
Predicting Horse Racing
Result Using Tensorflow

Motivation

• Horse racing is different from games in a casino
• Publicly attended event -> no one controlling
• Dependent event
• Historical data are opened to public
• Predict horse racing result based on historical data
• Is it possible to generate profit?

Introduction

• Background information and terminology of horse racing
• Data collection, storage, extraction
• Simply data analysis
• Possible ways to model the problem
• Data preprocess and normalization
• Result from different learning algorithm
• Limitation and difficulties
• Conclusion and short demo

Background

• A sport that running horses at speed
• 8-14 horses in a race
• The fastest the winner
• Hong Kong Jockey Club (HKJC) providing pari-mutuel betting on horse

racing
• Pari-mutuel betting is a betting system in which all bets of a particular

type are placed together in a pool and taxes are removed, and payoff
odds are calculated by sharing the pool among all winning bets
• There are many types of bet, we only focus on win bet

Data Collection

•❌ Buy historical data from data company
• Expensive!!!

•✔Web crawling
• Collected 15-year historical data

Feature Description

Date -

Location -

Race Number -

Class -

Distance -

Going Track condition

Course Track

Pool Prize pool

Place -

Horse ID -

Horse -

Jockey -

Trainer -

Actual Weight Carried weight

Declare Weight Overall weight

Draw -

LBW Length behind winner

Running Position -

Time Finishing time

Win Odds Closing odds

Data Storage

• Relational Database Management System
• Postgres vs MySQL
• Postgres has more useful built-in functions

• GUI Software (Postico)
• Good for visualization

Extract more data

• Age
• Time since last race
• Weight different from last race
• Past performance on the same track
• Jockey win rate
• Trainer win rate
• Horse win rate

Data analysis

Public Intelligence

• Odds are driven by public
• Lower odds mean higher expectation
• Using final win odds for prediction
• Prediction:
• Choose the horse with the lowest odds

Public Intelligence

ELO Rating System

• 𝑅!" = 𝑅! + 𝐾(𝑆! − 𝐸!)

• 𝐸! =
∑!"#"$,#&'

!
!(!)*#+*'

$ $+!
,

• 𝑆$ =
%&$
$ $+!

,

𝑓𝑜𝑟 1 ≤ 𝑝 ≤ 14

• 𝑆$ =
%& $'(.*
$ $+!

,

, 𝑓𝑜𝑟 𝑝 𝑖𝑠 𝑑𝑜𝑢𝑏𝑙𝑒 ℎ𝑒𝑎𝑑, 1 ≤ 𝑝 ≤ 13

ELO Rating System

K Win percentage

Horse elo 6000 0.1697

Jockey elo 50 0.1717

Trainer elo 50 0.1356

We have set the ini+al ELO to 1500,
then we followed the equa+ons above to compute ELO for jockeys, horses and trainers

First pick a random K, then binary search to find a good K

Possible ways to model the problem

• Strength of a horse
• Probability of a horse to win the race
• Finishing Time
• Which horse will win in a race?

• We decided to model the problem as the probability of a horse to win
the race.

Data preprocess and normalization

• Remove records with empty data
• Real value data -> subtract min/(max-min)
• Categorical data -> Tensorflow handle for us

• Crossed categorical data
• Draw x location x course

Model Training

• Pattern Matching (Not Tensorflow)
• Linear Model
• Deep Neural Network

Pattern Matching

• Find k similar races for prediction
• 𝑅 = ℎ! , 𝑗! , 𝑡! 	𝑓𝑜𝑟	1 ≤ 𝑖 ≤ 𝑛	
• 𝐼𝑛𝑑𝑒𝑥 = 𝑅! 	𝑓𝑜𝑟	1 ≤ 𝑖 ≤ 𝑚

• 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑅! , 𝑅" =
#!	%#"
#! #"

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Race Data sample

Race 1 Race 2 Race 3 Race 4 Race 5

Race 6 Race 7 Race 8 Race 9 Race 10

Pattern Matching – Value of k

Number of races Value of k

~700 <105

~1400 <135

~2100 <254

~2800 <261

~3500 <289

• k too high
• Too many irrelevant data
• Poor prediction result

• k too slow
• Not enough data for

prediction

Pattern Matching

• Index's size: ~700 record
• k = 12

Linear Model

• Also called Logistic regression model

• 𝑃 𝑌 = 1 𝑋 = &
&'()* +(-#.'/)

• Y=1, the horse win; Y=0, the horse not win
• X is a set of features
• We are training 𝑤

Linear Model - Problem

• Unbalanced dataset
• Only one winner in a race
• Around 10:1 for Y=0:Y=1

• Solugons
• Duplica=ng data
• Assigning weight to record

Linear Model - Train

• Training dataset: 2001-2014
• Testing dataset: 2015-2016
• The way we test the model is to pick the horse with the highest

probability to win among horses in a race, the win rate is referring to
the number of race the model correctly predicted in 2015-2016

Linear Model - Result

Epoch Win Win rate

1000 182 0.232143

2000 196 0.25

3000 200 0.255102

3500 208 0.265306

4000 208 0.265306

Deep Neural Network

• Tensorflow handles the detail
• Number of hidden layer
• Number of node in each layer
• How many epochs to train

• X and Y same as Linear Model

Deep Neural Network - Problem

• DNN don’t accept categorical data
• Tensorflow provides function to convert categorical column to embedding

column

• Unbalanced dataset
• Same as Linear Model

Deep Neural Network - Train

• Training dataset: 2001-2014
• Testing dataset: 2015-2016
• The way we test the model is to pick the horse with the highest

probability to win among horses in a race, the win rate is referring to
the number of race the model correctly predicted in 2015-2016

Deep Neural Network - Result

Epoch Hidden Layer Win Accuracy

2000 [100,50] 132 0.168367

3000 [100,50] 143 0.182398

4000 [100,50] 151 0.192602

5000 [100,50] 158 0.201531

6000 [100,50] 166 0.211735

7000 [100,50] 168 0.214286

8000 [100,50] 167 0.213010

Models Evaluation

Limitation and difficulties

• Web crawling
• Preparing data
• Lack of data

Future work

• Improve models in terms of accuracy(win rate) and profit earning
• Automate process of updating data from HKJC
• Integral the trained model to an application

Conclusion

• In terms of win rate,

• In terms of profit earning,

Beat win odd model

Linear Model no

Deep Neural Network Model no

Pattern Matching no

Beat win odd model Positive return

Linear Model Yes No

Deep Neural Network
Model

No No

Pattern Matching Yes Yes

Deep Neural Network
Model with Threshold

Yes Yes

Demo

Q & A

