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ABSTRACT

In recent years, Large Language Models (LLMs) such as ChatGPT have

demonstrated exceptional capabilities across a range of applications, positioning

themselves at the forefront of advancements in artificial intelligence. However, a

critical aspect of human intelligence, often overlooked in LLMs, is the ability to

utilize tools effectively. While there has been considerable progress in enabling

LLMs to invoke APIs for addressing user queries, a gap remains in their handling

of incomplete or ambiguous user instructions. This limitation often impedes the

successful application of tool-based solutions.

Our analysis of recent tool learning frameworks indicates that a significant

percentage of failure cases stem from unclear user instructions, a shortcoming

that can be mitigated through improved user-LLM interaction. Addressing this,

we introduce the ’Interactive Tool Bench (Itool)’, the first benchmark focusing

on vague user queries necessitating LLM-user interaction for resolution. Itool

comprises 54 TMDB APIs and 139 annotated ambiguous instructions, requiring

supplementary information for query resolution. This benchmark aims to assess

LLMs’ proficiency in engaging with users to clarify and resolve ambiguous queries

while using tools.

In addition to establishing this dataset, we propose a new method, Query

when Need (QwN) framework, which enables tool-augmented LLMs the ability of

interacting with users for clarifying ambiguous queries, thereby more accurately

fulfilling user requirements. Our findings demonstrate that QwN significantly

improves query resolution by proactively seeking clarifications in scenarios marked

by users’ unclear instructions, a critical step towards more advanced and user-

responsive artificial intelligence systems.
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Chapter 1

Introduction

AI models have undergone remarkable development since OpenAI introduced

ChatGPT-3.5[1]. This model marked a significant leap in capabilities such as

code generation and machine translation[2, 3]. Building on this foundation, the

recent advent of GPT-4 has further expanded the technological horizons, endow-

ing Large Language Models (LLMs) with multimodal functionalities including

visual comprehension and enhanced interactive abilities[4]. The pursuit of Arti-

ficial General Intelligence (AGI) – an AI that can understand, learn, and apply

knowledge across a broad range of tasks as effectively as a human – has been sig-

nificantly advanced by these developments. However, a key distinction between

human and animal intelligence is tool utilization; similarly, equipping AI models

with the ability to use tools symbolizes a stride towards human-like intelligence.

Tool usage, in the context of AI, enables more diverse and complex functions

such as email management, presentation design, and web browsing for real-time

information acquisition. This latter capability, in particular, addresses a notable

limitation in LLMs – the challenge of accessing up-to-date information.[5, 6, 7, 8]

Timo and colleagues’ introduction of Toolformer marks a pioneering effort in

empowering language models with self-learning capabilities for tool usage. This

groundbreaking approach integrates various tools, including calculators, QA sys-

tems, and search engines. Despite its ingenuity, Toolformer is limited by its

relatively narrow range of tools.[6] To mimic authentic tool use, language mod-

els require access to a wider variety of tools and should ideally be capable of

using multiple tools simultaneously to resolve a single query. This presents a
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Figure 1.1: single-agent solution[11]

complex challenge: decomposing a user’s inquiry into smaller tasks that can be

addressed by specific tools. The model must then skillfully select the right tools

from thousands of available APIs and use them accurately according to their

documentation. Significant research efforts have been directed towards this chal-

lenge. Projects like Gorilla aim to minimize the misuse of API calls by LLMs.[9]

RestGPT, another significant development, has introduced a coarse-to-fine online

planning mechanism to enhance task decomposition and API selection. It utilizes

a multi-agent system to distribute different tasks during the API call process. Be-

sides, RestGPT’s integration with RESTful APIs and ToolLLM’s refinement of

LLaMa for open-source language models further underscore the advancements in

this area.[10, 11] (You can refer to the Figure 1.1 and Figure 1.2 for details of the

most recent proposed frameworks)

1.1 Motivation

Despite the progress made, there is still a noticeable limitation in the ability

of Language and Learning Models (LLMs) to utilize tools effectively. Often,

user queries are ambiguous or incomplete, which poses a challenge for LLMs.

The datasets used to assess LLMs’ proficiency with tools, whether generated by

humans or LLMs themselves using API documentation, typically assume clear
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Figure 1.2: multi-agent solution[10]

and comprehensive user queries. However, this assumption doesn’t align with

real-world situations where users may provide vague or partial information. For

example, when users request tool-assisted LLMs to complete tasks like booking a

Cathay Pacific flight, they might not provide all necessary details (such as ID card

number, flight date and time, expected price) in a single query. In frameworks

that don’t allow follow-up communication and depend solely on the initial user

query, the lack of comprehensive information can lead to the failure of subsequent

process steps. (You can refer to Figure 1.3)

Motivated by this, we first explore previous datasets designed for tool usage.

We analyzed 200 randomly sampled error cases, each noted as ”finish by giv-

ing up, from ToolLLaMA.[11] We categorize these failure cases into nine groups,

including Information missing, Information unclear, Information incorrect, Tool

limitation, API down, Error in multi-tool, Code problem, Wrong tool, Return

in complex format. The analysis reveals that 54.5% of the failure cases come

from missing, unclear, or incorrect information, issues that may be resolved with

user clarification. However, the remaining 45.4% of cases are less user-dependent

and remain unresolved despite user involvement. We discovered that the current

tool-learning framework struggles with incomplete user queries. In practical ap-

plications of the tool learning model, users may not have prior training, which
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Figure 1.3: Common failure case of existing frameworks

could result in incomplete queries. We propose that the LLM should prompt

users to clarify their queries for successful API calls. To this end, we’ve created

a dataset of incomplete user queries from four types of errors that might cause

API call failures. This dataset will enable us to assess the tool learning model’s

robustness in managing incomplete user queries.

To tackle this issue, we first present the ’Interactive Tool Bench (Itool)’, which

is a pioneering benchmark that specifically addresses vague user queries requiring

interaction between LLMs and users to achieve resolution. Itool consists of a

collection of 54 TMDB APIs and 139 annotated instructions that are ambiguous,

necessitating additional information for query resolution. The primary objective

of this benchmark is to evaluate the ability of LLMs to effectively engage with

users, clarify ambiguous queries, and successfully resolve them while utilizing

various tools. At present, our Itool has been primarily curated by modifying

RestBench. [10] However, in the future, we aim to expand this modification

approach to include other datasets, such as toolbench[11], to create a more com-
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prehensive evaluation benchmark for integrating diverse scenarios.

To address the challenges posed by ambiguous user instructions, we have made

advancements in the form of the Query when Need (QwN) framework. The core

concept behind QwN is to empower tool-enhanced LLMs with the capability to

request clarifications from users when they face obstacles during API calls due to

unclear instructions. Since LLMs often make independent decisions in uncertain

situations without informing users, our tool-augmented framework prompts them

to consider the context they are in and proactively seek assistance from users if

any ambiguity arises. The supplementary information provided by the user will

be forwarded to the LLM agent to aid in future planning and decision-making

processes. To demonstrate the effectiveness of our approach, we have chosen

two recently proposed frameworks, namely ToolLLM(single-agent tool-augmented

framework)[11] and RestGPT(multi-agent tool-augmented framework)[10], and

integrated their agents with the capability to ask questions when facing chal-

lenges. However, due to time constraints, we have focused on enhancing Rest-

GPT for the current semester. The QwN-enabled ToolLLM framework will be

introduced in the upcoming semester, expanding the scope of our research and

further validating our ideas.1.4

RestGPT is a framework that links LLMs with RESTful APIs. RESTful

APIs are a cornerstone in web service development, utilizing HTTP methods and

URLs for effective resource management.[12, 13] These APIs are typically de-

signed in accordance with the OpenAPI Specification (OAS), which specifies the

operations, parameters, and response formats for each API endpoint. RestGPT

includes several key components: a Planner, an API Selector, a Caller, a Parser.

The Planner’s role is to break down intricate user instructions into smaller tasks

that can be addressed by the specific API. The API Selector’s function is to

identify the most suitable API endpoint for these tasks based on the API de-

scriptions. The Caller is responsible for arranging API call parameters following
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Figure 1.4: High level idea of Query when Need(QwN) framework

the API plan and its documentation. Conversely, the Parser uses the response

format outlined in OAS to create Python code for interpreting the responses.

These components lay the groundwork for the RestGPT framework.

Given the nature of a multi-agent system, where each agent lacks a compre-

hensive view of the entire task process, there is an inherent risk that mistakes

made by some agents could impact the functionality of subsequent agents. To

mitigate this risk, we have introduced a new role called the Supervisor. The Su-

pervisor has a global view of the task, enabling them to guide the overall objective,

clarify misunderstandings, and facilitate the generation of questions for seeking

additional information from users. By providing this centralized oversight, the

Supervisor plays a crucial role in ensuring the effectiveness and coordination of

the agents within the framework.

When an agent encounters a problem and needs user input, the Supervisor

evaluates whether user involvement is truly necessary for clarification or if the is-
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sue arises from the agents’ misunderstanding of the task. If user input is required,

the Supervisor formulates a question based on the agent’s current situation to seek

additional information. If not, the Supervisor provides its own guidance to assist

the agent in resolving the issue, leveraging its comprehensive understanding of the

overall process. Moreover, the Supervisor will keep refining the overall objective

of the framework to encourage the planner to make a suitable plan for each step.

QwN-augmented RestGPT is tested in our curated Itools and RestBench. The

result shows that it outperforms RestGPT in not only the unclear instruction but

the clear and complete instructions.

The key contributions of our research can be summarized as follows:

• We pioneer in identifying and highlighting the challenges that tool-learning

frameworks face with ambiguous user queries. Through a comprehensive em-

pirical study using the ToolBench dataset, we meticulously analyze various

instances where unclear queries from users lead to failure cases in these frame-

works.

• To foster future research in developing more resilient Large Language Model

(LLM) frameworks capable of handling unclear instructions, we have created a

new human-annotated benchmark named ’Itool’. This benchmark includes 139

examples of unclear instructions, categorized into four distinct types: instruc-

tions lacking essential information, instructions with problematic search items,

instructions with search items that could be interpreted in multiple ways, and

instructions that cannot be processed due to the limited capabilities of the

current tools.

• We introduce QwN, an innovative method that is the first of its kind to en-

able interaction between users and agents during the tool invocation process.

This feature is specifically designed to effectively address and manage unclear

instructions provided by users, enhancing the overall efficiency and accuracy of
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the tool-learning process.

1.2 Development Plan

First Term:

• Thoroughly examine instances of failure in previous datasets caused by unclear

user instructions

• Compile a range of unclear instruction examples based on Tmdb

• Develop a new framework called QwN that allows for interaction while execut-

ing API calls

• Incorporated QwN with multi-agent tool augmented framework RestGPT

• Perform an initial experiment of QwN-enhanced RestGPT using our carefully

curated datasets

Second Term:

• Curate additional diverse datasets that involve various tools

• Incoproated QwN with single-agent tool-augmented framework ToolLLM

• Conduct a comprehensive experiment of QwN-enhanced RestGPT and QwN-

enhanced ToolLLM on our curated dataset



Chapter 2

Background

2.1 Tool Learning of LLMs

LLMs have recently made significant advancements, with ChatGPT3.5 being rec-

ognized as a major step towards achieving AGI[14, 15, 2]. These LLMs currently

possess strong reasoning capabilities, enabling them to perform increasingly com-

plex tasks.[16] However, to progress further towards AGI, it is crucial for LLMs

to master the utilization of tools. Toolformer is the first innovative AI model

designed to use various specialized tools, such as a web browser, a code inter-

preter, and a language translator, within a single framework.[6] This integration

allows Toolformer to perform a range of complex tasks, from browsing the inter-

net for information to executing Python code and translating text. The model’s

ability to seamlessly switch between these tools and apply them contextually rep-

resents a significant advancement in AI capabilities. Recent studies like RestGPT

and ToolLLM, have connected LLMs with real-life Application Programming In-

terfaces (APIs), such as RESTful APIs, allowing them to sequentially employ

multiple tools to solve user queries. The tool-augmented approach empowers

LLMs to use various kinds of tools to do more sophisticated tasks, showcasing an

enhanced level of capability compared to pure LLMs.[10, 11] Besides, API-Bank,

ToolAlpaca, ToolBench, ToolQA and RestBench are exemplary benchmarks to

systematically evaluate the performance of tool-augmented LLMs performance in

response to user’s queries.[17, 18, 19]

Nevertheless, the existing frameworks overlook the fact that users may not
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always provide all the necessary information required to call the API in every

query. Consequently, effective communication during the API calling process,

where the LLMs can request additional information from users, becomes a crit-

ical step. Conversely, if we consider tool calling as an end-to-end procedure,

any interruption in the tool calling process would necessitate users to re-enter

the complete queries, causing the tool-augmented LLMs to restart from the be-

ginning and involving redundant steps. Also, the existing benchmarks do not

consider the realistic situation that users may not always give a complete query

in a single dialog.

In this paper, our focus lies on the interaction between users and tool-augmented

LLMs during the tool invocation process. This allows LLMs to prompt users for

supplementary information whenever necessary, preventing the planning process

from terminating in the event of failure. On the other hand, we curate a dataset

focusing on potential unclear instructions provided by users as a new benchmark

to test tool-augmented LLMs performance on different unexpected scenarios.

2.2 RESTful APIs

RESTful APIs (Representational State Transfer APIs) are a set of architectural

constraints used to create web services.[13] They provide a way for different com-

puter systems to communicate over the Internet in a simple and standardized

manner. Examples of RESTful API usage are widespread and diverse. In e-

commerce, they are used to connect a website to a payment processing system,

allowing for smooth transactions. Social media platforms use RESTful APIs

for posting and retrieving user-generated content, enabling features like photo

uploads, status updates, and commenting. In cloud services, they facilitate the

integration of different services, such as connecting a database service to a web ap-

plication, enabling the app to store and retrieve data seamlessly. In our datasets,

we primarily curated unclear user instructions based on the TMDB tool. We will



16

further extend our datasets to cover more RESTful tools in the future work.

2.3 Multi-agent AI System

In a multi-agent system, multiple LLMs collaborate to address complex problems.

Recent research highlights that involving multiple agents in a task can overcome

challenges that a single agent may struggle with independently, often due to lim-

itations in capabilities or context length. A notable example is MetaGPT, where

several agents work together to design software, with each agent assuming a spe-

cific role, such as Product Manager, Architect, Project Manager, Engineer, or QA

Engineer, focusing on different aspects of the project.[20] Additionally, DEPS ex-

plores the use of multi-agents to tackle tasks in the Minecraft environment.[21]

MAD suggests that engaging multiple agents in debates can fully leverage the

potential of LLMs to solve challenging tasks.[22]

Among the various studies on multi-agents, RestGPT is particularly relevant

to our work. RestGPT also employs multiple agents, including a Planner, API

selector, and Executor, to collaboratively break down user queries into achievable

tasks. However, RestGPT has limitations in handling unclear query cases and

lacks a means of communication with users during the tool usage process after the

user’s initial instruction is provided.[10] Therefore, we would like to incorporate

QwN with RestGPT to enhance the communication between users and working

agents so that agents can work up to user’s expectation.

2.4 Prompting LLMs for Decision Making

In certain situations, addressing user queries may require more than a single API

call. This necessitates the effective division of the overarching task into smaller,

more manageable components, which presents a significant challenge. Prior re-

search has focused extensively on enhancing Large Language Models’ (LLMs)
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ability to effectively plan and execute complex tasks. The ’Chain of Thought’

prompting approach facilitates advanced reasoning by introducing intermediate

steps in the reasoning process.[23] The ReAct methodology improves the inte-

gration of reasoning and action, enabling LLMs to take informed actions based

on environmental feedback.[24] Meanwhile, Reflexion is designed to reduce errors

in the reasoning process by revisiting and learning from previous mistakes.[25]

DFSDT expands upon Reflexion, allowing LLMs to evaluate various options and

choose the most viable path.[11] In our work, we have each agent reflect on their

current situation each time, analyzing whether they are in an uncertain envi-

ronment. If the situation is indeed uncertain, the agent should understand the

importance of seeking assistance from the user. Subsequently, the user can pro-

vide additional information to aid in the decision-making process.

2.5 Learning to Ask

An intelligent individual should possess the ability to not only execute plans effec-

tively but also know when to ask questions when necessary. Similarly, for Large

Language Models (LLMs), user queries may not always be clear, and the execu-

tion of plans may encounter uncertainties and ambiguities. Therefore, learning

to ask questions has emerged as a challenging yet crucial research area.

Zhang et al. introduce a learning framework that empowers an agent to proac-

tively seek assistance in embodied visual navigation tasks. In these tasks, the

agent receives feedback that provides information about the location of the goal

within its visual field.[26] Recently, Wu investigates the utilization of improved

communication skills to enhance confidence in generated code. The proposed ap-

proach focuses on a communication-centered process, leveraging a communicator

generated by the LLM. This communicator is used to identify and address issues

related to high ambiguity or low confidence in both problem descriptions and the

generated code. By emphasizing effective communication, Wu aims to enhance
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the overall quality and reliability of the generated code.[27]

In the field of tool-learning, effective communication is not optional but es-

sential. Users often struggle to provide sufficient information in one dialogue to

successfully invoke APIs. This emphasizes the significance of our research and

underscores the crucial role that communication plays in achieving successful

outcomes.
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Problem analysis of existing frameworks

In this section, we will discuss the problem analysis of existing frameworks. Dif-

ferent agent frameworks approach tool learning in various ways, each with limita-

tions and strengths. We have investigated ToolLLaMA, a single-agent framework

approach.

3.1 ToolBench

Tool Nums API Nums Instance Nums Real API call Reasoning Trace
3451 16464 126486 469585 4.0

Table 3.1: Statistics of ToolBench

The table presents various statistical data of ToolBench. This dataset inte-

grates 3,451 unique tools. It includes 16,464 API calls. The system has been

instantiated 126,486 times, indicating widespread use or testing. Moreover, the

system has made a substantial number of real API calls, totaling 469,585. Ad-

ditionally, the average reasoning trace of the system is 4.0, implying moderate

complexity in its reasoning operations. Overall, the data indicates a robust, fre-

quently used system with diverse tools and APIs.

3.2 Error analysis

During the operation of ToolLLaMa, we found that failure cases took much more

time than successful ones. We collected failure cases and investigated the solution

paths provided by the model. We find out that when the user query is not

complete. The LLM will trap in a loop that repeatedly calls the same APIs call
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Type of error Error percentage
Information missing 32.5%

54.5 %Information unclear 8.5%
Information incorrect 13.5%
Tool limitation 7.5%

45.4%

API down 28%
Error in multi-tool 3%
Code problem 2%
Wrong tool 4.5%
Return in complex format 0.5%

Table 3.2: Error analysis of ToolLLaMA

with different not significant parameters. The drawback of this behavior is that

it leads to an increased number of calls to the LLM and is time-consuming. The

cause of this observation is the incomplete query input of the user. The ToolBench

dataset was generated by LLM (ChatGPT 3.5), which resulted in hallucinated

user queries. Therefore, we randomly sampled 200 error cases, each annotated

with “finish by giving up,” from various scenarios for analysis. We categorize

these failure cases into nine groups, including Information missing, Information

unclear, Information incorrect, Tool limitation, API down, Error in multi-tool,

Code problem, Wrong tool, and Return in complex format. The statistics of error

analysis are presented in Table 3.2. The details and examples can be found in

Table 3.3. It can be observed that 54.5% of the failure cases can be attributed to

missing, unclear, or incorrect information, and these problems could potentially

be solved with user clarification. The remaining 45.4% are less related to the user

and cannot be improved even with user involvement.

3.3 Ways to improve

In the solution path generated by ToolLLaMA, we observed that the LLM rec-

ognizes when the user query is incomplete and needs clarification. Here are some

examples that are in the chain of thought of ToolLLaMA.
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Type of Error Example
Information Missing Q: Extract thumbnail images from mp4 videos.

Result: videourl= https://example.com/video.mp4

Information Unclear Q: I want to analyze the performance of Manchester
United in the Premier League

Correct searching name : Man United

Information Incorrect Q: ”Retrieve the app data of an app with the ID
’com.example.app’.

Result: No such app

Tool Limitation Q: Can you suggest some popular bars and nightclubs
in Las Vegas?

Result: The search tool can not choose the region in
Las Vegas

API Down ’message’: ’Internal Server Error’
Code Problem There is an error in the code: the expression cannot

contain an assignment; it may be a typo and should be
’==’.

Return Format ”Thought“: However, the response format seems to be
in a nested dictionary format, making it difficult to ex-
tract the information.

Table 3.3: Types of Errors (Q: User Query)

Thought of ToolLLaMA

Thought: ”To evaluate the expression ‘dog age in human years’, I need

more information. Can you please provide me with the age of dog”

Thought: “Ask the user for the names of the destinations they are

considering using the function ”ask user for destinations”

We can include proactive prompting techniques to handle this situation. For
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example, we could incorporate the following prompts into our LLM. (This aspect

has not yet been implemented during this semester. More detailed information

regarding the design of the method will be provided in the upcoming semester.)

Proactive Prompting

Always think comprehensively and seek clarification from users whenever

the user’s query is not clear enough for you to formulate API calling. If you

require additional information or face uncertainty, start the conversation

with ”I need user’s clarification” and then express the challenges explicitly.
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Itool

Since we found that the existing tool-learning framework cannot handle incom-

plete queries from users, in certain real-life implementations of the tool-learning

model, users may not have received prior training, and hence it is not guaranteed

that their queries will be complete. We believe that the LLM should prompt the

user with a question. This would allow the LLM to seek help from the user to

complete the API calls. Therefore, we created a new human-annotated bench-

mark named ’Itool’ that collects incomplete user queries from four types of errors

that may cause API call failures. We can use ’Itool’ to test the robustness of a

tool-learning model in handling incomplete user queries.

Case Num of query

Unclear instruction & instruction with missing information 70

Instruction with problematic searching items 30

Instruction that cannot support 25

Instruction with different meanings 13

Total 138

Table 4.1: Datasize of our Itool

Case Len-0 Len-1 Len-2 Len-3 Len-4 Average
Unclear or missing information 0 47 17 6 - 2.41
Problematic searching items 0 22 8 0 - 2.27
Instruction that cannot support 25 - - - - -
Instructions with different meanings 0 11 1 1 - 2.23
Total case 25 80 26 7 0 2.35

Table 4.2: Statistics of our Itool
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instruction with missing information

”query”: ”When is his latest movie coming out?”,

”question need to be raise”: ”Who is his ?”,

”answer”: ”Clint Eastwood”,

”solution”: [

”GET /search/person”,

”GET /person/{person id}/movie credits”,

”GET /movie/{movie id}/release dates”

]

Missing information refers to the absence or lack of necessary details. In the

above example, the user wants to search for a specific person. However, the term

“his” in the query lacks the necessary information. Our framework should re-

spond with a question, such as “Who is ’his’?” to seek clarification. This kind

of error can be identified at first glance, some can be identified when an API is

fetched.

Unclear instruction

”query”: ”I want to know when the movie about the simulation was

released”,

”question need to be raise”:”What does the movie about the simulation

refer to?”,

”answer”:”The Matrix”,

”solution”: [

”GET /search/movie”,

”GET /movie/{movie id}/release dates”

]

Unclear information refers to instances where the user provides information

that is not comprehensive enough to complete their query. From the above exam-
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ple, the user wants to search for a movie that is related to simulation. However,

the user sometimes may not provide accurate information. Instead, the user may

provide some unclear information. The LLM should not pass the parameter di-

rectly to the API server; instead, it should ask a clarifying question.

Instruction with problematic searching items in the word level

”query”: ”Tell me where the company Universul Picturz was founded?”,

”question need to be raise”: ”Is the Universul Picturz refer to universal

pictures?”,

”solution”: [

”GET /search/company”,

”GET /company/{company id}”

]

Instruction with problematic searching items in the character level

”query”: ”What is the latest movie directed by Christofur Noland?”,

”question need to be raise”: ”Is the Christofur Noland refer to Christo-

pher Nolan?”,

”solution”: [

”GET /search/person”,

”GET /person/{person id}/movie credits”

]

The key information provided by the user is not accurate or contains errors.

The LLM should correct the typo by itself or raise a question to ask for clarifica-

tion.
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Instruction that cannot support

”query”: ”Can you provide the Twitter handle of Natalie Portman?”,

”solution”: [ ]

In this situation, the LLM should respond to users that this is out of their

ability and not return information that is not readily available.

Instruction with different meanings

”query”: ”Find films with Jennifer”,

”question need to be raised”: ”Which Jennifer do you refer to as there

are many Jennifer?”,

”answer”: ”Jennifer Lawrence”,

”solution”: [

”GET /search/person”,

”GET /person/{person id}/movie credits”

]

The search result of a user query may have multiple versions when the query

is not accurate enough. That will return multiple versions of result by the API

server. The LLM should ask for additional information to ensure that the result

closely aligns with the user’s intention.



Chapter 5

Methodology

There are two main styles for implementing tool-augmented frameworks: the

Single-agent framework and the Multi-agent framework. Integrating QwN with

these frameworks may require slightly different approaches.

5.1 Single-agent Example

In our research, we integrate the Query when Need (QwN) framework with Tool-

LLM, enabling ToolLLM to interact with users during the reasoning process.

Although this aspect of the research has not been fully implemented due to time

constraints, the core idea is straightforward. During the reasoning phase of Tool-

LLM, we prompt the model to consider the possibility of requiring additional

information from users. If user assistance is deemed necessary, ToolLLM will

proactively ask users for clarification, and the provided information will be in-

corporated into ToolLLM’s history to aid in the invocation of tools. (The exact

prompt and evaluation will be provided in next semester)

5.2 Multi-agent Example

This section combines QwN and RestGPT to enable user interaction with LLM

agents when invoking APIs to address user queries. The interaction with a multi-

agent system introduces challenges as the interaction between any agent and

users may alter the overall task goal. However, due to the distributed nature

of the system, providing additional information to one agent may not effectively

reach other agents. Inspired by the master node in the Google File System[28],
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Figure 5.1: The structure of the QwN-augmented RestGPT framework

we introduce a Supervisor role to oversee the entire task process and adjust the

final goal. QwN-augmented RestGPT, consists of five agents: Supervisor, Plan-

ner, API Selector, Caller, and Parser (except for the Supervisor, the other four

roles exist in RestGPT’s original framework). In practical scenarios, we envision

that LLMs enhanced with tools will be capable of selecting suitable APIs from

a wide range of real-world toolsets, allowing accurate execution of complex user

instructions. To encourage interaction between users and agents, we modify the

prompts used by these agents to prompt them to seek clarification when uncer-

tainties arise. A more detailed explanation of each role will be provided in the

subsequent discussion. (The Overall structure is shown in Figure 5.1)

5.2.1 Planner

The Planner agent, as its name suggests, is responsible for breaking down com-

plex tasks into smaller, manageable tasks. Its primary focus is to examine the

overall goal of the framework and devise specific plans to accomplish that goal.

At each step, the Planner generates a natural language plan that can be executed

using a single API. In addition to its planning responsibilities, the Planner may

also seek assistance from users when it encounters uncertainties about their re-

quirements, rather than providing a plan directly. The uncertainties that arise

during the interaction between users and agents can stem from various reasons.
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These reasons include incomplete information in user queries, situations where

multiple results refer to different entities with the same name, and other similar

factors. These uncertainties highlight the challenges of accurately understanding

and addressing user queries, and emphasize the need for effective communication

and clarification between the agents and users.

Because LLMs have a tendency to make decisions that may not always align

with the user’s intentions, particularly when faced with ambiguous queries, we

prompt the Planner to generate a thought to carefully consider their current sit-

uation before making plans. This prompt encourages the Planner to engage in

reflective thinking.

Unlike RestGPT, which adheres strictly to the user’s initial input query as

the ultimate goal of the framework, we acknowledge that this approach can be

problematic in cases where the instructions provided are unclear. To overcome

this challenge, our Supervisor adjusts the ultimate goal iteratively to refine it and

fulfill the user’s requirements at each cycle.

Furthermore, after seeking clarification from the users, the Planner receives

additional information that provides guidance for future planning. This informa-

tion is appended to the execution history and serves as a valuable resource for

assisting future planning tasks.

We can define the aforementioned process as follows (See Figure 5.2 ):

Output = Planner(g; p1, r1, . . . , pt−1, rt−1, [a])

Here, ’g’ represents the ultimate goal of the task. Initially, ’g’ corresponds to

the user’s query, but in subsequent iterations, it may be refined by a Supervisor.

The term p denotes the plan at each timestamp. The term ’r’ denotes API re-

sponse for each plan. The variable ’a’ is supplementary information utilized for
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Figure 5.2: Planner

planning purposes, which is provided only when there is a necessity for clarifi-

cation. The output of this process is either a thought with the plan ’pt’ at the

current timestamp or a thought with an elucidation of any challenges encountered.

The following is the prompt for the Planner:



31

Prompt for the Planner

You are part of a project that uses RESTful APIs to handle user queries. Your

role is that of a Planner. You should never use your own knowledge for the

task. All the information should be retrieved by using APIs.

When a user’s query is complex and requires multiple actions to be resolved,

it’s your job to break it down into smaller subtasks. Another model will take

your plan and identify the suitable API calls to provide the API responses.

You should always give your plan in natural language.

Another model will receive your plan and find the right API calls and give you

the result in natural language.

If you assess that the current plan has not been fulfilled, you can output

”Continue” to let the API selector select another API to fulfill the plan.

If you think you have got the final answer or the user query has been fulfilled,

just output the answer immediately. If the query has not been fulfilled, you

should continue to output your plan. In most cases, search, filter, and sort

should be completed in a single step.

The plan should be as specific as possible. It is better not to use pronouns in

plan, but to use the corresponding results obtained previously. If you want to

iteratively query something about items in a list, then the list and the elements

in the list should also appear in your plan.

The plan should be straightforward. If you want to search, sort or filter, you

can put the condition in your plan.

When providing a plan to guide subsequent models in solving the user’s query,

you should start the output with ”Plan step X:”, where X refers to the step

number.

Before giving the plan, you should give a thought to analyze the user queries or

API response. If there are multiple retrieved results, think carefully which one

is referred by the user. If you don’t know, then ask the user for clarification.
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You might retrieve multiple similar searching items(eg: person or movies with

same name, etc) when making an API call, making it unclear which one the

user is referring to. For instance, when searching for the movie ”Twilight,” you

may receive various versions with different ids. In these cases, you need to seek

clarification from the user and ask the user to narrow down the scope to locate

the desired one.

Starting below, you should follow this format:

User query: the query a User wants help with related to the API. Plan step 1:

the first step of your plan for how to solve the query

API response: the result of executing the first step of your plan, including the

specific API call made.

Thought(if additional information is not provided): the thought to analyze the

API response

Plan step 2: based on the API response, the second step of your plan for how

to solve the query. If the last step result is not what you want, you can output

”Continue” to let the API selector select another API to fulfill the plan. For

example, the last plan is ”add a song (id xxx) in my playlist”, but the last step

API response is calling ”GET /me/playlists” and getting the id of my playlist,

then you should output ”Continue” to let the API selector select another API

to add the song to my playlist. Pay attention to the specific API called in the

last step API response. If an improper API is called, then the response may be

wrong and you should give a new plan.

API response: the result of executing the second step of your plan ... (this Plan

step n and API response can repeat N times)

Begin!

Ultimate Goal: {input}

Plan step 1: {agent scratchpad}

Additional Information: {user’s clarification}
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5.2.2 API Selector

The API selector receives the natural language plan generated by the Planner

and subsequently sends the API plan to the Caller. The API Selector’s primary

responsibility is to choose the most appropriate API endpoint from a toolset

that comprises numerous RESTful APIs. The selection process is based on the

descriptions provided for each API. We also empower the API Selector to seek

clarification when encountering difficulties that it cannot handle alone. For in-

stance, if there are no available tools for resolving the user’s input query, the API

Selector can request clarification from the user. The instructions provided by

the users are appended to the history of the API Selector, enabling it to address

uncertainties and improve its future decision-making. To encourage API selector

to make the correct decision, we also require the API selector to give the reasons

behind its every decision.

We can define the aforementioned process as follows (See Figure 5.3):

Output = ApiSelector(pt; r1, . . . , rt−1,
∑

api desc, [a])

Here, ’pt’ represents the plan given by the planner. The term ‘r’ denotes API

response for previous plans (Some endpoints require the information of other API

responses). ’
∑

api desc’ represents the descriptions of all available APIs. The

variable ’a’ is supplementary information utilized for clarification purposes. The

output of this process is either a thought with the API plan ’apt’ at the current

timestamp or a thought with an elucidation of any challenges encountered.



34

Figure 5.3: API Selector

The following is the prompt for the API Selector:
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Prompt for the API Selector

You are a planner that plans a sequence of RESTful API calls to assist with user

queries against an API.

Another API caller will receive your plan call the corresponding APIs and finally

give you the result in natural language.

The API caller also has filtering, sorting functions to post-process the response

of APIs. Therefore, if you think the API response should be post-processed, just

tell the API caller to do so.

If you think you have got the final answer, do not make other API calls and just

output the answer immediately. For example, the query is to search for a person,

you should just return the id and name of the person.

Before giving your plan, you should give a thought to analyze why you select the

current API and make sure you can use the API correctly.

If you think there is not available APIs to solve the task, you should analyze the

reasons and then give the output ”Final result: I cannot solve this task due to

the liQwN-augmented RestGPTed of available APIs”

You can only give one step plan(select one API) at each time.

—-

Here are names and descriptions of available APIs.

Do not use APIs that are not listed here (Don’t make up any APIs by yourself,

the following are the only APIs you can use). endpoints

—-

Starting below, you should follow this format:

Background: background information which you can use to execute the plan,

User query: the query a User wants help with related to the API

API calling 1: Thought: Your thought to analyze the user query and the reasons

behind API selecting

Plan:the first api call you want to make. Note the API calling can contain condi-

tions such as filtering, sorting, etc. For example, ”GET /movie/18329/credits to

get the director of the movie Happy Together”If user query contains some filter

condition, such as the latest, the most popular, the highest rated, then the API

calling plan should also contain the filter condition. If you think there is no need

to call an API, output ”No API call needed.” and then output the final answer

according to the user query and background information.
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API response: the response of API calling 1

Instruction: Another model will evaluate whether the user query has been

fulfilled. If the instruction contains ”continue”, then you should make another

API call following this instruction.

... (this API calling n and API response can repeat N times, but most queries

can be solved in 1-2 step)

Always think comprehensively and seek clarification from users whenever the

user’s query is not clear enough for you to formulate API calling. If you require

additional information or face uncertainty, start the conversation with ”I need

user’s clarification” and then express the challenges explicitly. Another thing to

be noted is that do not ask users for information related to id.

Begin!

Background: {background}

User query: {plan}

API calling 1: {agent scratchpad}

Additional information: {user’s clarification}

5.2.3 Caller

Once an API calling plan is created, the subsequent step involves its execution.

The Caller plays a crucial role in this process by thoroughly examining the API

documents and generating the appropriate parameters or request body for the

API call. With the generated parameters and request body in place, we utilize

the Requests Python library to effectively invoke the RESTful API.

In situations where the Caller is unable to find suitable arguments from the

API plan, there is a possibility that the user did not provide sufficient information

in the initial query. This can lead to a lack of necessary information in the API



37

Figure 5.4: Caller

plan generated by the API Selector, consequently impacting the Caller’s function-

ality. To address these potential issues, we prompt the Caller to seek clarifications

instead of improvising arguments when uncertainties arise. This encourages the

Caller to actively communicate with the user to obtain the necessary information

and ensure the accuracy of the API call.

We can define the aforementioned process as follows(See Figure 5.4):

Output = Caller(apt; r1, . . . , rt−1, api doc, [a])

Here, ’apt’ represents the api plan given by the API Selector. The term ‘r’

denotes API response for previous plans (Some tools may require the information

of other API responses). ’api doc’ represents the API document for the selected

API. The variable ’a’ is supplementary information utilized for clarification pur-

poses. The output of this process is either a thought with the API request body

or a thought with an elucidation of any challenges encountered.

The following is the prompt for the Caller:
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Prompt for the Caller

You are an agent that gets a sequence of API calls and given their documenta-

tion, should execute them and return the final response.

If you cannot complete them and run into issues, you should explain the issue. If

you’re able to resolve an API call, you can retry the API call. When interacting

with API objects, you should extract ids for inputs to other API calls but ids

and names for outputs returned to the User.

Your task is to complete the corresponding api calls according to the plan.

Here is documentation on the API:

Base url: api url

Endpoints:

api docs

You can use the http request method, i.e., GET, POST, DELETE, PATCH,

PUT, and generate the corresponding parameters according to the API docu-

mentation and the plan.

The input should be a JSON string which has 3 base keys: url, description,

output instructions

The value of ”url” should be a string.

The value of ”description” should describe what the API response is about.

The description should be specific.

The value of ”output instructions” should be instructions on what information

to extract from the response, for example the id(s) for a resource(s) that the

POST request creates. Note ”output instructions” MUST be natural language

and as verbose as possible!
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If you are using the GET method, add the ”params” key, and the value of

”params” should be a dict of key-value pairs.

If you are using POST, PATCH or PUT methods, add ”data” key, and the

value of ”data” should be a dict of key-value pairs.

Remember to add a comma after every value except the last one, ensuring that

the overall structure of the JSON remains valid.

I will give you the background information and the plan you should execute.

Background: background information which you can use to execute the plan,

e.g., the id of a person.

Plan: the plan of API calls to execute

You should execute the plan faithfully and give the Final Answer as soon as

you successfully call the planned APIs, don’t get clever and make up steps that

don’t exist in the plan. Do not make up APIs that don’t exist in the plan. For

example, if the plan is ”GET /search/person to search for the director ”Lee

Chang dong”, do not call ”GET /person/person id/movie credits” to get the

credit of the person.

However, there may be instances when users submit queries with potential

issues, like missing information or typos, making it impossible to fulfill the query

without further clarification. You might receive multiple outcomes when making

an API call, making it unclear which one the user is referring to. For instance,

when searching for the movie ”Twilight” you may receive various versions. In

these cases, you need to seek clarification from users and explain the issue

clearly. Another model will then read about the difficulties you encountered

and generate questions to request additional information from users. Anytime

you need the clarification of a user’s query, your output should start with ”I

need user’s clarification.”. Another thing to be noted is that do not ask users

for information related to id.
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Another important point: Never make up information by yourself. All the

information should be retrieved by using APIs.

Starting below, you must follow this format:

Background: background information which you can use to execute the plan,

e.g., the id of a person.

Plan: the plan of API calls to execute

Thought: you should always think about what to do

Operation: the request method to take, should be one of the following: GET,

POST, DELETE, PATCH, PUT

Input: the input to the operation

Response: the output of the operation

Thought: I am finished executing the plan (or, I cannot finish executing the

plan without knowing some other information.)

Execution Result: based on the API response, the execution result of the API

calling plan.

Begin!

Background: {background}

Plan: {api plan}

Thought: {agent scratchpad}

Additional information: {user’s clarification}

5.2.4 Parser

The Parser agent assumes the responsibility of extracting the relevant information

from the API response, considering that the response may contain a significant

amount of irrelevant data. We directly incorporate the Parser from RestGPT,
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as its functionality aligns well with our requirements. Therefore, readers can

directly refer to RestGPT for details of the prompt. By utilizing the Parser, we

can effectively filter and extract the desired information from the API response,

ensuring that only the relevant data is presented to the user.

5.2.5 Supervisor

The Supervisor agent plays a crucial role in providing assistance to other agents,

guiding the overall objective of each cycle and terminating the task when the

user’s goal is achieved.

When any of the other agents encounter uncertain situations, they seek help

from the Supervisor and explain the difficulties they are facing. The Supervisor

then analyzes these difficulties based on its comprehensive understanding of the

entire task. Depending on the situation, the Supervisor can either decide to assist

the agent directly based on its understanding of the tasks, or generate a question

to query users for additional information.

In the first case, where the user’s instructions are not unclear but some of the

preceding agents have generated incorrect output, leading to propagation of false

information to subsequent agents, the Supervisor needs to analyze the problem

and provide appropriate guidance to the agent seeking help. This ensures that

the agent can overcome the hindrance caused by the false output.

In the second case, where the user has not provided clear enough instructions

resulting in execution difficulties, the Supervisor generates a question based on

the difficulties expressed by the agent to query users for additional information.

After obtaining the response from the user. The question and answer are then

sent to an integration module to formulate a complete sentence that serves as

additional information to clarify the agent’s confusion.
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Indeed, the interaction between the agents and users can lead to adjustments

in the final goal of the task. For instance, consider a scenario where the user

initially inputs the query: ”Give me the director of the movie ’Pulp Faction’”

(with a misspelled movie name, where the correct name should be ”Pulp Fic-

tion”). Through interactions between the Caller and the user, the user clarifies

their desired movie as ”Pulp Fiction.” In such cases, the Supervisor plays a cru-

cial role in adjusting the final goal given to the Planner. The adjusted goal would

be ”Give me the director of the movie ’Pulp Fiction’” in the subsequent round to

avoid any confusion. The Supervisor takes charge of making these adjustments

to ensure that the agents are aligned with the user’s intentions and can effectively

fulfill the user’s request.

Finally, the Supervisor agent is also responsible for terminating the task when

the user’s query has been successfully addressed. Once the user’s query has been

achieved, the Supervisor formulates the answer derived from the user’s query and

delivers it back to the user.

We can define the aforementioned process as follows (See Figure 5.5):

Output = Supervisor
(∑t

i=1 pi +
∑t

i=1 api +
∑t

i=1 ri +
∑

u
)

The meanings of ”p”, ”ap”, and ”r” remain unchanged, while ”u” indicates

the input provided by the user. Depending on the specific input, the output of

this procedure can be the ultimate goal, questions generated to ask users, or di-

rect support to the agent.
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Figure 5.5: Supervisor

The following is the prompt for the Supervisor:
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Prompt for the Supervisor

You are in charge of a team of agents responsible for making RESTful API calls

to address user queries. Your team is composed of three roles: Planner, API

Selector, and Caller, each with specific responsibilities. Your ultimate objective

is to successfully address user queries. As the team leader, you oversee the entire

working process of your team. During this process, you’ll encounter two key

situations:

1. Situation 1 (Agents seeking clarification): Be prepared for the possibility

that the agents under your supervision may encounter difficulties and require

clarification or have questions for users. You act as the intermediary between

users and the various agents for communication. Other agents are not perQwN-

augmented RestGPTted to directly communicate with users without your assis-

tance. If agents have questions, they should preface their queries with ”I need

user’s clarification.” Your role is to assess the issues and explanations provided

by the agents. If you agree with them, you must formulate a question to ask

the user for additional information. When formulating a question for the user,

you should begin your response with ”Question:”. Conversely, if you believe

the problem is not the user’s fault, you can challenge the agent’s question and

respond independently, beginning with ”Refutation.”

2. Situation 2 (End of one working cycle): Typically, addressing user queries

involves multiple iterative steps. At the end of each iteration, it is essential to

clarify the overall objective for your team. At the conclusion of each cycle, you

will encounter a marker labeled ”End of Cycle” If the user’s query has been

effectively resolved after a cycle, you can conclude the process and present the

query’s outcome, starting with ”Final Answer:” On the other hand, if the user’s

goal remains unmet, you should convey the user’s expectations to the Planner

for additional planning, initiating your response with ”Objective to Planner:”

You cannot make up information for other roles. You should never use your own

knowledge for the task. All the information should be retrieved by using APIs.

Begin!

chat history is shown below: {agent scratchpad}
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Evaluation

6.1 Experiment result

Case RestGPT QwN-augmented RestGPT
Complete instruction 0.66 (50 cases) 0.76 (50 cases)
Unclear or missing information 0 (70 cases) 0.61 (70 cases)
Problematic searching items 0.5 (30 cases) 0.93 (30 cases)
Instruction that cannot support 0 (13 cases) 0.31 (13 cases)
Instruction with different meanings 0 -

Table 6.1: Experiment result of RestGPT and QwN-augmented RestGPT

In complete instructions, RestGPT performs reasonably at a score of 0.66 over

50 cases while QwN-augmented RestGPT performs better with a score of 0.76

over the same number of cases. In unclear or missing Information instructions,

RestGPT cannot handle these types of instructions, scoring zero over 70 cases

while QwN-augmented RestGPT performs significantly better, scoring 0.61 over

70 cases. In problematic searching item instructions, RestGPT has a moderate

performance, scoring 0.5 over 30 cases while QwN-augmented RestGPT excels in

this category, scoring a high 0.93 over 30 cases. In different meaning instructions:

RestGPT cannot handle these types of instructions, scoring zero over 13 cases.

QwN-augmented RestGPT, while also struggling in this area, performs better

than RestGPT with a score of 0.31 over 13 cases. In unsupported instructions:

RestGPT cannot handle these types of instructions, scoring zero. The evaluation

of QwN-augmented RestGPT’s performance in this category is still in progress.

QwN-augmented RestGPT outperforms RestGPT in handling complete instruc-

tions, unclear or missing information instructions, problematic searching item

instructions, and instructions with different meanings.
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6.2 Research Questions

To evaluate QwN-augmented RestGPT, we study three research questions in this

report:

RQ1: Explain that QwN-augmented RestGPT can have a better performance

compared to the original RestGPT framework.

RQ2: An examination of whether QwN-augmented RestGPT can accurately iden-

tify the incorrect part in the user query.

RQ3: Examination of whether QwN-augmented RestGPT can improve the ro-

bustness of facing incomplete queries.

6.3 Result and Analysis

6.3.1 RQ1: Explain that QwN-augmented RestGPT can

have a better performance compared to the original

RestGPT framework

To demonstrate that QwN-augmented RestGPT can perform better compared to

the original RestGPT framework, we present the experimental results of the orig-

inal dataset using both QwN-augmented RestGPT and RestGPT. Additionally,

we will focus on the impact of the “Supervisor” and “Think and Plan” modules

in QwN-augmented RestGPT.

1. Supervisor

RestGPT

Query: I just finished watching Titanic and I want some other movie

recommendations

Planner: Continue. Get the list of similar movies to Titanic (597)

API Selector: GET /movie/597/similar to get the list of similar movies

to Titanic (597)
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QwN-augmented RestGPT

Query: I just finished watching Titanic and I want some other movie rec-

ommendations

Objective: Please use the id of the movie ”Titanic” (597) to get movie

recommendations.

Planner: Get the movie recommendations of the movie ”Titanic” (597).

API Selector: GET /movie/597/recommendations to get the movie rec-

ommendations of the movie Titanic (id 597).

From the above example, the Planner in RestGPT may select incorrect APIs.

This error analysis highlights the insufficient capabilities of RestGPT without a

’supervisor’.

2. “Think and Plan”

RestGPT

Query: What does the lead actor of Titanic look like?

Planner: search for the lead actor of Titanic

API Selector: GET /movie/157336/credits to get the lead actor of Ti-

tanic

QwN-augmented RestGPT

Query: What does the lead actor of Titanic look like?

Planner: Search for the lead actor of Titanic.

API Selector: Thought a: I need to get the movie id of Titanic to search

for the lead actor.

Plan: GET /search/movie to get the movie id of Titanic.

From the above example, the API selector in RestGPT may hallucinate to

make up in-path parameters. This error analysis highlights the insufficient capa-

bilities of RestGPT without the ability to ’think and replan’.
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6.3.2 RQ2: An examination of whether QwN-augmented

RestGPT can accurately identify the incorrect part

in the user query

To examine whether QwN-augmented RestGPT can accurately identify the in-

correct part in the user query, we present a table that shows which module in

QwN-augmented RestGPT raised the question. We label the questions as either

‘relevant’ or ‘irrelevant’ Also, we provide examples of ’irrelevant’ questions.

Case Planner Caller Total
Unclear instruction & instruction with missing information
Relevant 39 16 55
Irrelevant 6 9 15

Instruction with problematic searching items
Relevant 11 6 17
Irrelevant 2 1 3

Instruction with different meanings
Relevant 1 2 3
Irrelevant 0 2 2
Total 59 35 95

Relevant: 75 (0.789), Irrelevant: 20 (0.211)

Table 6.2: Number of relevant and irrelevant questions raised up by our model

For ’Unclear instruction and instruction with missing information’, 55 were

relevant and 15 were irrelevant. For ’Instruction with problematic searching

items’, 17 were relevant and 3 were irrelevant. In the case of ’Instruction with

different meanings’, 3 were relevant and 2 were irrelevant. In total, the plan-

ner provided 59 instructions, the caller provided 35, with an overall total of 95

instructions. Evaluating relevance, 75 instructions (78.9% of total instructions)

were relevant, and 20 instructions (21.1% of total instructions)were irrelevant.
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Irrelevant follow-up question

Planner: Search for Breaking Bad (id1) using GET /search/tv.

API Selector: Thought: I have the id of Breaking Bad, I can use it to

get the details of the show.

Plan: GET /tv/id1 to get the details of Breaking Bad.

Caller: I need user’s clarification. The API response indicates an error:

”The resource you requested could not be found.” It seems that the id of

Breaking Bad is not valid. Please provide the valid id of Breaking Bad.

Question: Could you provide the valid id of Breaking Bad?
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6.3.3 RQ3: Examination of whether QwN-augmented Rest-

GPT can improve the robustness of facing incom-

plete query

Instructions with missing information

Instruction of TMDB

Query: I need something like that movie.

QwN-augmented RestGPT

Planner: I need user’s clarification! The user did not provide enough in-

formation to proceed. Without a specific movie title, I cannot search for

similar movies.

Question: Could you provide the title of the movie you are looking for?

User: Titanic

Additional information: The movie the user is looking for is Titanic.

Planner: Search for a movie with the title ”Titanic”.

API Selector: Thought: I need to search for a movie with the title ”Ti-

tanic”, so I will use the GET /search/movie API to search for the movie.

Plan: GET /search/movie to search for the movie with the title ”Titanic”.

Caller: I need to generate the input for the GET /search/movie API call.

Operation: GET

. . .

. . .

Execution Result: The similar movies and their ids are Adieu Les Co-

pains (1096746), Just Ask My Children (237983)
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Problematic Searching Item Instructions

Instruction of TMDB

Query: What is the logo of the Watt Daisney?

QwN-augmented RestGPT

Planner: Search for the company ”Watt Daisney”.

API Selector: Thought: I need to search for the company ”Watt

Daisney” to get its company id.

Plan: GET /search/company to search for the company ”Watt Daisney”.

Caller: I need to use the GET method to make the API call.

. . .

. . .

Code:

# Extract the id of the company Watt Daisney company id = [item[’id’]

for item in data[’results’] if item[’name’] == ’Watt Daisney’][0]

# Print the result

print(’The id of the company Watt Daisney is {}’.format(company id))

Code: print(”The id of the company Watt Daisney is

{}”.format(data[’results’][0][’id’]))

Parser: No results found for the query ’Watt Daisney’.

Caller: Execution Result: I need user’s clarification. The API response

did not return any relevant information when I call GET /search/company

to search for the company ”Watt Daisney”.

Question: Could you please double-check if the company name is correct?

User: It should be Walt Disney

. . .

. . .

(Finally success)
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Different Meaning Instructions

Instruction of TMDB

Query: Find films with Jennifer

QwN-augmented RestGPT

Planner: Search for a person with the name ”Jennifer”.

API Selector: Thought: After checking all the available APIs, I need to

use the search API to search for the person with the name ”Jennifer”.

Plan: GET /search/person to search for the person with the name ”Jen-

nifer”.

Caller: I need to generate the input for the GET request according to the

API documentation.

Operation: GET

. . .

. . .

Caller: Execution Result: Successfully call GET /search/person to search

for the person with the name ”Jennifer”. The ids and names of the peo-

ple returned by the API are (578325, ’Jennifer’), (3740055, ’Jennifer’),

(4354994, ’Jennifer’), (6161, ’Jennifer Connelly’),. . . . . .

Planner: Thought: There are multiple people with the name ”Jennifer”

returned by the API. I need user’s clarification! Please specify which Jen-

nifer you are referring to.

Question: Could you please specify which Jennifer you are referring to?

User: Jennifer Lawrence

Additional information: The user is referring to Jennifer Lawrence.

Planner: Thought: There is ambiguity in the API response. Search for

films with Jennifer Lawrence (72129).

. . .

. . .

(Finally success)
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For the failure case of Itool on RestGPT please refer to AppendixA.



Chapter 7

Conclusion

7.1 Summary

Motivated by the limitations observed in current frameworks when handling am-

biguous instructions, we have developed a novel approach called the Query when

Need (QwN) framework. QwN enables agents to request assistance from users

when confronted with unclear instructions. To assess the efficacy of our frame-

work, we have integrated QwN with ToolLLM (which is still a work in progress)

and RestGPT. We conducted experiments using a carefully curated dataset called

Itool, comprising four common types of unclear instructions frequently encoun-

tered from users. The results obtained from QwN-augmented RestGPT demon-

strate that our approach outperforms existing frameworks in effectively resolving

queries related to ambiguous instructions.

7.2 Future directions

Despite providing agents with the capability to seek assistance when faced with

challenges, determining the appropriate timing for requesting help remains a diffi-

cult task. Agents often exhibit a tendency to generate false information or make

decisions without informing users. Addressing the challenges of reasoning and

learning when to ask for help are important tasks that require future solutions.
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A Failure Case on RestGPT

Instructions with Missing Information

Instruction of TMDB

Query: give me the number of movies directed by my father

RestGPT

Planner: search for the person with name ”my father”

API Selector: GET /search/person to search for the person with name

”my father”

Caller: I need to make a GET request to the /search/person endpoint

with the query parameter set to ”my father”.

Operation: GET Input: {

”url”: ”https://api.themoviedb.org/3/search/person”,

”query”: ”my father”

Parser: No results found

Caller: Thought: I cannot finish executing the plan without knowing some

other information.

Execution Result: Failed to call GET /search/person to search for the

person with name ”my father”. No results found.

Planner: Continue. search for the person with name ”father”

Caller: I should try to search for the person with name ”father” instead

of ”my father”.

Operation: GET Input: {

”url”: ”https://api.themoviedb.org/3/search/person”,

”params”: {

”query”: ”father”,

(Finally fail)
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Problematic Searching Item Instructions

Instruction of TMDB

Query: tell me a TV show recently directed by Katherine Hardwood

RestGPT

Planner: search for the director ”Katherine Hardwood”

API Selector: GET /search/person to search for Katherine Hardwood

Caller: I need to make a GET request to the /search/person endpoint

with the query parameter set to Katherine Hardwood.

Operation: GET Input: {

”url”: ”https://api.themoviedb.org/3/search/person”,

”params”: {

”query”: ”Katherine Hardwood”

Parser: No results found for Katherine Hardwood.

Caller: Thought: I cannot finish executing the plan without knowing some

other information.

Execution Result: No results found for Katherine Hardwood.

Planner: search for the director ”Kathryn Bigelow”

. . .

(Finally fail)
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Instruction with Different Meanings

Instruction of TMDB

Query:Find films with Jennifer

RestGPT

Planner: Search for person with name ”Jennifer”

API Selector: GET /search/person to search for person with name

”Jennifer”

Caller: I need to make a GET request to the /search/person endpoint

with the query parameter set to ”Jennifer”.

Operation: GET Input: {

”url”: ”https://api.themoviedb.org/3/search/person”,

”params”:

”query”: ”Jennifer”

Code: print(”The id of the first person in the list is ”.for-

mat(data[’results’][0][’id’]))

Parser: The id of the first person in the list is 578325

Caller: Execution Result: Successfully call GET /search/person to search

for person with name ”Jennifer”. The id of the first person in the list is

578325.

Planner: Collect the list of movies performed by Jennifer whose person id

is 578325

. . .

. . .

(Finally fail)
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Unsupported Instructions

Instruction of TMDB

Query:Can you provide the Twitter handle of Natalie Portman?

RestGPT

Planner: search for the person with name ”Natalie Portman”

API Selector: GET /search/person to search for Natalie Portman

Caller: I need to make a GET request to the /search/person endpoint

with the query parameter set to ”Natalie Portman”.

. . .

. . .

Operation: GET Input:

”url”: ”https://api.themoviedb.org/3/person/524”,

”description”: ”Get the primary person details by id.”,

”output instructions”: ”What is the Twitter handle of Natalie Portman

(524)?”

Code:

print(”The Twitter handle of Natalie Portman (524) is ”.for-

mat(data[’also known as’][-1]))

Parser: The Twitter handle of Natalie Portman (524) is

(Finally fail)
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