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1 Introduction

In the United States, medical errors rank as the third most common

cause of death, claiming the lives of over 250,000 individuals annually[43].

Among these, diagnostic errors emerge as a particularly critical concern[22,

45]. The integration of medical imaging into computer systems has cat-

alyzed the development of automated analysis tools, designed to bolster

the precision of clinical diagnoses [39]. The evolution of Artificial In-

telligence (AI) in this realm has significantly elevated the accuracy of

these tools, transforming them into industrial-grade products. Tech-

niques ranging from elementary image processing methods [60, 48] to

advanced neural networks [28, 3] have contributed to this advancement.

Major technology corporations, recognizing the potential in this domain,

have driven the AI healthcare market to a valuation of USD 16.3 billion

in 2022, with a predominant focus on medical imaging diagnosis prod-

ucts [15]. IBM Watson Health and Google DeepMind are notable ex-

amples, having implemented AI-based tools in top hospitals and demon-

strating superior performance in tasks such as breast cancer screening

compared to human doctors [44, 49].

Despite the advanced capabilities of modern medical image diagnosis sys-

tems, challenges such as the misalignment of IBM Watson for Oncology

with clinicians’ assessments in gastric cancer cases highlight their falli-

bility [31]. Given the critical nature of medical diagnosis, the reliability

of these AI-driven tools is paramount. Consequently, there is a pressing

need for robust testing frameworks [71], akin to those for traditional soft-

ware and other AI products like autonomous cars. The methodologies for

generating test cases in general computer vision software cannot be di-
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rectly applied to medical image diagnosis systems due to the unique com-

plexities and real-world scenarios in medical contexts [78, 46, 63, 26, 67].

The scarcity of effective testing frameworks for medical image diagnosis

software underscores the complexity of this challenge, necessitating spe-

cialized knowledge in medical and clinical domains for creating testing

oracles. Additionally, existing image generation models and software,

predominantly trained on datasets of natural images, face limitations in

producing realistic and high-quality medical images vital for accurate

testing.

The integration of AI in medical diagnostics has evolved beyond uni-

modal image analysis to encompass multimodal models that process and

interpret diverse data types. These advanced AI tools, capable of inte-

grating data from various modalities, promise to revolutionize medical di-

agnostics by offering a more comprehensive analysis than single-modality

models. However, the testing of these multimodal models requires a nu-

anced approach that accounts for their complexity and the intricacies of

multimodal data interpretation.

This report outlines the development of MedTest, a novel metamorphic

testing paradigm crafted for medical image diagnosis software analysis,

including both conventional academic SOTA models and large-scale mul-

timocal models. A pilot study involving over 2,500 images from three hos-

pitals has led to the identification of nine metamorphic relations across

four artifact categories: lightness, motion, object, and non-object. These

relations are integrated into MedTest to generate test cases that mirror

real-world clinical scenarios, ensuring relevance and effectiveness in test-

ing medical image diagnosis applications.

We have applied MedTest to both commercial software and state-of-the-

2



art (SOTA) algorithms, evaluating cutting-edge tools designed for medi-

cal diagnosis tasks, polyp segmentation as an example. The performance

of these networks on original images versus images with introduced ar-

tifacts highlights significant variances, indicating areas for improvement.

As we progress, our focus will shift to the challenges and opportunities

presented by multimodal models, aiming to contribute significantly to

the field of AI in medical diagnostics.

This paper’s primary contributions are as follows:

• We introduce MedTest, the first comprehensive testing framework specif-

ically designed for the validation of medical image diagnosis software.

This framework represents a significant advancement in the field of

medical imaging software testing.

• We Executed of a pilot study on 2, 553 real-world medical images, de-

riving 9 metamorphic relations, which are instrumental in the opera-

tionalization of MedTest.

• We applied 9 different types of perturbations on 4 datasets, involving

more than 2, 052 images and generated 18, 468 images with artifacts.

• We provide an extensive evaluation of MedTest’s effectiveness. This

includes its application to various commercial medical image analysis

software and several SOTA academic models. Our results demonstrate

that MedTest can not only reliably trigger errors in these systems but

also significantly enhance the robustness of SOTA algorithms, thereby

contributing to the advancement of medical imaging technology.
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2 Background

2.1 Medical Image Analysis

Over recent decades, a variety of medical imaging techniques, includ-

ing computed tomography (CT), magnetic resonance imaging (MRI),

positron emission tomography (PET), mammography, ultrasound, and

X-ray, have played a crucial role in the early detection, diagnosis, and

management of various diseases [7]. Traditionally, the interpretation of

these medical images has predominantly been the domain of human ex-

perts, such as radiologists and physicians. However, the inherent vari-

ability in pathology, combined with the potential for human fatigue,

has steered the medical community towards the adoption of computer-

assisted interventions. Despite the slower pace of advancements in com-

putational medical image analysis compared to the rapid developments

in medical imaging technologies, recent strides have been notable, par-

ticularly with the integration of machine learning techniques.

In the realm of machine learning applied to medical image analysis, the

identification or creation of informative features that accurately capture

the patterns and regularities in the data is paramount. Historically, these

features were crafted predominantly by human experts, drawing upon

their domain-specific knowledge. This expert-driven approach posed sig-

nificant challenges for those without specialized knowledge, limiting the

broader application of machine learning in various medical studies. Paral-

lel to this, there have been initiatives to establish sparse representations

based on either predefined dictionaries or those learned from training

samples. The concept of sparse representation, inspired by the principle

of parsimony common across multiple scientific disciplines, suggests that
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simpler explanations for observations should be favored over more com-

plex ones. This principle has been validated through the use of sparsity-

inducing penalization and dictionary learning, demonstrating their effi-

cacy in feature representation and selection within the field of medical

image analysis [55, 69, 57, 13]. It is important to note, however, that the

methods of sparse representation and dictionary learning mentioned in

the literature still rely on a relatively shallow architectural approach to

uncover patterns or regularities in data, thereby somewhat limiting their

representational capacity.

Deep learning, on the other hand, has effectively surpassed these limi-

tations [53]. It revolutionizes the traditional approach by incorporating

the feature engineering process directly into the learning phase. In other

words, deep learning does not necessitate manual extraction of features;

rather, it requires only a dataset—sometimes with minimal preprocess-

ing—and autonomously uncovers informative representations through a

self-teaching mechanism [5, 35]. This shift has significantly reduced the

burden of feature engineering from human experts to computational sys-

tems, enabling those without extensive expertise in machine learning to

effectively utilize deep learning in their research and applications, par-

ticularly in the field of medical image analysis. This paradigm shift

not only democratizes access to advanced analytical techniques but also

opens new avenues for innovation and discovery in medical diagnostics

and treatment planning.

2.2 Metamorphic Testing

Metamorphic testing, a well-established testing technique, addresses the

oracle problem and has gained widespread recognition and application

across various software domains [11]. The fundamental principle of meta-
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morphic testing revolves around the identification and examination of

MRs across successive executions of the software being tested. An MR

essentially delineates the expected relationship between different sets of

input-output pairs of a software application. In metamorphic testing,

an initial test case is transformed into a subsequent, related test case

through a predefined transformation rule. The software’s responses to

these test cases are then scrutinized to ascertain if they adhere to the

anticipated relationship between outputs.

To illustrate, consider a software program designed to compute sinx. One

can leverage the well-known mathematical property stating “sin(π−x) =

sinx” as a metamorphic relation for the sine function. Here, even if the

exact expected value of sin x1 for a given source test case is unknown,

a related test case x2 = π − x1 can be formulated. The equivalence of

sinx1 and sinx2 can then be tested without prior knowledge of the specific

outputs of these sine calculations. Any deviation from this metamorphic

relation would suggest a possible flaw in the software’s implementation

of the sine function [54].

In recent years, metamorphic testing has been increasingly adapted to

evaluate Artificial Intelligence (AI) software, with the goal of automati-

cally identifying erroneous outcomes produced by AI applications through

the development of innovative MRs. Notably, Chen et al. [12] explored

the application of metamorphic testing in bioinformatics, demonstrating

its potential in this specialized field. Xie et al. [73] established eleven

MRs specifically designed to assess the performance of k-Nearest Neigh-

bors and Naive Bayes algorithms. In a similar vein, Dwarakanath et al.

[16] introduced eight MRs for the testing of SVM-based and ResNet-

based image classifiers, showcasing the versatility of metamorphic test-
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ing in handling various AI models. Furthermore, Zhang et al. [78] ap-

plied this technique to autonomous driving systems, utilizing Generative

Adversarial Networks (GANs) to generate diverse driving scenes under

varying weather conditions, subsequently evaluating the consistency and

reliability of the systems’ outputs in these simulated environments. This

broadening scope of metamorphic testing, particularly in AI software val-

idation, underscores its growing importance and utility in ensuring the

robustness and reliability of increasingly complex software systems.

3 MedTest

In this section, we commence with an insightful pilot study, which delves

into an analysis of authentic medical images that have been sourced

directly from hospital environments (as detailed in Section 3.1). This

preliminary exploration sets the stage for the subsequent introduction

of nine metamorphic relations (MRs). These relations, derived and in-

spired by the findings of the pilot study, represent a significant step in

understanding and evaluating medical image analysis processes.

We have meticulously categorized these nine MRs into four distinct groups,

each based on the type of perturbation they involve. The first category

focuses on lightness perturbations, where we examine how variations in

image brightness and contrast can impact medical image analysis (dis-

cussed in Section 3.2). The second category, motion perturbations, ex-

plores the effects of simulated motion artifacts such as blurring, which

can occur during image capture in dynamic clinical settings (covered in

Section 3.3).

The third category revolves around object perturbations (Section 3.4),

where the emphasis is on alterations related to the objects within the
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medical images. This includes changes in the size, shape, or position of

clinically relevant features within the image. The final category, non-

object perturbations (Section 3.5), addresses modifications that do not

directly involve the primary objects of interest in the images. This could

include alterations to background elements or other aspects of the image

that, while not directly related to the primary diagnostic features, may

still influence the overall analysis process.

Each of these categories plays a pivotal role in understanding how dif-

ferent types of perturbations can affect the accuracy and reliability of

medical image analysis, thereby contributing to the enhancement of di-

agnostic processes and tools in the healthcare sector. This structured

approach allows for a comprehensive exploration of the complexities in-

volved in medical image analysis and paves the way for developing more

robust and reliable diagnostic methodologies.

3.1 Pilot Study

In our research, we set out with the ambitious goal of developing a set of

MRs tailored to the field of medical imaging. These MRs are designed

on the premise that a ’seed’ test case (an original medical image) and its

’perturbed’ counterpart (the same image but with added artifacts) should

yield consistent classification labels or similar segmentation masks when

analyzed by medical image analysis software. To ensure that these test

cases are both effective and relevant, we have established a set of criteria

for the perturbations incorporated in our MRs, which include:

• Clinical-semantic-preserving : This criterion ensures that the perturbed

test cases should maintain the integrity of the analysis results, matching

those of the original seed image.
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• Realistic: The perturbations should closely mirror the types of artifacts

encountered in actual clinical settings.

• Unambiguous : Clarity and precision in definition are key, ensuring that

the perturbations are well-defined and easily interpretable.

To establish a foundation for designing these perturbations, we embarked

on a pilot study focusing on the types of artifacts typically encountered

in medical images used in real-world clinical scenarios. This involved

an extensive review of 103 endoscopic videos sourced from three hospi-

tals. From these videos, we extracted 2, 553 individual images. We then

engaged ten highly qualified annotators, each holding at least a postgrad-

uate degree in medicine, to meticulously label these images. These anno-

tators underwent thorough training, including guidelines, test tasks, and

sessions specifically focused on endoscopic images and the identification

of artifacts. During the annotation process, each image was evaluated to

determine the presence of any artifact. The consensus among the anno-

tators was used to establish the final human label, resulting in a dataset

of 1, 199 endoscopic images identified as containing artifacts.

Upon detailed examination of these artifact-laden images, we identified

and summarized 9 distinct methods of perturbation, commonly encoun-

tered in clinical settings. These methods are categorized from different

perspectives: 1) those related to endoscopic imaging cameras, including

lightness and motion perturbations; and 2) those pertaining to the visual

content within the endoscopic images, such as object and non-object per-

turbations. Building on these insights, we formulated nine correspond-

ing MRs, each based on a specific perturbation method. As shown in

Table 1, we introduce 4 different perturbation groups, i.e. lightness, mo-

tion, objects, and non-objects, where each group includes at least one
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Table 1: Categorization of Perturbation Types in Medical Images: A Pilot Study.

Perturbation Group Type Description

Lightness

Saturation Over-saturation caused by excessive lighting

Contrast Resulting from underexposure or obstructions in the field of view

White Balance Color distortions due to presence of white objects

Specularity Reflections resembling a mirror-like surface

Motion Blur Blurring from hand movements or rapid camera motion

Objects

Instrument Presence of surgical instruments in the image frame

Feces Incomplete colon cleansing in patients

Blood Visible bleeding from wounds

Non-objects Text Embedded clinical information related to patients

Perturbation Group Lightness Motion
Perturbation Type Saturation Contrast White balance Specularity Blur

Example
Image

Perturbation Group Objects Non-object
Original Seed Image

Perturbation Type Instrument Feces Blood Text

Example
Image

Figure 1: The visualization of the different perturbations groups.

perturbation type. Fig. 1 demonstrates the visual perturbed images of

different perturbation types. According to these MRs, the diagnostic la-

bel assigned by the medical analysis software to a perturbed endoscopic

image (i.e., the generated test case) should align with the label given to

the original, unperturbed seed image. Through this approach, we aim

to rigorously test and validate the robustness and reliability of medical

image analysis software, ensuring its effectiveness even in the presence of

common clinical artifacts.

3.2 MRs with Lightness Perturbations

These MRs leverage the lightness perturbations that imitate the various

illumination conditions during the endoscopic camera imaging.
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3.2.1 MR1-1 Saturation

To address saturation issues in endoscopic imaging, a key concern is the

proximity of the light source to colon tissue. Overexposure can occur

when the light source is too close, leading to saturation artifacts. Our

method for simulating this effect involves applying variable levels of sat-

uration to endoscopic images to mimic different degrees of overexposure.

This is achieved by adjusting the saturation of an image using a random

factor selected from a predefined range [s1, s2].

The process utilizes the torchvision library functions that control bright-

ness, contrast, and saturation. We define a fluctuation range and ran-

domly select a saturation factor within this range, with a bias towards

values greater than 1 to replicate the overexposure effect. This factor is

then used to modulate the saturation level, where a value of 1 indicates

no change, values less than 1 decrease saturation, contrast, and bright-

ness, and values greater than 1 increase them, thereby simulating the

impact of light source proximity on the colon tissue.

3.2.2 MR1-2 Contrast

In the context of endoscopic examinations, the distance between the colon

tissue and the light source, or obstructions, can result in underexposure.

To simulate this scenario, our method focuses on altering the contrast of

endoscopic images. Beginning with a seed endoscopic image, we establish

a contrast range denoted as [c1, c2]. A value is then randomly selected

from this range, which is used to adjust the image’s contrast level.

This technique parallels the approach used for saturation adjustments,

but with an inclination towards lower levels of contrast, brightness, and

saturation, corresponding to the underexposed nature of the images. By
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carefully modulating the contrast in this manner, we aim to authentically

replicate the conditions of underexposure commonly encountered during

endoscopic procedures.

3.2.3 MR1-3 White Balance

In endoscopic imaging, we often observe color biases, predominantly man-

ifesting as green or purple hues. The likely reason for these color biases

could be attributed to the white balance settings of the endoscopic cam-

era or the lighting conditions within the endoscopic environment, which

may not always accurately represent the true colors of the tissue.

To simulate these white balance discrepancies in endoscopic images, we

selectively modify the RGB channels. For images with a green bias, we

reduce the red and blue channels by approximately half of their original

values, maintaining their proportional relationship. Similarly, for images

exhibiting a purple color bias, we decrease the values of both the red and

green channels proportionately. This method allows us to realistically

replicate the color distortions that might occur due to white balance

issues in endoscopic imaging.

3.2.4 MR1-4 Specularity

The observed phenomena indicate that the manifestation of spots, at-

tributable to specular reflection, predominantly occurs in a compact re-

gion as opposed to being dispersed throughout the entire image. Our

initial approach involved identifying clusters as potential sites for spot

generation. Subsequently, we introduced circle, ellipse, and distorted

circle as the potential shape for generating white spots. Spots are gener-

ated at random locations near the cluster centers, with randomly chosen

radius bounded by λ times image height in order to control the size of
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spots comparing with the image size. After trials and error, we found

that the elliptical spots can achieve a best effect, creating most realistic

specularity on the endoscopy images. The elliptical spots are decided by

the following formula:

(x− x̄)2

(a+ ϵ)2
+

(y − ȳ)2

(b+ ϵ)2
= 1 (1)

where x̄ and ȳ denote the center of the ellipse, and a and b are the two

axes of the ellipse respectively. The additional ϵ acts as a term to avoid

zero denominator due to the randomized selection of parameters. The

following process involves the application of Gaussian blur to facilitate

their seamless integration into the image. Additionally, we integrated

these spots with a gray mask, derived from our algorithm, to modu-

late their intensity, particularly ensuring they do not exhibit excessive

brightness in the darker regions of the image.

3.3 MRs with Motion Perturbations

3.3.1 MR2-1 Blur

We have noted that possible camera movement and tissue movement

when the image is captured can often cause motion blur in images. To

replicate this phenomenon, we employed Gaussian Blur, a technique that

involves convolving each pixel of the image with a Gaussian function. The

blurring degradation is defined as following:

x′ = x ·GB(rB, σB) + n (2)

where GB is a Gaussian filter with a radius rB and a spatial constant

σB, and n is the random Gaussian noise added to the image. [56] In

our implementation, we first generate a random number in the range of
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(0, 15] as the σ value. Based on the chosen σ, we randomly chose odd

integers within the range of σ
3 to σ

2 for the width and height of the kernel

of the Gaussian filter, respectively. This process effectively blends each

pixel with the information from its neighboring pixels, creating a blurring

effect reminiscent of a weighted average of the surrounding area. By using

Gaussian Blur, we can simulate the kind of blur typically introduced by

camera motion, enhancing the realism of our simulated images.

3.4 MRs with Object Perturbations

3.4.1 MR3-1 Instrument

In this study, we utilized the Kvasir-Instrument dataset [27], which com-

prises 590 images featuring medical instruments and their corresponding

segmentation masks. Our initial step involved extracting these instru-

ments from the original images and documenting their positions. Sub-

sequently, we employed our algorithm to identify an optimal target area

for each instrument, ensuring it met the following criteria:

• Avoidance of overlap with the Polyp.

• Preservation of a position and orientation akin to those in the original

image.

• Maintenance of an appropriate size, neither excessively large nor

small.

Finally, we repositioned the extracted instruments into these target ar-

eas. To enhance realism, we applied Gaussian blur and integrated our

blending algorithm, ensuring a natural appearance of the instruments in

their new context.
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3.4.2 MR3-2 Feces

In this section, we employed fecal matter images extracted from the

Kvasir dataset [29] using Meta’s Segment Anything algorithm [33]. Sim-

ilar to the aforementioned method used for instruments, we replicated

this approach, albeit without constraints on the positioning and orienta-

tion of the feces. Crucially, we calculated a brightness ratio by comparing

the fecal matter with the target image, enabling us to adjust the feces’

brightness for a more coherent integration. Furthermore, to prevent ex-

cessive brightness in particularly dark areas of the target image, we again

utilized the gray mask previously mentioned in the context of specular

reflections, providing an additional layer of realism to the adjusted fecal

images.

3.4.3 MR3-3 Blood

In this phase, we focused on the blood images and their associated masks

from the EAD2020 dataset [52, 2, 1]. Our methodology mirrored the

approach previously described for pasting feces, with an emphasis on

modifying various lighting parameters. This adjustment was crucial to

enhance the natural appearance of the blood when integrated into the

target images, ensuring a realistic representation in the context of the

dataset.

3.5 MRs with Non-Object Perturbations

3.5.1 MR4-1 Text

Our analysis revealed a consistent pattern in the text displayed on endo-

scopic images, as illustrated in figure 2. Although the specific position

and content of the text varied across images, it predominantly comprised
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Figure 2: Pattern of the text in Kvasir dataset

temporal data and device parameters. To replicate this characteristic,

we employed the ImageDraw method, generating text that adhered to

the observed pattern through random generation, thereby maintaining

consistency with the original text format in the images.

4 Evaluation

To rigorously assess the efficacy of MedTest, our methodology has been

applied to four SOTA algorithms specifically designed for medical image

diagnosis focusing on polyps. Additionally, we have plans to extend this

evaluation to include two commercial software products and other SOTA

algorithms across a variety of diagnostic tasks. This section is dedicated

to exploring and providing insights into four critical Research Questions

(RQs), which are as follows:

• RQ1: Does MedTest generate test cases that are diagnostically consis-

tent with the original seed images and maintain a realistic appearance?

• RQ2: Is MedTest effective in identifying incorrect outputs produced

by medical image diagnosis software and algorithms?

• RQ3: Can the test cases generated by MedTest be utilized to enhance
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the performance of medical image diagnosis software?

• RQ4: What are the various factors that influence MedTest’s perfor-

mance and how do they do so?

MedTest is designed to create test cases that are not only clinically equiv-

alent to the original seed images but also replicate the realistic nature of

artifacts found in actual clinical scenarios. Thus, in addressing RQ1, we

aim to validate whether the perturbations introduced in the test cases

preserve the clinical diagnosis and realism, as assessed by human anno-

tation.

In RQ2, our objective is to determine the capacity of MedTest to con-

sistently and effectively trigger errors in medical image diagnosis sys-

tems, encompassing both the chosen commercial software and SOTA

algorithms.

Moving forward, the discovery of errors naturally leads to their rectifica-

tion. Hence, RQ3 focuses on exploring how the test cases generated by

MedTest can be leveraged to improve the functionality and accuracy of

medical image diagnosis tools.

Given that MedTest represents a pioneering approach in testing medical

image diagnosis products, RQ4 is dedicated to examining the impact of

various factors present in medical images on the performance of MedTest.

This analysis aims to provide a comprehensive understanding of how

these diverse elements can affect the efficacy of MedTest in evaluating the

tested software and algorithms. By delving into these research questions,

we endeavor to not only validate the effectiveness of MedTest but also to

contribute significantly to the advancement of medical image diagnosis

technology.
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4.1 Experimental Settings

4.1.1 Datasets

In our endeavor to thoroughly validate MedTest, we have utilized a di-

verse array of datasets as seed data, drawing upon the extensive work of

previous researchers who have meticulously collected, labeled, and made

available various types of data for research applications. For the purposes

of this paper, we have specifically chosen the most widely used datasets

in the field of polyp segmentation, all of which are publicly accessible.

These include CVC-300 [66], CVC-ClinicDB [6], CVC-ColonDB [59], and

Kvasir [29]. There are in total 2052 images combined.

CVC-300, a subset of the larger EndoScene dataset, is a relatively com-

pact dataset comprising 60 images, each with dimensions of 578 × 500

pixels. In addition to CVC-300, the EndoScene dataset also encompasses

images from the CVC-ClinicDB dataset. To maintain clarity and pre-

cision in our analysis, we have treated these two datasets as distinct

entities in separate experiments, meticulously recording and analyzing

their respective results [38].

CVC-ClinicDB, also known as CVC-612, is a more extensive collection,

featuring 612 publicly available polyp images sourced from 25 different

colonoscopy videos. The images in this dataset are of the size 384× 288

pixels, offering a distinct set of characteristics for analysis.

The CVC-ColonDB dataset is composed of 15 different endoscopy se-

quences, totaling 380 polyp images. Each image in this dataset shares

the same resolution as the CVC-300 dataset, specifically 578×500 pixels.

Lastly, the Kvasir dataset, a more recent addition to the field, stands out

due to its large scale, diverse endoscopy scenes, and varied polyp shapes.
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This diversity renders the segmentation task particularly challenging.

The images in Kvasir vary considerably in size, ranging from 332 × 487

to 1920 × 1072 pixels. This variability not only presents a significant

challenge for medical diagnosis software but also adds complexity to our

method of generating simulated artifacts [29] [38]. The selection of these

datasets for our validation process reflects our commitment to ensuring

that MedTest is rigorously tested against a wide spectrum of real-world

scenarios, thereby ensuring its robustness and applicability in diverse

clinical settings.

4.1.2 Pre-process of the Datasets

To ensure a uniform approach in our analysis, we initially undertook

the task of standardizing the dataset. This involved pre-processing both

the images and their corresponding segmentation masks to a consistent

size of 512× 512 pixels, a dimension commonly accepted and utilized by

various medical diagnosis algorithms. This standardization is crucial for

maintaining consistency across different datasets and ensuring that the

input to the medical diagnosis algorithms is uniform, thus allowing for

more accurate comparisons and evaluations.

A notable characteristic of most endoscopy images is the presence of a

black frame around the edges, which typically lacks a consistent pattern.

This irregularity renders traditional image processing techniques, such

as thresholding and region growing, ineffective for their extraction. To

address this challenge, we developed a specialized model specifically de-

signed to extract these black frames from the images. This extraction

is vital, as it enables us to mask out any potential synthesized artifacts

that may appear on these black edges, thereby ensuring the integrity and

realism of the images used in our tests.
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In addition to frame extraction, our pre-processing model plays a crucial

role in assessing the brightness levels across different areas within the

images. By employing a sigmoid function, we generate gray masks that

reflect these brightness variations. These gray masks are then strate-

gically used in the process of artifact addition. They allow for precise

adjustments in color and brightness of the synthesized components, ef-

fectively preventing the creation of images with overtly unnatural or ar-

tificial effects. This meticulous approach to pre-processing and artifact

integration is fundamental to our objective of producing realistic test

cases that accurately mimic real-world clinical scenarios. It ensures that

our testing environment closely replicates the conditions under which

medical diagnosis software is typically employed, thus providing a robust

and reliable framework for evaluating the performance and efficacy of

these algorithms.

4.1.3 Software and Models Under Test

We use MedTest to test commercial medical image diagnosis software

products and SOTA academic models. Commercial software products

include ChatGPT and Bard, on which we want to test the performance

on visual question answering (VQA) based on polyp diagnosis on en-

doscpoy images. SOTA academic models consist of PraNet [17], SANet

[72], TGANet [64] and SSFormer [68], all targeting the polyp segmenta-

tion task on endoscopy images.

PraNet PraNet model is a well-established model on polyp segmenta-

tion task and paved the path for the later ones. The special design on

PraNet is that it uniquely combines high-level feature aggregation via a

Parallel Partial Decoder (PPD) and detailed segmentation through Re-

verse Attention (RA) modules. This approach can enable the model to
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effectively handle the variability in polyps’ size, color, and texture, as

well as the often-blurred boundaries in colonoscopy images. PraNet has

demonstrated excessive performance over existing methods in terms of

segmentation accuracy, generalizability, and real-time efficiency. Because

it is one of the initial influential model, we decided to investigate deep

into it and evaluate its robustness.

SANet Besides, we explored the Shallow Attention Network (SANet),

also designed to address key challenges in polyp segmentation but with

more unique designs and implementation to handle detailed problems in

previous studies. SANet innovatively tackles issues like inconsistent color

distributions in samples, degradation of small polyps due to repeated

downsampling, and imbalance between foreground and background pix-

els. Based on this idea, the model employs a color exchange operation to

reduce overfitting by decoupling image content from color, enhancing fo-

cus on shape and structure. It also introduces a shallow attention module

to filter background noise in shallow features, which helps preserve small

polyps more effectively. Additionally, the probability correction strategy

during inference improves model performance, especially for small polyps.

SANet’s extensive testing across five benchmarks shows its outstanding

capability in polyp segmentation task, suitable for us to evaluate.

TGANet We also investigated the TGANet model, which focuses on

enhanced polyp segmentation in colonoscopy images using the auxiliary

text input as additional information. The model aimed at the challenges

posed by the variability in polyp size and number, which can impact the

effectiveness of segmentation models. Targeting this, TGANet innova-

tively employs text-guided attention mechanisms, leveraging attributes

like polyp size and count through additional text input to improve seg-
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mentation accuracy. The text input containing the polyp information

serves as an auxiliary classification task and further enhance model’s

learned representations of important features within the image. After

that, a feature enhancement module and multi-scale feature aggrega-

tion within the network are present to allow for more precise adaptation

to varying polyp characteristics. With these implementation, especially

the module to incorporate text description information, the model is

expected to have better performance because of the excessive learning

of image feature representations. As is describe in their inference part,

text input is unnecessary, so we leverage this novel design to test our

evaluation framework MedTest.

SSFormer We also explored the SSFormer model, which also targeted

the challenges imposed by the complex and diverse structure of polyps

image and the varying shapes of poly. These problems, together with

the indistinctive bound between polyp and other categories, make the

whole segmentation task difficult and the learning on existing dataset

prone to over-fitting. This model stands out by incorporating a pyramid

Transformer encoder, significantly enhancing the model’s generalization

capabilities. The Progressive Locality Decoder (PLD) in it emphasizes

local features while integrating them into global features. This can effec-

tively address the common issue of attention dispersion in Transformer

models. Such delicate design improves the detail processing ability of the

neural network and allows the establishment of its SOTA performance in

polyp segmentation tasks. Because this model demonstrates exceptional

learning and generalization abilities on unseen datasets, we want to test

whether its performance is robust enough on our MedTest.
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4.2 RQ1: Are the test cases generated by MedTest diagnosis-

identical to seed images and realistic?

In this study, MedTest is designed with the specific objective of creating

test cases that not only yield identical diagnostic results compared to

their corresponding seed images but also closely resemble the types of

artifacts encountered by medical professionals in real-world clinical set-

tings. To assess the effectiveness of MedTest in achieving these goals, we

conducted an evaluation based on human annotations.

For this purpose, we generated a sample set of 100 images for each per-

turbation method. This resulted in a total of 900 uniquely generated

images. To ensure a thorough and expert evaluation, we enlisted the

help of three annotators. Each of these annotators possesses postgradu-

ate qualifications in fields related to medical or radiology and is proficient

in English. Prior to the annotation process, these annotators were pro-

vided with comprehensive guidelines and training sessions to familiarize

them with the specific requirements of the task.

The annotators were then tasked with examining each pair of images,

consisting of an original and its corresponding perturbed counterpart.

Their evaluation was guided by two key questions for each image pair:

• On a scale from ”1 (strongly disagree)” to ”5 (strongly agree)”, to

what extent do you believe that the perturbed image maintains the

identical diagnostic outcome as the seed image?

• On the same scale, how realistically do you think the perturbation

reflects what might occur in actual clinical scenarios?

Any test cases that elicited disagreements among the annotators or were

flagged as unrealistic were subjected to further review. The results of
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this annotation process were quite revealing. On average, the images

scored 4.5 for maintaining identical diagnostic results and 4.79 for the

realism of the perturbations. To quantify the level of agreement among

our annotators, we employed Randolph’s Kappa, a statistical measure

commonly used for assessing inter-rater reliability. The resultant kappa

value indicative of “almost perfect agreement”, as defined in the estab-

lished guidelines of the field [34].

This rigorous evaluation underscores the high degree of fidelity and re-

alism that MedTest achieves in simulating clinical artifacts, as well as

its effectiveness in maintaining diagnostic consistency. This validation

is crucial, as it demonstrates the potential of MedTest to serve as a re-

liable tool for testing and improving medical image diagnosis software,

ensuring its readiness for practical application in clinical environments.

Answer to RQ1: The test cases generated by MedTest are

diagnosis-identical to seed images and realistic.

4.3 RQ2: Can MedTest find erroneous outputs returned by

medical image diagnosis software?

MedTest aims to automatically generate test cases to find potential errors

in current medical image diagnosis software. Hence, in this section, we

evaluate the number of errors that MedTest can find in the outputs of

commercial software and academic models.

We first input all the original seed images and obtain the original out-

put for each software product or model under test. Then we conduct

perturbations in MedTest’s MRs described in section 3 on the seed im-

age to generate test cases. Finally, we use the generated test cases to

validate the software products and academic models. In particular, we
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check whether the generated test cases have identical diagnosis results as

the corresponding seed images. If not, the diagnosis-identical perturba-

tion affects the diagnosis of the software products or academic models,

indicating erroneous outputs.

To evaluate how well MedTest does on generating test cases that trig-

ger errors, we calculate Error Finding Rate (EFR), which is defined as

follows:

EFR =
Number of misclassified test cases

Number of generated test cases
∗ 100%. (3)

Since we are currently testing on polyp segmentation task, here we apply

two similarity coefficients, Dice score and IoU score, which are proved to

be simple and useful summary measures of spatial overlap and can mea-

sure the accuracy in image segmentation [80]. A test case is considered

misclassified when its scores, both Dice and IoU, are 50% less than the

scores tested on the seed image. The Dice score is given by

Dice(Ŷ , Y ) =
2× |Ŷ ∩ Y |
|Ŷ |+ |Y |

=
2× TP

(TP + FP ) + (TP + FN)
.

(4)

And the IoU score is given by

IoU(Ŷ , Y ) =
|Ŷ ∩ Y |
|Ŷ ∪ Y |

=
TP

TP + FP + FN
.

(5)

In both equations 4 and 5, the Ŷ stands for the predicted segmentation

mask output by the models, while Y is the ground truth segmentation
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mask. Here, the TP , FP , and FN are all calculated pixel-wise on the

masks.

Based on these two similarity coefficients, we define a segmentation out-

put case as ”missclassified” or ”error” when difference between the per-

formance of the seed image and that of the synthesize image to be larger

than a proportion of the performance of the seed image. We set the pro-

portion to be a threshold t. Our definition is therefore by the following:

OriginalScore− ArtifactScore

OriginalScore
> t (6)

where OriginalScore represents the Dice/IoU score calculated from the

seed image and ArtifactScore represents the Dice/IoU score calculated

from the synthesized image with specific artifact. In the table showed in

later sections, we recorded the statistics for choosing both 50% and 25%.

Regarding the EFR, we found that it can be analyzed in different dimen-

sion, regarding different artifacts, datasets and models. The EFR varies

in different experiment settings and we will use the following sections to

illustrate the influence of above factors, with our proposed explanations

for the situations.

4.3.1 Artifact Types

Based on our observations on the experiment results, we found evident

discrepancy between the degree to which the models are influenced based

on different artifact types.

Generally, light-related perturbations, including white balance, satura-

tion and contrast, may affect the model performance more severely, that

is, leading to a higher EFR. Especially, we discovered that models ability

to properly segment polyps reduce more dramatically when the bound-
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ary of the polyp is unclear. A common case is when synthesized images

in contrast (underexposure) category are input to the model, the model

cannot distinguish the polyps with their surrounding, thus outputting

unsatisfying prediction masks. White balance may also affect the model

performance in a relatively similar way. Because we adjust the RGB

channel to imbalance by reducing the undesired channel values to make

the value of the vital channel outweigh other, this at the same time

make the image darker (as the channel value reduces). We suspected

that this is one reason why white balance biases can sometimes lead to

most dramatic drop in model performance. Besides, when using the test

cases with generated saturation, the rise in EFR may result from the

scenario that polyps are present at the area with overexposure. In this

case, the color in the overexposed areas will tend to white, making the

model unable to distinguish the polyp boundary.

Blurring effect may sometimes lead to higher EFR, especially when test-

ing on PraNet. We think the mechanism in confusing the model may

be similar to the light perturbations, that is, making the edge of the

polyp unclear so that the model will regard it as normal tissue as its

surroundings or segmenting a much larger area with the unimportant

tissues.

Surprisingly, the EFR on object perturbations do not affect models as

seriously as we expected, though constantly triggering a small amount of

error. The major reason for such object-based artifacts to influence model

performance is mislead the model to misinterpret them as ”polyps” that

should be segmented out. Indeed, based on our observations on the model

output predictions, this was usually the case when model performance

decreased. However, because of the relatively obvious difference between
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these objects and polyps, their ability to fool the models is limited.

4.3.2 Dataset

The performance of different models on our customized dataset is also

different. In most cases, models tend to perform better on images gener-

ated on CVC-ClinicDB and CVC-300. One possible explanation is that

these two datasets are usually included in the training data of models

targeting the polyp segmentation tasks. Therefore, even though with

our synthesized artifacts, models have the sufficient ability to compre-

hend and transform the image features into proper representations for

further predictions, resulting a relatively more robust performance on

such datasets. In this case, our EFR are also lower as a consequence.

On the contrary, models tend to be less robust on CVC-ColonDB and

Kvasir. For CVC-ColonDB, it is less common to be used in training, as

for the models we have surveyed and evaluated. It is a reasonable phe-

nomenon as the models have not encountered similar images and may

not learn sufficient features regarding images within this dataset. As for

Kvasir, the images within this dataset have fairly different features in

the overall image layout and visual effect from the other CVC datasets,

imposing huger difficulties for models to learn how to extract suitable fea-

tures from these images. With the synthesized effects on our customized

dataset, this problem always turned out to be more severe. Therefore,

the overall model performance on our synthesized images with artifacts

is worse than other datasets, producing higher EFR on such settings.

4.3.3 Models for Evaluation

Though the models selected for evaluation are targeting the same task,

i.e. polyp segmentation, and there are all accepted by top conferences

28



or have high citations, vary in their emphasis on different components in

the network designs. Therefore, the difference between their robustness

should be discussed.

PraNet: PraNet, renowned in the domain of Polyp segmentation, ex-

hibits commendable performance on the original dataset. Its Error Find-

ing Rate (EFR) on the Dice score, with a threshold of 0.25, stands at

4.38%, indicative of its relative robustness. However, the inclusion of

CVC-ClinicDB and Kvasir datasets in PraNet’s training set may predis-

pose the results to bias. A more critical examination using the CVC-

ColonDB dataset reveals a heightened EFR of 8.56%. Focusing on the

CVC-ColonDB analysis, PraNet demonstrates proficiency in handling

Specularity and Blood artifacts, but shows vulnerability to White Bal-

ance and Blur. This suggests a higher resilience to object-based distor-

tions as opposed to those induced by lighting variations. 4.3.3 4.3.3

SANet: SANet, introduced a year subsequent to PraNet, is evaluated

for its enhanced robustness. The EFR of SANet on the Dice score, with

the threshold set at 0.25, is recorded at 1.7%. To mitigate the potential

bias from images in the training set, we scrutinized its performance on the

CVC-ColonDB, where the EFR is noted to be 5.43%. SANet exhibits

a markedly reduced EFR across most artifact categories in the CVC-

ColonDB. It is predominantly impacted by White Balance and Blur,

while demonstrating greater resistance to artifacts related to Blood, Sat-

uration, and Contrast. 4.3.3 4.3.3

TGANet TGANet has a special design of incorporating the text em-

bedding to provide additional information to enhance feature representa-

tions. We found that its performance is unsatisfying on both the original

seed images and the synthesized ones, and our synthesized image inputs
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have triggered even more errors. When threshold t is set to 0.25, the net-

work produced an EFR up to 15.70% on the overall 4 datasets. Among

all artifacts, EFR was much higher on White Balance, Instrument, and

Blur. Contrast and Blood artifacts also sometimes caused severe prob-

lems on specific datasets. Our conjecture on the explanation is that the

model were trained using insufficient data and the presence of auxiliary

text inputs may result in the overfitting problem when learning feature

representations. 4.3.3 4.3.3

SSFormer SSFormer is the most robust models when tested using the

synthesized images. When we relax the threshold to t = 0.25, the EFR

is only 1.47% for the whole 4 datasets when calculating using Dice Score.

As the newly released model, SSFormer showed its robustness and strong

capability in addressing the task even when faced with bad image con-

ditions. As can be found in table 4.3.3 4.3.3, many of the artifacts only

trigger a small number of errors in specific datasets. As is the com-

mon case in other experiments, artifacts synthesized on seed images in

CVC-ColonDB, as a dataset seldom used in training, can confuse the

model the most and generate more errors consequently. Light-reltaed

perturbations, including White Balance, Contrast, and Saturation, are

able to find corner cases most often, which exactly aligns with our pre-

vious conjectures. Also, SSFormer’s performance on images synthesized

with Blood also decreased, which may suggest that blood in medical im-

ages has the potential to fool the model into misclassification even on a

relatively robust model.

Using the statistics present in tables 4.3.3 4.3.3, we calculated the EFR

for all four academic models we have tested, including PraNet, SANet,

SSFormer, TGANet, and ther EFR are 4.38%, 1.70%, 1.47%, and 15.70%,
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PraNet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.5 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 0.0 0.0 0.0 0.0 1.1 1.3 0.1 0.3
Feces 0.0 0.0 0.0 0.0 3.7 5.0 0.0 0.2

Instrument 3.3 5.0 1.1 2.6 7.9 9.8 0.1 0.3
Spot 0.0 0.0 0.2 0.2 1.8 1.8 0.1 0.1

Saturation 3.3 6.7 0.7 0.7 4.2 4.5 2.3 3.7
Contrast 0.0 0.0 0.3 0.3 4.0 4.2 0.3 0.6

White Balance 3.3 3.3 7.4 10.9 15.0 16.9 2.9 4.9
Blur 1.7 1.7 5.2 8.0 7.9 11.3 7.4 11.7
Text 0.0 0.0 0.5 0.5 2.4 2.6 0.0 0.1

Table 2: EFR(%) of PraNet Model on Various Datasets with t = 0.5

SANet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.5 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 0.0 0.0 0.0 0.0 1.6 1.8 0.0 0.0
Feces 0.0 1.7 0.0 0.2 5.0 5.5 0.1 0.1

Instrument 0.0 0.0 0.0 0.0 3.4 3.7 0.0 0.0
Spot 0.0 0.0 0.2 0.2 2.1 2.6 0.0 0.0

Saturation 3.3 3.3 0.2 0.5 2.4 2.4 0.9 1.3
Contrast 0.0 0.0 0.0 0.0 2.4 2.4 0.0 0.0

White Balance 0.0 0.0 1.5 2.3 8.2 9.0 1.0 3.4
Blur 0.0 0.0 0.2 0.2 2.6 3.4 0.3 0.6
Text 0.0 0.0 0.2 0.2 4.0 4.0 0.0 0.0

Table 3: EFR(%) of SANet Model on Various Datasets with t = 0.5

respectively. We can clearly see that SANet and SSFomer are relatively

more robust with much lower EFR on our synthesized images, While

PraNet and TGANet performed worse and more errors are triggered

using synthesized images generated from our framework MedTest.

Detailed visualization of the artifacts and the corresponding output are

illustrated in Table10 and Table11, where PraNet and SANet are used

as example models.
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SSFormer CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.5 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 0.0 1.7 0.2 0.2 3.2 3.9 0.0 0.0
Feces 0.0 0.0 0.0 0.0 4.7 5.8 0.0 0.0

Instrument 0.0 1.7 0.5 1.1 5.8 5.8 0.0 0.0
Spot 0.0 0.0 0.2 0.2 1.6 1.8 0.0 0.0

Saturation 6.7 6.7 0.8 1.8 1.6 2.1 0.2 0.4
Contrast 0.0 0.0 0.2 0.2 3.4 3.4 0.1 0.2

White Balance 0.0 1.7 2.5 3.9 9.5 10.5 0.9 1.5
Blur 0.0 0.0 0.2 0.2 2.4 2.6 0.1 0.2
Text 0.0 0.0 0.2 0.2 0.8 1.6 0.0 0.0

Table 4: EFR(%) of SSFormer Model on Various Datasets with t = 0.5

TGANet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.5 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 10.0 10.0 9.2 11.3 12.9 15.3 6.5 7.8
Feces 1.7 8.3 1.8 2.5 5.8 7.4 1.1 1.4

Instrument 11.7 16.7 2.6 4.2 8.2 10.8 1.5 1.8
Spot 3.3 3.3 0.2 0.2 3.2 3.4 0.1 0.3

Saturation 8.3 10.0 9.3 15.2 10.8 15.0 22.4 30.4
Contrast 0.0 0.0 6.7 8.7 15.3 17.6 5.5 7.3

White Balance 23.3 26.7 30.2 37.7 21.3 40.8 25.4 32.6
Blur 15.0 21.7 4.7 6.5 6.6 7.1 5.8 7.5
Text 5.0 6.7 1.1 1.8 4.2 5.0 0.6 1.0

Table 5: EFR(%) of TGANet Model on Various Datasets with t = 0.5

Answer to RQ2: MedTest obtains up to 15.70% EFR when test-

ing the SOTA academic models, which indicates that MedTest can

effectively discover corner cases and used for further testing the ro-

bustness on other models.

4.4 RQ3: Enhancing Medical Image Diagnosis Performance

Using MedTest-Generated Test Cases

Our research has substantiated that MedTest is adept at creating di-

agnostically consistent and realistic test cases, which are proficient in

identifying errors in both commercial software and SOTA academic mod-
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PraNet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.25 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 3.3 6.7 0.5 1.0 4.0 5.0 0.5 0.6
Feces 0.0 1.7 0.8 2.0 7.4 9.2 0.5 1.5

Instrument 6.7 11.7 4.1 5.6 12.1 14.0 0.4 1.1
Spot 1.7 1.7 0.5 0.5 3.2 4.2 0.1 0.5

Saturation 8.3 13.3 1.6 3.4 6.6 8.4 5.8 9.6
Contrast 1.7 5.0 0.3 0.8 4.7 6.1 1.3 2.2

White Balance 8.3 13.3 12.7 18.0 19.8 22.7 7.5 12.3
Blur 8.3 8.3 9.6 13.6 14.2 17.2 14.2 18.8
Text 0.0 0.0 0.7 0.8 5.0 5.8 0.2 0.3

Table 6: EFR(%) of PraNet Model on Various Datasets with t = 0.25

SANet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.25 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 0.0 0.0 0.0 0.0 2.9 3.4 0.1 0.1
Feces 1.7 1.7 0.3 0.5 6.9 7.4 0.1 0.2

Instrument 1.7 1.7 0.2 0.7 5.5 5.8 0.0 0.0
Spot 0.0 0.0 0.2 0.3 4.2 4.5 0.0 0.0

Saturation 5.0 6.7 1.0 1.8 3.4 5.5 1.7 3.1
Contrast 0.0 0.0 0.2 0.2 3.4 4.0 0.0 0.2

White Balance 0.0 0.0 3.4 6.2 10.8 14.0 5.4 9.2
Blur 3.3 5.0 0.3 0.5 6.3 8.7 1.1 2.0
Text 0.0 0.0 0.5 1.0 5.5 5.8 0.0 0.1

Table 7: EFR(%) of SANet Model on Various Datasets with t = 0.25

els. This leads to an imperative query: Can the test cases generated by

MedTest be leveraged to augment the performance of medical image di-

agnosis systems? Essentially, the objective is to enhance the robustness

of diagnostic models.

A logical approach to achieve this enhancement is through the retraining

of models with test cases synthesized by MedTest, to assess if such re-

trained models exhibit increased resilience to a variety of perturbations.

While we have already curated a dataset for this retraining purpose,

the optimization of training outcomes is still an ongoing endeavor. Our

future research efforts will focus on selecting images that trigger signifi-
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SSFormer CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.25 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 3.3 3.3 0.2 0.2 5.0 5.3 0.1 0.1
Feces 0.0 0.0 0.3 0.5 7.6 8.2 0.0 0.0

Instrument 3.3 6.7 1.8 2.5 7.1 7.6 0.0 0.0
Spot 0.0 0.0 0.3 0.3 2.4 2.4 0.0 0.0

Saturation 6.7 10.0 1.0 1.3 2.6 4.5 0.4 0.8
Contrast 1.7 3.3 0.2 0.2 3.9 4.7 0.3 0.5

White Balance 3.3 5.0 4.7 7.5 11.8 13.9 2.0 4.0
Blur 0.0 1.7 0.2 0.2 3.4 3.4 0.3 0.4
Text 0.0 0.0 0.3 0.3 2.1 2.6 0.0 0.1

Table 8: EFR(%) of SSFormer Model on Various Datasets with t = 0.25

TGANet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.25 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 16.7 20.0 15.8 22.1 23.9 29.2 12.9 15.7
Feces 13.3 25.0 4.4 7.0 13.9 18.2 2.7 3.7

Instrument 30.0 46.7 9.2 14.9 18.9 24.2 4.4 6.9
Spot 3.3 3.3 1.5 2.1 5.5 6.6 0.8 1.0

Saturation 16.7 18.3 21.2 28.9 21.8 24.7 46.1 53.7
Contrast 0.0 1.7 12.9 17.3 26.8 29.2 14.3 18.0

White Balance 31.7 38.3 47.5 59.5 35.3 40.8 43.0 49.8
Blur 28.3 31.7 4.7 6.5 9.7 11.8 15.3 18.3
Text 8.3 8.3 3.9 5.1 10.8 13.4 3.9 5.6

Table 9: EFR(%) of TGANet Model on Various Datasets with t = 0.25

cant errors when subjected to synthesized effects, and constructing a new

training dataset. This dataset will be an amalgamation of original and

synthesized diagnostically consistent images.

However, a critical consideration in this process is the judicious selection

of perturbations for each seed image. Excessive repetition of segmenta-

tion label masks, targeting specific features, might inadvertently intro-

duce biases in the retraining process. Consequently, careful curation of

the training dataset is paramount to ensure a balanced representation of

features and avoid skewed learning outcomes.
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Table 10: Comparison of PraNet Model Outputs with Different Artifacts

Artifact
Original
Image

Image with
Artifact

Ground
Truth

Output
(Original)

Output
(Artifact)

Saturation

Contrast

White-
Balance

Specularity

Blur

Instrument

Feces

Blood

Text
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Table 11: Comparison of SANet Model Outputs with Different Artifacts

Artifact
Original
Image

Image with
Artifact

Ground
Truth

Output
(Original)

Output
(Artifact)

Saturation

Contrast

White-
Balance

Specularity

Blur

Instrument

Feces

Blood

Text
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Answer to RQ3: We are still in the process of re-training the

academic medical image diagnosis models to achieve a better per-

formance.

4.5 RQ4: How would different factors affect the performance

of MedTest?

This section delves into how three distinct external factors influence the

efficacy of MedTest.

Image Structure and Overlay The heterogeneity in the source im-

ages’ locations and orientations presents challenges in our automated

object perturbation system. The lack of comprehensive image analysis

during object addition precludes optimal object selection and placement,

potentially leading to incongruous object positioning in the synthesized

images. Efforts to mitigate this include excluding objects from atypi-

cally laid out images (such as instruments positioned at corners in partial

views) and constraining the target positions for merging objects to more

closely resemble their original context, albeit with slight positional vari-

ations. These measures aim to minimize the incongruities arising from

layout and positioning discrepancies.

Polyp Characteristics The extensive diversity in the dataset, particu-

larly regarding polyp size and shape, poses challenges for the automated

synthesis of object-related perturbations. The presence of large polyps

can complicate object addition, necessitating refined automation proto-

cols for object selection and placement. This adjustment must accom-

modate the variation in polyp characteristics, striking a balance between

overall performance and the generation of some suboptimal results.

Ambient Lighting Conditions Divergent lighting conditions in the
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seed images, especially those that are overly dark or bright, can lead to

unnatural effects in object perturbations. To address this, we have imple-

mented contrast, brightness, and color assessments for both the target

and object-containing images. This enables the imposition of similar-

ity constraints when selecting objects for synthesis, thereby mitigating

unnatural outcomes. Lighting conditions also affect light-related pertur-

bations such as saturation, contrast, and specularity. Excessively dark or

bright seed images can render the application of saturation or contrast

effects counterintuitive and unnatural. Specularity synthesis is similarly

impacted in underexposed images.

5 Discussion

5.1 Threats to Validity

This section elucidates potential threats that could affect the validity of

our study.

Variability in Diagnosis Ground Truth A primary concern is the

potential alteration in the diagnostic accuracy of test cases generated by

MedTest, especially after numerous perturbations, which could lead to

false positives. To mitigate this risk, we engaged in expert annotation to

affirm the diagnostic ground truth of these generated test cases. Addi-

tionally, annotators were instructed to assess whether the test cases au-

thentically represent artifacts encountered in real-world clinical settings.

The findings confirm that the artifacts generated by our methodology

are diagnosis-neutral.

Scope of Application on Endoscope Image Analysis Another con-

cern is the applicability of MedTest primarily to endoscope image anal-

ysis, which may not be universally extendable to other types of medical
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images. The selection of endoscope imagery was a deliberate decision,

considering its representativeness in a specific medical imaging context.

However, we posit that the MRs developed can be readily adapted to

other medical imaging modalities. We provide a comprehensive frame-

work encompassing the study of clinical artifacts, formulation and design

of MRs, generation of test cases, and utilization of failure cases to en-

hance robustness.

Evaluation on a Limited Set of Medical Image Analysis Systems

Our evaluation encompassed six medical image analysis systems, which

may not comprehensively represent MedTest’s efficacy across diverse sys-

tems. To address this, our evaluation targeted both commercial software

employing Large Language Models (LLMs) and SOTA academic models

pertinent to our focused task. Future endeavors will involve extending

our testing to a broader array of commercial and research models to fur-

ther validate and enhance the generalizability of MedTest’s performance.

6 Related Work

6.1 Enhanced Testing Approaches for AI Software

AI software has revolutionized various fields with a wide array of ap-

plications, ranging from autonomous vehicle technology to sophisticated

face recognition systems. However, a critical concern surrounding these

AI-based models is their inherent lack of robustness. This vulnerability

potentially leads to undesirable outputs, which can culminate in seri-

ous mishaps or accidents, as highlighted in several studies [79, 36]. In

response to these challenges, researchers have diligently worked on devel-

oping a plethora of methods aimed at creating adversarial examples or

test cases. These are specifically designed to deceive or ’fool’ AI software,
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thus exposing their weaknesses [8, 47, 67, 77, 76, 65, 40, 46, 75, 51, 26, 25].

Concurrently, there has been a significant effort in proposing various al-

gorithms and strategies to bolster the robustness of AI software. Notable

among these are robust training mechanisms and advanced network de-

bugging techniques [42, 4, 18, 70, 41, 61]. Our research is particularly

focused on examining the robustness of a key AI application—medical

image diagnosis software—which, until now, has not been systematically

scrutinized in existing literature.

6.2 Comprehensive Analysis of Robustness in Medical Image

Analysis Software

In our extensive survey of the literature, we have delved into the method-

ologies employed for testing and attacking medical image analysis sys-

tems, drawing insights from related domains such as natural language

processing (NLP) and computer vision (CV). Over the years, a diverse

array of metamorphic testing techniques has been proposed for NLP soft-

ware, exploring novel approaches and methodologies [9, 10, 21, 23, 24,

50, 58]. Alongside metamorphic testing, the field has also seen significant

advancements in identifying errors in NLP software, inspired by adversar-

ial attack methodologies prevalent in the CV domain [20, 30, 32, 37, 74].

The realm of AI-driven CV software is a double-edged sword, offering

both unprecedented convenience and potential risks in daily life. For

instance, it has been observed that criminals can manipulate photos to

deceive face recognition systems, and autopilot systems sometimes fail

to detect imminent hazards. To address these concerns, several auto-

mated testing frameworks like DeepTest have been developed, aimed at

rigorously testing the robustness of CV algorithms [62].

However, our research provides a unique and substantial contribution
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compared to the aforementioned studies. Firstly, MedTest, our proposed

method, is specifically tailored for medical imaging, encompassing a com-

prehensive array of MRs suited for various perturbations encountered in

real clinical settings. To the best of our knowledge, the MRs proposed

in MedTest are novel and unexplored in existing literature across these

research areas. Furthermore, unlike previous studies that focus on single

tasks, MedTest is implemented for multiple tasks including segmentation,

classification, and visual-question answering. Importantly, all the MRs

in our study are grounded in real-world clinical scenarios, as evidenced

by our preliminary studies, marking a departure from previous research

which often conceptualized perturbations without empirical validation.

Moreover, while most existing studies evaluate their methodologies on

research models, MedTest extends its evaluation to include two leading

commercial software products. This comprehensive approach positions

MedTest as a pioneering and holistic testing framework for medical image

analysis systems.

7 Future Work

7.1 Testing on Multimodal Models on Medical Visual Ques-

tion Answering

Amid the fast development of large language models and the derived

multimodal models, it has been seen that multimodal models possess

sufficient ability to take in specific image input and generate text output

based on its knowledge on the given image, which can also be utilized

in medical diagnosis. Visual question answering on medical context is

therefore a crucial application on such large-scale multimodal models.

Based on this, we plan to further investigate the most popular and advent
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Large Vision-Language Models (LVLM), including the newly released

GPT-4 with Vision (GPT-4V) and Bard, which demostrated exceptional

performance in tackling multimodal tasks. This particular ability also

gives rise to the potential expansion of LVLMs on the realm of VQA.

In the desired experiment setting, we plan to leverage the proposed MRs

and generate the test cases based on seed dataset specialized for VQA

tasks. Then, we may utilized these generated images as input to direct

the LVLMs to answer the given questions regarding the input image.

Questions to be answered by our tested multimodal models should be

ones that only require text output, i.e., can be illustrated by language.

Sample questions may includes, ”How many polyps are in the image?”,

or, ”Are there any instruments in the image?”. In this case, the multi-

modal models can provide straightforward answers, such as ”Yes/No” or

the number, which also benefits our decision on evaluation criteria.

7.2 Re-training Models for Performance Improvement

A question yet to answer is whether test cases generated by MedTest

can applied to improve the performance of academic SOTA medical im-

age diagnosis models. As illustrated in our RQ2, evident errors can be

triggered by our generated dataset, which may imply that the models

lack sufficient knowledge on these corner cases, leading to inappropriate

representations of vital features within the images for diagnosis. There-

fore, one intuitive approach is to construct a more comprehensive dataset

for training, especially including those synthesized images with specific

artifact types associated with relatively unsatisfactory performance. In

this way, we hope to cover more corner cases in the model outputs and

expand the activated neurons within the models.
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7.3 Image Synthesis with Generative Adversarial Networks

Since our MedTest in producing MRs mainly involves mathematical-

representation-based image transformation and processing techniques,

limitations exist on producing large-scale dataset with more variations

within each artifact class, especially object perturbations. Due to the

scarce data to serve as artifact candidates, our generated samples have

specific artifact patterns, which restrict the images from being more nat-

ural. Besides, we cannot simulate the possible large-area presence of

artifacts and potential existence on vital areas, such as on polyps, with-

out affecting the original ground truth label. For instance, blood may

appear in a contiguous and pervasive manner, but our simulation method

only extract small parts from it and cannot produce the same effect as

original.

Therefore, generative adversarial networks (GAN) may exhibit its poten-

tial in creating a more realistic blending different elements into medical

images as we desired. After we surveyed the related work, we have as-

serted that GANs have exceptional power in generating natural fusion of

image contents and styles according to the given images and segmenta-

tion label of different instance categories. [14, 19] Similar application in

medical images, even in polyp related tasks, have been witnessed with

promising performance. Because of this, we plan to explore deeper into

this topic and try to generate more realistic images regarding the object

perturbations for our customized dataset, so that we can further improve

the overall evaluation on our target models.
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8 Conclusion

In this report, we embarked on an in-depth analysis of AI-driven diagnos-

tic tools in medical imaging, with a particular emphasis on endoscopic

image diagnosis. The choice to focus initially on this area stems from

its critical importance in healthcare. Accurate and reliable medical diag-

nostics are fundamental to patient care, and the increasing integration of

AI tools in this domain necessitates a rigorous evaluation of their perfor-

mance. Our development of MedTest, a specialized metamorphic testing

framework, marks a significant step in this direction, enabling a detailed

assessment of these tools under various clinically relevant scenarios.

Through our comprehensive pilot study, we identified and categorized

common artifacts that pose challenges to the diagnostic accuracy of these

tools. We generated the 9 different types of artifacts on 4 datasets, in-

volving more than 2, 000 images and generated over 18, 000 images with

artifacts. Our findings reveal that even SOTA algorithms exhibit vary-

ing degrees of performance degradation when faced with these realistic

test cases, underscoring the need for continual improvement and rigorous

testing.

While this study provides valuable insights into the robustness of medical

image diagnosis software, it also sets the stage for our next ambitious en-

deavor: evaluating the performance of multimodal models. Multimodal

models, which integrate and interpret data from various modalities, are

poised to revolutionize medical diagnostics by offering a more comprehen-

sive analysis than single-modality models. However, the complexity of

these models necessitates a nuanced approach to testing and validation.

To this end, our future work will focus on extending the methodologies
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and lessons learned from our current research to the realm of multimodal

models. This includes developing testing frameworks that can effectively

assess the performance of these models in integrating and analyzing data

from diverse sources. Our ultimate goal is to ensure that as these ad-

vanced AI tools become integral to medical diagnostics, they do so with

the highest standards of accuracy and reliability, thus enhancing patient

outcomes and advancing healthcare services.

In conclusion, this report not only sheds light on the vulnerabilities of

current medical image diagnosis software but also lays the groundwork for

future explorations into the broader domain of AI-driven diagnostic tools,

including multimodal models. As we continue to push the boundaries of

AI in healthcare, rigorous testing and continual improvement of these

tools will be paramount to fully realizing their potential in improving

patient care.
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