1522 0 0 32.96
434, 5818 0 0 18.11
440 8907 0 0 18.37
503, 5127 0 0 10.72
508 260 0 0 19.21
. g . 519 7843 0 0 10.81
F|Iterscionq§t|ons. - X X
556, 1020 0 0 16.73
562, 2198 0 0 10.01
KPasseﬁi ﬁll the tetstcas S B s 0 o
eep all'the questionsthat = - o 0
. 583 1980 0 0 6.59
were slow b@t&:orrect inthe = oo : :
] 601 5481 0 0 4.22
. 604 10166 0 0 3.99
opt iU BieP<=05 =& i 0 :
619, 35 0 0 3.6
623 9393 0 0 4.2
629, 3751 0 0 3.2
632, 6061 0 0 2.2
634 7328 0 0 2.44
635 1209 0 0 2.66
648 2690 0 0 2.92
654 1820 0 0 2.62
655, 6536 0 0 2.05
659, 12345 0 0 2.1

3 Dataset Processing & Dataset Enhancement

File structure

| question.txt

| canonical_solution.cpp
| canonical_solution. java
| canonical_solution.py

| 1input_output. json

| metadata.json

18

3 Dataset Processing & Dataset Enhancement

Supported Language Number of Problems

C++ only 52

Java only 18

o Python only 32

Statistical data of our dataset

Python and C++ 1
Java and C++ 7
C++, Java and Python 1

Total 111

19

J» Bechmark Creation

 Metrics

« Code Execution Framework

Total Time (TT)
Efficiency Level (EL)
Timeout Rate (TR)
Pass@1

Optimal solution ratio (Opt)

20

J» Bechmark Creation

Metrics
+ Total Time (TT) TT = % Y toen
<0 0;
. G ={Gy,Gy,...,G,) EL; = Lojo
 Efficiency Level (EL) ZG,-EG G;

O=1{04,0,,...,0
01,0, n) %ELZ%ZZIX:lELk*l()O%

21

J» Bechmark Creation

Metrics

« Timeout Rate (TR)

("IC)]
° 1:= 1-
Pass@1 pass@ ProlIEems [B

» Optimal solution ratio (Opt) genTopt - g

Lopt

22

J» Bechmark Creation

Code Evaluation Framework

(base) canranliu@Canrans-MacBook-Pro timeEval % python test_print.py

Please enter the language you want to test (python, cpp, java):

A B C D E F G H | J

1l problem |passed tests| wronganswers je limit excee‘ opt_time T EL TR | Pass@1 | Opt

2 98 30 0 0 1.13 11.89 0.095 0 1 0
3 99 30 0 0 0.85 1.28 0.667 0 1 0
4 111 0 30 0 1.3 9.19 0 0 0 0
5 116 1 29 0 0.87 1.61 0.508 0 0 0
6 118 30 0 0 1.4 1.38 1 0 1 1
7 124 6 18 6 1.01 36.41 0.552 0.2 0 0
8 133 30 0 0 0.83 1.26 0.662 0 1 0
9 135 0 30 0 0.82 1.27 0 0 0 0
10 136 30 0 0 0.89 1.27 0.703 0 1 1
11 140 30 0 0 0.82 1.33 0.615 0 1 0
12 145 30 0 0 0.84 1.3 0.651 0 1 0
13 157 30 0 0 0.83 1.92 0.434 0 1 0
14 172 30 0 0 1.12 11.85 0.094 0 1 0
15 184 0 30 0 0.83 1.27 0 0 0 0
16 185 0 30 0 0.87 1.3 0 0 0 0

23

4. Empirical Study

« Self-Refine
* Multi-Agent Collaboration

24

3 Self-refine: Overview

 "SELF-REFINE: Iterative Refinement with Self-Feedback"

Feedback Refine

N\ o—" "~/

Use M to get feedback on its own output Use ‘M to refine its previous output, given its feedback

25

3 Self-refine: Process

 Initialization Phase:

- The model is first provided with a correct yet slow version of code, and it is tasked to
directly generate an optimized version of this code.

 Feedback Phase:
- The optimized version of code is given back to the model to obtain feedback.

 Refine Phase:
- Refine the code based on the feedback.

26

3 Self-refine: Prompt

* Initialization Prompt (few-shot):

slower version:

{Slow code}
optimized version of the same code:
o Few-shot
{Optimized code}
examples
##H# END ###

More examples...

slower version:
{The correct but slow code provided by timeEval}
optimized version of the same code:

27

3 Self-refine: Prompt

 Feedback Prompt (few-shot):

{slow code}
Why is this code slow?

{feedback} Few-shot
i END examples

More examples...

{The correct but slow code provided by TimeEval}
Why is this code slow?

28

3 Self-refine: Prompt

* Refine Prompt (zero-shot):

{The correct but slow code provided by TimeEval}
Why is this code slow?
{Feedback from the model}

How to improve this code? Please provide the improved version of the code.

29

3 Self-refine: Result

Lanquage Total Time Efficiency Timeout %opt
guag (TT) Level (EL) | Rate (TR) (Optimality)

baseline 31.5
Python
Self-refine 7.0 41.9 2.5 61.8 11.8
baseline 3.5 40.4 0 100 16.4
C++
Self-refine 4.3 63.4 2.2 52.5 37.7
baseline 12.6 24.0 0 100 3.8
Java
Self-refine 7.5 30.7 2.6 46.1 7.3

30

3 Self-refine: Case Study

* Wrong when initialization: 12/20
« Wrong when 1st round of self-refine: 5/20
* Wrong when 2nd round of self-refine: 1/20

« Wrong when 4th round of self-refine: 2/20

31

2 Multi-Agent Collaboration: Overview

» "Self-collaboration Code Generation via ChatGPT"

Self-collaboration Framework

I N
I

1
| ! ! !
I

1
|
- a a @ Roles ! Initialized
' 7

1

Instantiating

32

» Multi-Agent Collaboration: Process

* Analysis Phase:
- The task is first given to the Analyst, who then writes a based on the task
requirements.

« Coding Phase:
- Then, this plan is passed on to the Coder, who writes the corresponding according
to the plan.

» Testing and Iteration Phase:

- The completed code is handed over to the Tester for testing, and the Tester summarizes
the test results into a

- If the code passes the test, the process ends, and the correct code is output.

- If the test fails, the test report is fed back to the Coder, who then tries to correct the
code.

33

2» Multi-Agent Collaboration: Prompt

* Role Instruction

Role Instructions == [Tean bescription] -+~ [User Requirment] e [Role Description]

Team Description

There 1is a development team that includes a requirements analyst, a
developer, and a quality assurance tester. The team needs to develop
programs that satisfy the requirements of the users. The different roles
have different divisions of labor and need to cooperate with each others.

User Requirment

The requirement from users is '{Requirment}'.

For example: {Requirment} = Input to this function 1is a string containing
multiple groups of nested parentheses. Your goal 1s to separate those group
into separate strings and return the list of those. Separate groups are
balanced (each open brace 1is properly closed) and not nested within each
other Ignore any spaces in the input string

Role Description

Coder:

I want you to act as a developer on our development team. You will receive
plans from a requirements analyst or test reports from a tester. Your job is
split into two parts:

1. If you receive a plan from a requirements analyst, write code in Python
that meets the requirements following the plan. Ensure that the code you
write is efficient, readable, and follows best practices.

2. If you receive a test report from a tester, fix or improve the code based
on the content of the report. Ensure that any changes made to the code do
not introduce new bugs or negatively impact the performance of the code.
Remember, do not need to explain the code you wrote.

34

» Multi-Agent Collaboration: Result

Lanauage Total Time Efficiency Timeout %opt
guag (TT) Level (EL) | Rate (TR) (Optimality)
baseline 6.0 31.5 0 100 8.8
Python "
sl el 24.6 53.0 17.0 20.1 5.9
Collaboration
baseline 3.5 40.4 0 100 16.4
C++ i
sl el 11.9 39.8 6.0 55.7 16.4
Collaboration
baseline 12.6 24.0 0 100 3.8
Java Multi-Agent

Collaboration 16.0 39.0 6.7 S7.7 3.8

35

2» Multi-Agent Collaboration - Adjust

* Prompt of Tester:

Tester = team description + user requirement +

“I want you to act as a quality assurance tester on our development team. You will receive code
from a developer. Your job is:

1. Test the functionality of the code to ensure it satisfies the requirements.

3. Write reports on any issues or bugs you encounter.
4. If the code or the revised code has passed your tests, write a conclusion 'Code Test Passed'.

Remember, the report should be as concise as possible, without sacrificing clarity and
completeness of information. Do not include any error handling or exception handling suggestions
in your report.” + “The code from a developer is: {script}".

ARISE Template 2022 36
]

» Multi-Agent Collaboration: Result

Efficienc Timeout (R
Language Total Time (TT) Level (EIY) Rate (TR) (Optir)nalit
y
8.8

baseline 31.5
Multi-Agent
ot Collaboration 24.6 53.0 17.0 20.1 5.9
Multi-a_gent collaboration 218 46.7 14.3 265 59
with new Tester
baseline 3.5 40.4 0 100 16.4
Multi-Agent
Ci+t Collaboration 11.9 39.8 6.0 55.7 16.4
Multi-a_gent collaboration 8.3 390 4.1 50.8 18.0
with new Tester
baseline 12.6 24.0 0 100 3.8
Multi-Agent
Java Collaboration 16.0 39.0 6.7 S57.7 3.8
Multi-agent collaboration 16.0 390 6.7 57 7 3.8

with new Tester
37

2» Multi-Agent Collaboration: Case Study

m

Correct but low-cfficient plan, timeout code, and uscless tesier 6
Correct but low-efficient plan, wrong code, and useless tester 11
Wrong plan, wrong code, and useless tester 1

Others 2

38

5. Methodology

 Generative Executor Module
+ Self-Refine-Executor Framework

* Multi-Agent-Executor Framework

39

3 Generative Executor Module

correct new
code code

testcase -
. sample @ i
Generative Executor & '
o LLM compiler
v g (interpreter test result
problem ‘
description
generative test cases
Phase1: test cases generation Phase 2: Unit test

40

I» Generative Executor Module

Phase 1: Testcases generation

(base) canranliu@Canrans-MacBook-Pro UT % python main.py
Generating testcases based on correct code...
0% | | 0/1 [00:00<?, ?it/s]

Generating testcases for problem: ./098/question.txt
| 1/1 [00:01<00:00, 1.67s/it]

100%|
Input testcases: ['3 4\n0110\n1010\n@111\n', '2 3\n101\n@10\n', '4 5\n11111\n0@000\n11111\n0@0@0\n', '1 1\ni\n']

Output testcases: ['2\n', 'O\n', 'O\n', 'O\n']

41

I» Generative Executor Module

Phase 2: Unit test and feedback generation

Fail
An error occurred in the program:
./tmp/Main.java:23: error: not a statement

for (int k = @; k < n; k++) {adf

./tmp/Main.java:23: error: ';' expected

for (int k = 0; k < n; k++) {adf

2 errors

Fail

The new code failed following
When the input is 3 4

0110

1010

0111

The expected output is 2

The output of the new code is

When the input is 2 3

101

010

The expected output is @

The output of the new code is

When the input is 4 5

11111

00000

11111

00000

The expected output is @

The output of the new code is

testcases:

42

I Self-Refine-Executor Framework - Motivation

« The feedback phase only focuses on code efficiency, which often lead to errors
in the refined code.

* The subsequent self-refinements cannot correct the errors, leading to the worse
code.

43

3 Self-Refine-Executor Framework - Design

Initial correct but slow code

1 If "is not slow"
Feedback J » End

feedback

=3

l Improved code

‘ Execution

44

2 Self-Refine-Executor Framework - Design

 Initialization Phase:

- The model is first provided with a correct but slow version of code, and it is tasked to
directly generate an optimized version of this code.

 Execution Phase:

- Submit the code for testing by the execution module.
- If the test result is “pass”, the code is retained.

- If it fails, the code is discarded, and the previous correct code is used for the next
feedback and refinement.

 Feedback Phase:
- The optimized version of code is given back to the model to obtain feedback.

 Refine Phase:
- Refine the code based on the feedback.

45

2» Multi-Agent-Executor Framework - Motivation

* The plans given by the Analyst are generally correct but often inefficient;

* The Tester is not able to effectively detect obvious errors and judge the efficiency of
the code.

46

N
Coder
| —
A 4 —
, If “fail”
Execution > Analyst

: . \ J

If “pass”

Execution

report

A 4

| Coder

A4

—i Execution

Plan
‘@

A

A
If “pass”
Tester End

47

» Multi-Agent-Executor Framework - Design

 Initialization Phase:

- The task is firstly given to the Coder, who will write code according to the requirements
of users.

- The code will then be passed to the Executing Phase directly.
- If the execution result of this initial code is “Pass”, it then goes to the Testing Phase.
- If the code fails, the Analyst would be called to give a high-level plan for this task.

« Coding Phase:

- This plan is passed back to the Coder, and then the Coder will write the code according
to the plan.

48

2» Multi-Agent-Executor Framework - Design

 Executing Phase:

- The code will be executed through the external “Generative Executor module”.

- The module returns a result, indicating “Pass” if the code passes all test cases, or “Fail”
along with the test cases that failed and any error information (if available).

 Testing and lteration Phase:
- The execution result is given to the Tester.

- If the result is “Pass”, the Tester analyzes whether there is room to improve the efficiency of the
code;

- If the result is “Fail”, the Tester drafts a report based on the error information.
- If the code is correct and the Tester believes it is efficient enough, the iteration ends.

* Repairing Phase:

- If the test is not passed, the test report is sent back to the Coder, who revises the code according
to the report.

49

6. Experiment

Baseline Experiment
Self-Refine-Executor
Multi-Agent-Executor
In-context Learning
Others

50

3 Baseline

* Prompt:

- Please generate {language} code that can be run directly to solve the following

programming problem.

51

J» Baseline

* Prompt:

- Please generate {language} code that can be run directly to solve the following

programming problem. Do not add any text description!

* Result:

Efficiency Timeout %opt

Python
CPP

Java

baseline
baseline

baseline

3.5
12.6

31.5 100
40.4 0 100 16.4
24.0 0 100 3.8

52

I Self-Refine-Executor

Initial correct but slow code

] If "is not slow”
Feedback J » End

feedback

A 4

| Reme |

Improved code

h 4

‘ Execution |

|

53

3 Self-Refine-Executor: Result

Efficiency Timeout %opt

baseline
Python Self-refine
Self-refine-executor
baseline
CPP Self-refine
Self-refine-executor
baseline
Java Self-refine

Self-refine-executor

7.0
7.1
3.5
4.3
3.4
12.6
7.5

7.6

31.5
41.9
40.2
40.4
63.4
53.8
24.0
30.7

33.2

2.5
2.3
0
2.2
0.7
0
2.6

0.9

61.8
91.2
100
52.5
90.1
100
46.1

87.3

11.8
17.6
16.4
37.7
29.5
3.8
7.3
4.4

54

3 Self-Refine-Executor: Result

Efficiency Timeout %opt

baseline 31.5
Python Self-refine 7.0 41.9 2.5 61.8 11.8
Self-refine-executor 7.1 40.2 2.3 91.2 17.6
baseline 3.5 40.4 0 100 16.4
CPP Self-refine 4.3 63.4 2.2 52.5 37.7
Self-refine-executor 3.4 53.8 0.7 90.1 29.5
baseline 12.6 24.0 0 100 3.8
Java Self-refine 7.5 30.7 2.6 46.1 7.3
Self-refine-executor 7.6 33.2 0.9 87.3 4.4

* Why is the pass@1 not 100%?

- After self-refine, the efficiency of the code actually decreased, but the executor-generated test cases were not
large enough to detect timeout situations.

- After self-refine, the optimized code had errors, but the executor-generated test cases were not comprehensive
enough to detect these errors. .

2» Multi-Agent-Executor

] iffair Plan
‘ Execution —»[Analyst J—{ Coder J

If “pass”

N

} Execution |<

A
If “pass”
Tester End

report

A 4

[Goder }

\ 4

—l Execution |

56

2» Multi-Agent-Executor

Total Time | Efficiency Timeout %opt
EIE O el L T M S
0

baseline 31.5
C“’(')‘I‘I';'I;ﬁ‘fa‘;?;n 24.6 53.0 17.0 20.1 5.9
Python

Multi-agent collaboration with new Tester 21.8 46.7 14.3 26.5 5.9
Multi-Agent-Executor 10.2 53.2 4.6 73.5 14.7
baseline 3.5 40.4 0 100 16.4
Multi-Agent 11.9 39.8 6.0 55.7 16.4

C++ Collaboration
Multi-agent collaboration with new Tester 8.3 39.0 4.1 50.8 18.0
Multi-Agent-Executor 8.9 63.7 3.4 70.2 32.8
baseline 12.6 24.0 0 100 3.8
e At 16.0 39.0 6.7 57.7 3.8

T ollaboration
Multi-agent collaboration with new Tester 16.0 39.0 6.7 57.7 3.8
Multi-Agent-Executor 15.8 45.5 8.0 59.1 7.4

57
D

3 Experiment

Question + Positive Example

Positive - LLMs

In-Context-Learning

Question + Positive Example + Negative Example

Positive Negative

58

3 Experiment

Problem Type Negative Positive
Binary search O(m+mn) | O(log(m + n))
In-Context-Learning Divide and conquer O(n?) O(n)
Dynamic programming | O(n?) O(n)
Sorting O(nlogn) O(n)

Table 18: Time Complexity of Different Problem Types

59

3 Experiment

Total Time | Efficiency Timeout

SEUENEEL (TT) Level (EL) | Rate (TR) (Opti';“a"ty
baseline 6.0 31.5 0 100 8.8
ICL (1 positive 7.4 32.1 6.8 26.5 2.9
example)
ICL (2 positive 3.1 36.4 2.0 50 8.8
example)
ICL (4 positive 3.4 325 2.5 50.0 8.8
example)
Python ICL (1 positive
and negative 3.3 30.1 2.5 50.0 11.7
example)
ICL (2 positive
and negative 3.7 39.3 2.0 58.8 8.8
example)
ICL (4 positive
and negative 6.2 34.3 4.3 50.0 5.9
example)

60

3 Experiment

Total Time | Efficiency Timeout

SEUENEEL (TT) Level (EL) | Rate (TR) (Opti';“a"ty
baseline 12.6 24.0 0 100 3.8
ICL (1 positive 10.3 20.8 2.6 65.4 0
example)
ICL (2 positive 8.8 28.4 15 73.0 0
example)
ICL (4 positive 7.3 23.9 0.5 69.2 3.8
example)
Java ICL (1 positive
and negative 9.6 27.4 2.0 65.3 3.8
example)
ICL (2 positive
and negative 9.2 26.4 1.5 69.2 0
example)
ICL (4 positive
and negative 7.0 26.2 0 76.9 0
example)

61

3 Experiment

Total Time | Efficiency Timeout

SEUENEEL (TT) Level (EL) | Rate (TR) (Opti';“a"ty
baseline 3.5 40.4 0 100 16.4
ICL (1 positive 5.6 38.6 11 81.8 21.2
example)
1EL (2 [pEsliie 5.2 57.1 1.3 90.2 42.6
example)
ICL (4 positive 6.7 50.8 1.9 83.6 39.3
example)
C++ ICL (1 positive
and negative 5.4 48.9 1.3 85.2 26.2
example)
ICL (2 positive
and negative 5.3 49.1 1.3 83.6 31.1
example)
ICL (4 positive
and negative 5.6 48.5 1.4 80.3 23.0
example)

62

3 Experiment

def get_messages (prompt, language):

messages = []

system_prompt = "Please generate " + language + "code that
can be run directly to solve the following programming
problem. Do not add any text description!" + "Please pay

attention to the time complexity of your solution."
messages .append (

Change Prompt ("rolen:

"system", "content": system_prompt}
)
messages .append (
{"role": "user", "content": prompt}
)

return messages

63

3 Experiment

Lanauage Total Time Efficiency Timeout %opt
guag (TT) Level (EL) | Rate (TR) (Optimality)
baseline 6.0 315 0 100 8.8
Python
ghange 7.49 42.2 5.2 67.7 11.7
rompt
baseline 3.5 40.4 0 100 16.4
C++
e 4.8 50.1 0.6 80.3 37.7
Prompt
baseline 12.6 24.0 0 100 3.8
Java
ghange 11.0 31.1 2.4 80.7 7.7
rompt

64

3 Experiment

def get_messages (prompt, language):
messages = []
system_prompt = "Please generate " + language + "code to
solve the following programming problem. Let’s think it
step by step."

. messages .append (
Chaln Of Thought (COT) {"role": "system", "content": system_prompt}
)
messages .append (
{"role": "user", "content": prompt}
)

return messages

65

3 Experiment

Lanauage Total Time Efficiency Timeout %opt
guag (TT) Level (EL) | Rate (TR) (Optimality)

baseline 6.0 31.5 0 100 8.8

Python
CoT 14.6 40.5 11.3 50.0 2.9
baseline 3.5 40.4 0 100 16.4

C++
CoT 3.2 54.9 0.7 77.0 31.1
baseline 12.6 24.0 0 100 3.8

Java
CoT 9.6 39.8 2.0 69.2 3.8

66

J» Conclusion

 Measure and process code contests dataset.

* We have improved the timeEval benchmark.

« We did the empirical study of the existing method.

« We proposed several frameworks and finally achieved
satisfactory results.

67

I Q&A Session

Thank you

68

