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ABSTRACT

Equipped with the capability to call functions, modern large lan-

guage models (LLMs) have the ability to leverage external tools for

addressing a range of tasks unattainable through language skills

alone. However, the effective execution of these tools relies heavily

not just on the advanced capabilities of LLMs but also on pre-

cise user instructions, which often cannot be consistently ensured.

To improve the tool usage experience and ensure it meets users’

expectations, we meticulously examine the prevalent unclear in-

structions provided by users. Following an analysis of the error

patterns in these unclear instructions, we introduce a benchmark

named Interaction-for-Tool-Usage (ITU), designed to evaluate the

proficiency of LLMs in requesting clarifications from users to accu-

rately fulfil their instructions. To address the challenges identified,

we have developed a novel algorithm, Query-when-Need (QwN),

which prompts LLMs to seek assistance from users whenever they

encounter obstacles due to unclear instructions. Moreover, to re-

duce the manual labour involved in assessing LLMs’ performance in

tool utilization, we introduce an automated evaluation tool: ToolE-

valuator. Our experiments demonstrate that the QwNsignificantly

outperforms existing frameworks for tool learning in the ITU. We

are releasing all related code, datasets, and findings to support fu-

ture research.
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Chapter 1

Introduction

AI models have undergone remarkable development since OpenAI

introduced ChatGPT-3.5 [1]. This model demonstrates a significant

advancement in solving multiple tasks, including code generation

[2, 3, 4], machine translation [5, 6], even game playing [7]. The in-

corporation of tool usage capabilities marks a pivotal step towards

enhancing the intelligence of LLMs, pushing them closer to exhibit-

ing human-like intelligence. The integration of tool usage allows

AI models to perform a broader array of complex and varied tasks,

including managing emails, designing presentations, and browsing

the web to gather real-time information. Specifically, the ability

to manage emails elevates the capabilities of LLMs beyond simple

linguistic and visual ability and accessing up-to-date information

addressed the limitation of outdated training data [8, 9, 10, 11].

Timo and colleagues’ introduction of Toolformer marks a pio-

neering effort in empowering language models with self-learning ca-

pabilities for tool usage. This groundbreaking approach integrates

various tools, including calculators, Q&A systems, and search en-

gines. Despite its ingenuity, Toolformer is limited by its relatively

narrow range of tools [9]. To mimic authentic tool use, language
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models require access to a wider variety of tools and should ideally

be capable of using multiple tools simultaneously to resolve a single

query. This presents a complex challenge: decomposing a user’s in-

quiry into smaller tasks that can be addressed by specific tools. The

model must then skillfully select the right tools from thousands of

available APIs and use them accurately according to their documen-

tation. Significant research efforts have been directed towards this

challenge. Projects like Gorilla aim to minimize the misuse of API

calls by LLMs [12]. RestGPT, another significant development, has

introduced a coarse-to-fine online planning mechanism to enhance

task decomposition and API selection. Besides, RestGPT’s integra-

tion with RESTful APIs and ToolLLM’s refinement of LLaMa for

open-source language models further underscore the advancements

in this area [13, 14].

Figure 1.1: The execution process of previous frameworks

Despite the significant strides made, existing frameworks and
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Figure 1.2: The execution process of our framework

benchmarks often operate under the assumption that user instruc-

tions are always explicit and unambiguous, a premise that diverges

from real-world scenarios [8, 13, 12]. Due to the special feature of

API calls, it requires precise user instructions as the arguments for

the function call can hardly tolerate ambiguity. Furthermore, as the

tasks assigned to LLMs grow in complexity, they frequently require

multiple, sequential API calls to resolve a single task. This complex-

ity amplifies the challenge, as any error in the sequence of API calls

can culminate in an outcome that strays from the user’s original

intention. Motivated by these challenges, our approach encourages

LLMs to proactively seek clarifications from users when uncertain-

ties arise during instruction execution. This marks a departure from

previous frameworks [13, 8] that operate on a strict input-to-output

basis, where the user’s initial instruction directly leads to the tool’s

final action without intermediate interaction(See Figure 1.1). By
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facilitating dialogue throughout the process, our method aims to

ensure the accurate invocation of functions and eliminate the need

to restart the entire instruction execution cycle, as seen in previous

approaches. (See Figure 1.2)

Some researchers also observed the lack of user interaction in

the instruction execution process in prior studies but did not thor-

oughly examine the nature of problematic user instructions in real-

world scenarios [15]. To address this oversight, our work conducts

a systematic analysis of actual user instructions, identifying and

categorizing potential issues into several key areas. These include

instructions lacking essential information, instructions with ambigu-

ous references, instructions containing inaccuracies, and instructions

that are unfeasible for LLMs to execute due to the limitations of

the tools available. Building on this classification, we have meticu-

lously developed a user interaction benchmark for tool use, referred

to as ITU, which is designed around the identified error categories.

This benchmark includes a collection of provided APIs, ambiguous

queries, anticipated questions for clarification, and the correspond-

ing responses. Its primary goal is to assess the capability of LLMs

to detect ambiguities in user queries and to pose relevant ques-

tions for clarification accordingly. To evaluate the effectiveness of

LLMs in completing given tasks, we introduce several innovative

metrics. These metrics evaluate the LLMs’ proficiency in asking

appropriate clarifying questions, their ability to execute the correct

function calls, and their success in delivering final responses that

meet the users’ needs. Recognizing the labour-intensive nature of
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manually verifying all execution results, we also innovatively design

an automatic evaluation system, ToolEvaluator, to streamline the

assessment process. ToolEvaluatorleverages the advanced problem-

solving capabilities of GPT-4 to compare the standard answers we

pre-supplied with the outcomes produced by LLMs, thus facilitating

an efficient analysis of LLM performance.

Comprehensive resources for this research, including code, datasets,

and results, are made publicly available for replication and further

study. The key contributions of this research are summarized as

follow:

• We conduct an extensive examination of the failures in tool

utilization by current LLMs when faced with ambiguous user

instructions in real-life scenarios, categorizing the prevalent is-

sues into four distinct categories.

• We have meticulously crafted our benchmark, which thought-

fully incorporates the above four distinct categories of chal-

lenges alongside a diverse selection of tools.

• We refined the existing planning and reasoning algorithms and

introduced a novel algorithm, termed QwN. This algorithm

is designed to prompt LLMs to actively request clarifications

from users upon facing uncertainties. Experimental evidence

suggests that interactions between humans and LLMs signifi-

cantly enhance the models’ comprehension of user intentions,

thereby improving the quality of task completion.

• We devised innovative evaluation metrics tailored to the new
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tasks and introduced an automated evaluation method to stream-

line the efficient assessment of results.



Chapter 2

Related Works

Tool Learning for LLMs. LLMs have recently made significant

advancements, with ChatGPT3.5 being recognized as a major step

towards achieving AGI [16, 17, 5]. These LLMs possess strong rea-

soning capabilities, enabling them to perform increasingly complex

tasks [18]. However, to progress further towards AGI, it is crucial

for LLMs to master the utilization of tools. Toolformer is the first

innovative AI model designed to use several specialized tools, such

as a web browser, a code interpreter, and a language translator,

within a single framework [9]. The model’s ability to seamlessly

switch between these tools and apply them contextually represents

a significant advancement in AI capabilities. Recent studies like

RestGPT and ToolLLM, have connected LLMs with real-life Appli-

cation Programming Interfaces (APIs), such as RESTful APIs, al-

Figure 2.1: Toolformer training[9]
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Figure 2.2: Toolformer usage example[9]

Figure 2.3: RestGPT[13]
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Figure 2.4: CoT/ReAct/DFSDT[14]

lowing them to sequentially employ multiple external tools to solve

user queries. The tool-augmented approach empowers LLMs to use

various kinds of tools to do more sophisticated tasks, showcasing an

enhanced level of capability compared to pure LLMs [13, 14]. Be-

sides, API-Bank, ToolAlpaca, ToolBench, ToolQA and RestBench

are exemplary benchmarks to systematically evaluate the perfor-

mance of tool-augmented LLMs performance in response to user’s

queries [19, 20, 21]. However, current models often ignore the possi-

bility that users might not give exact instructions, which can result

in the tools not working properly. Thus, our study aims to tackle

this specific challenge by developing a new benchmark specifically

for ambiguous instructions.

Prompting LLMs for Decision Making. In certain situa-

tions, addressing user queries may require more than a single API

call. This necessitates the effective division of the overarching task

into smaller, more manageable components, which presents a signif-
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Figure 2.5: Learning to ask for code generation[25]

icant challenge. Prior research has focused extensively on enhancing

LLMs’s ability to effectively plan and execute complex tasks. The

’Chain of Thought’ prompting approach facilitates advanced rea-

soning by introducing intermediate steps in the reasoning process

[22]. The ReAct methodology improves the integration of reasoning

and action, enabling LLMs to take informed actions based on envi-

ronmental feedback [23]. Meanwhile, Reflexion is designed to reduce

errors in the reasoning process by revisiting and learning from previ-

ous mistakes [24]. DFSDT expands upon Reflexion, allowing LLMs

to evaluate various options and choose the most viable path [14]. In

our work, we innovatively involve users in the process of executing

instructions. Our approach, referred to as QwN, motivates LLMs to

consider the necessity of requesting further information from users

during each tool invocation round. This strategy aims at clarifying

users’ ambiguous instructions to help execute the tasks in alignment

with the users’ intentions.

Learning to Ask. An intelligent individual should possess the
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ability to not only execute plans effectively but also know when

to ask questions when necessary. Similarly, for LLMs, user queries

may not always be clear, and the execution of plans may encounter

uncertainties and ambiguities. Therefore, learning to ask questions

has emerged as a challenging yet crucial research area. Some re-

searchers introduce a learning framework that empowers an agent

to proactively seek assistance in embodied visual navigation tasks.

In these tasks, the agent receives feedback that provides informa-

tion about the location of the goal within its visual field [26]. Re-

cently, similar ideas have been introduced to the area of software

engineering, with the exploration of the utilization of improved com-

munication skills to enhance confidence in generated code [25]. The

proposed approach focuses on a communication-centered process,

leveraging a communicator generated by the LLM. This communi-

cator is used to identify and address issues related to high ambiguity

or low confidence in both problem descriptions and the generated

code. By emphasizing effective communication, Wu aims to en-

hance the overall quality and reliability of the generated code [25].

Our work introduces similar ideas to the tool-learning field. While

Qian et al.’s recent study is closely aligned with our work, they

did not methodically examine realistic user behaviour before devel-

oping their ambiguous benchmark, potentially leading to a dataset

that doesn’t accurately capture common user errors [15]. Our re-

search addresses this shortfall. Additionally, Qian’s methodology

depends significantly on manual interaction and assessment of LLM

performances, which is time-consuming. In contrast, we introduce

an automated evaluation method to speed up the process.
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RESTful APIs. RESTful APIs (Representational State Trans-

fer APIs) are a set of architectural constraints used to create web

services.[27] They provide a way for different computer systems to

communicate over the Internet in a simple and standardized man-

ner. Examples of RESTful API usage are widespread and diverse.

In e-commerce, they are used to connect a website to a payment pro-

cessing system, allowing for smooth transactions. Social media plat-

forms use RESTful APIs for posting and retrieving user-generated

content, enabling features like photo uploads, status updates, and

commenting. In cloud services, they facilitate the integration of

different services, such as connecting a database service to a web

application, enabling the app to store and retrieve data seamlessly.

In our datasets, we curated unclear user instructions based on mul-

tiple RESTful APIs covering different domains.



Chapter 3

Interaction-for-Tool-Usage Benchmark

As the tool-learning domain of LLMs progresses, various bench-

marks have been introduced to assess LLMs’ ability in tool uti-

lization. However, these benchmarks typically focus on exact in-

structions and overlook the potential ambiguity in users’ commands,

which might hinder LLMs from executing tasks as intended by the

user. For instance, as depicted in Figure 1.1, if a user inquires,

”How is today’s weather,” without any user-LLM interaction to

specify the location, LLMs cannot accurately activate the APIs to

fetch the correct weather information. This scenario underscores

the critical role of interaction between users and LLMs in executing

instructions accurately. In tool-learning, effective communication is

especially crucial as most existing tool invocation frameworks are

designed for end-to-end execution, where the user’s instruction is the

Figure 3.1: Dataset example
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sole input and the LLM’s response is the only output. Given that

one instruction may involve several intermediate steps or function

calls, the absence of clear communication can lead to unnecessary

and incorrect function invocations, resulting in financial and time

inefficiencies.

To develop a realistic benchmark for ambiguous instructions, the

initial step involves a systematic examination of the common er-

rors in user instructions that could complicate correct execution by

LLMs. Therefore, we begin by analyzing actual user instructions

and identifying those that are problematic. Subsequently, we clas-

sify these instructions into various categories based on their charac-

teristics. Lastly, we manually create our dataset, ensuring it reflects

the distribution of errors found in the instructions we have analyzed.

3.1 User Instruction Analysis

Type of error Error percentage
Information missing 56%
Information unclear 11.3%
Information incorrect 17.3%
Tool limitation 15.3%

Table 3.1: Error percentages in various problematic instructions.

In an extensive review of API set on the Rapid API Hub, the

Tool LLaMA tool library, our analysis covered an array of API

categories ranging from sports to finance, totaling 48 types. We

thoroughly investigated 28 of these categories, examining over 150

different API sets. Our research revealed that the most common is-

sue with the instructions provided is ”Information Missing,” which
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represents a significant 56% of all errors. This is a clear indication

that users often do not receive adequate information to effectively

use the APIs. Additionally, errors such as ”Information Incorrect”

and ”Tool Limitation” were identified at rates of 17.3% and 15.3%,

respectively. These figures suggest not only inaccuracies within the

provided content but also limitations inherent to the tools available.

Furthermore, ”Information Unclear” errors accounted for 11.3% of

the total, pointing to areas where the expression of instructions

could be improved.

The primary reason for the high rate of ”Information Missing” er-

rors can be traced back to the design of the API architecture itself.

Many APIs serve primarily as databases, where the majority of re-

quests are GET requests that involve sending a search term to the

API server to retrieve specific data. However, these requests often

require unique and complex identifiers—such as latitude and longi-

tude for geographic locations—which can be a source of confusion

and contribute to the prevalence of missing information in the in-

structions.

• Instructions missing key details (IKEI): These are user

instructions that omit crucial details necessary for the success-

ful execution of a function. An example of IKEI would be,

”How is today’s weather?” where the instruction lacks the spe-

cific location for which the weather information is sought.

• Instructions with unclear references (IUR): These user
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instructions include elements that can be interpreted in several

ways, potentially leading to confusion for LLMs in grasping the

user’s actual intent. For example, an IUR instance is ”I want

to know the director of the movie ’The Matrix’,” where the

ambiguity arises because there are multiple versions of ’The

Matrix’, each possibly having a different director.

• Instructions with errors (IWE): This category consists of

user instructions that contain the necessary information for ex-

ecuting a function, but the information is incorrect. An exam-

ple of IWE is, ”Please help me to log in to my Twitter. My user

account is ’abcde@gmail.com’ and the password is ’123456’,”

where the user might have provided the wrong account details

or password due to typographical errors.

• Instructions beyond tool capabilities (IBTC): These are

user instructions that request actions or answers beyond what

LLMs can achieve with the available APIs. In such cases,

the existing tool-augmented LLM frameworks might randomly

choose an available API, leading to an incorrect function call.

This scenario highlights the need for LLMs to recognize their

limitations in tool usage.

3.2 Benchmark Construction

Our statistical analysis of user instructions reveals that the four

most prevalent types of instructions leading to LLMs’ tool utiliza-

tion failures are Instructions Missing Key Information (IKEI), In-
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structions with Unclear References (IUR), Instructions with Errors

(IWE), and Instructions Beyond Tool Capabilities (IBTC). Con-

sequently, we have manually curated our benchmark around these

four categories, with each category comprising 50 user instructions.

Each data entry includes five components: the imperfect user query,

the available APIs, the questions that LLMs should ideally ask, the

answers to these questions, and the expected function calls along

with their respective arguments. The inclusion of ideal questions

helps assess whether LLMs can identify ambiguities in user instruc-

tions and ask relevant questions for clarification. Meanwhile, the

expected function calls serve to evaluate the LLMs’ ability to exe-

cute the correct functions based on the provided information.
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Type of Error Example

Information Missing Q: Extract thumbnail images from mp4 videos.

Result: videourl=
https://example.com/video.mp4

Information Unclear Q: I want to analyze the performance of
Manchester United in the Premier League

Correct searching name : Man United

Information Incorrect Q: ”Retrieve the app data of an app with the
ID ’com.example.app’.

Result: No such app

Tool Limitation Q: Can you suggest some popular bars and
nightclubs in Las Vegas?

Result: The search tool can not choose the
region in Las Vegas

API Down ’message’: ’Internal Server Error’

Code Problem There is an error in the code: the expression
cannot contain an assignment; it may be a typo
and should be ’==’.

Return Format ”Thought“: However, the response format
seems to be in a nested dictionary format, mak-
ing it difficult to extract the information.

Table 3.2: Types of Errors (Q: User Query)
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Query-when-Need Prompting

Figure 4.1: A comparison of our QwN prompting compared with original
CoT/ReAct Prompting

Previous prompting methods have not adequately factored in

user participation during the reasoning and planning phases. In

response, we introduce a novel prompting approach named Query-

when-Need (QwN), which addresses this gap. This method diverges

from traditional ones like Chain of Thought (CoT) and Tree of
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Thought (ToT), which rely solely on their historical steps for plan-

ning. QwNadvances this by acknowledging the potential imper-

fections in user instructions and proactively seeks clarification by

querying the user when ambiguities are detected. This enhance-

ment enables it to be integrated with prior prompting techniques

such as CoT, ToT, ReAct, and DFSDT, improving LLMs’ capacity

to interact and inquire further from users.

An illustrative example, as seen in Figure 4.1, introduces an ad-

ditional step before executing actual API calls. This step involves

presenting all available information to the LLMs, allowing them to

determine the necessity of additional user input. If LLMs identify

missing arguments needed for function execution based on the API’s

requirements, they will request this information from the user. Af-

ter obtaining the necessary details, they proceed with the correct

function call. Conversely, if no further information is required, they

can bypass the query step and directly initiate the API call. This

new step transforms the execution process of LLMs from a solitary

action to an interactive one.
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Prompting for QwN

You are AutoGPT, tasked with processing user requests through a variety of

APIs you have access to. Sometimes, the information provided by users may be

unclear, incomplete, or incorrect. Your main responsibility is to determine if the

user’s instructions are sufficiently clear and detailed for effective use of the APIs.

Here’s your strategy:

When user instructions are missing crucial details for the APIs, pose a question

to obtain the necessary information. Start your reply with ”Question: ”.

If the user’s instructions appear to be incorrect, based on previous mistakes,

delve deeper by asking questions to clarify and rectify the details. Begin these

responses with ”Question: ”.

If you have complete instructions but are uncertain about how to implement

the given information, seek clarification from the user. Start these queries with

”Question: ”. For instance, if the user asks you to find a company’s stock price,

and you’re unaware of its stock code, you should request this information from

the user.

If the user’s request falls outside the capabilities of your current APIs (consid-

ering you might not possess the appropriate APIs to address the user’s needs at

times, and your available APIs might be completely unrelated to the user’s re-

quest. Avoid attempting to use these APIs arbitrarily), notify them that you’re

unable to meet the request due to the limitations of your toolset by stating:

”Due to the limitation of toolset, I cannot solve the question”. Deciding when

to ”give up” is also crucial.

If the user’s instructions don’t fall into any of these categories and are clear and

doable with your APIs, simply respond with ”Continue” (Please note that if

similar questions have been asked before, then you do not need to repeat the

question).

These are the APIs at your disposal:

{api list}

Let’s begin!”””
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Prompting for ReAct

You are AutoGPT, you can use many tools(functions) to do the following task.

First I will give you the task description, and your task start.

At each step, you need to give your thought to analyze the status now and what

to do next, with a function call to actually excute your step.

After the call, you will get the call result, and you are now in a new state. Then

you will analyze your status now, then decide what to do next...

After many (Thought-call) pairs, you finally perform the task, then you can

give your finial answer.

Remember:

1.the state change is irreversible, you can’t go back to one of the former state,

if you want to restart the task, say ”I give up and restart”.

2.All the thought is short, at most in 5 sentence.

3.You can do more then one trys, so if your plan is to continusly try some

conditions, you can do one of the conditions per try.

Let’s Begin!

Task description: {task description}

Let’s begin!”””

Prompting for DFS

This is not the first time you try this task, all previous trails failed. Before you

generate my thought for this state, I will first show you your previous actions for

this state, and then you must generate actions that is different from all of them.

Here are some previous actions candidates:

{previous candidate} Remember you are now in the intermediate state of a trail,

you will first analyze the now state and previous action candidates, then make

actions that is different from all the previous.”’
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Experiments

In this section, we evaluate the performance of our Query-when-

Need (QwN) prompting technique. Initially, we outline the evalua-

tion metrics in § 5.1, where we specify the criteria used to assess the

effectiveness of QwN. Following that, in § 5.2, we describe the eval-

uation pipeline, detailing the step-by-step process employed to mea-

sure QwN’s performance. Lastly, we discuss the main experiments

in § 5.2, presenting the results and findings from our comprehensive

testing of the QwNtechnique.

5.1 Evaluation Metrics

To comprehensively evaluate the performance of tool-augmented

LLMs encountering unclear instructions, we meticulously design the

following five metrics:

• Average Redundant Asked questions (Re). This met-

ric evaluates the quantity of irrelevant or redundant questions

asked by tool-augmented LLMs during the instruction process.

Irrelevant questions are those that do not meet the initial ex-

pectations of the query, and redundant questions include those

that are repetitive or have previously been asked. This metric
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Figure 5.1: Auto-interaction module

Figure 5.2: Example of the instruction execution process of tool-enhanced LLMs

is crucial for assessing the LLMs’ ability to precisely identify

the ambiguous aspects of user instructions and to formulate

appropriate questions to clarify these uncertainties. The larger

the value, the worse the performance.

• Goal 1 (G1). Goal 1 evaluates the capability of LLMs to ask

the anticipated questions that pinpoint the ambiguous elements

in user instructions. Goal 1 is considered a success if the LLMs

manage to ask the correct questions at any point. Conversely,
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it is deemed a failure if they do not.

• Goal 2 (G2). Goal 2 assesses the ability of LLMs to use

all available information to invoke the correct API calls. It is

deemed a success if the LLMs call all the anticipated APIs with

the correct arguments. If they fail to do so, it is considered a

failure.

• Goal 3 (G3). Goal 3 measures the ability of LLMs to extract

the anticipated information from previous API calls to fulfil

the user’s instructions. This goal is achieved and considered a

success if the user’s instructions are successfully executed. If

not, it is regarded as a failure.

• Steps. Steps quantifies the average number of actions required

to complete an instruction. A smaller number indicates fewer

unnecessary steps in the instruction execution process, signify-

ing a more efficient and direct approach to accomplishing the

task.

5.2 Evaluation Pipeline

To assess how LLMs handle ambiguous instructions, it’s essential

to have interactive communication between users and LLMs. Yet,

employing individuals to interact with LLMs throughout the en-

tire evaluation process is inefficient. To address this, we suggest

an automated evaluation method to expedite the process. Once

the execution outcomes are acquired, they are fed into our GPT4-

powered auto-evaluator, which then evaluates the performance of
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the tool-augmented LLMs. This approach streamlines the assess-

ment process, making it faster and more cost-effective.

Auto-interaction. When LLMs pose a question, it is matched

against a pre-determined expected question using a sentence-transformer

to assess their semantic similarity. If the LLM’s inquiry aligns

with the anticipated content, a predefined answer is supplied to

the model. Conversely, if the LLM seeks irrelevant information,

it receives a standard reply of ”Sorry, I cannot provide additional

information.” This approach streamlines the evaluation process by

reducing the need for human interaction with LLMs, as illustrated

in Figure 5.1.

Auto-evaluator. The auto-evaluator, referred to as ToolEvalu-

ator, utilizes GPT4 to autonomously assess how well LLMs manage

vague instructions. It analyzes the history of instruction execution,

which includes the details of all API calls (such as the content of

function calls and API responses) and the ultimate response given

by LLMs. The ToolEvaluatoris tasked with comparing the expected

API calls to the actual ones to assess a certain metric, G2. Addi-

tionally, ToolEvaluatorchecks whether the final answer aligns with

the user’s intent and confirms that it is based on the API responses

rather than being fabricated.
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Table 5.2: Assessing the efficiency of various LLMs using different prompting
methods in our benchmark.

base model framework
IKEI IUR IWE IBTC

Re Steps Re Steps Re Steps Re Steps

gpt-3.5-turbo
CoT - 4.64 - 4.52 - 5.09 - 3.10

+ QwN 0.84 5.80 1.46 6.16 1.67 6.28 - 3.75

-16k-0613
DFS - 50.20 - 55.50 - 45.83 - 17.06

+ QwN 10.90 68.60 11.54 74.50 15.30 79.80 - 9.25

gpt-4-0125-preview

CoT - 3.00 - 2.92 - 2.79 - 1.58
+ QwN 0.18 3.70 0.20 3.40 0.23 3.47 - 1.17

DFS - 5.26 - 6.88 - 6.18 - 2.65
+ QwN 0.34 5.30 0.36 4.98 0.37 6.76 - 1.25

5.3 Main Experiments

In our benchmark, we evaluated various cutting-edge LLMs using

different prompting methods. We used CoT [22] and DFS [14] as

baseline prompting techniques, which are prevalent in prior tool-

learning studies. To improve the LLMs’ interactive capabilities, we

incorporated QwNinto both CoT and DFS. The original prompting

methods did not allow for additional user input during execution,

leading to challenges in resolving ambiguous instructions due to in-

sufficient information. Therefore, their performance in G2 and G3

are not statistically measurable.

Our evaluation of LLMs was two-fold: focusing on accuracy and

efficiency. The accuracy assessment aimed to measure the LLMs’

capability to make correct decisions during the instruction execu-

tion phase and to retrieve the accurate final answer. In contrast, the

efficiency assessment looked at the number of redundant decisions

made by the LLMs, considering that unnecessary tool invocations

could lead to extended processing times. We believe that efficiency
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is vital for enhancing user experience and reducing operational costs.

Previously, we classified potential problematic instructions into

four categories: Instructions Missing Key Details (IKEI), Instruc-

tions with Unclear References (IUR), Instructions with Errors (IWE),

and Instructions Beyond Tool Capabilities (IBTC). Consequently,

we conducted statistical analyses to measure their performance across

different datasets.

5.4 Main Result

From the results in Table 5.1 and Table 5.2, we summarize our find-

ings on the interaction module.

Interaction module enhances the capability of GPT-3.5 to

ask pertinent questions. G1 scores improved to 0.86, 0.76, and

0.58 for Missing Information, Unclear Instruction, and Incorrect

Terms, respectively, when the interaction module is enabled. This

compares favorably to the non-interactive G1 scores of 0.34, 0.24,

and 0.21. However, this improvement comes with a downside: the

model tends to ask more irrelevant or redundant questions, as in-

dicated by the higher Re scores with the interaction module. This

suggests that while the interaction module aids in identifying and

addressing ambiguities in user instructions, it also leads to a less

efficient querying process
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DFS method introduces more redundant questions. DFS

method on gpt-3.5 introduces a significantly higher amount of re-

dundancy. The Re score jumps from 0.84, 1.46, 1.67 for CoT to 10.9,

11.54, 15.3 for DFS, indicating a substantial increase in redundant

questions. In contrast, for incorrect items, the DFS method seems

to help the gpt-3.5 model to ask more precise questions (G1 score

increased from 0.58 for CoT to 0.86 for DFS), showing an advan-

tage in this specific area. However, this advantage does not extend

to the other metrics, where the increase in irrelevant or redundant

questions overshadows any potential benefits.

GPT 4 avoid asking unnecessary questions. When GPT 4

is enhanced with the interaction module, demonstrates a strong ca-

pability in Goal 1 (G1) by asking relevant questions that address

ambiguity in instructions. This is evidenced by the relatively high

G1 scores across both the without and with interaction module. The

scores suggest that GPT-4 is effective in identifying and inquiring

about unclear elements without generating excessive unnecessary

questions, as indicated by the lower ”Re scores” in comparison to

GPT 3.5. GPT-4 demonstrates an ability to avoid asking unneces-

sary questions while effectively identifying and addressing ambigui-

ties in user instructions. This ability is especially pronounced when

GPT-4 is employed with interaction module, which leverages its full

capabilities to engage with and clarify user instructions.

Interaction module encourages LLM to interact with users

to solve ambiguous instruction. Interaction module plays a
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significant role in enhancing LLMs’ ability to deal with ambiguous

instructions. This can be particularly seen in the ”Goal 1 (G1)”

scores across both models when the interaction module is utilized.

Impact of the interaction module on the average number

of steps. In every instance of adding an interaction module to the

base model framework, there is an increase in the number of steps

required to complete an instruction. This consistent increase across

different models and frameworks suggests that the interaction mod-

ule does not reduce the number of steps; in fact, it appears to lead to

a requirement for more steps. Therefore, we can conclude that the

interaction module, as represented in this data, does not contribute

to a reduction in the number of steps required to complete a task

and thus does not increase the efficiency of instruction execution in

terms of the number of actions required.

Evaluating Tool Limitations Differently The evaluation of tool

limitations presents a distinct set of challenges compared to ear-

lier assessments of problematic instructions. In instances where the

model faces an instruction it cannot execute due to these limita-

tions, neither the interactive module nor user assistance can bridge

the gap. In such cases, the model’s strategy is to minimize steps

and promptly inform the user about the toolset’s constraints, stat-

ing clearly: ”Due to the limitation of the toolset, I cannot solve the

question.”

As a result of these toolset limitations, we do not conduct sta-

tistical analysis for groups G1, G2, G3, and the response (Re). In-
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stead, our focus shifts to comparing the ’Steps,’ which quantifies

the average number of actions required to fulfill an instruction.”

5.5 Case Study

In our study, we scrutinize the interactions between our module and

users to further understand the basis for unsatisfactory responses to

incorrect instructions. The GPT-4 model efficiently refrains from

posing extraneous queries, a practice that otherwise might lead to

misinterpretations of user errors as limitations of the tool.

Consider a case where a user requests assistance logging into their

Twitter account, providing credentials such as ’abcde@gmail.com’

for the username and ’123456’ for the password. If these details

are incorrect possibly due to typographical mistakes the API server

returns a generic error message without specifying the nature of the

error, simply indicating that the service is currently unavailable.

This nondescript feedback can cause our model to incorrectly at-

tribute the fault to tool constraints rather than to user-provided

information errors.

To further show the robustness under different problematic instruc-

tions, we present some studies on conversations between users and

our model.

Instructions with errors (IWE)

In the Instructions with errors below, we demonstrate a scenario
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where users provide an incorrect search term—for instance, a prod-

uct code (X00578962) that does not correspond to any item in the

database. Initially, our model does not recognize the error and

proceeds to make an API call with the incorrect parameters. As

expected, this results in the API server returning an error message

due to the nonexistent parameters.

Upon encountering this error, our model engages in a reflection pro-

cess aimed at identifying the underlying issue. It seeks clarification

by posing questions to the user. The automated interaction mod-

ule generates an expected response to assist the model in resolving

the ambiguity. Consequently, the model is then able to proceed

with the API call using the correct parameters to retrieve the de-

sired data. This process illustrates the model’s capacity for error

detection and self-correction, enhancing its usability in real-world

applications where user input may be unpredictable or erroneous.
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Instructions with errors

User: I’m a blogger and I want to write a detailed review of a specific product

with SKU X005789621. Can you provide me with all the information about this

product and provide reviews for these products?

Assistant : Action call: ”products detail for wayfair” {sku: X005789621}

{error: request invalid, data error. status code=500, response: }

Assistant : Question: I apologize, but it seems that the request for product

information with SKU X005789621 is currently unavailable. Is there another

product you would like information about?”

User: ”The correct one is ’W003247135’”

Instructions beyond tool capabilities (IBTC)

In the study beyond the capabilities of the current toolset, we il-

lustrate a scenario in which users issue commands that exceed the

functional capabilities of the toolset—for instance, requesting subti-

tles for a Vimeo video, a task not supported by any function within

the API set. Before initiating any API calls, our model undergoes

a reflective process to determine whether the toolset can fulfill the

user’s instructions. If the model concludes that the task is beyond

the scope of the available tools, it will provide an explanation. The

model will state: ”Due to the limitations of the toolset, I cannot

complete the request,” and will then cease further interaction on

this topic.
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Instructions beyond tool capabilities

User: Get subtitles for a Vimeo video with the ID ’12345abc

Assistant : Due to the limitation of toolset, I cannot solve the question

Assistant : End



Chapter 6

Conclusion

This study delves into the critical issue of unclear user instructions

and their impact on the effective use of tools by modern LLMs.

Recognizing the limitations of LLMs in dealing with ambiguous di-

rectives, we conducted a thorough investigation into the common er-

ror patterns present in user instructions. Based on our findings, we

introduced the Interaction-for-Tool-Usage (IT-Usage) benchmark, a

novel framework aimed at gauging an LLM’s ability to request clari-

fications, thereby enhancing its performance in executing tool-based

tasks. Furthermore, we developed the Query-when-Need (QwN) al-

gorithm, an innovative approach that empowers LLMs to actively

seek user input whenever they face uncertainty in instructions. This

proactive engagement is designed to ensure tasks are performed ac-

curately and in accordance with user expectations. To streamline

the evaluation process of LLMs in tool usage, we also present an

automated evaluation tool, which significantly reduces the manual

effort required in performance assessment. Our experimental re-

sults confirm that the QwN algorithm markedly surpasses existing

methods in the IT-Usage benchmark, indicating its effectiveness in

clarifying user instructions for better tool execution.
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