LYU2002

Study Neural Architecture Search
[Neural Architecture Search on BERT for Network Compression]
ESTR4999 2020/21 Term 2 Oral Presentation
Yau Chung Yiu, Oscar
1155109029
30 min present, 15 min Q&A

Background

* Natural Language Processing uses deep neural networks that are

* Computationally expensive, slow
* BERT 12-layer: 22.2 Billion FLOPS, for classification of sequence at most 128 tokens long
* Processing 144 sentences / second on GPU
* Processing 4 sentences / second on CPU

* BERT 12-layer: 110 Million parameters -> requires 419 MB to load the model into
memory for inference -> limits parallelization

* We achieve network compression by Neural Architecture Search

Related Study — Lottery Ticket Hypothesis

e Consider training a larger neural network as buying a lot of lottery
ticket
* Larger network initialized for training -> Higher chance of winning

* After training only the winning ticket (subnetwork) is responsible for
prediction

* The weight initialization is crucial for a subnetwork to be a winning ticket
* Reinitializing the winning ticket will lead to a poor model

[1] J. Frankle, M. Carbin: The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (2018)

Problem Setting — Pruning NN: BERT

» Search for optimal sub-architecture from original network.

* Define
e a — architecture parameters
e 1 —sub-architecture FLOPS / original architecture FLOPS
 F —training error on data samples
* w — neural network parameters

e Objective:
* Finding sub-architecture a of small that achieve small training error E

* min E such that Ratio(a) =r
a,w

* We approach solving this problem by min {min E'}
w a,w

Problem Structure

* Objective:
* Finding sub—architecture a of small r that achieve small training error E

* min E such that Ratio(a) =r
a,w . E *
* We approach solving this problem by min {min E} e = [@)a)
w a,w * .

s.t. w*(a) =argmin, Lirein(w,)
* o can be understood as mask Variable € {O,l}n Fig 1. Bilevel architecture search formulation. [1]

* n—number of pruning groups (e.g. pruning an attention-head)

* n depends on the search space

e e.g. for TinyBERT-4L, n = 3072%X4 + 12%x4 = 12336
« 2™ is large, it cannot be solved by exhaustively searching

* This optimization problem is non-convex, because
e combinatorial nature
* bilevel optimization

[2] H. Liu, K. Simonyan, Y. Yang: Darts: Differentiable architecture search (2019)

Methodology — Existing Baseline Method

* Magnitude Pruning
* Remove weights connections of small magnitude
* Intuitively small magnitude weights have small impact to the output

Dataset | MNLI QQP STS-B WNLI QNLI MRPC RTE SST-2 CoLA SQuAD | MLM

Sparsity | 70% 90% 50% 90% 70% 50% 60% 60% 50% 40% | 70%

Full BERTgssg | 8244+ 0.5 902 £0.5 88.4+£0.3 549+ 1.2 89.1 £1.0 85.2+0.1 66.2+3.6 92.1 £0.1 54.54+0.4 83.1 £0.6 | 63.5 £ 0.1

flz,mmp ®6p) | 82.6+0.2 90.0+0.2 88.2+0.2 549+ 1.2 889+04 849+04 66.0+24 91.9+0.5 53.8+09 87.7+0.5| 63.2+0.3
flz,mgrp ® b)) 67.5 76.3 21.0 3.5 61.9 69.6 56.0 83.1 9.6 31.8 323
f(z,mmp © 6) 61.0 77.0 9.2 33.5 60.5 68.4 54.5 80.2 0.0 18.6 14.4
f(z,mmp © 67) 70.1 192 19.6 33.3 62.0 69.6 52.7 82.6 4.0 24.2 423

Table from [3], results of iterative magnitude pruning

[3] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, M. Carbin: The Lottery Ticket Hypothesis for Pre-trained BERT Networks (2020)

Methodology — Existing Baseline Method

* Structured Pruning
* Masking the variables according to the structure of the original network
* Measure importance of weight by sensitivity to mask variables

* Performance aware pruning — pruning continues as long as validation
performance is over 90% of the full model

* Algorithm is unstable [5], all tickets are winning!
* Compared between “Good” and “Bad” subnetworks.

e Suggests that all weights in BERT contains useful information, enough for prediction

oL %)
DED)

I}(zh’l) — E:ENX }

Equation from [4]. Output sensitivity w.r.t. the mask variables.

[4] P. Michel, O. Levy, G. Neubig: Are Sixteen Heads Really Better than One? (2019)
[5] S. Prasanna, A. Rogers, A. Rumshisky: When BERT Plays the Lottery, All Tickets Are Winning (2020)

Methodology — Existing Baseline Method

QNLI (55%, std 2%) RTE (54%, std 9%)

MNLI (55%, std 5%)

1.
1%
IR e ettt
BT~ SOSS S S S S S

Ry A i A 5 7 A £ 5 A
| AT L A L7 T S

Adeandoy

L e T T T
1 S N N . N N N N N
1 7 N, A A A N A N

2 s . e e A A S

1 l“ll 1]
(NEESSENNENENNEENEENEEE
Ll L LLLJ

| T 7 £ 207 £ 5 5 457 7 4
[T S S 5 T 5
| STETETEVETETEVEVEV VS,

® ©w ¢« N O
c ©o o©o o o

Adeindoy

1

1

e)
S L U U P L Y R R

—II'_ A T R R U TR AN

H N NN S S S s

1

1

1

1

1

1

| ==mSoEooToooommmER:t
1

—_—

H H

! o i s s
|_Vis sy iy i sy S i 4
e 7 v

1 ih‘.‘. Z
1 H
1 : 5

]
(<]

0.6

el N
o o
Adeindow

<
o

e Bad subnetworks are

e Structured Pruning
alsow

QQP (53%, std 5%) SST-2 (47%, std 5%)

MRPC (57%, std 5%)

inning

[} ."””””A
IESEEESTTRON

B s s e
1 “.........!
dl‘..........
1 VT A S S S AT O 5 L

@ v <
o o o
Adeandoy

0.2
0.0

7 o e e .~ e i e, e o 1

| I L £ A7 7 65 07 T LT T A5
_i...‘...‘..
B2 Y S S A7 ST AT S

® © ¢ N 9
o o o o o
Adeandoy

7 L 7 A 7 Y S A L5 T s
L 15T 5 5 T 5 T T A

@ © < N e
o o o o o
Adeindow

WNLI (7%, std 12%)

STS-B (47%, std 5%)

ColLA (65%, std 5%)

b 7 7 7 7

=] =}
Adeandoy

0.6

| EEEEEEEREEEIEE

n T m o o
©c ©o o o o

uonelallod Smaulieia

£ L7 7 57 5T
-

0.0

<
<)

majority baseline

-+ BiLSTM + GloVe baseline

-=--===- full model performance - 1 std

‘good' subnetwork (retrained)

AN

'‘good' subnetwork (pruned)

full model

'bad' subnetwork (pruned)

random subnetwork (retrained)

random subnetwork (pruned)

[d%4nd%1 'bad' subnetwork (retrained)

(a) S-pruning

Fig. from [5], performance on GLUE tasks by structured pruning.

[5] S. Prasanna, A. Rogers, A. Rumshisky: When BERT Plays the Lottery, All Tickets Are Winning (2020)

Methodology — Introduction

* Our NAS approach:
e Search for the optimal architecture by learning
* Relaxation on mask variable by sigmoid(a),« € R"
* Gradient descent to the architecture parameters

* Combining
e Structured Pruning

* Prune Multi-heads by blocks
* Prune Feed-forward intermediate by dimensions

 Distillation
» Self-supervised distillation to recover original performance

Methodology — Procedure

Intermediate Prediction
distillation on distillation on
found architecture found architecture

Find sub-architecture by

prediction self-distillation

K) \)
f f

Neural Architecture Search Fine-tuning via two-stage distillation

10

Methodology — Search Method

* Loss functions compose of
1. Prediction self-distillation loss (L, L,,,)
2. FLOPSloss (L)

Larch = MSE(Ostudent: Oteacher) o Acosthost (3)
\ | \)

| N
prediction distillation loss ~ computation cost loss

Positive FLOPS loss if the current
architecture size > required size log (E,.q(A)) WhenFeoe(A) > (146 XR

y 0 when (1 —t) XR<F,,c(A)<(1+t)XR (4)
—log (Ecost(A)) when Fost(A) < (1+t)XR

Negative FLOPS loss if the current

architecture size < required size i 5 Formulation of loss functions, from report Section 5.2.

11

Methodology — Search Method Tricks

* Architecture target ratio control (FLOPS loss)
* Target ratio R moves linearly throughout the searching procedure
* e.g. R moves from 1to0 0.3
* Sharp drop of architecture size Uncontrolled Target Ratio Controlled Target Ratio

damages the learning outcome

4000 A

»
o
o
o

£
©
el
3z
& 3500 -
=

2

3000 A S
2 3000
(=]

2 2500
£
=

* Update control

2000 1
c
o 2000 -
2z
I~

e
2 1500 -

w
s
g 1000
3

1000 A

Sum of expected number of activated dime ns

[}

* Only top 10% of the large
magnitude gradients are e — Y I,

o
L

backpropagated to the « for
update. Fig 3. Comparison between controlled arch. target ratio

and uncontrolled learning of alpha, from report Section 7.4.

=> Simulate iterative pruning

Methodology — Search Space

e Multi-head attention

* Different heads learn different kind of similarity
* When trained on down-stream task many heads are redundant [4]

Distribution of FLOPS in TinyBERT 4L
* Feed-forward intermediate dimensions
* Major contribution to FLOPS (61%)
* Intermediate dimension expanded to learn
high dimensional features

m Embedding to QKV QKV Self-attention Feed-Forward
Fig 4. Distribution of FLOPS in TinyBERT 4L, from report Section 7.2.

[4] P. Michel, O. Levy, G. Neubig: Are Sixteen Heads Really Better than One? (2019) 13

Methodology — Search Space Illustration

Linear Transform

Linear Transform

Concatenate & Linear Transform

Head

Head 9
ea 10

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

kv (N D T R

Metrics reported

Mecc: ColA
. F1: QQP, MRPC
I\/I a I n Re S u ‘t Pearson-Spearman correlations: STS-B
All tables from report Section 6.3.2 Accuracy: MNLI, QNLI, SST-2, RTE
Models FLOPS (B) Speedup MNLI QQP OQNLI SST-2 CoLA STS-B MRPC RTE
(-m/-mm) (Pear/Spea)
TinyBERT-4L 1.239 1.0x 82.5/81.8 713 877 926 441 -/80.4 864 66.6
30% TinyBERT-4L [0.375, 0.403] [3.0x,3.3x]| 80.8/80.4 709 844 918 40.7 79.9/786 854 614
Table 1. GLUE Test Result on TinyBERT-4L pruning Percerﬁiﬁignge n / / 2.06%/-1.71% -0.56% -3.76% -0.86% -7.71% -2.24% -1.16% -7.81%
Models FLOPS (B) Speedup MNLI QQP OQNLI SST-2 CoLA STS-B MRPC RTE
(-m/-mm) (Pear/Spea)
TinyBERT-6L 11.100 1.0x 84.6/83.2 716 904 93.1 511 -/83.7 87.3 70.0
30% TinyBERT-6L [3.348, 3.590] [3.1x,3.3x]| 83.7/83.0 718 895 93.0 46.1 84.2/833 869 63.6
Table 2. GLUE Test Result on TinyBERT-6L pruning Percelﬁiﬁiﬁiﬂge m / / 1.06%/-0.24% +0.28% -1.00% -0.11% -9.78% -0.48% -0.46% -9.14%
Models FLOPS (B) Speedup MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE
(-m/-mm) (Pear/Spea)
]ierf;;’ge‘fﬁ‘i 22.199 1.0x 84.0/832 707 91.1 927 553 84.2/82.5 86.6 65.5

30% Bertbase-12L [6.697, 9.471] [2.3x, 3.3x] 83.6/83.1 71.6 91.1 91.9 49.9 82.9/81.5 86.5 65.2

Percentage Change in

Table 3 GLUE Test Resu/t on Bertbase-lZL pruning Accuracy / / -0.48%/-0.12% 1.27% 0.00% -0.86% -9.76% -1.54%/-1.21% -0.12% -0.46%

15

Main Result

Accuracy Percentage Change

H %9%°0-
I %YT6-
I 00187/~

| %C1°0-
B %91 °0-
B %:OT'T-

B %1CT-
M %387°0-
I ot C-

. %9L6”
N 768L°6"
I 06T L L-

m 12 Layer

Bl %98°0-
| %T1T°0-
Bl 9%98°0-

|6 Layer

%000

m 4 Layer

Bl %00'T-
I 00O/ €-

%.LCT R
%8C°0 1
Bl %9S°0-

| %CT1°0-
i %V 0-
B 6T/'T-

M %87°0-
Bl %90°T-
B 90900 C-

MRPC RTE
2.5k

STS-B

ColLA
8.5k

QQpP QNLI SST-2
363k 67k

MNLI-mm

MNLI-m

3.5k

5.7k

108k

392k

392k

16

Main Result — Comparison with Simple
Baseline: Random Architecture

* We have shown that our algorithm can find architecture that
performs better than a random architecture of similar FLOPS.

Task MRPC Task CoLA
0.50

Main
Basel

Result — Comparison with Existing
ine: Google BERT

* We have shown significant prediction accuracy improvement
compared to existing BERT model with similar FLOPS.

Models FLOPS (B) MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE
(-m/-mm) (Pear/Spea)

BERT-Mini [25] 0.873 74.8/74.3 66.4 84.1 85.9 0.0 75.4/73.3 81.1 57.9
30% TinyBERT-4L [0.375, 0.403] 80.8/80.4 70.9 84.4 91.8 40.7 79.9/78.6 85.4 61.4
Percentage Change / +8.02%/48.21% +6.78% +0.36% +6.87% +Hnf +5.97% +530% +6.04%

in Accuracy

Table 4. Comparison between BERT-Mini by Google and pruned TinyBERT-4L, from report Section 6.3.2.

Main Result — Comparison with Existing
Baseline: Magnitude Pruning

Dataset | MNLI QQP STS-B WNLI QNLI MRPC RTE SST-2 CoLA SQuAD | MLM
Sparsity \ 70% 90% 50% 90% 70% 50% 60% 60% 50% 40% | 70%
Full BERTgasy | 824 £0.5 90.24+0.5 88.4+0.3 549+ 1.2 89.1 +1.0 85.2+0.1 66.2+3.6 92.1 +0.1 54.5+0.4 88.1 £0.6 | 63.5+0.1
f(z,mmvp © 6p) | 82.6 +£0.2 90.0+0.2 88.2+0.2 549+ 1.2 889+ 0.4 849+ 04 66.0+2.4 91.9+0.5 53.8+0.9 87.7+0.5 | 63.2 +0.3

f(z, mgp © 0p) 67.5 76.3 21.0 53.5 61.9 69.6 56.0 83.1 9.6 31.8 32.3
flxz,mmp © 6) 61.0 77.0 9.2 53.5 60.5 68.4 54.5 80.2 0.0 18.6 14.4
f(z,mmmp © 67) 70.1 79.2 19.6 53.3 62.0 69.6 52.7 82.6 4.0 24.2 423

Table from [3], results of iterative magnitude pruning on dev set

Dataset MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE
(-m) (Pearson)
Ratio| 28.3% 28.3% 39.9% 28.6% 28.9% 31.5% 29.2% 28.2%
30% Bertbase-12L 84.2 90.3 91.7 92.3 58.3 88.8 85.3 69.7
Ratio| 30% 10% 30% 40% 50% 50% 50% 40%
IMP [3] 82.6 90.0 88.9 91.9 53.8 88.2 84.9 66.0
Difference +1.6 +0.3 +2.8 +0.4 +4.5 +0.6 +0.4 +3.7

Table: comparison between IMP [3] and our results, on dev set.

Our method is stronger because we do distillation and data augmentation during fine-tuning.

19
[3] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, M. Carbin: The Lottery Ticket Hypothesis for Pre-trained BERT Networks (2020)

Discussion — Input Embedding Pruning

* In semester 1 we proposed pruning input embedding.

* By experiment results we see that pruning input embedding damages
network prediction accuracy by a lot.

* Because input embedding carries either
* Sentence token information (layer 1)
* Previous layer output (layer 2 — last layer)

Task STS-B Task ColA Task MRPC Task RTE

Discussion — QKV pruning VS Multi-head
pruning

* Multi-head pruning is a restricted version of QKV pruning
* An attention head = A group of QKV dimensions
e Structured Pruning

 Structured Pruning outputs an architecture that is computationally
faster

Discussion — Architecture Size Ratio

* By experiment we observed that below the ratio 0.3, the prediction
performance damage is significant.

Task STS-B Task CoLA Task MRPC
0.895 A
0.855 4 0.46
0.890 A
0.850 A
0.44
- 0.885 A
< 0.845 A
g v
£ g 0.42 b=
v
o 0.840 A] ‘= 0.880 A
= +J
n] OEJ
v
2 =
o 0.835 1 0.40 -
= 0.875 1
0.830 A
0.38
0.870 A
0.825 A
0:820°7 0304, 0.865 -
5 8.0 8.5 9.0 9.5 7.5 8.0 8.5 9.0 9.5 7.5 8.0 8.5 9.0 9.5
Log Arch flops (M, 1e6) Log Arch flops (M, 1e6) Log Arch flops (M, 1e6)
—— TinyBERT 4L prunedj —— TinyBERT 4L pruned —— TinyBERT 4L pruned

24

Task CoLA
Task STS-B
0.500 st iidion e it o o Sl i s W i s Bt
__
0.475 0.8
0.450 4 0.7
c
Y 0.425 g 06
£ £
©
o g
B 0.400 - @ 0.5
= 2
@
0.375 1 = 044
0.350 1 0.3
0.325 1 02
7.5 8.0 8.5 9.0 9.5 10.0 7.'5 8.'0 8;5 910 9;5 16.0
Log Arch flops (M, 1e6) Log Arch flops (M, 1e6)
=== TinyBERT_4L_312D —— Searched with Data Augmentation -=- TinyBERT_4L_312D —— Searched with Data Augmentation |
Searching without Data Augmentation Searching without Data Augmentation

Discussion — Effect of Data Augmentation

e For fine-tuning data augmentation always improves prediction accuracy (more

generalized model)

* For searching for architecture, data augmentation is

* harmful for data sufficient task, and
» useful for data insufficient task (ColLA, RTE)

Metric f1

Task MRPC

0.900 4

0.895 1

0.890 4

0.875 1

0.870 4

0.865 4

0.885 A
0.880 1

T T T T
7.0 7.5 8.0 8.5

9.0 9.5 10.0

Log Arch flops (M, 1e6)

--- TinyBERT_4L_312D

- Searching without Data Augmentation

—»— Searched with Data Augmentation

25

Discussion — Pros and Cons of our algorithm

* Our searching algorithm can search for an architecture
of any size (architecture size ratio R is a parameter)

* Our method considers all the possible search regions of

BERT and assuming equal importance over all regions

* Our method is applicable to other variants of BERT
» TinyBERT 4L/ 6L
 Bert-base 12L :

* The algorithm computationally expensive
* 10 epochs for architecture search

. ©
° °
0.65 <__..._ _____ %______...._____2._____.8._____________)(._
5 © e

]
2 0.55 1

0.50 4

e 20 epochs for two-stage distillation fine-tuning o w e e
¢ 12 hours - 2 days On CSE GPU -=-- Tinybert Augmented —--- TinybertnotAugmentedJ

° | nsta bl | |ty Fig. Random seeding

26

Conclusion

 Larger neural networks have higher redundancy (tolerant to pruning)

e Performance drop is larger on small neural network, when pruning on the
same ratio

* For production deep neural networks are highly accelerable

* The quality of model depends on the quality of learning data
 Difficult tasks: RTE, CoLA (difficult and insufficient data)

Reflection

* We should compare among baselines fairly:
 Compare at the similar searched architecture size

* When comparing we need to care about whether
* Is the searched architecture better? (fix fine-tuning method to compare)
* Is the fine-tuning method better? (fix architecture to compare -> more difficult to handle)

Future Direction

* Fixing network parameter during search
* Less interference with the architecture parameter «

* Experiment on knowledge transfer (distillation from stronger BERT)

* Apply performance aware searching

* Searching continues when the pruned model recovered its prediction
performance

* Searching terminates when the pruned model cannot recover

* Analysis the attention pattern
* Between the pruned network and the original network

Vertical) Diagonal Vertical + diagonal) Block Heterogeneous

| _ ‘ i } | .~ Fig. from O. Kovaleva, A. Romanov, A. Rogers, A. Rumshisky: Revealing the Dark Secrets of BERT (2019)

