
LYU2002
Study Neural Architecture Search

[Neural Architecture Search on BERT for Network Compression]
ESTR4999 2020/21 Term 2 Oral Presentation

Yau Chung Yiu, Oscar
1155109029

30 min present, 15 min Q&A

1

Background

• Natural Language Processing uses deep neural networks that are
• Computationally expensive, slow

• BERT 12-layer: 22.2 Billion FLOPS, for classification of sequence at most 128 tokens long
• Processing 144 sentences / second on GPU
• Processing 4 sentences / second on CPU
• BERT 12-layer: 110 Million parameters -> requires 419 MB to load the model into

memory for inference -> limits parallelization

• We achieve network compression by Neural Architecture Search

2

Related Study – Lottery Ticket Hypothesis

• Consider training a larger neural network as buying a lot of lottery
ticket
• Larger network initialized for training -> Higher chance of winning
• After training only the winning ticket (subnetwork) is responsible for

prediction
• The weight initialization is crucial for a subnetwork to be a winning ticket

• Reinitializing the winning ticket will lead to a poor model

3[1] J. Frankle, M. Carbin: The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (2018)

Problem Setting – Pruning NN: BERT

• Search for optimal sub-architecture from original network.

• Define
• 𝛼 – architecture parameters
• 𝑟 – sub-architecture FLOPS / original architecture FLOPS
• 𝐸 – training error on data samples
• 𝑤 – neural network parameters

• Objective:
• Finding sub-architecture 𝛼 of small 𝑟 that achieve small training error 𝐸
• min

!,#
𝐸 such that Ratio 𝛼 = 𝑟

• We approach solving this problem by min
#
{min
!,#

𝐸}

4

Problem Structure

• ObjecYve:
• Finding sub−architecture 𝛼 of small 𝑟 that achieve small training error 𝐸
• min

!,#
𝐸 such that Ratio 𝛼 = 𝑟

• We approach solving this problem by min
#
{min
!,#

𝐸}

• 𝛼 can be understood as mask variable ∈ 0,1 !

• 𝑛 – number of pruning groups (e.g. pruning an attention-head)
• 𝑛 depends on the search space
• e.g. for TinyBERT-4L, 𝑛 = 3072×4 + 12×4 = 12336

• 2! is large, it cannot be solved by exhaustively searching
• This optimization problem is non-convex, because

• combinatorial nature
• bilevel optimization

5

Fig 1. Bilevel architecture search formulation. [1]

[2] H. Liu, K. Simonyan, Y. Yang: Darts: Differentiable architecture search (2019)

Methodology – Existing Baseline Method

• Magnitude Pruning
• Remove weights connections of small magnitude
• Intuitively small magnitude weights have small impact to the output

6[3] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, M. Carbin: The Lottery Ticket Hypothesis for Pre-trained BERT Networks (2020)

Table from [3], results of iterative magnitude pruning

Methodology – Existing Baseline Method

• Structured Pruning
• Masking the variables according to the structure of the original network
• Measure importance of weight by sensitivity to mask variables
• Performance aware pruning – pruning continues as long as validation

performance is over 90% of the full model
• Algorithm is unstable [5], all tickets are winning!

• Compared between “Good” and “Bad” subnetworks.
• Suggests that all weights in BERT contains useful information, enough for prediction

7[4] P. Michel, O. Levy, G. Neubig: Are Sixteen Heads Really Better than One? (2019)
[5] S. Prasanna, A. Rogers, A. Rumshisky: When BERT Plays the Lottery, All Tickets Are Winning (2020)

Equation from [4]. Output sensitivity w.r.t. the mask variables.

Methodology – Existing Baseline Method

• Structured Pruning
• Bad subnetworks are
also winning

8
[5] S. Prasanna, A. Rogers, A. Rumshisky: When BERT Plays the Lottery, All Tickets Are Winning (2020)

Fig. from [5], performance on GLUE tasks by structured pruning.

Methodology – Introduction

• Our NAS approach:
• Search for the optimal architecture by learning
• Relaxation on mask variable by 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝛼 , 𝛼 ∈ ℝ!
• Gradient descent to the architecture parameters 𝛼

• Combining
• Structured Pruning

• Prune Multi-heads by blocks
• Prune Feed-forward intermediate by dimensions

• Distillation
• Self-supervised distillation to recover original performance

9

Methodology – Procedure

10

Find sub-architecture by
prediction self-distillation

Intermediate
distillation on

found architecture

Prediction
distillation on

found architecture

Neural Architecture Search Fine-tuning via two-stage distillation

Methodology – Search Method

• Loss functions compose of
1. Prediction self-distillation loss (ℒ", ℒ#)
2. FLOPS loss (ℒ")

11

Fig 2. Formulation of loss functions, from report Section 5.2.

Positive FLOPS loss if the current
architecture size > required size

Negative FLOPS loss if the current
architecture size < required size

Methodology – Search Method Tricks

• Architecture target ratio control (FLOPS loss)
• Target ratio 𝑅 moves linearly throughout the searching procedure
• e.g. 𝑅 moves from 1 to 0.3
• Sharp drop of architecture size
damages the learning outcome

• Update control
• Only top 10% of the large
magnitude gradients are
backpropagated to the 𝛼 for
update.

12

Fig 3. Comparison between controlled arch. target ratio
and uncontrolled learning of alpha, from report Section 7.4.

Uncontrolled Target Ratio Controlled Target Ratio

=> Simulate iterative pruning

Methodology – Search Space

• Multi-head attention
• Different heads learn different kind of similarity
• When trained on down-stream task many heads are redundant [4]

• Feed-forward intermediate dimensions
• Major contribution to FLOPS (61%)
• Intermediate dimension expanded to learn
high dimensional features

13

24%

15%61%

Distribution of FLOPS in TinyBERT 4L

Embedding to QKV QKV Self-attention Feed-Forward

[4] P. Michel, O. Levy, G. Neubig: Are Sixteen Heads Really Better than One? (2019)

Fig 4. Distribution of FLOPS in TinyBERT 4L, from report Section 7.2.

Methodology – Search Space Illustration

14

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8 Head 9 Head
10

Head
11

Head
12

Concatenate & Linear Transform

Linear Transform

Linear Transform

𝛼!"

𝛼## - Intermediate size = 1200

QKV

…

Main Result

15

Models FLOPS (B) Speedup MNLI
(-m/-mm)

QQP QNLI SST-2 CoLA STS-B
(Pear/Spea)

MRPC RTE

TinyBERT-4L 1.239 1.0x 82.5/81.8 71.3 87.7 92.6 44.1 -/80.4 86.4 66.6

30% TinyBERT-4L [0.375, 0.403] [3.0x, 3.3x] 80.8/80.4 70.9 84.4 91.8 40.7 79.9/78.6 85.4 61.4

Percentage Change in
Accuracy / / -2.06%/-1.71% -0.56% -3.76% -0.86% -7.71% -2.24% -1.16% -7.81%Table 1. GLUE Test Result on TinyBERT-4L pruning

All tables from report Section 6.3.2

Models FLOPS (B) Speedup MNLI
(-m/-mm)

QQP QNLI SST-2 CoLA STS-B
(Pear/Spea)

MRPC RTE

TinyBERT-6L 11.100 1.0x 84.6/83.2 71.6 90.4 93.1 51.1 -/83.7 87.3 70.0

30% TinyBERT-6L [3.348, 3.590] [3.1x, 3.3x] 83.7/83.0 71.8 89.5 93.0 46.1 84.2/83.3 86.9 63.6

Percentage Change in
Accuracy / / -1.06%/-0.24% +0.28% -1.00% -0.11% -9.78% -0.48% -0.46% -9.14%Table 2. GLUE Test Result on TinyBERT-6L pruning

Metrics reported
Mcc: CoLA
F1: QQP, MRPC
Pearson-Spearman correlations: STS-B
Accuracy: MNLI, QNLI, SST-2, RTE

Models FLOPS (B) Speedup MNLI
(-m/-mm)

QQP QNLI SST-2 CoLA STS-B
(Pear/Spea)

MRPC RTE

Reproduced
Bertbase-12L 22.199 1.0x 84.0/83.2 70.7 91.1 92.7 55.3 84.2/82.5 86.6 65.5

30% Bertbase-12L [6.697, 9.471] [2.3x, 3.3x] 83.6/83.1 71.6 91.1 91.9 49.9 82.9/81.5 86.5 65.2

Percentage Change in
Accuracy / / -0.48%/-0.12% 1.27% 0.00% -0.86% -9.76% -1.54%/-1.21% -0.12% -0.46%Table 3. GLUE Test Result on Bertbase-12L pruning

Main Result

16

-2
.0

6%

-1
.7

1% -0
.5

6%

-3
.7

6%

-0
.8

6%

-7
.7

1%

-2
.2

4% -1
.1

6%

-7
.8

1%

-1
.0

6% -0
.2

4%

0.
28

%

-1
.0

0% -0
.1

1%

-9
.7

8%

-0
.4

8%

-0
.4

6%

-9
.1

4%

-0
.4

8%

-0
.1

2%

1.
27

%

0.
00

%

-0
.8

6%

-9
.7

6%

-1
.2

1% -0
.1

2%

-0
.4

6%

MNLI-m
392k

MNLI-mm
392k

QQP
363k

QNLI
108k

SST-2
67k

CoLA
8.5k

STS-B
5.7k

MRPC
3.5k

RTE
2.5k

Accuracy Percentage Change
4 Layer 6 Layer 12 Layer

Main Result – Comparison with Simple
Baseline: Random Architecture
• We have shown that our algorithm can find architecture that

performs better than a random architecture of similar FLOPS.

17

Main Result – Comparison with Existing
Baseline: Google BERT
• We have shown significant prediction accuracy improvement

compared to existing BERT model with similar FLOPS.

18

Models FLOPS (B) MNLI
(-m/-mm)

QQP QNLI SST-2 CoLA STS-B
(Pear/Spea)

MRPC RTE

BERT-Mini [25] 0.873 74.8/74.3 66.4 84.1 85.9 0.0 75.4/73.3 81.1 57.9

30% TinyBERT-4L [0.375, 0.403] 80.8/80.4 70.9 84.4 91.8 40.7 79.9/78.6 85.4 61.4

Percentage Change
in Accuracy / +8.02%/+8.21% +6.78% +0.36% +6.87% +inf +5.97% +5.30% +6.04%

Table 4. Comparison between BERT-Mini by Google and pruned TinyBERT-4L, from report Section 6.3.2.

Main Result – Comparison with Existing
Baseline: Magnitude Pruning

19
[3] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, M. Carbin: The Lottery Ticket Hypothesis for Pre-trained BERT Networks (2020)

Table from [3], results of iterative magnitude pruning on dev set

Dataset MNLI
(-m)

QQP QNLI SST-2 CoLA STS-B
(Pearson)

MRPC RTE

Ratio 28.3% 28.3% 39.9% 28.6% 28.9% 31.5% 29.2% 28.2%
30% Bertbase-12L 84.2 90.3 91.7 92.3 58.3 88.8 85.3 69.7

Ratio 30% 10% 30% 40% 50% 50% 50% 40%
IMP [3] 82.6 90.0 88.9 91.9 53.8 88.2 84.9 66.0

Difference +1.6 +0.3 +2.8 +0.4 +4.5 +0.6 +0.4 +3.7

Table: comparison between IMP [3] and our results, on dev set.

Our method is stronger because we do distillation and data augmentation during fine-tuning.

Discussion – Input Embedding Pruning

• In semester 1 we proposed pruning input embedding.
• By experiment results we see that pruning input embedding damages

network prediction accuracy by a lot.
• Because input embedding carries either

• Sentence token information (layer 1)
• Previous layer output (layer 2 – last layer)

20

Discussion – QKV pruning VS Multi-head
pruning
• Multi-head pruning is a restricted version of QKV pruning
• An attention head = A group of QKV dimensions
• Structured Pruning

• Structured Pruning outputs an architecture that is computationally
faster

21

Discussion – Architecture Size Ratio

24

• By experiment we observed that below the ratio 0.3, the prediction
performance damage is significant.

Discussion – Effect of Data Augmentation

25

• For fine-tuning data augmentation always improves prediction accuracy (more
generalized model)
• For searching for architecture, data augmentation is

• harmful for data sufficient task, and
• useful for data insufficient task (CoLA, RTE)

Discussion – Pros and Cons of our algorithm

• Our searching algorithm can search for an architecture
of any size (architecture size ratio 𝑅 is a parameter)
• Our method considers all the possible search regions of

BERT and assuming equal importance over all regions
• Our method is applicable to other variants of BERT

• TinyBERT 4L / 6L
• Bert-base 12L

• The algorithm computationally expensive
• 10 epochs for architecture search
• 20 epochs for two-stage distillation fine-tuning
• 12 hours – 2 days on CSE GPU

• Instability

26

Fig. Random seeding

Conclusion

• Larger neural networks have higher redundancy (tolerant to pruning)
• Performance drop is larger on small neural network, when pruning on the

same ratio
• For production deep neural networks are highly accelerable

• The quality of model depends on the quality of learning data
• Difficult tasks: RTE, CoLA (difficult and insufficient data)

27

Reflection

• We should compare among baselines fairly:
• Compare at the similar searched architecture size
• When comparing we need to care about whether

• Is the searched architecture better? (fix fine-tuning method to compare)
• Is the fine-tuning method better? (fix architecture to compare -> more difficult to handle)

28

Future Direction

• Fixing network parameter during search
• Less interference with the architecture parameter 𝛼

• Experiment on knowledge transfer (distillation from stronger BERT)
• Apply performance aware searching
• Searching continues when the pruned model recovered its prediction

performance
• Searching terminates when the pruned model cannot recover

• Analysis the attention pattern
• Between the pruned network and the original network

29

Fig. from O. Kovaleva, A. Romanov, A. Rogers, A. Rumshisky: Revealing the Dark Secrets of BERT (2019)

