
Large Language Models for
Code Intelligence Tasks

LYU2301

Supervisor: Professor Michael R. Lyu

Presenter: Canran Liu, Xingyun Ma

• Introduction
• Background
• Dataset Processing & Benchmark Creation
• Research Questions
• Experiments
• Conclusion
• Future Work

2

Outline

3

Introduction - Motivation
• Research around LLMs for coding tasks has emerged as a popular topic.
• LLMs for code have achieved remarkable results in code-related tasks.

4

Introduction - Motivation

• Significant progress of research on the accuracy of LLMs in
code generation.

5

Introduction - Motivation

O(nlogn) O(n)

• A simple example to show that there is room for improvement in the
efficiency of the generated code

6

Introduction - Motivation
• Most current benchmarks for code only focus on the functional correctness of

code generated by LLMs or their ability to understand text and code.

Introduction - TimeEval

 Problem set of size 110

• Dataset Canonical solution for each problem

 Test cases for each question

• A framework for automated measurement of code efficiency

7

Background

• Self-refinement:
 a framework aiming to imitate the process of human thinking

9

Background

• LLM-based Multi-Agents Collaboration

• In-context Learning

9

Zero-shot

One-shot / Few-shot

Chain of Thought

10

Dataset Processing & Benchmark Creation
Dataset Processing

APPS
dataset

• 10,000 coding problem in total.

• The average number of test cases for each
problem is 21.2.

• 232,444 ground truth solutions written by
human.

11

Dataset Processing & Benchmark Creation
Dataset Processing

APPS
dataset

TimeEval
dataset

• 110 High quality questions:
The problem set comprises 110
questions designed to assess the
efficiency of generated code.

• Canonical solution for each
problem: We provide an optimal
solution for each problem.

• Test cases for each question:
We prepared ten test cases
containing both small and large sizes
for each question.

12

Dataset Processing & Benchmark Creation
Dataset Processing

Dataset File
Structure

13

Dataset Processing & Benchmark Creation
Dataset Processing

Question 0032 in
our dataset

question.txt

14

Dataset Processing & Benchmark Creation
Dataset Processing

Question 0032 in
our dataset

canonical_solution.py

15

Dataset Processing & Benchmark Creation
Dataset Processing

Question 0032 in
our dataset

input_output.json

metadata.json

16

Dataset Processing & Benchmark Creation
Benchmark Creation

Execute code

17

Dataset Processing & Benchmark Creation
Benchmark Creation

Metrics

• Pass rate: Percentage of test cases that passed the
test out of all test cases.

• Fail rate: Percentage of test cases that failed the test
out of all test cases.

• Timeout rate: Percentage of timeout test cases out
of all test cases.

18

Dataset Processing & Benchmark Creation
Benchmark Creation

Metrics

• Percent Optimized: %Opt

19

Dataset Processing & Benchmark Creation
Benchmark Creation

Metrics

• Speedup: %Sp

20

Dataset Processing & Benchmark Creation
Benchmark Creation

Baseline
Pass Rate Wrong Rate Timeout Rate %Opt %Sp

gpt-3.5-turbo 68.5 1.6 29.8 0.0 8.3

21

Research Questions
• RQ1: Does self-refinement improve the efficiency of generated code?

• RQ2: How to enhance the refinement result when using the self-refinement technique.

• RQ3:Does the Multi-agent collaboration technique improve the efficiency of generated code?

• RQ4: How different assignments of roles to agents and different collaborative structures will affect results.

• RQ5: The impact of in-context learning on the efficiency of generated code.

• RQ6: The effect of other parameters or LLM types on the efficiency of generated code.

22

Experiment: Self-Refinement
RQ1: Does self-refinement improve the efficiency of generated code?

When sample size is the same

Self-Refine
VS

Best of K
LLM

Original code

1st round code

2nd round code

VS

Best of them

23

Experiment: Self-Refinement
RQ1: Does self-refinement improve the efficiency of generated code?

Self-Refine
VS

Best of K

Round Pass Rate Wrong Rate Timeout Rate %Opt %Sp

0 68.5 1.6 29.8 0.0 8.3

1 61.3 17.0 21.6 20.0 32.5

2 67.8 5.2 27.0 4.5 12.9

3 66.6 6.7 26.6 3.6 12.6

K Pass Rate Wrong Rate Timeout Rate %Opt %Sp

1 68.5 1.6 29.8 0.0 8.3

2 67.8 3.4 28.8 0.9 9.7

3 67.7 3.3 29.0 1.8 10.0

4 66.9 4.3 28.7 3.6 14.3

24

Experiment: Self-Refinement
RQ1: Does self-refinement improve the efficiency of generated code?

Self-Refine
VS

Best of K

25

Experiment: Self-Refinement
RQ2: How to enhance the refinement result when using the self-
refinement technique.

Number of Round

26

Experiment: Multi-Agent Collaboration
RQ3: Does the Multi-agent collaboration technique improve the
efficiency of generated code?

Planner + Coder

27

Experiment: Multi-Agent Collaboration
RQ3: Does the Multi-agent collaboration technique improve the
efficiency of generated code?

Plan

28

Experiment: Multi-Agent Collaboration
RQ3: Does the Multi-agent collaboration technique improve the
efficiency of generated code?

Agents Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Coder 68.5 1.6 29.8 0.0 8.3

Planner + Coder 37.1 44.5 18.2 29.0 46.1
Planner + Coder

29

Experiment: Multi-Agent Collaboration
RQ4: How different assignments of roles to agents and different
collaborative structures will affect results.

Planner + Coder
+Tester

while(!Tester.isCorrect(plan)):
 issue = Tester.generate(plan)
 Tester.send(issue, Planner)
 plan = Planner.generate(issue)
 Planner.send(plan, Tester)

while(!Tester.isCorrect(code)):
 issue = Tester.generate(code)
 Tester.send(issue, Coder)
 code = Coder.generate(issue)
 Coder.send(code, Tester)

30

Experiment: Multi-Agent Collaboration
RQ4: How different assignments of roles to agents and different
collaborative structures will affect results.

Planner + Coder
+Tester

Agents Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Coder 68.5 1.6 29.8 0.0 8.3

Planner + Coder 37.1 44.5 18.2 29.0 46.1

Planner + Coder +Tester 55.6 26.6 17.7 29.1 46.9

31

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

Zero-shot

One-shot / Few-shot

Chain of Thought

In context Learning

32

Prompt format:
Problem: problem from our dataset

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

Zero-shot

33

Prompt format:
Problem: problem of the example;
Solution with poor time complexity;
Solution with good time complexity;

Problem: problem from our dataset:
Please provide a solution with good time complexity.

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

One-shot
example

34

Experiment Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Zero-shot 67.0 1.6 31.4 1.8 11.9

One-shot 56.6 23.4 20.0 22.7 37.2

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

Zero-shot vs One-shot

• %Opt and %Sp metrics improved
 --> the result of one-shot is closer to the optimal solution than the zero-shot
• The accuracy decreased
 --> one-shot led the model to focus more on the time complexity of the code

35

Self-refinement
+

One-shot

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

Prompt format:
Problem: problem of the example;
Original solution;
Solution with improved time complexity;

Problem: problem from our dataset;
Original solution: baseline solution;
Please provide a solution with improved time complexity.

example

36

Experiment Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Zero-shot 67.0 1.6 31.4 1.8 11.9

One-shot 56.6 23.4 20.0 22.7 37.2

Self-refinement + One-shot 58.9 22 19.1 25.5 35.4

Self-refinement
+

One-shot

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

• This experiment did not show a significant improvement over simple self-
refinement or one-shot learning alone

• The accuracy is the highest among three experiments, but both %Opt and
%Sp metrics were at intermediate values

37

Thought process:
• What is the time complexity of the original solution?
• Is there a better algorithm in terms of time complexity?
• What is the time complexity of this algorithm?
• How to implement this algorithm?

Self-refinement
+

One-shot
+

CoT

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

38

Experiment Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Zero-shot 67.0 1.6 31.4 1.8 11.9

One-shot 56.6 23.4 20.0 22.7 37.2

Self-refinement + One-shot 58.9 22 19.1 25.5 35.4

Self-refinement + One-shot +CoT 35.8 55.4 8.8 60.0 84.8

Self-refinement
+

One-shot
+

CoT

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

• Significant improvements in both %Opt and %Sp metrics
• But also significant decrease in accuracy

39

Self-refinement
+

One-shot
+

CoT
+

Test cases

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

40

Experiment Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Zero-shot 67.0 1.6 31.4 1.8 11.9

One-shot 56.6 23.4 20.0 22.7 37.2

Self-refinement + One-shot 58.9 22 19.1 25.5 35.4

Self-refinement + One-shot +CoT 35.8 55.4 8.8 60.0 84.8

Self-refinement + One-shot +CoT + Test cases 40.8 49.9 9.3 53.6 72.5

Self-refinement + One-shot
+

CoT + Test cases

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

• There is indeed an improvement in accuracy, although it is still slightly lower
compared to previous experiments

• Continue to explore how to further enhance accuracy in the future

41

Experiment: Temperature
RQ6: The effect of other parameters or LLM types on the
efficiency of generated code.

Temperature

Temperature is a parameter provided by

OpenAI for user adjustment. The choice of

sampling temperature ranges from 0 to 2.

Higher values like 0.8 will make the output

more random, while lower values like 0.2

will make it more focused and

deterministic.[1]

[1]https://platform.openai.com/docs/guides/code

42

Experiment: Temperature
RQ6: The effect of other parameters or LLM types on the
efficiency of generated code.

Temperature Pass Rate Wrong Rate Timeout Rate %Opt %Sp

0.0 68.5 1.6 29.8 0.0 8.3

0.1 67.6 5.3 27.1 5.4 16.3

0.2 65.3 10.2 24.5 10.0 20.3

0.3 65.5 9.4 25.2 9.1 18.0

0.4 60.3 13.3 26.5 11.8 18.4

0.5 59.5 14.5 26.0 10.9 22.3

0.6 58.7 15.9 25.4 13.6 20.5

0.7 54.5 20.8 24.6 20.9 28.9

0.8 55.7 18.4 25.9 17.3 26.5

0.9 53.1 25.3 21.6 18.2 31.8

1.0 46.9 31.4 21.7 23.6 41.8

Temperature in the

range of [0,1]

43

Experiment: Temperature
RQ6: The effect of other parameters or LLM types on the
efficiency of generated code.

Temperature in the

range of [0,1]

44

Experiment: Comparison of Different LLMs
RQ6: The effect of other parameters or LLM types on the
efficiency of generated code.

gpt-3.5-turbo
VS

gpt-4

Model Pass Rate Wrong Rate Timeout Rate %Opt %Sp

gpt-3.5-turbo 68.5 1.6 29.8 0.0 8.3

gpt-4 61.3 17.0 21.6 20.0 32.5

45

Summary of Our Contributions

• Proposed timeEval benchmark.

• On our benchmark, we did empirical studies of the existing models or
frameworks to test the efficiency of generated code.

• Proposed several frameworks to improve the efficiency of generated code.

46

Future Works

• Continue to measure the different models as well as the framework on our
benchmark.

• Try to create a more efficient framework.

• Begin an exploration of the space complexity of the generated code.

47

Q&A Session

Thank you

