Improving the Quality of Adversarial Examples via Contrastive Learning and Pretraining

LYU2106 Final Year Project Term 2 Presentation Yung-chieh Huang (1155120711)

Agenda

- Introduction
- Objective
- A recap of last term
- Contribution of this term
- Methodology
- Baselines
- Experiments
- Conclusion

Introduction – Adversarial Attack

- Adversarial attack is an approach to test the robustness of machine learning models, by intentionally applying perturbations to make the models misclassify.
- To ensure security in real-life applications.

Introduction – Adversarial Attack for Text

- Adversarial examples are generated by attack models, by replacing words in a sentence.
- A well-crafted adversarial example should have minimum perturbations and preserve the structure and characteristics of the original.

Objective

- Generate examples to be free from opposite semantic or out-of-context replacements and maintain fluency.
- Higher successful attack rate and lower perturbation than baseline attack models.

Original	no amount of good intentions is able to overcome the triv-	Negative
sentence	iality of the story	(100%)
Adversarial	no amount of good intentions is able to overcome the	Positive
example	beauty of the story	(99%)

Original	watching spirited away is like watching an eastern imagi-	Positive
sentence	nation explode	(99%)
Adversarial	watching spirited away is like watching an eastern maga-	Negative
example	zine explode	(100%)

Recap – Conclusion from last term

- Pretrain on domain-specific datasets to generate a domain-specific attack model to avoid out-of-context replacements.
- Contrastive learning can distinguish synonyms and antonyms in the embedding space, which helps avoid opposite semantic replacements.

Recap – Conclusion from last term

Dataset: M	IR	
	BAE	Ours
Number of successful attacks	473	475
Number of failed attacks	365	363
Number of skipped attacks	162	162
Original accuracy	83.8%	83.8%
Accuracy under attack	36.5%	36.3%
Attack success rate	56.44%	56.68%
Average perturbed word %	13.91%	13.37%
Average number of words per input	18.64	18.64
Average number of queries	63.49	63.19

Dataset: MR						
	BAE	Ours	Ours	Ours	Ours	Ours
		(50,000)	(25,000)	(5,000)	(2,500)	(0)
Number of successful at-	473	471	473	487	501	411
tacks						
Number of failed attacks	365	367	365	351	337	427
Number of skipped attacks	162	162	162	162	162	162
Original accuracy	83.8%	83.8%	83.8%	83.8%	83.8%	83.8%
Accuracy under attack	36.5%	36.7%	36.5%	35.1%	33.7%	42.7%
Attack success rate	56.44%	56.21%	56.44%	58.11%	59.79%	49.05%
Average perturbed word %	13.91%	13.19%	13.13%	13.58%	13.17%	14.85%
Average number of words	18.64	18.64	18.64	18.64	18.64	18.64
per input						
Average number of queries	63.49	64.27	64.05	64.01	62.96	54.93

Contribution of this term

- We create our own contrastive sentence pairs to improve the performance of contrastive learning.
- We are the first to propose an iterative training method to combine contrastive learning and pretraining.
- This iterative training method balances the quality of generated adversarial examples and the goal to increase the attack success rate well.
- It largely improves the overall attack performance.

Methodology

Methodology - Datasets

- IMDb (Mass et al. 2011): 25,000 highly polar movie reviews for training, 25,000 for testing, and additional 50,000 unlabeled data.
- MR (Pang and L. Lee 2005): 5,331 positive and 5,331 negative reviews from Rotten Tomatoes.

Methodology – CLINE (Wang et al. 2021)

- Generates semantically similar sentences by replacing words with synonyms.
- Generates semantically opposite sentences by replacing words with antonyms or random words.

Methodology – CLINE data augmentation

- Create our own contrastive sentence pairs of different replace ratios:
 - 0.05
 - 0.1
 - 0.2
 - 0.4
 - 0.5

Methodology – Iterative training

- Equally divide the training process into 32 cycles.
- In each cycle:
 - 125,000/32 contrastive sentence pairs.
 - Pretrain 2,500/32 steps.

Methodology – SimCSE (T. Gao, Yao, and Chen 2021)

- Pulls semantically close neighbors together and pushes apart non-neighbors.
- The training objective is defined by:

$$-\log \frac{e^{\sin(\mathbf{h}_i, \mathbf{h}_i^+)/\tau}}{\sum_{j=1}^{N} \left(e^{\sin(\mathbf{h}_i, \mathbf{h}_j^+)/\tau} + e^{\sin(\mathbf{h}_i, \mathbf{h}_j^-)/\tau}\right)}$$

Methodology - Pretraining

Methodology – TextAttack (Morris et al. 2020)

- A framework to evaluate different NLP attacks.
- Generates adversarial examples from a given dataset using an attack recipe and attack a victim model.

Baselines

- BAE (Garg and Ramakrishnan 2020): Inserts/Replaces tokens using BERT MLM.
- PWWS (Ren et al. 2019): Uses word saliency and classification probability to determine the word replacing order. Applies the synonym replacement strategy greedily to each word in that order.
- TextFooler (Jin et al. 2020): A strong and commonly used baseline. Uses multiple rule-based strategies.

Experiments – CLINE data augmentation

• Evaluate with different replace ratios.

	Dataset: MR					
	Ours	Ours	Ours	Ours	Ours	
	(0.05)	(0.05 +	(0.05 +	(0.05 +	(0.05 +	
		0.1)	0.1 +	0.1 + 0.2	0.1 + 0.2	
			0.2)	+ 0.4)	+ 0.4 +	
					0.5)	
Number of successful attacks	500	504	499	505	508	
Number of failed attacks	338	334	339	333	330	
Number of skipped attacks	162	162	162	162	162	
Original accuracy	83.8%	83.8%	83.8%	83.8%	83.8%	
Accuracy under attack	33.8%	33.4%	33.9%	33.3%	33%	
Attack success rate	59.67%	60.14%	59.55%	60.26%	60.62%	
Average perturbed word %	13.69%	13.45%	13.37%	13.22%	13.18%	
Average number of words per	18.64	18.64	18.64	18.64	18.64	
input						
Average number of queries	63.57	64.42	63.22	62.3	62.58	

Experiments – CLINE data augmentation

	Dataset: N	MR		
	BAE	Ours	Ours	Ours
		(pre-	(con-	(0.05 +
		training	trastive	0.1 + 0.2
		only)	pretrain	+ 0.4 +
			2,500)	0.5)
Number of successful attacks	473	475	501	508
Number of failed attacks	365	363	337	330
Number of skipped attacks	162	162	162	162
Original accuracy	83.8%	83.8%	83.8%	83.8%
Accuracy under attack	36.5%	36.3%	33.7%	33.0%
Attack success rate	56.44%	56.68%	59.79%	60.62%
Average perturbed word %	13.91%	13.37%	13.17%	13.18%
Average number of words per	18.64	18.64	18.64	18.64
input				
Average number of queries	63.49	63.19	62.96	62.58

• Evaluate with different number of cycles.

Dataset: MR						
	Ours (2	Ours (8	Ours (16	Ours (32		
	cycles)	cycles)	cycles)	cycles)		
Number of successful attacks	513	535	533	548		
Number of failed attacks	325	303	305	290		
Number of skipped attacks	162	162	162	162		
Original accuracy	83.8%	83.8%	83.8%	83.8%		
Accuracy under attack	32.5%	30.3%	30.5%	29.0%		
Attack success rate	61.22%	63.84%	63.6%	65.39%		
Average perturbed word %	13.4%	12.34%	12.01%	11.83%		
Average number of words per input	18.64	18.64	18.64	18.64		
Average number of queries	62.91	59.98	59.14	57.68		

Dataset: MR					
	Ours	Ours	Ours	Ours	Ours
	(32	(42	(64	(250	(781
	cycles)	cycles)	cycles)	cycles)	cycles)
Number of successful attacks	548	537	533	474	472
Number of failed attacks	290	301	305	364	366
Number of skipped attacks	162	162	162	162	162
Original accuracy	83.8%	83.8%	83.8%	83.8%	83.8%
Accuracy under attack	29.0%	30.1%	30.5%	36.4%	36.6%
Attack success rate	65.39%	64.08%	63.6%	56.56%	56.32%
Average perturbed word %	11.83%	12.21%	12.22%	12.97%	13.31%
Average number of words per input	18.64	18.64	18.64	18.64	18.64
Average number of queries	57.68	58.0	54.43	36.65	37.43

- An attack model is under-fitted without iterative training.
- Any more than 32 cycles will shows signs of over-fitting.
- Our method can reduce the negative effect of excessive pretraining on contrastive learning.

Dataset: MR					
	Ours	Ours	Ours	Ours (32	
	(pre-	(con-	(0.05 +	cycles)	
	training	trastive	0.1 + 0.2		
	only)	pretrain	+ 0.4 +		
		2,500)	0.5)		
Number of successful attacks	475	501	508	548	
Number of failed attacks	363	337	330	290	
Number of skipped attacks	162	162	162	162	
Original accuracy	83.8%	83.8%	83.8%	83.8%	
Accuracy under attack	36.3%	33.7%	33.0	29.0%	
Attack success rate	56.68%	59.79%	60.62	65.39%	
Average perturbed word %	13.37%	13.17%	13.18%	11.83%	
Average number of words per input	18.64	18.64	18.64	18.64	
Average number of queries	63.19	62.96	62.58	57.68	
	•	•			

Dataset: MR					
	BAE	PWWS	TextFooler	Ours (32	
				cycles)	
Number of successful attacks	473	434	531	548	
Number of failed attacks	365	404	307	290	
Number of skipped attacks	162	162	162	162	
Original accuracy	83.8%	83.8%	83.8%	83.8%	
Accuracy under attack	36.5%	40.4%	30.7%	$\boldsymbol{29.0\%}$	
Attack success rate	56.44%	51.79%	63.37%	$\boldsymbol{65.39\%}$	
Average perturbed word %	13.91%	16.0%	20.78%	$\boldsymbol{11.83\%}$	
Average number of words per input	18.64	18.64	18.64	18.64	
Average number of queries	63.49	62.44	58.36	57.68	

Original sentence	one of the funnier movies in town.	Positive (94%)
BAE	BAE one of the funnier locations in town.	
PWWS	matchless of the funnier movies in town.	Negative (100%)
TextFooler	one of the funnier kino in town.	Negative (88%)
Ours (32 cycles)	one of the funnier scenes in town.	Negative (99%)

Experiments – Batch-sorted sentence pairs

• Create 16 nonidentical sentence pairs for each sentence and sort them together.

Dataset: MR					
	Ours (32 cycles)	Ours (32 cycles +			
		batch-sorted)			
Number of successful attacks	548	543			
Number of failed attacks	290	295			
Number of skipped attacks	162	162			
Original accuracy	83.8%	83.8%			
Accuracy under attack	36.3%	29.5%			
Attack success rate	$\boldsymbol{65.39\%}$	64.8%			
Average perturbed word %	11.83%	11.65%			
Average number of words per input	18.64	18.64			
Average number of queries	57.68	56.23			

 Add the auxiliary MLM (masked language modelling) function to the SimCSE loss:

$$l = l_{contrastive} + \lambda \times l_{MLM}$$

Evaluate with different MLM weights.

Dataset: MR			
	SimCSE MLM	SimCSE MLM	
	weight $= 0.02$	weight $= 0.1$	
Number of successful attacks	426	398	
Number of failed attacks	412	440	
Number of skipped attacks	162	162	
Original accuracy	83.8%	83.8%	
Accuracy under attack	41.2%	44.0%	
Attack success rate	50.84%	47.49%	
Average perturbed word %	13.82%	14.15%	
Average number of words per input	18.64	18.64	
Average number of queries	54.01	57.74	

 Modify the training script so that MLM only reads the original sentence.

Dataset: MR					
	SimCSE	SimCSE	SimCSE	SimCSE	
	no MLM	MLM	MLM	MLM	
		weight=0.02	weight= 0.1	weight=1	
Number of successful attacks	411	379	410	385	
Number of failed attacks	427	459	428	453	
Number of skipped attacks	162	162	162	162	
Original accuracy	83.8%	83.8%	83.8%	83.8%	
Accuracy under attack	42.7%	45.9%	42.8%	45.3%	
Attack success rate	49.05%	45.23%	48.93%	45.94%	
Average perturbed word %	14.85%	14.47%	14.0%	14.23%	
Average number of words per input	18.64	18.64	18.64	18.64	
Average number of queries	54.93	53.78	54.49	52.9	

• Apply gradient accumulation to eliminate over-fitting.

Dataset: MR				
	SimCSE no MLM	SimCSE MLM		
		weight=0.1		
		Gradient Accu-		
		mulation=100		
Number of successful attacks	411	391		
Number of failed attacks	427	447		
Number of skipped attacks	162	162		
Original accuracy	83.8%	83.8%		
Accuracy under attack	42.7%	44.7%		
Attack success rate	49.05%	46.66%		
Average perturbed word %	14.85%	14.52%		
Average number of words per input	18.64	18.64		
Average number of queries	54.93	59.7		

Use separate datasets for contrastive learning and MLM.

Dataset: MR				
	SimCSE no MLM	SimCSE MLM		
		weight=0.1		
		Gradient Accu-		
		mulation=10		
Number of successful attacks	411	392		
Number of failed attacks	427	446		
Number of skipped attacks	162	162		
Original accuracy	83.8%	83.8%		
Accuracy under attack	42.7%	44.6%		
Attack success rate	$\boldsymbol{49.05\%}$	46.78%		
Average perturbed word %	14.85%	14.82%		
Average number of words per input	18.64	18.64		
Average number of queries	54.93	61.21		

- MLM affects SimCSE's ability to learn a good representation.
- Merging the two is like cutting the process into countless mini-cycles, which can cause over-fitting.
- The iterative training remains to be our best training method.

Conclusion

- Out-of-context replacements exist because attack models are too general. We make the model domain-specific by pretraining on taskrelated datasets.
- Opposite semantic replacements are caused by the embedding space of language models, so we alter the embedding space by doing contrastive learning.
- Data augmentation to increase the data diversity.
- Apply the iterative training method to maximize the efficacy.

Thank you