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Background

* Natural Language Processing uses deep neural networks that are

* Computationally expensive, slow
* BERT 12-layer: 22.2 Billion FLOPS, for classification of sequence at most 128 tokens long
* Processing 144 sentences / second on GPU
* Processing 4 sentences / second on CPU

* BERT 12-layer: 110 Million parameters -> requires 419 MB to load the model into
memory for inference -> limits parallelization

* We achieve network compression by Neural Architecture Search



Related Study — Lottery Ticket Hypothesis

e Consider training a larger neural network as buying a lot of lottery
ticket
* Larger network initialized for training -> Higher chance of winning

* After training only the winning ticket (subnetwork) is responsible for
prediction

* The weight initialization is crucial for a subnetwork to be a winning ticket
* Reinitializing the winning ticket will lead to a poor model

[1] J. Frankle, M. Carbin: The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (2018)



Problem Setting — Pruning NN: BERT

» Search for optimal sub-architecture from original network.

* Define
e a — architecture parameters
e 1 —sub-architecture FLOPS / original architecture FLOPS
 F —training error on data samples
* w — neural network parameters

e Objective:
* Finding sub-architecture a of small  that achieve small training error E

* min E such that Ratio(a) =r
a,w

* We approach solving this problem by min {min E'}
w a,w



Problem Structure

* Objective:
* Finding sub—architecture a of small r that achieve small training error E

* min E such that Ratio(a) =r
a,w . E *
* We approach solving this problem by min {min E} e = [ @)a)
w a,w * .

s.t. w*(a) =argmin, Lirein(w, )
* o can be understood as mask Variable € {O,l}n Fig 1. Bilevel architecture search formulation. [1]

* n—number of pruning groups (e.g. pruning an attention-head)

* n depends on the search space

e e.g. for TinyBERT-4L, n = 3072%X4 + 12%x4 = 12336
« 2™ is large, it cannot be solved by exhaustively searching

* This optimization problem is non-convex, because
e combinatorial nature
* bilevel optimization

[2] H. Liu, K. Simonyan, Y. Yang: Darts: Differentiable architecture search (2019)



Methodology — Existing Baseline Method

* Magnitude Pruning
* Remove weights connections of small magnitude
* Intuitively small magnitude weights have small impact to the output

Dataset | MNLI QQP STS-B WNLI QNLI MRPC RTE SST-2 CoLA SQuAD | MLM

Sparsity | 70% 90% 50% 90% 70% 50% 60% 60% 50% 40% | 70%

Full BERTgssg | 8244+ 0.5 902 £0.5 88.4+£0.3 549+ 1.2 89.1 £1.0 85.2+0.1 66.2+3.6 92.1 £0.1 54.54+0.4 83.1 £0.6 | 63.5 £ 0.1

flz,mmp ®6p) | 82.6+0.2 90.0+0.2 88.2+0.2 549+ 1.2 889+04 849+04 66.0+24 91.9+0.5 53.8+09 87.7+0.5| 63.2+0.3
flz,mgrp ® b)) 67.5 76.3 21.0 3.5 61.9 69.6 56.0 83.1 9.6 31.8 323
f(z,mmp © 6) 61.0 77.0 9.2 33.5 60.5 68.4 54.5 80.2 0.0 18.6 14.4
f(z,mmp © 67) 70.1 192 19.6 33.3 62.0 69.6 52.7 82.6 4.0 24.2 423

Table from [3], results of iterative magnitude pruning

[3] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, M. Carbin: The Lottery Ticket Hypothesis for Pre-trained BERT Networks (2020)



Methodology — Existing Baseline Method

* Structured Pruning
* Masking the variables according to the structure of the original network
* Measure importance of weight by sensitivity to mask variables

* Performance aware pruning — pruning continues as long as validation
performance is over 90% of the full model

* Algorithm is unstable [5], all tickets are winning!
* Compared between “Good” and “Bad” subnetworks.

e Suggests that all weights in BERT contains useful information, enough for prediction

oL %)
DED)

I}(zh’l) — E:ENX }

Equation from [4]. Output sensitivity w.r.t. the mask variables.

[4] P. Michel, O. Levy, G. Neubig: Are Sixteen Heads Really Better than One? (2019)
[5] S. Prasanna, A. Rogers, A. Rumshisky: When BERT Plays the Lottery, All Tickets Are Winning (2020)



Methodology — Existing Baseline Method

QNLI (55%, std 2%) RTE (54%, std 9%)
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Fig. from [5], performance on GLUE tasks by structured pruning.

[5] S. Prasanna, A. Rogers, A. Rumshisky: When BERT Plays the Lottery, All Tickets Are Winning (2020)



Methodology — Introduction

* Our NAS approach:
e Search for the optimal architecture by learning
* Relaxation on mask variable by sigmoid(a),« € R"
* Gradient descent to the architecture parameters

* Combining
e Structured Pruning

* Prune Multi-heads by blocks
* Prune Feed-forward intermediate by dimensions

 Distillation
» Self-supervised distillation to recover original performance



Methodology — Procedure

Intermediate Prediction
distillation on distillation on
found architecture found architecture

Find sub-architecture by

prediction self-distillation

K ) \ )
f f

Neural Architecture Search Fine-tuning via two-stage distillation

10



Methodology — Search Method

* Loss functions compose of
1. Prediction self-distillation loss (L, L,,,)
2. FLOPSloss (L)

Larch = MSE(Ostudent: Oteacher) o Acosthost (3)
\ | \ )

| N
prediction distillation loss ~ computation cost loss

Positive FLOPS loss if the current
architecture size > required size log (E,.q(A)) WhenFeoe(A) > (146 XR

y 0 when (1 —t) XR<F,,c(A)<(1+t)XR (4)
—log (Ecost(A))  when Fost(A) < (1+t)XR

Negative FLOPS loss if the current

architecture size < required size i 5 Formulation of loss functions, from report Section 5.2.

11



Methodology — Search Method Tricks

* Architecture target ratio control (FLOPS loss)
* Target ratio R moves linearly throughout the searching procedure
* e.g. R moves from 1to0 0.3
* Sharp drop of architecture size Uncontrolled Target Ratio Controlled Target Ratio

damages the learning outcome
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Methodology — Search Space

e Multi-head attention

* Different heads learn different kind of similarity
* When trained on down-stream task many heads are redundant [4]

Distribution of FLOPS in TinyBERT 4L
* Feed-forward intermediate dimensions
* Major contribution to FLOPS (61%)
* Intermediate dimension expanded to learn
high dimensional features

m Embedding to QKV QKV Self-attention Feed-Forward
Fig 4. Distribution of FLOPS in TinyBERT 4L, from report Section 7.2.

[4] P. Michel, O. Levy, G. Neubig: Are Sixteen Heads Really Better than One? (2019) 13



Methodology — Search Space Illustration

Linear Transform

Linear Transform

Concatenate & Linear Transform

Head

Head 9
ea 10

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8
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Metrics reported

Mecc: ColA
. F1: QQP, MRPC
I\/I a I n Re S u ‘t Pearson-Spearman correlations: STS-B
All tables from report Section 6.3.2 Accuracy: MNLI, QNLI, SST-2, RTE
Models FLOPS (B)  Speedup MNLI QQP OQNLI SST-2 CoLA STS-B  MRPC  RTE
(-m/-mm) (Pear/Spea)
TinyBERT-4L 1.239 1.0x 82.5/81.8 713 877 926 441 -/80.4 864  66.6
30% TinyBERT-4L  [0.375, 0.403] [3.0x,3.3x]|  80.8/80.4 709 844 918  40.7 79.9/786 854 614
Table 1. GLUE Test Result on TinyBERT-4L pruning Percerﬁiﬁignge n / / 2.06%/-1.71%  -0.56% -3.76% -0.86% -7.71%  -2.24%  -1.16% -7.81%
Models FLOPS (B)  Speedup MNLI QQP OQNLI SST-2 CoLA STS-B  MRPC  RTE
(-m/-mm) (Pear/Spea)
TinyBERT-6L 11.100 1.0x 84.6/83.2 716 904  93.1 511 -/83.7 87.3 70.0
30% TinyBERT-6L  [3.348, 3.590] [3.1x,3.3x]|  83.7/83.0 718 895  93.0  46.1 84.2/833 869  63.6
Table 2. GLUE Test Result on TinyBERT-6L pruning Percelﬁiﬁiﬁiﬂge m / / 1.06%/-0.24% +0.28% -1.00% -0.11% -9.78%  -0.48%  -0.46% -9.14%
Models FLOPS (B)  Speedup MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE
(-m/-mm) (Pear/Spea)
]ierf;;’ge‘fﬁ‘i 22.199 1.0x 84.0/832 707  91.1 927 553 84.2/82.5 86.6  65.5

30% Bertbase-12L  [6.697, 9.471] [2.3x, 3.3x] 83.6/83.1 71.6 91.1 91.9 49.9 82.9/81.5 86.5 65.2

Percentage Change in

Table 3 GLUE Test Resu/t on Bertbase-lZL pruning Accuracy / / -0.48%/-0.12% 1.27% 0.00% -0.86% -9.76% -1.54%/-1.21% -0.12% -0.46%
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Main Result

Accuracy Percentage Change
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Main Result — Comparison with Simple
Baseline: Random Architecture

* We have shown that our algorithm can find architecture that
performs better than a random architecture of similar FLOPS.

Task MRPC Task CoLA
0.50




Main
Basel

Result — Comparison with Existing
ine: Google BERT

* We have shown significant prediction accuracy improvement
compared to existing BERT model with similar FLOPS.

Models FLOPS (B) MNLI QQP QNLI SST-2  CoLA STS-B MRPC RTE
(-m/-mm) (Pear/Spea)

BERT-Mini [25] 0.873 74.8/74.3 66.4 84.1 85.9 0.0 75.4/73.3 81.1 57.9
30% TinyBERT-4L  [0.375, 0.403] 80.8/80.4 70.9 84.4 91.8 40.7 79.9/78.6 85.4 61.4
Percentage Change / +8.02%/48.21% +6.78%  +0.36%  +6.87% +Hnf +5.97%  +530%  +6.04%

in Accuracy

Table 4. Comparison between BERT-Mini by Google and pruned TinyBERT-4L, from report Section 6.3.2.



Main Result — Comparison with Existing
Baseline: Magnitude Pruning

Dataset |  MNLI QQP STS-B WNLI QNLI MRPC RTE SST-2 CoLA SQuAD | MLM
Sparsity \ 70% 90% 50% 90% 70% 50% 60% 60% 50% 40% | 70%
Full BERTgasy | 824 £0.5 90.24+0.5 88.4+0.3 549+ 1.2 89.1 +1.0 85.2+0.1 66.2+3.6 92.1 +0.1 54.5+0.4 88.1 £0.6 | 63.5+0.1
f(z,mmvp © 6p) | 82.6 +£0.2 90.0+0.2 88.2+0.2 549+ 1.2 889+ 0.4 849+ 04 66.0+2.4 91.9+0.5 53.8+0.9 87.7+0.5 | 63.2 +0.3

f(z, mgp © 0p) 67.5 76.3 21.0 53.5 61.9 69.6 56.0 83.1 9.6 31.8 32.3
flxz,mmp © 6) 61.0 77.0 9.2 53.5 60.5 68.4 54.5 80.2 0.0 18.6 14.4
f(z,mmmp © 67) 70.1 79.2 19.6 53.3 62.0 69.6 52.7 82.6 4.0 24.2 423

Table from [3], results of iterative magnitude pruning on dev set

Dataset MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE
(-m) (Pearson)
Ratio| 28.3% 28.3% 39.9% 28.6% 28.9% 31.5% 29.2% 28.2%
30% Bertbase-12L 84.2 90.3 91.7 92.3 58.3 88.8 85.3 69.7
Ratio| 30% 10% 30% 40% 50% 50% 50% 40%
IMP [3] 82.6 90.0 88.9 91.9 53.8 88.2 84.9 66.0
Difference +1.6 +0.3 +2.8 +0.4 +4.5 +0.6 +0.4 +3.7

Table: comparison between IMP [3] and our results, on dev set.

Our method is stronger because we do distillation and data augmentation during fine-tuning.

19
[3] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, M. Carbin: The Lottery Ticket Hypothesis for Pre-trained BERT Networks (2020)



Discussion — Input Embedding Pruning

* In semester 1 we proposed pruning input embedding.

* By experiment results we see that pruning input embedding damages
network prediction accuracy by a lot.

* Because input embedding carries either
* Sentence token information (layer 1)
* Previous layer output (layer 2 — last layer)

Task STS-B Task ColA Task MRPC Task RTE




Discussion — QKV pruning VS Multi-head
pruning

* Multi-head pruning is a restricted version of QKV pruning
* An attention head = A group of QKV dimensions
e Structured Pruning

 Structured Pruning outputs an architecture that is computationally
faster



Discussion — Architecture Size Ratio

* By experiment we observed that below the ratio 0.3, the prediction
performance damage is significant.

Task STS-B Task CoLA Task MRPC
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Task CoLA
Task STS-B
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Discussion — Effect of Data Augmentation

e For fine-tuning data augmentation always improves prediction accuracy (more

generalized model)

* For searching for architecture, data augmentation is

* harmful for data sufficient task, and
» useful for data insufficient task (ColLA, RTE)

Metric f1

Task MRPC
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Discussion — Pros and Cons of our algorithm

* Our searching algorithm can search for an architecture
of any size (architecture size ratio R is a parameter)

* Our method considers all the possible search regions of

BERT and assuming equal importance over all regions

* Our method is applicable to other variants of BERT
» TinyBERT 4L/ 6L
 Bert-base 12L :

* The algorithm computationally expensive
* 10 epochs for architecture search

_____________________________________________

. ©
° °
0.65 <__..._ _____ %______...._____2._____.8._____________)(._
5 © e

]
2 0.55 1

0.50 4

e 20 epochs for two-stage distillation fine-tuning o w e e
¢ 12 hours - 2 days On CSE GPU -=-- Tinybert Augmented  —--- TinybertnotAugmentedJ

° | nsta bl | |ty Fig. Random seeding
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Conclusion

 Larger neural networks have higher redundancy (tolerant to pruning)

e Performance drop is larger on small neural network, when pruning on the
same ratio

* For production deep neural networks are highly accelerable

* The quality of model depends on the quality of learning data
 Difficult tasks: RTE, CoLA (difficult and insufficient data)



Reflection

* We should compare among baselines fairly:
 Compare at the similar searched architecture size

* When comparing we need to care about whether
* Is the searched architecture better? (fix fine-tuning method to compare)
* Is the fine-tuning method better? (fix architecture to compare -> more difficult to handle)



Future Direction

* Fixing network parameter during search
* Less interference with the architecture parameter «

* Experiment on knowledge transfer (distillation from stronger BERT)

* Apply performance aware searching

* Searching continues when the pruned model recovered its prediction
performance

* Searching terminates when the pruned model cannot recover

* Analysis the attention pattern
* Between the pruned network and the original network

Vertical ) Diagonal Vertical + diagonal ) Block Heterogeneous

| _ ‘ i } | .~ Fig. from O. Kovaleva, A. Romanov, A. Rogers, A. Rumshisky: Revealing the Dark Secrets of BERT (2019)



