Large Language Models for
Code Intelligence Tasks

LYU2301
Supervisor: Professor Michael R. Lyu

Presenter: Canran Liu, Xingyun Ma

o

kP XK F
e Chinese University of Hong Kong

I Outline

 Introduction

- Background

- Dataset Processing & Benchmark Creation
- Research Questions

- Experiments

« Conclusion

* Future Work

I» Introduction - Motivation

« Research around LLMs for coding tasks has emerged as a popular topic.
« LLMs for code have achieved remarkable results in code-related tasks.

LaMDA (Thoppilan et al., 2022), PaLM (Chowdhery et al., 2022), GPT-NeoX (Black et al., 2022),
BLOOM (Scao et al., 2022), LLaMA (Touvron et al., 2023), GPT-4 (OpenAl 2023), LLaMA 2 (Tou-

vron et al., 2023), Phi-1.5 (Li et al., 2023)
p Codex (Chen et al., 2021), PaLM Coder (Chowdhery et al., 2022), Minerva (Lewkowycz et al., 2022),
Adapted LM PalM 2% (Anil et al., 2023), Code LLaMA (Roziére et al., 2023)

h at P CuBERT (Kanade et al., 2020), CodeBERT (Feng et al., 2020), Graph-
I CodeBERT (Guo et al., 2021), SynCoBERT (Wang et al., 2021), Code-

!

MVP (Wang et al., 2022)

S/

GPT-C (Svyatkovskiy et al., 2020), CodeGPT (Lu et al., 2021).\
PolyCoder (Xu et al., 2022), CodeGen (Nijkamp et al., 2023),
PyCodeGPT (Zan et al., 2022), PanGu-Coder (Christopoulou
et al., 2022), CodeGeeX (Zheng et al., 2023), Phi-1 (Gunasckar
et al., 2023), CodeFuse (Di et al., 2023)

J

Code LMs 1_(Specialized LM

InCoder (Fried et al., 2023), SantaCoder (Allal et al., 2023),
StarCoder (Li et al., 2023)

7y code llama

—(UniLM HCugLM (Liu et al., 2020), UniXcoder (Guo et al., 2022) J

PyMTS5 (Clement et al., 2020), T5-code (Mastropaolo et al., 2021),
Encoder- DOBF (Lachaux et al., 2021), PLBART (Ahmad et al., 2021), CodeT5 (Wang
- et al., 2021), SPT-Code (Niu et al., 2022), AlphaCode (Li et al., 2022),
Decoder NatGen (Chakraborty et al., 2022), ERNIE-Code (Chai et al., 2023),
CodeT5+ (Wang et al., 2023)

Instruction
Finetuning

WizardCoder (Luo et al., 2023), PanGu-Coder2 (Shen et al., 2023), Oc-
toCoder (Muennighoff et al., 2023), MFTCoder (Liu et al., 2023)

& GitHub Copilot

Code
Finetuning

-
CompCoder (Wang et al., 2022), CodeRL (Le et al., 2022), PPOCoder (Sho-
jaee et al., 2023), RLTF (Liu et al., 2023)

Reinforcement
Learning

J

Figure 1: Our taxonomy of pretrained language models for code.

I» Introduction - Motivation

 Significant progress of research on the accuracy of LLMs in
code generation.

Code Generation on HumanEval
Leaderboard Community Models Dataset
View Pass@1 v by Date v All competition entries Vv
125 —
Language Agent Tree Seargh (GPT-4): 94400
100 Reflexion (GPT-4)
Parsel (GPT-4 + CodeT)
& CODE-T (code-davinci-002)
Q50
<
= Codex-128
25
0
-25
May '21 Sep 21 Jan '22 May '22 Sep 22 Jan '23 May '23 Sep 23 Jan 24
Other models Models with highest Pass@1

I Introduction - Motivation

« A simple example to show that there is room for improvement in the

efficiency of the generated code

O(nlogn)

Certainly! You can find the kth largest number in a list in Python using a variety of
approaches. One common approach is to use the "soxted" function or a heap data

structure. Here's an example using the "sorted" function

D Copy code

(nums, k):
nums.sort(reverse=

Can you improve the time complexity?

nums(k -

ﬁ

my_list = [

result = find_kth_largest(my_list, k)
,y(

In this code, we first sort the “nums * list in descending order using the “soxrt™ method with
‘reverse=Trxue . Then, we simply return the element at index "k - 1°,as Python lists are

zero-indexed.

You can replace ‘my_list" and "k’ with your own list and the desired value of "k" to find the

kth largest number in your list.

O(n)

Certainly! You can improve the time complexity to O(n) on average by using the QuickSelect
algorithm. QuickSelect is a modified version of the QuickSort algorithm and is well-suited for
finding the kth largest (or smallest) element in an unsorted list. Here's a Python

implementation of QuickSelect:

) Copycode

random

(nums, low, high):

pivot_index = random.randint(low, high)
nums[pivot_index], nums[high] = nums[high], nums[pivot_index]
pivot = nums[high]

low

j range(low, high):

nums[j] > pivot:
nums[i], nums[j] = nums[j], nums[i]

i+=

nums[1], nums[high] = nums[high], nums[i]

i

I Introduction - Motivation

* Most current benchmarks for code only focus on the functional correctness o
code generated by LLMs or their ability to understand text and code.

Tyer et al. (2016); Gu e &l (2018); Yin et al. 2018); 019y, (2020) 0y,)
.) Ling et al. (021); Xu et al. (2021 .
L e e e = Benchmarks
Tentewl (2022); Nin et al. (2022); (2022); Sun et al. (022 Gu (022); (oo, o2y, Q022
Wisng et al. (2023))
% These leaderboards are used to track progress in Code Generation
Code CONCODE (Iyer et al., 2018); APPS (Hendrycks et al, 2021); HumanEval (Ches et al, 2021), MBPP (Austin et ol 2021),
g‘ BIG-Bemeh (Srivastina et al., 2023); AixBench (Hao et al., 2022), MulsPL-E (Cassano ot al., 2023); DS-1000 (L et al, 2023);
o = CoderEval (Yo et al,, 2023 HumanEval-X (Zheng et ol): HussanEvad+ (Liv o al., 2023), CodeApex (Fu e &, 2023)

J
—' Textto-Code l—-

Zhoag e al. (2017); Subr et al. (X st (2018} Finegan-Doliak e al. (013); Yo et al. 018); Yo) Trend Dataset Best Model
et al. (2018); (13 . B 4 19% Yu e) (2019k ([}
(N (() (

X . % Sci
): Yang et ol (2021 1wl (2022); Trummer (2022); Roy et al. (202
(2023}, Chang and Fosles-Lussicr) Nan et o (2023)

dak et al
¥, Chen et al

2021

J

: HumanEval Language Agent Tree Search (GPT-4)
.\umu et al. (2021); Deori et al. (2022); Chowdbery ot al. (2022); Gao of al. (2023); Chen e sl (2022) Waag et al. (N23)) ce s
grimimiog
x‘ et al. (2018}, Luss et al. (2019 (02 1% Bui e al. 021); (2K Q1)) ' _— CoNala PanGu-Coder-FT-I

g 2
Bruch et al. (2009), Hasdle ot al. (2012), Allamanis et sl (2014); Raychey et al. (2014); Tu et al. (2014); Whate et . (2015). Raychey
Code et al. (2016); Bielik et al. (2016); Raychev et al. (2016) Hellendoons and Devaaba (2017) Li et al. (201 8)x Parve W. 201Ky Alos
Comyg ¢ Svyatkonskiy o d (2019); Karamputsis et o, (2020); Svysovekiy et al 20K 1 al. (K L et al. (2021% Niu .) s
L g

(2022); Wasg et sl (2023); Guo et al). Rowsdre et al. (20) o~ WikiSQL NL2SQL-RULE

e N
Nguyen et sl (2013); Karaivanov et al. (2014); Nguyes ot al. (2015k Nguyes o al. (016), Chen et al. (2018): Drisss ot al. (2018),
e idre et al. (Q020), (¥ Lu et al (2020 Lachau et al. (2021x Ahmad et ol (2021); () Wang et al
Code Evaluation Trasslation 21); Rossdee et ol ; Niw et al. (22), Tipiencni et sl (2022); Chakrabyety et wl (Szafrssice et al. (2023% Zhesg e al . e

(2023), Chen et al. (
\

3); Pas et al. (2023)) L APPS CodeRL+CodeT5

s
Long and Rinand (2016), Bhatis sad Saagh (2016) Gupta et al. (2017)k Blatia et al. (2

et al. (2021); Tufaso et al. (2019); Vasic et d. 2019); (
Repair
etal

\ J

—((‘lu:: Tex)—((|3 (2 ()

e Fraad e al. (2023); Bavarian et al. (2022x Alld et al. (2023); Li et o (2023 Rousdre o al. (2023))
Iafilling

et al. (2019)% Chakesl

K () Yasse
20K Li et al : (% Mistsopacho et al. (2021) Lu et al. (2021) Jang et al. (2021}, Desis —
121); Yasusaga sed Lisag
k Fan et o (2023);

Django MarianCG

(X Soodi et al. (2023); Xis et &l (2023); Bui et ol (X

CoNaLa-Ext BART W/ Mined

» MBPP Language Agent Tree Search (GPT-3.5
—‘ Code-to-Code “:\‘“"‘:""‘ Collberg and Thomboesces (2002); Murad <t al. (2010x Bichsel et al. (2016}, Vasilescs et al. (2017x Tran et sl (2019); Lacossis ¢t al —— guage g ()
-;. . ’ 019y, (2022); Lachaux et ol (2021x Liu et &l (2022)
o

Code-to-Text

Code-to-Patterns ererce= Puchoco sad Enst (2007); Fraser sad Zeller (20121, McMita (2011}, Fraser sad Arcuei (2011); Shamshiri (015), Alss e¢ al. (2017);)
Text-40-Text Pusichells et al. (2018 Selakovic ot al. (2018x Tufiso ot al. (2000). Areca ot al. (2022); Shimmi and Rahimi (2022) Barcif et ol ~ Shellcode_IA32 CodeBERT
(2022), Chen et al. (2023); Lahin et al. (2022); Schifer et al. (023x Liu et o (N23x Lessicux et ol (223)

I Introduction - TimeEval

m—

Problem set of size 110

« Dataset — Canonical solution for each problem

__ Test cases for each question

« A framework for automated measurement of code efficiency

3» Background

e Self-refinement:

a framework aiming to imitate the process of human thinking

Feedback Refine
Use ‘M to get feedback on its own output Use ‘M to refine its previous output, given its feedback

3» Background

« LLM-based Multi-Agents Collaboration

 In-context Learning —

Group

| %/O“N |

New State ﬁhcﬂon Execution §

3 I 2. g '

B agents O 0 A

acions: A\ A NH W% ;
: g"""'l‘”;';;';.;'-r;;;; """""""""""" : {'i';l;;;,;; """"""" i~ E ;’"i;';;;i;;,;; """""""""""" g
. B : Designer wp —» 1 :Worker = B — Fl:Worker ™ Q& :
i P engineer | Newstate : : F3.engineer Newstate | | F¥.engineer Newstate |
N Round I e oot Rond 24, e] Rund3 ;

Standard Prompting Chain-of-Thought Prompting
— Zero-shot S ~ ~

One-shot / Few-shot

_ Chain of Thought

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?

.

A: The answer is 27. x

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

answer is 9. 4/

Dataset Processing & Benchmark Creation
Dataset Processing

* 10,000 coding problem in total.

» The average number of test cases for each
APPS problem is 21.2.

dataset

« 232,444 ground truth solutions written by
human.

10

Dataset Processing & Benchmark Creation

Dataset Processing

APPS TimeEval
——> —=

dataset dataset

F

- 110 High quality questions:
The problem set comprises 110
questions designed to assess the
efficiency of generated code.

- Canonical solution for each
problem: We provide an optimal
solution for each problem.

- Test cases for each question:
We prepared ten test cases
containing both small and large sizes

__ for each question.

11

Dataset Processing & Benchmark Creation
Dataset Processing

(base) canranliu@Canrans—MacBook-Pro data % tree 0032

0032
, canonical_solution.py
Dataset File input_output. json

Structure metadata.json
question.txt

1 directory, 4 files

12

» Dataset Processing & Benchmark Creation
Dataset Processing

data > 0032 question.txt
You, 1 second ago | 1 author
We consider a positive integer perfect, if and only if the sum of its digits is exactly 10. Given a positive integer k, your task is to find the k-th smallest perfect positive integer

Question 0032 In
our dataset ot

Input
2

Output
28

———Note

The first perfect integer is $19% and the second one is $28%

question.txt

13

Dataset Processing & Benchmark Creation
Dataset Processing

data > 0032 > canonical_solution.py > ...
import sys

f = sys.stdin
d = [[0] % 11 for _ in range(11)]

dlel[e] =1
for i in range(10):
for j in range(11):
for k in range(10):
if j+k <= 10:
d[i+1] [j+k] += d[i][j]

target = int(f.readline())

: : tt=target
QueStlon 0032 ln target = 1
val = 10
ans = "'
Our dataset for i in range(10):
ii=9-1
for j in range(val+l):
if j==10:
continue
jj=val-j
if d[ii]l[jj] <= target:
target —= d[ii] [jj]
else:
val = jj
ans += str(j)
break

print(int(ans))

canonical_solution.py

14

Dataset Processing & Benchmark Creation
Dataset Processing

data > 0032 > {} input_output.json > ...
{
llinputsll: [Ill\nll' “2\””, ”13\”“, ”101\””, ||1®23\n||,
''9999\n", "10000\n", 22333\, "9139\n", '"9859\n"],

Soutputs a1 9\nS; E28\NE SIS oNN, "1432\n", "100270\n",
"10800010\n", "10800100\n", '"310060\n", "10134010\n", "10422001\n"]

Question 0032 In

input_output.json
our dataset

data > 0032 > {} metadata.json > ...
{

"difficulty": "interview",

"url": "https://codeforces.com/problemset/problem/919/B",
"time complexity" : "0(1)"

metadata.json

15

Dataset Processing & Benchmark Creation
Benchmark Creation

= 0002_result.txt X

test_result > = 0002_result.txt
canonical_solution.py:
Results: ['True', 'True', 'True', 'True', 'True', 'True', 'True', 'True', 'True', 'True'l]
Outputs: ['2\n', 'O\n', 'O\n', '31\n', '318140\n', '@O\n', '2044\n', '296190217\n', '235\n', '199999823\n'l]
Passed tests: 10
Wrong answers: @
Time limit exceeded: @
Execution times: ['0.014', '0.013', '0.013', '0.013', '0.013', '0.013', '0.013', '0.013', '0.013', '0.013']

Execute code

gen_solution.py:
Results: ['True', 'True', 'True', 'True', 'True', 'True', 'True', 'Timeout', 'True', 'Timeout']
Outputs: ['2\n', 'O\n', '@O\n', '31\n', '318140\n', 'O\n', '2044\n', 'Timeout', '235\n', 'Timeout']
Passed tests: 8
Wrong answers: @
Time limit exceeded: 2
Execution times: ['0.014', '0.013', '0.013', '0.014', '0.280', '0.013', '0.014', 'Timeout', '0.015', 'Timeout']
Total time: 10.38 seconds

16

Dataset Processing & Benchmark Creation
Benchmark Creation

 Pass rate: Percentage of test cases that passed the
test out of all test cases.

Metrics - Fail rate: Percentage of test cases that failed the test
out of all test cases.

- Timeout rate: Percentage of timeout test cases out
of all test cases.

17

Dataset Processing & Benchmark Creation
Benchmark Creation

« Percent Optimized: %Opt

» Percent Optimized T%Optju: Proportion of programs where the execution time of

the generated code is close enough to the execution time of the optimal solution in

Metrics
the test set (Canonical solution). That is, the code execution time that satisfies the
equation,
t e "to t
£ <0
topt

where t4e, represents the execution time of generated code, t,,; represents the
execution time of optimal code and 6 represents the threshold. The execution time

is defined as close enough when the LHS is less than the threshold.

18

Dataset Processing & Benchmark Creation
Benchmark Creation

- Speedup: %Sp

- Speedup %Sp : The ratio of the execution time of the optimal solution to the

Metrics execution time of the generated program. This metric accurately describes how

close in time the generated program is to the optimal solution.

SPEEDUP = feet

tgen

19

Dataset Processing & Benchmark Creation
Benchmark Creation

Pass Rate | Wrong Rate | Timeout Rate | %Opt | %Sp
Baseline

gpt-3.5-turbo

20

I Research Questions

RQ1: Does self-refinement improve the efficiency of generated code?

« RQ2: How to enhance the refinement result when using the self-refinement technique.

« RQ3:Does the Multi-agent collaboration technique improve the efficiency of generated code?

« RQ4: How different assignments of roles to agents and different collaborative structures will affect results.

« RQj5: The impact of in-context learning on the efficiency of generated code.

« RQ6: The effect of other parameters or LLM types on the efficiency of generated code.

21

Y) Experiment: Self-Refinement

RQ1: Does self-refinement improve the efficiency of generated code?

When sample size is the same

o ——— — — — — — — — — — ——— ——

Self-Refine i
VS = G uwm
Best of K |

Original code

1st round code VS

ond round code Best of them

22

Y) Experiment: Self-Refinement

RQ1: Does self-refinement improve the efficiency of generated code?

o e e e
0 1.6 0.0 8.3

68.5 29.8
1 61.3 17.0 21.6 20.0 32.5
2 67.8 5.2 27.0 45 129
Self-Refine 3 66.6 6.7 26.6 36 12.6
VS
1 68.5 1.6 29.8 00 83
2 67.8 3.4 28.8 09 97
3 67.7 3.3 29.0 1.8 100
4 66.9 4.3 28.7 3.6 143

23

Y) Experiment: Self-Refinement

RQ1: Does self-refinement improve the efficiency of generated code?

Selt-Refine
VS
Best of K

0.35

0.3

0.25

0.2

0.15

0.1

0.05

—— %0pt(self-refinement)

= %Sp(self-refinement)

%0pt(best of K) === %Sp(best of K)

24

Y» Experiment: Self-Refinement

RQ2: How to enhance the refinement result when using the self-

refinement technique.

Number of Round

0.35

0.3

0.25

0.2

0.15

0.1

0.05

—— %0pt(self-refinement)

= %Sp(self-refinement) %0pt(best of K) === %Sp(best of K)

X

25

yP» Experiment: Multi-Agent Collaboration
RQ3: Does the Multi-agent collaboration technique improve the
efficiency of generated code?

o ——————— ——— — —— — —— — o ——————————— ——— — —

I
|
|
Planner + COder QueStion R - Planner I—'>i - COder —— Code
|
|
|

—— e ——————— —— ———— —— e — o — o — — — — —— -

26

yP» Experiment: Multi-Agent Collaboration
RQ3: Does the Multi-agent collaboration technique improve the
efficiency of generated code?

To solve this problem, we can use a brute force approach to check all possible
combinations of side lengths a, b, and c. However, Ethis approach would have a time
complexity of 0(n®3), which would be too slow for large values of n.

Instead, we can optimize the solution by using a more efficient approach. We can
iterate over the values of a and b, and for each combination, calculate the value of
c using the Pythagorean equation. If the calculated value of ¢ is less than or equal
to n, we can increment the count of valid triangles.

@ Plan Here is a plan to solve the problem with low time complexity:

1. Read the input value of n.
2. Initialize a variable count to @ to keep track of the number of valid triangles.
3. Iterate over the values of a from 1 to n.
- For each value of a, iterate over the values of b from a to n.
— For each combination of a and b, calculate the value of ¢ using the
Pythagorean equation: ¢ = sqrt(a”®2 + b"2).
— If the calculated value of ¢ is less than or equal to n, increment the count
of valid triangles.
4. Print the value of count as the output.

By following this plan, we can solve the problem with a time complexity of 0(n”"2),
which is much more efficient than the brute force approach.

27

yP» Experiment: Multi-Agent Collaboration
RQ3: Does the Multi-agent collaboration technique improve the
efficiency of generated code?

1.6

Coder 68.5

0.0 8.3

29.8
Planner + Coder

Planner + Coder 37.1 44.5 18.2 29.0 46.1

28

'y» Experiment: Multi-Agent Collaboration
RQ4: How different assignments of roles to agents and different
collaborative structures will affect results.

Planner + Coder
+Tester

(- ———————————

Question

(o - ——————————————— —

-——— e - ———— -

Code

while(!Tester.isCorrect(plan)):
issue = Tester.generate(plan)
Tester.send(issue, Planner)
plan = Planner.generate(issue)
Planner.send(plan, Tester)

while(!Tester.isCorrect(code)):
issue = Tester.generate(code)
Tester.send(issue, Coder)
code = Coder.generate(issue)
Coder.send(code, Tester)

29

'y» Experiment: Multi-Agent Collaboration
RQ4: How different assignments of roles to agents and different
collaborative structures will affect results.

1.6

Coder 68.5

0.0 8.3

29.8
Planner + Coder

+Tester Planner + Coder 37.1 44.5 18.2 29.0 46.1
Planner + Coder +Tester 556 26.6 17.7 29.1 46.9

30

'y» Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Co

— Zero-shot

In context Learning — One-shot / Few-shot

_ Chain of Thought

Standard Prompting Chain-of-Thought Prompting
\
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
) Co they have? J

A:

' A: The answer is 27. x)

r

answeris 9. o/

31

'y» Experiment: In-Context Learning

RQ5: The Impact of In-Context Learning on the Efficiency of Generated Cod&™==

Prompt format:

Zero-shot Problem: problem from our dataset

def get _messages(
messages = []
messages.append(

{"role": "system", "content": "In the following question you only need to generate the code itself,

"and directly generate a python code that can be run directly. Don't add any text descriptions!"}

messages.append(
{"role": "user", "content":

)

return messages

n +

'y» Experiment: In-Context Learning f
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Cod&™=

Prompt format:

Problem: problem of the example;

Solution with poor time complexity; - example
One-shot Solution with good time complexity;

—_

Problem: problem from our dataset:
Please provide a solution with good time complexity.

def get_messages(
messages = []
messages.append (
{"role": "system", “"content":
"Problem: You are given a ©-indexed array of integers nums of length n.
+ "Solution with poor time complexity:\ndef jump(self, nums: List[int])
+ "Solution with good time complexity:\ndef jump(self, nums: List[int])
)
messages.append (
{"role": "user", "content": f"Problem: |{
Please provide a solution with good time complexity.

Please directly provide a python code that can be run directly.

Don't add any text descriptions!"}

~eturn messages 33

'y» Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Cod#:

Zero-shot vs One-shot

e) e
1.6 1.8

Zero-shot 67.0 31.4 : 11.9
One-shot 56.6 23.4 20.0 22.7 37.2

* %Opt and %Sp metrics improved

--> the result of one-shot is closer to the optimal solution than the zero-shot
« The accuracy decreased

--> one-shot led the model to focus more on the time complexity of the code

34

'y» Experiment: In-Context Learning |
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Cod&™=

Prompt format:
Problem: problem of the example;
Original solution; - example

Self-refinement) o . .
Solution with improved time complexity;

.+.
One-shot

Problem: problem from our dataset;
Original solution: baseline solution;
Please provide a solution with improved time complexity.

def get_messages(

messages = []

messages.append (
{"role": "system", "content": "Problem: You are given a ©-indexed array of integers nums of length n
+ "Original solution:def jump(self, nums: List[int]) -> int:\n size = len(nums)\n dp = [float
+ "Solution with improved time complexity:\ndef jump(self, nums: List[int]) -> int:\n end, max_j

)

messages.append (
{"role": "user", "content": f"Problem: {

Original solution: {

Please provide a solution with improved time complexity.

Please directly provide a python code that can be run directly. Don't add any text descriptions!"}

35

'y» Experiment: In-Context Learning

RQ5: The Impact of In-Context Learning on the Efficiency of Generated Cod€”

Self-refinement

+
One-shot
I e e e
Zero-shot 67.0 1.6 31.4 1.8 11.9
One-shot 56.6 23.4 20.0 22.7 37.2
Self-refinement + One-shot 58.9 22 19.1 25.5 354

 This experiment did not show a significant improvement over simple self-
refinement or one-shot learning alone

« The accuracy is the highest among three experiments, but both %Opt and
%Sp metrics were at intermediate values

36

'y» Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Cod&™=

Self-refinement Thought process:
+ « What is the time complexity of the original solution?
One-shot « Is there a better algorithm in terms of time complexity?
+ « What is the time complexity of this algorithm?
CoT « How to implement this algorithm?

def get_messages(
messages = []
messages.append(
{"role": "system", "content": "Problem: You are given a ©-indexed array of integers nums
"Original solution:def jump(self, nums: List[int]) -> int:\n size = len(nums)\n
"How to improve the time complexity?\n"

"Answer:The time complexity of the original solution is 0(n”2) due to the nested loops

"So the solution with improved time complexity is:\ndef jump(self, nums: List[int]) ->

)

messages.append(
{"role": "user", "content": f"Problem: {
Original solution: { } \n
How to improve the time complexity?
Answer:"}

37

'y» Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Cod&€™==<

Self-refinement

+
One-shot
+
CoT
I o e G

Zero-shot 67.0 1.6 31.4 1.8 11.9
One-shot 56.6 23.4 20.0 22.7 37.2
Self-refinement + One-shot 58.9 22 19.1 255 354
Self-refinement + One-shot +CoT 35.8 55.4 8.8 60.0 84.8

« Significant improvements in both %Opt and %Sp metrics

« But also significant decrease in accuracy -

'y» Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Co

def get_messages(

Self-refinement e = [

messages.append (

-F' {"role": "system", "content": "Problem: You are given a ©-indexed array of integers nums of lengt
+ "Original solution:def jump(self, nums: List[int]) -> int:\n size = len(nums)\n
One—ShOt + "How to improve the time complexity?\nAnswer:The time complexity of the original solution is (

+ "So the solution with improved time complexity is:\ndef jump(self, nums: List[int]) -> int:\n

+)

messages.append(
COT {"role": "user", "content": f"Problem: { } \n Original solution: { } \n

How to improve the time complexity? Please also pay attension to the accuracy according to

+ these inputs and correct outputs of test cases and outputs of the original code: {

Test cases

Answer: (Please mark the start and and of python script)"}

39

'y» Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Cod&™==

Self-refinement + One-shot
+
CoT + Test cases

I o o e)
1.6 1.8

Zero-shot 67.0 31.4 : 11.9

One-shot 56.6 23.4 20.0 22.7 37.2

Self-refinement + One-shot 58.9 22 19.1 25,5 354
Self-refinement + One-shot +CoT 35.8 55.4 8.8 60.0 84.8
Self-refinement + One-shot +CoT + Test cases 40.8 49.9 9.3 53.6 72.5

« There is indeed an improvement in accuracy, although it is still slightly lower
compared to previous experiments

« Continue to explore how to further enhance accuracy in the future "
D

» Experiment: Temperature
RQ6: The effect of other parameters or LLM types on the
efficiency of generated code.

Temperature is a parameter provided by

OpenAl for user adjustment. The choice of

sampling temperature ranges from o to 2.
Temperature _ . .

Higher values like 0.8 will make the output

more random, while lower values like 0.2

will make it more focused and

deterministic.[1]

[1]https://platform.openai.com/docs/guides/code 41
]

'yPp Experiment: Temperature
RQ6: The effect of other parameters or LLM types on the
efficiency of generated code.

0.0 1.6 0.0 8.3

68.5 29.8
0.1 67.6 5.3 27.1 5.4 16.3
0.2 65.3 10.2 24.5 10.0 20.3
Temperature in the 0.3 65.5 9.4 25.2 9.1 18.0
0.4 60.3 13.3 26.5 11.8 18.4
range of [0,1]
0.5 59.5 14.5 26.0 109 22.3
0.6 58.7 15.9 25.4 13.6 20.5
0.7 54.5 20.8 24.6 20.9 28.9
0.8 55.7 18.4 25.9 17.3 26.5
0.9 53.1 25.3 21.6 18.2 31.8
1.0 46.9 31.4 21.7 23.6 41.8

42

'yPp Experiment: Temperature
RQ6: The effect of other parameters or LLM types on the
efficiency of generated code.

== %0pt ==h=— %Sp

0.45
0.4
0.35

Temperature in the 03

range of [0,1] 02
0.2
0.15
0.1

0.05

43

'yp Experiment: Comparison of Different LLMs
RQ6: The effect of other parameters or LLM types on the
efficiency of generated code.

Pass Rate | Wrong Rate | Timeout Rate | %Opt | %Sp
opt-3sturbo [
8.5 1.6 29.8 0.0 8.3

VS gpt-3.5-turbo 68.

gpt-4 — 61.3 17.0 21.6 200 325

44

» Summary of Our Contributions

 Proposed timeEval benchmark.

* On our benchmark, we did empirical studies of the existing models or
frameworks to test the efficiency of generated code.

» Proposed several frameworks to improve the efficiency of generated code.

45

3 Future Works

e Continue to measure the different models as well as the framework on our
benchmark.

 Try to create a more efficient framework.

 Begin an exploration of the space complexity of the generated code.

46

» Q&A Session

Thank you

47

