GestHome: A User-defined
Postures Detection for Smart Home
Term 2 Final Report

Theodore Fabian Rudy
Christopher Albert Priatko

Supervised by

Prof. Michael R. Lyu

Computer Science and Engineering
The Chinese University of Hong Kong
May 22, 2023

Contents

Acknowledgement

1

Introduction
1.1 Overview
1.2 Background

1.3 Objectives
1.4 Glossary

Related Work
2.1 Object Detection
2.1.1 Two-Stage Detection Framework
2.1.2 One-Stage Detection Framework
2.1.3 Other Methods
2.2 Face Recognition
2.2.1 One-Shot Learning and
Siamese Neural Network
2.3 Pose Estimation and
Keypoints Analysis
2.4 Action Recognition
2.4.1 Skeletal-based Action Recognition
2.5 Long Short-Term Memory

© oo ot ot Ot

CONTENTS

3 Implementation

3.1 General Framework
3.2 Stage 1: Object detection and
Face Recognition
3.2.1 Object Detection
3.2.2 Face Recognition
3.3 Stage 2: Pose Estimation and
Action Recognition L.
3.3.1 Pose Estimation
3.3.2 Problem encountered
3.4 Action Recognition L.
3.5 Website building L0
3.5.1 Specification L
3.5.2 System Architecture
3.5.3 System component
3.5.4 User Interface Design
3.5.5 Challenges in Website Implementation
4 Evaluation
4.1 Stage 1
4.1.1 Object Detection
4.1.2 Face recognition
4.2 Stage 2
4.2.1 Pose Estimation L
422 LitePoseo
4.2.3 Movenet
424 BlazePose 0
425 LSTM Model

27
27

31
31
31

35
35
37
38
39
39
44
48
50
54

CONTENTS

4.2.6 Action Recognition

4.3 Overall evaluation . .

4.3.1 Accuracy evaluation

4.3.2 Speed evaluation

4.3.3 Website performance

5 Conclusion
5.1 Summary.
5.2 Problem Encountered

6 Distribution of Work

Bibliography

66
68
68
71
73

74
74
75

7

79

Acknowledgement

First, we would like to thank God, for giving us this amazing opportunity to
have this project that we would never think we are able to do. It is only by His
Grace that we are able to do and finish this project.

We would like to express our deepest gratitude to Professor Michael R. Lyu for
giving us the opportunity to be our supervisor for our Final Year Project. We
would also like to express our deepest gratitude to Mr. Huang Jen-tse for giving
us invaluable knowledge, advice and guidance during our Final Year Project.
Last but not least, we would also express thanks to Mr. Duan Haodong for

advice and help in the integration of PYSKL with our project.

Chapter 1

Introduction

1.1 Overview

The focus of this final year project is to utilize different aspects of computer
vision to process human gestures and/or poses captured by video feed and turn
it into command preset in the computer. This report describes the introduction
to the topic, the work done throughout the whole year, with the focus on the

second semester, and all the implementation challenges that was faced.

1.2 Background

With the development of technology, more of the things that are faced in daily
life has become easier. One of the example of that aspect is smart technology.
This mechanism turn traditional sensors and actuators to be connected through
network, enabling it to increase the capability of achieving centralised control
over devices, which brings increase in life quality, well-being, safety, productiv-
ity, energy efficiency and many more |75]. Not only that this mechanism allow
it to be connected through network, the devices connected to the network will

also have the capability to have computing-like functionalities [77].

CHAPTER 1. INTRODUCTION 6

The evolution of this smart technology happens with more integration of
artificial intelligence (Al) into the system. Bowes et al. (2012) described that it
was in the second generation smart home technology that artificial intelligence
started to be used. They mentioned that the implementation of smart home
technology in the generation uses Al-based devices, where it is able to detect
changes of environment, monitor health condition and many more [13]. In
general, Al was mostly used for analytical functionality and was more described
as ‘reactive’ to a predefined trigger actions. Only in the third generation of
smart home technology that Al is more utilised to have the capability to inter-
operate with other devices and have multiple functionalities. Not only limited
in the usage of behavioural analysis to predict user needs and optimization, but
this also enable integration with other devices, making it possible to capture,
process and transmit data among devices within network [60]. This generation
also mark the emerging system of voice-over interface bringing life to home
automation system, enabling it to be more interactive.

With the usage of voice-over interface for smart home system being made
available for public by different providers. Google Nest and Amazon Echo
being two examples of speech recognition in a form of virtual assistant being
implemented. As mentioned in the previous sentence, the functionalities of
virtual assistant reduces things that is needed to do by the users, but also to
enable people who are disabled or elderly to access and dynamically operate
and put control over smart things in the home [100]. Despite its power and
capability to control centralised system for smart home, the development for
interface for this interaction is pretty much stopped here.

Along with the development of voice controlled smart home system, there
are others subjects that earn recognition over its progress and evolution. A

subject in particular that has gotten much attention is is computer vision.

CHAPTER 1. INTRODUCTION 7

Traditionally a subject where the task involved in it are mostly tasks like fea-
ture extraction engineered by human in a specific algorithm, its capability of
computer to process images and videos, increases significantly. Rather than
defining the features and analysis of the input and output, the involvement of
deep learning in the subject automate the tasks of feature engineering, extrac-
tion and classification into one process involving neural network. The neural
network learns the value of features that differentiate one image to another,
and automatically adjust the weight and parameter for it to recognise the gen-
eralised features and pattern for the thing detected. Figure 1.1 explains more

of the work flow and the difference between them.

& p
Input » =/ »! Features > o)
[3 5
Llﬁj s

Feature Engineering Classifier with
(Manual Extraction+Selection) (@) shallow structure

Qutput

Input 3

Qutput

Y

Feature Learning + Classifier
({End-to-End Learning)

(b)

Figure 1.1: Difference in flow of traditional computer vision and modern (deep
learning) computer vision, adopted from (Walsh et al., 2019) [91].

With more tasks and applications that are implemented using modern com-
puter vision, the growth of computer vision is formidable. This growth enables
a lot of enterprises to implement computer vision tasks, such as autonomous
vehicles or so we call it self-driving car. Similar to what was mentioned in the
third generation of smart home technology earlier, autonomous vehicles uses
different sensors and Al as a part for them to enable the interaction between
them with the whole system without human intervention. However, Computer

Vision plays a huge part in it, where some of smaller tasks that is able to be

CHAPTER 1. INTRODUCTION 8

solved through modern computer vision. Despite all this, there are a lot of
potential that Computer Vision has to offer, and more methods and techniques

used to increase performance, accuracy, precision, and others.

1.3 Objectives

The goal of GestHome, our project, is to utilize computer vision to make virtual
assistant to be controllable by gestures, which is customizable by user. By that,
we will not only be needing feature limited to gesture detection or in other
words, action recognition, but to also employ person detection to understand if
a person gets into a frame of the camera. With that too, two stage detection
will be needed in this area, for person detection to pass the face detection to
the face recognition system. Once the user is recognized, then the user gestures
can be detected.

With a prototype demo of GestHome finished last semester, our main ob-

jective this term will be:

1. Develop a working program from the prototype, with both stages smoothly

combined into one program

2. Research on various methods of improving the performance of GestHome,

either in accuracy or frame rate

3. Add quality-of-life features that bring significant improvements to the

program and our users

At the end of the semester two, our goal is to produce a working smart
home system without any issue, with the architecture design shown in Figure
1.2

CHAPTER 1. INTRODUCTION 9

Person detection |£|]:| Face recognition

Y

Pose Estimation +
LSTM / Action
Recognition

Figure 1.2: Overall architecture design of the project

1.4 Glossary

Terminologies that are not used as much and more specific in term of computer

vision or Al explained in Table 1.1

Table 1.1: Terms in the papers that are used

Terms

Explanations

Action Recognition

A task in computer vision to identify actions of a

person identified in the video or image.

Artificial Intelli-

gence

Systems or machines that mimic human intelligence
to perform tasks and can iteratively improve them-

selves based on the information they collect.

Bounding Box

A rectangle determined by coordinates of a certain
object detected on an image. Usually used in object
detection task to describe the spatial location of an

object.

Continued on next page

CHAPTER 1. INTRODUCTION

Table 1.1 — Continued from previous page

10

Terms

Explanations

Computer Vision

A field with the focus of enabling computers to pro-
cess and understand visual side, including videos and

1mages.

Convolutional
Neural Network

A Deep Learning that assume input as images, with
the capability to differentiate the objects that con-

tained in the image.

Deep Learning

A part of artificial intelligence and machine learning
where neural networks are designed to learn and im-
proving on its own by examining the algorithm. This
remove the need to supervise the training process in

machine learning.

LSTM

A recurrent neural network that has the ability to
not only process a single frame of image or a single

data point, but also entire sequences of data.

Machine Learning

A part of artificial intelligence utilizing the use of
data for the algorithm to learn a certain task, grad-

ually improving its accuracy in the task.

Neural Network

A computing system that have the resemblance of
human brain, mimicking the way brain send neural
signal to one another. Each signal passed in the sys-
tem will adjust the weight on each neurons. This
weight output from one neuron will affect the next

node in the connection.

Continued on next page

CHAPTER 1. INTRODUCTION

Table 1.1 — Continued from previous page

11

Terms

Explanations

Object Detection

A task in computer vision designed to detecting in-
stances based on the features available to classify the

class in digital images and/or videos.

Pose Estimation

A task in computer vision designed to predict and
track the location of a person or object. For hu-
man pose estimation, the things that are tracked are
keypoints of human joint, where its unity will resem-

blance of a human pose.

Recurrent Neural
Network

A type of neural network where the architecture al-
low it to have a cycle in between. This allows output
of the network to depend on the prior elements within
the sequence. This technique is used for ordinal or
temporal problem, such as natural language process-

ing, image captioning, language translation, etc.

YOLO

An abbreviation for You Only Look Once, a revo-
lutionary object detection system that utilize deep

learning to achieve real-time object detection.

Chapter 2
Related Work

2.1 Object Detection

The interest in object detection started in 2012, during the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [51]. This competition focused
on building an efficient object detection algorithm using the ImageNet database
as the training dataset for the algorithm. In this competition, Krizhevsky et al.
(2012) has decided to approach the challenge by building an object detection
method using Convolution Neural Network (CNN), called AlexNet. With CNN;,
AlexNet manage to perform much better compared to its rivals, hence the rise
of CNN on object detection algorithm.

Furthermore, research on Deep Neural Networks has accelerated after ILSVRC
2012, and one improvement they have made is on the training. Since deep neu-
ral networks are harder to train, Kaiming et al. [36] has developed a residual
learning framework to ease the training of deeper neural networks. Also, the
residual networks manage to gain accuracy from the increase depth. The frame-
work has helped on development of deep neural network, especially for many

visual recognition tasks.

12

CHAPTER 2. RELATED WORK 13

2.1.1 Two-Stage Detection Framework

There are two famous framework on CNN-based object detection algorithm.
The first one is two-stage detection framework. Two-stage detection framework
works by using region proposals to create Region of Interest (ROI) [31]. These
ROIs then converted to feature maps using CNN, which then resize to extract
the features that will be used by SVM for object detection and bounding box
regressor to adjust the bounding box size. This method is more time efficient
since the algorithm does not need to detect all parts of an image; instead, it
focuses on parts that have high chance of an object present. This method
created a model family called R-CNN model family. In this project, we are
analyzing two examples from the family, which are R-CNN and Fast R-CNN.

R-CNN is the first CNN-based object detection algorithm after Krizhevsky’s
algorithm. [30]. The algorithm works in 3 different modules. The first module
generates around 2000 region proposals. After that, for each region proposal,
the algorithm extracts a dimensional feature vector using CNN. Finally, the
algorithm utilize SVM to classify the object present in the region proposal.
This algorithm achieved better accuracy than Krizhevsky’s algorithm; however,
R-CNN still has several drawbacks, mainly in the training and testing speed.
Since it uses feature extraction from each object proposal and we have around
2000 region proposals, it consumes a lot of space, roughly hundreds of gigabyte
of storage. Furthermore, during testing, the algorithm is slow to detect the
object in an image, taking around 47 seconds per image.

Due to these issues present in R-CNN, Ross Girshick, the creator of R-
CNN, decided to modify parts of R-CNN to improve the performance and make
the algorithm more time efficient, which he called Fast R-CNN (Fast Region-
based CNN) [29]. Fast R-CNN utilize similar object detection algorithm as

CHAPTER 2. RELATED WORK 14

R-CNN; however, with Fast R-CNN, instead of using 2000 region proposals
to extract feature vectors with CNN, Fast R-CNN only uses one fixed-size
region that has been through Region of Interest (Rol) pooling to extract feature
vectors. Furthermore, Fast R-CNN uses a more optimized softmax classifier and
bounding box regressors in one stage instead of a softmax classifier, SVM, and
regressors in three different stages. Because of this, Fast R-CNN manages to
reduce the time for object detection and model training, going from 84 hours to
9.5 hours, while simultaneously keeping similar or in some cases better accuracy
when compared to R-CNN.

Besides aforementioned algorithms, there are other algorithms that is de-
rived from the R-CNN family. Algorithms such as Faster R-CNN|[69] and T-
CNNJ44] aims to improve the performance of R-CNN based algorithms. Faster
R-CNN improves the performance on Fast R-CNN algorithm by using deep
convolutional network|35] to determine the region proposals instead of selective
search|87], used in Fast R-CNN. Whereas T-CNN focuses on utilizing tempo-
ral and contextual information such that it improve the algorithm performance

when applied to videos.

2.1.2 Omne-Stage Detection Framework

Although Fast R-CNN manage to greatly improve the performance of R-CNN,
it still struggles with lengthy training time. With that, a new architecture for
object detection has arised, in the form of one-stage detection framework. While
two-stage detection framework has two stages for the object detection (using
region proposals, object classification, and bounding box regression), one-stage
detection framework only uses feature extraction network and convolution layers
for predicting the object and adjusting the bounding box. This meant that

one-stage detection framework uses less stages for object detection, and thus

CHAPTER 2. RELATED WORK 15

improve the performance of the algorithm. However, there are problems in
one-stage detection framework, mainly in its inability to detect smaller objects.
In this project, we are analyzing two of the most famous one-stage detection
framework model, Single Shot Multibox Detector (SSD) and You Only Look
Once (YOLO).

Single Shot Multibox Detector (SSD) is one of the object detection algo-
rithm that utilize one-stage detection framework [55|. It uses VGG16 Network
for feature extraction and several convolution layers for detections, predictions,
and bounding box adjustments. By using feature extraction and convolution
layers for its model, SSD manages to achieve higher mAP in PASCAL VOC2012
and COCO dataset compared to any R-CNN model family. At the same time,
SSD manages to achieve higher performance than Faster R-CNN (46 FPS vs 7
FPS).

Another famous one-stage detection framework model is You Only Look
Once (YOLO) [68]. The model is designed based using 24 convolutional layers
followed by 2 fully connected layers. It also utilize DarkNet during training.
The model used in YOLO is similar R-CNN, where it proposes potential bound-
ing boxes and score it using convolutional features. However, unlike R-CNN,
YOLO only uses 98 bounding boxes instead of 2000. Furthermore, YOLO
model has spatial constraints to help mitigate multiple detections of the same
object and it combines individual components to a single optimized model, un-
like R-CNN. This means that YOLO manages to achieve higher performance
than Faster R-CNN (45 FPS vs 7 FPS); however, it comes at slightly lower ac-
curacy, with around ten percent lower mAP compared to Faster R-CNN (73.2
vs 63.4).

CHAPTER 2. RELATED WORK 16

2.1.3 Other Methods

Although two-stage and one-stage detection framework model are mostly used
for object detection, there are some popular object detection algorithms that
uses neither framework. Yang et al. [98] propose a new method of using
multi-task learning [72] to improve the performance of existing object detection
method. To demonstrate that, the research uses YOLOvV5S as the base of this
model, with the addition of multi-task learning such that this model is able to
perform object detection and semantic segmentation at the same time. This
model manages to achieve higher accuracy (around 9 - 11 percent higher) com-
pared to other semantic segmentation algorithm such as PSPNet [104], BiSeNet
network [99], and ASPP network [19].

2.2 Face Recognition

Face recognition (FR) is a method of detecting and identifying a person with
their face and it has been used in many areas|94|. Interest of FR started with
the introduction of Eigenface approach [86]. It developed to research of FR in
multiple areas, from low-dimensional representation to local-feature based [94].
However, in 2012, a new approach of FR using deep learning has started with the
winning of AlexNet [51]. Several famous Deep-learning based FR |7, 66, 83, 76,
47,74, 5| are reviewed in this paper. BlazeFace |7] develops its’ model from [55]
with additional modifications such as enlarging receptive field size compared to
other neural network architectures (such as MobileNet |[40],|73]]), using feature
extractions BlazeBlocks, reducing the Pooling Pyramid Network architecture
[43], and implement suppresion algorithm to reduce error from larger spatial
resolution. YOLObSFace [66] redesign YOLOV5 to be used for face recognition
with modifications to the architecture such as the use of SPP, PAN, and SILU

CHAPTER 2. RELATED WORK 17

activation function. DeepFace [83] implements a deep neural network and affine
transformation to the align and represent step in typical FR framework to
reduce error. LightFace |76] implements the typical face recognition framework
in the background in TensorFlow and Keras to make it lightweight. It also
provides mainstream face detection models [47, 74, 5] for users to use. Dlib [47]
is a toolkit developed to build machine learning models with functions such as
classifications and regressions. It also has several functions for FR and face
detection in Python. FaceNet [74] removes the intermediate bottleneck layer
used in previous deep-learning based FR and uses a trained deep convolutional
network to optimize, improving the performance of the model. OpenFace [5]
uses CLNF [4] as the base of OpenFace model, with some changes. These
changes include: adding a validation step using CNN, using separate point
distribution set for eyes, lips, and eyebrows, and additional features such as

head pose and eye-gaze estimation.

2.2.1 Omne-Shot Learning and
Siamese Neural Network

One-shot learning is another method of object classification in Machine Learn-
ing by predicting from only one image per category. Research on one-shot
learning has started in the 2000s, with the usage of bayesian approach for
one-shot learning |27] [58]. The one-shot learning method proposed is used to
differentiate object classes, such as bicycles and person, cars and motorcycles,
and so on. Later on, another approach for one-shot learning emerge, utilising
transfer learning instead of bayesian approach [53]. With transfer learning, the
model gain knowledge from each iteration and transfer it to the next iteration,
which makes it more effective in one-shot learning and this approach shows im-

pressive performance compared to previous approaches. Because of the transfer

CHAPTER 2. RELATED WORK 18

knowledge capability, one-shot learning has been utilized for handwriting and
signature recognition, where the model performs really well in recognizing hand-
writing and signatures [52|. With the advancement of neural networks on image
detection in early 2010s and how effective the model is [51], researchers are find-
ing ways to incorporate neural networks in one-shot learning. A special type of
neural networks is Siamese Neural Network (SNN). SNN was first introduced in
1994, where it was used to detect if a signature is original or forged [14]. SNN
is able to do that thanks to one of it’s prominent feature, the identical neural
network structure. SNN contains 2 or more identical neural network structure,
where it takes 2 inputs and calculate the similarities of both inputs from the
feature vectors [84]. The similarities then run through a loss function to de-
termine if both images are the same based on the similarity value. Because of
that, there has been numerous research on face recognition and identification
using SNN [49] [102]. There are advantages of using SNN in one-shot learn-
ing. The biggest advantage is that SNN does not need to train its’ model when
there are new classes added to the database, compared to other neural networks
where there is a need to retrain the model when there is a new class added [56].
Another advantage is that for SNN to work well, it only needs a single image,
whereas other neural networks might need a lot of data to be able to accurately
detect. These advantages are here due to the SNN’s structure of using simi-
larity value of two images. However, there are disadvantages of using SNN in
one-shot learning compared to other neural networks. The main disadvantage
is in computational power, where SNN requires higher computational power

during training due to the identical neural network structure [10].

CHAPTER 2. RELATED WORK 19

Figure 2.1: Architecture of Siamese Neural Network

2.3 Pose Estimation and
Keypoints Analysis

Pose Estimation and Keypoints Analysis has been an interest in computer vi-
sion. This subject focuses on how to predict and track the position of a person,
either in an image or a video. During the last few years, there have been many
advances in this subject and new pose estimation algorithms are being made, ei-
ther to improve the performance or accuracy of pose estimation. Currently, the
most famous approach of pose estimation are top down approach and bottom
up approach. We will discuss both strengths and weaknesses of both approach
in this paper, and show some examples of it.

The top down approach relies on the model detecting the presence of hu-
man being in a frame, then determines the keypoints to outline the pose, with
the advantage in accuracy but suffers in performance. Examples of top down
approach in pose estimation (26, 25, 92, 2, 59, 32, 67, 6, 81] are reviewed in
this paper. RMPE [26] utilize CNN for pose estimation and Pose NMS for pose
redundancy elimination, which is implemented and improved in AlphaPose [25]
by using SIKR to accurately localize keypoints and Pose-aware Identity FEm-

bedding to simultaneously track poses. HRNet [92] focuses on making a pose

CHAPTER 2. RELATED WORK 20

estimation and object detection using high-resolution images by making high-
resolution convolution stream. YOLOPose [[2],[59]] build their model by using
YOLO [68] as the object detection framework; however, both differ in their
pose estimation. Amini, et al. [2] utilize a 6D Transformer to perform pose
estimation and keypoints regression [1|, whereas Maji, et al. [59] utilize loss
function to perform pose and keypoints estimation. Both algorithm shows no-
ticeable accuracy improvements compared to similar algorithms, although both
are incomparable to each other due to their objective and dataset difference.
DensePose [32], tackles the same issue with a different approach. Where most
models focus on developing their framework first, DensePose focus on gathering
a dataset, consisted of dense correspondences between SMPL model 57| and
person appearing in COCO dataset, then use the resulting dataset to build a
CNN object detection model, based on Mask R-CNN [34]. Improvements were
made in another version of DensePose [67] where they create a lighter, less layer
R-CNN model, which resulted in increase in model performance. BlazePose [6]
differs from typical top down approach models by detecting the torso or face
instead of whole body. To complement this approach, Bazarevsky et al. utilize
a fast face detector|7] and design a pose estimation model partly inspired by
Stacked Hourglass approach [63]. Pose Estimation Transformer (POET) [81]
extends the work done in DETR [17] with the addition of a transformer-based
architecture to predict human poses in parallel and a set prediction loss that
is a linear combination of simple sub-losses for classes, keypoint coordinates,
and visibilities. It contains three main elements, a CNN backbone using ResNet
[36], a encoder-decoder transformer based on [17, 89|, and pose prediction head.

Bottom up approach relies on the model detecting human keypoints, then
classify which keypoints belong to the same person and connect them. The

method has an advantage of performance compared to top down approach, but

CHAPTER 2. RELATED WORK 21

suffers from accuracy. Examples of bottom up approach |21, 95, 3, 28, 15] are
reviewed in this paper. HigherHRNet [21] uses similar backbone as HRNet
|92] with addition of high-resolution feature pyramid to predict high-resolution
heatmaps that are beneficial for detecting small person, which is more efficient
compared to HRNet. LitePose [95] provide more improvements to HRNet [92]
and HigherHRNet [21] by converting multi-branch architecture in HigherHRNet
to single-branch architecture using gradual shrinking, removing redundancies
found in HigherHRNet. Furthermore, LitePose also use fusion deconv head and
large kernel convolution to enhance its’ capacity. MoveNet divides the model
into three parts: encoder, mapper, and decoder, and uses a combination of Con-
volution, Max Pooling, Dense, and Upsampling layers in the model. Further-
more, it utilizes LeakyReLU as the activation function after each convolution
layer. Disentangled Keypoint Regression (DEKR) [28] utilize disentangled rep-
resentations [9] for the representation to accurately learn the keypoint region,
therefore the predicted keypoints are inside the keypoint regions. OpenPose
[15] utilize Part Affinite Fields (PAF) for body parts associationin pose estima-
tion. The research is based on [16], with the modifications on the model mainly
in PAF, by increasing network depth but removing body part refinement stage,
improving performance and accuracy of the algorithm.

With the massive amount of research conducted around pose estimation, it
is noted that the models made are getting increasingly more complex. Because
of this, Xiao et al. [96] researched the possibility of making simple baselines for
pose estimation models by using a simpler model, consisting of a few decon-
volutional layers added on a backbone network, ResNet, similar to the one in
[36]. The research showed that the simple model is capable of pose estimation
with a promising result, managed to perform slightly better than the winner of
COCO2017 keypoint Challenge’s models. The result of this result showcased

CHAPTER 2. RELATED WORK 22

that a simple model can be as effective as a complex one in pose estimation,
which our research will keep in mind during building our model. Furthermore,
another research [62| compares two popular pose estimation model from top
down and bottom up approach, BlazePose 6] and OpenPose [15], and found
out that BlazePose manage to surpass OpenPose in terms of real world per-
formance. This research demonstrate that, even though bottom up approach
are generally has better performance compared to top down approach, with the
right architecture, a top down model can surpass bottom up model in terms of

performance.

2.4 Action Recognition

Action recognition, also known as human activity recognition, is the process of
identifying and classifying human actions or activities from a video stream or a
series of images [37]. This task is challenging due to the need to determine when
the action started and ends. Even though it is challenging, but it is also an
important research topic in computer vision and has various applications such
as surveillance, sports analysis, and health monitoring. The interest started with
the usage of holistic features [12], then progressed to local features, and finally
with deep learning with [51] popularize the technique.

Deep learning has shown remarkable success in action recognition due to
its ability to automatically learn high-level features from raw data, without
the need for handcrafted features. Convolutional Neural Networks (CNNs)
have been the most widely used deep learning approach for action recognition.
The usage of this approach improves the accuracy as CNN performs well with
images [42]. Despite the current situation where Masked AutoEncoders (MAE)

[33] are becoming the State-of-the-arts solution for action recognition tasks, like

CHAPTER 2. RELATED WORK 23

in this case, VideoMAE V2-g is able to achieve 99.6 3-fold accuracy in UCF-
101 dataset, 95.9 Top-5 accuracy in Something-Something V2 dataset, and 88.1
accuracy in HMDB-51 dataset [93|, CNN still is a very fundamental approach
that inspired the emergence of masked autoencoder. Not only that, CNN itself
is still proven to be competitive in terms of accuracy, as one of the research
that use CNN as their approach, is able to achieve one of the best accuracy in
UCF-101 dataset, with 98.2 accuracy. This shows how CNN is relevant to the
task.|

Some researches |50, 82| focus on hand gesture detection and recognition as
part of action recognition. Kopuklu et al. [50] create a hand gesture detection
using lightweight CNN and hand gesture classification using deep CNN. Sung
et al. [82] improves on an existing hand skeleton tracker model, MediaPipe
Hands [103], with modifications to improve keypoint accuracy and the ability
to do a 3D keypoints estimation. And for classification, it combines heuristic
methods and neural networks to classify gestures.

Other method that is available for action recognition is through Graph
Convolutional Network (GCN). Even though this neural model is more recent
than CNN, but this model allows faster training time and higher predictive
accuracy in some of the tasks that are able to utilize graph [48]|. It’s able
to make the model to be semi-supervised learning, due to its nature of how
everything is able to be parameterized. This causes flexibility and eliminate the
limit of normalization of matrix in layer-wise propagation, by turning the layer-

wise propagation into vector. In reality, this approach is also generalization of
CNN.

CHAPTER 2. RELATED WORK 24

f(HO, 4) = (AHOWO)

Figure 2.2: ReLU Layer-wise propagation rule

; 1
'V =o (Y —h) w0

j Y

Figure 2.3: Graph Convolutional Layer-wise propagation rule

With these two different approach, generally it is used for different tasks.
Almost every tasks for action recognition uses CNN, as it’s bale to utilize image
well, and able to separate instance for picture. To name some of the tasks that
uses CNN in action recognition, there are Temporal Action Detection (|18], [78])
; Action Classification ([106], [79], [101]); Spatio-Temporal Action Detection
(124], [39]). CNN also works well in case where there is a need to recognize the
interaction between human and object and many other tasks. However, even
though CNN is able to take care of skeletal-based action recognition, GCN
works better comparably, that most of the State-of-the-art solution in this task
are using GCN rather than CNN.

2.4.1 Skeletal-based Action Recognition

Skeletal-based Action Recognition is different, since the task require precise
mapping of joints, where it might not be able to accurately locate joints, since
it might be influenced by noises that may received from the input video data,
such as background color, clothing and other noises. Because of that, most of
the time, this task would use keypoint extraction mentioned in section 2.3 to

get the joints mapping. This resulted the input for this task to be in form of

CHAPTER 2. RELATED WORK 25

graphs, where GCN is more suitable for this result !. Since the data that is
passed through this task is in vector form, this causes the algorithm able to
achieve high accuracy and near real-time performance.

Recent works of skeletal-based action recognition [20, 23, 54, 97| are dis-
cussed in this paper. Channel-wise Topology Refinement Graph Convolution
Network (CTR-GCN) [20] improves on Graph Convolution Network model by
simultaneously learning the topologies and channel-specific correlations using
channel-wise topologies. PYSKL [23] is a open-source toolbox, based of Py-
Torch, and designed to support different action recognition models from GCN
and CNN; such as CTR-GCN |20] and 3D Convolutional Networks [85]. PYSKL
is also developing a variation of ST-GCN [97| with modified architecture to more
reflect the current solution, named ST-GCN+-+. Hierarchically Decomposed
Graph Convolutional Network (HD-CGN) [54] creates sets of joint nodes for
edge extraction, highlights the dominant edge sets, and apply a new ensemble

method that uses only joint and bone stream.

2.5 Long Short-Term Memory

Unlike the other sections discussed in this material, Long short-term Memory
(LSTM) is not a part of computer vision. LSTM is a neural network, part of Al
Rather than continuously passing input that is processed in the previous layer,
LSTM as the part of Recurrent Neural Network, allows feedback connection.
This feedback connection allows the network to process entire sequences of data,
with example of speech or video. The architecture of this neural network also
allows the unit to protect memory content, while also processing activation

pattern step-by-step and add them to the memory after processing [38]|. This

IThere are cases where CNN is also used, but it requires more sophisticated technique to extract the
keypoints

CHAPTER 2. RELATED WORK 26

behaviour allows the network to process short-term memory that can last for
a lot of steps. LSTM network are well suited for issues that can be solved
by gradient-based approaches, such as classification, prediction on time series
and many else. Despite it’s older age compared to most techniques, LSTM is
proved to be effective, even for the recent implementations. In 2018, one team
consisted of five neural network trained on a single layer, 1024-units LSTM
model is trained to play a game of Dota 2, a game that is well known for a
complex mechanics and strategies and is able to beat teams of amateur human
teams |64, 11|. In 2019, an Artificial Intelligence called AlphaStar, built on
LSTM network beats one of the world strongest professional player in one of
the most complex video game, Starcraft 2, won convincingly with the score of
5-0 [90]. This prove that this network is still well used in the industry. Not only
that this model is able to be used in time series prediction, but it is also used
in human action recognition, speech recognition, rhythm learning and music
composition, handwriting recognition, market prediction and more tasks that

is able to be solved through artificial intelligence, especially healthcare.

Chapter 3

Implementation

3.1 General Framework

With the object detection and pose estimation model sorted, we have decided
on a general framework for the model we use on GestHome, shown in Figure

3.1. The flow of the model will go as follow

1. A person enters the Field of View of a camera-equipped smart home

device, making them the input for our model

2. The model will detect the person and using object detection, it will create

a bounding box around them

3. The model will scan the image inside the bounding box and using facial

recognition, it will search for a face inside and match it to a database

4. When the person’s face match with the face in database, the model will

use pose estimation to extract keypoints

5. With the extracted keypoints, the model uses LSTM for action recogni-

tion

27

CHAPTER 3. IMPLEMENTATION

28

6. With the action recognize, the program will do the command related to

the action

User

User opens the application

Device

Captures user's body

v

Detect user's face

opens the
webcam

Retrieve face from
known list in database

Loop]
Prompt user to do a gesture

Do a gesture

v

Alert the user that
the command has executed

[~ S—— .

Return a match face
(v a s s v L

Detect the
gesture

Find detected gesture
from database

Return the
matched command

Execute the
command

Figure 3.1: Sequence Diagram of the General Framework

From Figure 3.1, initially, we are planning to create a single stage model,

with all components of the model (Object detection, Face recognition, Pose

estimation) in one, streamline pipeline. The problem comes during combining

of these components. Previous researches combines either object detection and

face recognition [66]| or object detection and pose estimation [[59],[2]], but not

both of them at the same time. Here, we began the research more on multi-task

CHAPTER 3. IMPLEMENTATION 29

learning, as a part that is often used by different researcher to solve this issue.

Multi-task Learning in itself is a subsidiary of machine learning, where mul-
tiple task are learnt together in parallel through a shared model. This approach
reduces the data that are needed to train machine learning tasks, reducing over-
fitting and allows optimization on training on related tasks. Not only that, but
multi-task learning also allows model for different tasks to be trained faster, and
has the capability to reuse the previously known to augment the model for more
complex tasks. There are different methods of multi-task learning, with some of
the most used one named task grouping and overlap, and transfer of knowledge.
Because of its flexibility, multi-task learning are used in different tasks that are
solvable through deep learning. In Computer Vision, multi-task learning are
mostly used in changing the architecture, for the architecture to partition the
network into task-specific and allows generalization while minimizing negative
transfer [22].

In some cases, multi-task learning can hinder the performance of the model.
Depending on the tasks, multi-task learning can be outperformed by single-task
learning. Furthermore, tackling a large and diverse task at the same time can be
a challenge for multi-task learning, shown in [88]. This meant that depending
on the tasks, using multi-task learning might be less efficient than just relying
on single-task learning. Furthermore, research that involve multi-task learning
applies it only on the the head of the architecture, consisting of at most 2 or 3
tasks. Because of that, it is not yet possible for us to build a whole architecture
using multi-task learning, that is capable to accommodate every task inside the
architecture.

With multi-task learning not as efficient and more power-consuming than
we first thought, we decided to split the framework into 2 stages, as shown in

Figure 3.2. The 2 stages mentioned are: Object Detection and Face Recognition

CHAPTER 3. IMPLEMENTATION 30

in stage 1, and Pose Estimation and Action Recognition in stage 2. Since both
stages are related and crucial to the smart home system, we have decided on
combining both algorithms into one, using Flask as our back-end framework for
the project. Furthermore, to store the necessary data for our program to run,
we decided to use MongoDB as the database. The scheme of our program is

shown in Figure 3.5.

, Pe;sans Pivsnns e fan [ER—
Input Object detection oundng 9%, ¢ Face recognition NV G2IR035 " Pose Estimation LSTM Model Action Prediction

Happens
simutansously

Stage 2

Stage 1

Figure 3.2: General framework of GestHome

. iamese Neual\
Show face—p| chlslcr }——Input name——p{ Put new user to database
etwork MW_
) Pro; ram
User input] Show fac » Log in Match faci = Database — 8)
\ / the commw
W —% Action I
E‘lcu()sr:r(‘ he Do an action—~(Recognition Check the action in database Ask user if
Modeu user wants to do No

another action

[Y

Figure 3.3: Data Flow Diagram of GestHome

CHAPTER 3. IMPLEMENTATION 31

3.2 Stage 1: Object detection and
Face Recognition

3.2.1 Object Detection

With the goal of human detection, we have selected potential object detection
models that is suitable for our research, which are YOLO, Faster R-CNN, and
SSD. Furthermore, since our objective is to implement the model on smart
home devices, our main goal is to find the most efficient model that is available
for real-time detection. Based on previous research, we have decided to utilize
YOLO for object detection due to the its’ performance. Compared to R-CNN,
YOLO is much more suitable and provides much better real-time performance.
Whereas with SSD, although SSD provides slightly higher accuracy compared
to YOLO, we ultimately chose YOLO due to better performance. In the middle
of our research time, we also discovered that there is a newly published paper
and repository on the newest iteration of YOLO, YOLOv7. Before, we have
been doing trials on YOLOvVb, which is the current iteration of YOLO with the
most update and community support, despite not having an official paper. This
means there are 2 versions of YOLO that we can use in this project and because
of that, we have decided to do inference runs on both models, YOLOv5 and
YOLOv7, and we will evaluate which model suits GestHome the most based

on speed and accuracy.

3.2.2 Face Recognition

Face recognition is necessary to identify the person. There are a few face recog-
nition models we are able to choose to be used in GestHome |74, 66, 47, 5]. In

the end, we decided to implement dlib [47] to our framework as the face recogni-

CHAPTER 3. IMPLEMENTATION 32

tion model. We implement face recognition system that is available in dlib due
to its’ simple model, which is beneficial for our performance-minded framework,
and the built-in face recognition functions is sufficient for GestHome.

We notice that dlib performs pretty well in detecting our faces; however, if
we want to add more faces, we have to change both the code and database to
include that person. Furthermore, we also need to train the model again when-
ever a new person is added to the database, which is inefficient for a smart
home system with the possibility of adding new faces. Because of that, we
have implemented a one-shot learning, which enables us to add new images to
the dataset without the need to retrain our model. One-shot learning utilize
Siamese Neural Network (SNN), a special type of Convolutional Neural Net-
work. We implemented the SNN based on Figure 5.4, which takes an input of
2 105x105 images, run it thru a series of neural networks, feature vector, and
sigmoid loss function, with the result of the similarity value of both images.
After that is done, we compare the similarity value to our determined value;
if the similarity value is higher than the determined value, that means both

images match and vice versa.

CHAPTER 3. IMPLEMENTATION 33

Conv 64 10x10, relu max pool Conv 12877 relu max pool GOV 128.4x4, el may poo) Conv 256 4xd, Fully connected, sigmold

Xi

I g,
=R
— — P " «
q p ‘ ‘u A H:: B j“\ Fully connected, sigmoid
7N
‘ (P m))

I

128x9%9 256x6x6 4096x1 /
IX96196 4848 2 26 128x18x18 /
1x105x105 grayscale image 64x96x96 activations B4x¢ 128x42x42 128x21x21 X Y, (absolute difference)

//
/
V
/

J O BeRis X

1x105x105 grayscale image

Figure 3.4: The architecture of the Siamese Neural Network

With increase interest on Siamese Neural Network (SNN), there are sev-
eral implementations of SNN for face recognition with slight different models
between each implementations [8] [70] [41]. We decided to implement those
three models and compare the accuracy results of the 3 models. We will refer
Behera’s model [8] as Model 1, Renotte’s model [70] as Model 2, and Jain’s
model [41]| as Model 3.

As we can see from the three figures, Figure 5.5 managed to perform the
best from all three models, reaching up to 90 percent accuracy, whereas the
other two stays in around 70 percent of accuracy. Although Model 1 managed
to beat Model 2 and 3, we encounter an issue where Model 1 might randomly
not function as intended, and it resulted in a 50 percent accuracy, similar to
a coin flip. This is something we would like to avoid, since having unreliable
model will render GestHome useless to the user. We also encounter similar
issue in Model 2, which means that our best option is using Model 3 as our face
recognition model for GestHome.

Using Model 3 as our face recognition model leads to another problem,

CHAPTER 3. IMPLEMENTATION

Val Accuracy

Val Accuracy

Percentage

Model Accuracy (Model #1)

1.0

0.5 T T T T T T
o 20 40 60 80 100
Epoch

Figure 3.5: Accuracy result of Model 1

Model Accuracy Model #2

1.0

0.5 T T T T T T
o 20 40 60 80 100
Epoch

Figure 3.6: Accuracy result of Model 2

Model Accuracy

100
920
80

60

50 T T T T T T
o 20 40 60 80 100
Epoch

Figure 3.7: Accuracy result of Model 3

34

CHAPTER 3. IMPLEMENTATION 35

accuracy. 70 percent accuracy is not as high as expected, especially when it
involves security, since we want to ensure that our system can only be accessed
by listed individuals. Because of that, we have built a system where instead of
validating once, it will validate the user multiple times. This idea can be done
by capturing the user face for multiple times, with each time, the picture of
the user is compared to the pictures in our database. Then we keep a record
of the comparison result, and determined the user name based on the highest
amount of certain name appeared in the record. We found that this is a good
compromise on the accuracy issue since the multiple validations happen for only
around 3 to 5 seconds, which we believe is not too long for the user to wait.
While SNN is better for GestHome than dlib, it is unable to do face detec-
tion. Because of that, we have decided to combine dlib for the face detection
and SNN for the face recognition. To increase the accuracy of dlib correctly
detecting faces, we utilize dlib HOG and Linear SVM, based of [71]. With dlib,
we detect faces that appears in the picture, crop the face, and use the cropped

picture as the input for SNN.

3.3 Stage 2: Pose Estimation and
Action Recognition

3.3.1 Pose Estimation

Another crucial part of our model is pose estimation. Similar to object detec-
tion, we began to find different papers and implementations that are available
on GitHub. Our criteria in choosing the libraries of implementations and papers

are

1. Performance in Low Performance Device (using CPU)

CHAPTER 3. IMPLEMENTATION 36

2. Accuracy and Precision

3. Maturity of the model

4. Existing paper and conference entry of the paper
5. Community support on the model

Ultimately, we managed to get several pose estimation models that suits our
criteria, such as AlphaPose, OpenPose, LitePose, Yolo-Pose, BlazePose, HR-
Net, HigherHRNet, MoOveNet, PoseResnet, and Lightweight Openpose. The
models chosen have different arch9itecture, with a good combination of top-
down approach and bottom-up approach, as shown in Table 3.1. This proves
that, contrary to popular belief regarding bottom-up approach has better per-
formance than top-down approach, there are top-down approaches that can
match the performance of bottom-up approaches. To mimic the goal of this
research, we have decided to run inference of the aforementioned models on our
machines. However, in that stage, we encounter some issues about some of the

models.

CHAPTER 3. IMPLEMENTATION 37

Table 3.1: Approaches of different pose estimation tools

Method ‘ Model architecture
HRNet Top-down
HigherHRNet Bottom-up
BlazePose Bottom-up
AlphaPose Top-down
LitePose Top-down
Openpose Bottom-up
PoseResnet Top-down
YOLO-Pose Top-down
Lightweight Openpose Bottom-up
Movenet Bottom-up

3.3.2 Problem encountered

During our inference testing, we encounter several issues with some of the pose
estimation models. HRNet, HigherHRNet, and LitePose utilize similar archi-
tecture for their models, and from their research paper and GitHub page, they
develop their models using multiple NVidia GPUs. This meant it is impossible
for us to do an inference testing of their models on our machine. We have
tried to do inference run of the models on CUHK CSE GPU Server, and the
issue still persists. Although LitePose has a mobile version, we could not find
a source code for it, hence we could not replicate it to run on our machine.
Furthermore, some models are unable to run inference on our machine, hence
we remove it from our inference testing. For models that manage to run, we
have done an inference run and use their pre-trained model to measure the per-

formance. From these constraints, we have decided in testing the performance
of 6 models [15, 6, 25, 95, 65, 3|.

CHAPTER 3. IMPLEMENTATION 38

3.4 Action Recognition

As the main part of the project, having a robust action recognition system is
important. However, there is still a constraint for us to make sure GestHome
to work in lower computational devices. In the previous semester, we build
our own action recognition model, using LSTM. Through this approach, we
provided 4 pre-determined poses that is trained over LSTM, so it’s able to
predict the pose shown the movement that is used by the users.

Due to the nature of current model, there are ways for us to improve the
model. This doesn’t necessarily means that we need to change everything, but
we have decided to do keep the keypoint extraction as is. This decision also
was made clear due to BlazePoze accuracy.

In the current model, LSTM can be said that it is not sufficient due to
number of poses that it can currently detect, and the fact that there are in-
accuracies in trial, where if a motion can be detected even with the slightest
resemblence of it. This also brings a point where the model might find it hard
to distinguish two similar motions.

There are two candidate for Action Recognition model, each are trying
to achieve different goals that we have. The models that we are focusing to
evaluate in this semester are MotionBERT [105] and PYSKL [23]. One of the
goal is to get increase the accuracy to the action recognition system, so the
algorithm won'’t register a wrong movement. Both models also uses different
method to solve this issue, where both of them also uses different techniques
to get the motion accurately. That is why, we will be evaluating the use case

of each models, to figure out which model should we use to replace the current
LSTM model we have.

CHAPTER 3. IMPLEMENTATION 39

3.5 Website building

To connect both stages of GestHome as a coherent program, we have decided
to implement a website using Flask as the framework. We have designed a
few pages for GestHome, where it covers the functionality of the program,
such as the home page, log in page, face recognition page, and so on We have
added pages if unexpected things happen, such as if a user is not recognized by
GestHome, the user will have options to either go back to the main menu, try

to log in again, or register his/her face to the system.

3.5.1 Specification

External Interface Requirements

e User Interface
The design of this user website complies with the design guidance based
on Google Chrome, Microsoft Edge and Mozilla Firefox. Important user

interface qualities that fulfills the guidelines are:

1. Minimalist Design
Having minimalist design is helpful for the user, since it makes user
having easier time when using the application. Reducing the unim-
portant components to exist in the design helps the design to look

cleaner and improve visibility for the website.

This aspect of quality can be seen throughout the entire website
pages, where for every pages, it has minimal design and easy to
access functionalities. With black and white design, it looks pleasing

for the user too.

2. Concise

CHAPTER 3. IMPLEMENTATION 40

In addition to having minimal design, the functionalities of the web-
site is concise, preventing over-clarifying. Labels of functionalities
are clearly defined, makes user understand the functionalities of the

website faster.

3. Error recovery and prevention
With the complexity of different parts coming together, it is easy
for website to have errors. It is important for the users to not see
any errors, so they are able to experience the website without any

confusion.

e Hardware Interface The web page should be accessible by any device
with a browser application. However, for the hosting server, it is required
to be used in any operating system with Linux kernel, as the functional-
ities of the websites are dependent on the libraries that are available on

Linux.

e Communication Interface This web page uses internet connection (by
any means, whether it is WiFi, modem or LAN). In addition to that, this
website requires availability of camera and permission given to access the

camera.

CHAPTER 3. IMPLEMENTATION

41

Functional Requirements

1. Login
Summary

Actor
Trigger
Scenario

On success
On failure

2. Register

Summary
Actor
Trigger
Scenario

Post-condition

3. Failed login

Summary
Actor
Trigger
Scenario

Post-condition

Login to system if the user has an account in the database.
Else, the user has to register for an account

User

Login Button

The website will prepare the user to open the camera. Once
ready, the system will try to match the face of the user with
the existing face in the system local database.

The user will get in to the platform in their account

The user will be guided to the failed login page

Register account to the system

User

Register button

When pressed, the system will prepare to take the photo of
user’s face. After putting the User name, the system will
take the user’s face, then immediately log the user in.

Log the user in and add the user into the user database

Giving options for user to do further action

User

Failed login

When the login is failed because the user does not exist in
the user database, then it will give option to try to login
again or register the face

Execute the selected button

CHAPTER 3. IMPLEMENTATION 42

4. Motion Detection

Summary
Actor

Trigger
Pre-condition
Scenario

Post-condition

Giving options for user to do further action

User

Motion Detection button

Must be log in to the registered account in the system
When this button is pressed, the system will capture the
motion made by the user. The system will then capture ten
movements before getting the aggregated motion wanted
to be made by the user.The option of the motions will be
explained below.

Put the motion into the action queue in the database

5. Motion Detection Execution

Summary

Actor

Trigger
Pre-condition
Scenario

Post-condition

Execute the action given by the user through Motion De-
tection option

API listener

New entry of movement in queue database

Need to have a new entry placed in MongoDB

API listener will always have the script running to check if
there is a new entry in the queue. If there’s no queue, then
it will keep listening to the database. Else, it will match
the action with the associated motions, then it will call 3rd
party API associated to the motion.

The result of the API will be spoken by the text to speech.

CHAPTER 3. IMPLEMENTATION

Non Functional Requirements

1. Usability
e Intuitiveness
2. Security

e Permission required for camera access

e GDPR-compliant
3. Reliability

e Cloud database, available for 99.995

e Software Testing
4. Availability
e Detailed logging for every execution
Design Constraints
e Requires a stable internet connection
e Requires access to webcam

e Video will look like stuck after execution

43

CHAPTER 3. IMPLEMENTATION 44

3.5.2 System Architecture

Architecture Diagram

Application

ﬁ Jinja mlask . Database ﬁ API Listoner
0 . cron
oo 11b PYSKL mongo

User OpenCV

Figure 3.8: Architecture diagram of the system

Data Flow Diagram
e Login

& Check if user is registered in the system—‘

Face Match face with | pgal Face Database Cloud Database
registered face in local

User Input Status f Log in status message

Save the face record

A A

Save the user record in cloud databas

—Face, Name Register

onfirmation of registration

Figure 3.9: Login flow of the system

CHAPTER 3. IMPLEMENTATION 45

e Motion detection

Determine the motion
AP| response reply
User database

[y

User Input ——Hand Movements Action recognition

Retumn the action mapped
to the user's motion Transform API 1 1o voi

Put motion to cloud database

APl request
according to motion

API Listener Public API

Motion queue —Motion
database

t

API
Queue empty, keep listening response

Figure 3.10: Motion detection flow of the system

Sequence Diagram

e Login
LML Reqgister
Sequence
User Service Database
Register————

€ —Prompt User to input name—]

Input name———M

Take photo of user

FPut name of user into Cloud DEM

|_Put face of the user with name |
User now registered into local database

into the system

Figure 3.11: UML Sequence Diagram for Login

CHAPTER 3. IMPLEMENTATION

e Register

LML
Login Sequence

Liser

Service

46

Login——————™

Database

Get user's face
Find matching face in
local database

| Check if user is registered

in cloud database)

HE=Confirm if user is in database—

if succesy

[*—U=er login to the system—]

User will be asked to fry
login again or register

Figure 3.12: UML Sequence Diagram for Register

CHAPTER 3. IMPLEMENTATION

e Motion Detection

UML Motion
Detection Sequence
User Service Database AP listener

—Motion Detection Button—7

[*-Prompt User to put the motion—

Do the motion————

1
Aggregate the motions

Put the result of motion___y|
to cloud database

Play the text-to-speech

Read the metion entry
from the cloud database

Return the motions——»

< Put the response to
history database

of the response

1
Match the motion to API

Request for third-party API
associated to the motion

Get response from the,
third-party AP1

Figure 3.13: UML Sequence Diagram for Motion Detection

47

Third-party API

CHAPTER 3. IMPLEMENTATION 48

3.5.3 System component
OpenCV

OpenCV helps us in the development of both stages. Here, OpenCV also enable

the usage of camera usage for the main functionalities.

Flask Framework

Web

Flask

|]

MongoDB

Server

Database

Figure 3.14: Caption

e Database: MongoDB to store our data, in particular, the user data, the

action queue, and history database.

e [ront-end: Jinja is the template engine that is fully integrated through
flask, enabling it to use the state and component from backend to be

viewed.

e Back-end: Flask is a full-stack framework based on Python, where it
enables REST API usage and operations, handling HT'TP request and

responses, and integrate it with the Jinja

CHAPTER 3. IMPLEMENTATION 49

API Listener

e Database: Since the database is available on the cloud, this allow the API
listener to be run on the other device. This API listener is dependent on
the database, since it only execute the command once there is a new entry

to the database.

e Text-to-Speech: Every result of APT processed will be read using text-to-
speech through the API host speaker.

e Third-party API: The API listener uses different public APIs that have
some functionalities.

Preset movements:

Motion API
Dislike Holiday API (https://holidayapi.com/)
Fist Hong Kong Weather API (https://www.hko.gov.hk/)
Like Cryptocurrency API (http://api.coinlayer.com)
Mute Useless Facts API (https://uselessfacts.jsph.pl)
OK Sunrise-Sunset API (https://api.sunrise-sunset.org)
Palm Air Quality API (http://api.airvisual.com)
Peace Bible Verse API (https://bible-api.com)
Stop Sign Tech Facts API (https://techy-api.vercel.app)
Three-Left | USD-HKD Currency API (https://cdn.jsdelivr.net)
Two Up Number Trivia API (http://numbersapi.com)

Table 3.2: Available preset movements to API

If any of the movements are not registered to the API, then the listener

will response that the movement given has not bound to any API.

CHAPTER 3. IMPLEMENTATION

3.5.4 User Interface Design
Landing Page

Welcome to GestHome!

After Login Page

Welcome Back, Albert!

What would you like to do?

Motion detection Log Out

50

CHAPTER 3. IMPLEMENTATION

Register Page

Please enter your name:

Login Page

Please wait a moment

while we are analysing your face...

51

CHAPTER 3. IMPLEMENTATION

Login Failed Page

| am sorry, but | couldn't recognise you...

What would you like to do instead?

Motion Detection Part

Please wait a moment

while we are analysing your move...

Stop Detecting J

© L 8 =

52

CHAPTER 3. IMPLEMENTATION 53

Queue Database Entry (Before API listened)

= Documents *
account.queue

actionrecogn

{} MyQueries 1
account.queue
£ Databases <o o+ DOCUMENTS N
Documents Aggregations Schema Explain Plan Indexes Validation
- & account —
Filter® @ Type a quer eld: 'value Reset M\ < | More Options »
m history —
B quaua ADD DATA 1-1of1 & Bt =
M user

admin

local motien: "Palm"
last_accessed:

sample_training

L]
]
» = sample_supplies
]
s

sample_weatherdata

@& Documents +
account history

actionrecogni

€} My Queries

? 1

account.history
& Databases o o+ DOCUMENTS INDE
Documents Aggregations Schema ExplainPlan Indexes Validation
* & account —
Fiter® @v Type a query: : v reset | ([ERRY [| More options »
m history —
U qpems ADD DATA | ¥ EXPORT COLLECTION | 1-100fl0 < [=:]
- user
* & admin (v) _ia: objectrd(casaszeac . (7]

username: "Theo"
motion: "Palm"
time: 2023-05-15T15:37:10.259+00:00
v result: Object
status: "success"
v data: Object
city: i Po"
state: "Tai Po"
country: "Hong Kong SAR"
~ lecation: Object
type: "Point
* coordinate:
* current: object
* pollutien: Object
~ weather: Object

local

s
L]

» & sample_supplies
= sample_training
]

sample_weatherdata

rray

CHAPTER 3. IMPLEMENTATION 54

3.5.5 Challenges in Website Implementation
Flask integration with OpenCV

As OpenCV is not officially supported by Flask, making use of the webcam
and everything requires us to make some different tweaks in Python. With
this tweaks, we manage to make the camera to work. However, due to variable
locality of the OpenCV video capture, this doesn’t allow several cases of usage
to use camera twice in a row. This might also cause the camera to stop working

and the whole website to crash.

By isolating each instances of video capturing in OpenCV to each function-
ality that uses them, we are able to utilize every functionality without any error

caused by the OpenCV error.

Stream Context

To explain more about this, it requires a bit of explanation on the code. In all
the functions that make use OpenCV, and some of the processing through it, it
is only possible for Flask to put the video to Jinja by generator function. This
will allow the video to be changed into jpeg format that is able to be shown to
the front end easily, frame by frame, so it looks like a video. However, with this

generator function, it does not allow any function to return two values freely.

At first, we tried to have return statements in the generator. However, the
more we use it, the more we realize that return in generator function only acts
as Stoplteration, where it is not flexible to be used. In case where the gener-
ator function only have limited amount of result, it would be easy to resolve

this issue. The problem is, the OpenCV will accept input all the time until

CHAPTER 3. IMPLEMENTATION %)

the condition for stop video capture is achieved. This result that the returned
value will include the output of the OpenCV camera output. Another thing is
that this method forces the user to do every operations twice. Another method
that we tried is to jsonify the result, thinking that it would help the result to
be processed after. However, this would result more errors, as view function

are not able to return json, as the data is not active to receive response context.

Our last resort is to look at the Flask documentation to see if there is any
thing that we can use to enable this function easily. Reading the documenta-
tion, we found Streaming Context, where the basic functionality is to invoke
the generator function to generate data and pass the function data result to a
direct response object. With this functionalities, it bypasses the need to have
generator and view. For every JPEG frame sent to the Jinja template engine,
then it will wait until the request data produced by that generator function
to be returned, by letting the request context active along with the view func-
tion. This what enables the request data to be passed after the view function

1teration.

Performance Drop

Despite our trial on each stages run in a separate window of OpenCV having
good performances, both in FPS and accuracy, packaging the model into a
format into h5 format or any format that support the model to be accessible
through Flask, significantly reduces the performance. This part will be later

discussed in the evaluation part for stage 1 in more detail.

Chapter 4

Evaluation

4.1 Stage 1

4.1.1 Object Detection

With our concerns regarding YOLOvH and YOLOv7, we decided to do inference

testing on both models to determine which model suits the best for our use case.

8 1 person, 1
video 1 Users oCu YP\yo 6 B i @ 1 person, !
video 1 U P\yo 6 Pro.mp4: ! 1 person, 1
video 1/1 I ocumen \yo 86 Pro.mp4: 1]

olov7\WIN_28221829 23 27 @6 Pro.mpd: 1 person, 1 tv, Done. (161.6ms) I

23 27 86 Pro.mpd: 1 person, 1 chair, 1 tv, Done. (9

Figure 4.2: Inference testing using YOLOv7

From Figure 4.1 and Figure 4.2, we can see that YOLOvV7 manages to
pick up a detail that YOLOv5 miss (A chair), which indicates that YOLOv7
has higher precision than YOLOv5. However, it is slower when compared to

YOLOvV5 (70ms vs 100ms, both models are using smallest possible pre-trained
56

CHAPTER 4. EVALUATION 57

model) during inference testing. Because our project mainly focus on the per-
formance of the models instead of precision or accuracy, we decided to use
YOLOV5 for our project.

4.1.2 Face recognition

Early on, we figured out that the face recognition that is based on dlib is really
easy to use. What we need to do is only to put a picture of a person into a
known list, then the algorithm will draw similarities that is read on the camera
through OpenCV. From there, it is able to the compare it and give annotations

on the face that is detected on the camera.

Albert_1 0.696419

Table 4.1: Face Recognition using dlib only (Left) vs dlib and Siamese Neural
Network (SNN) (Right)

One issue that we found on this part is that the face encoding that is
detected might delay the performance of the framework in stage 1, since it takes
some time to detect the face. Not only that, but this face recognition is pretty
inconsistent in time given too. Because of that, we have decided to include One-
shot learning with Siamese Neural Network (SNN) to improve it’s ability to do
face recognition. With SNN, GestHome manage to held performance similar
to one without SNN. As shown in Figure 4.3, performance of face recognition

algorithm with dlib and SNN manages to achieve a stable 8-9 FPS when a face

CHAPTER 4. EVALUATION 58

25 1
201 ﬂ
15 1

\

Frame Per Second

T T T T T T
0 20 40 60 80 100
Epoch

Figure 4.3: Performance record of dlib and Siamese Neural Network (SNN)
Based of Frames Per Second (FPS)

is detected. This shows that SNN does not affect the overall performance of
the face recognition system, while at the same time increase the accuracy, from
40-50 percent when using only dlib to 60-70 percent when using dlib and SNN,
as shown in Table 4.2.

Accuracy of the model

EEEEE

Table 4.2: Accuracy when using dlib only (Left) vs dlib and Siamese Neural
Network (SNN) (Right)

CHAPTER 4. EVALUATION 59

4.2 Stage 2

4.2.1 Pose Estimation

For models that manage to run, we have done an inference run and use their
pretrained model to measure the performance. Table 4.5 shows the perfor-
mance of these models, with Frames per Second (FPS) as the measurement
of performance (Higher FPS equals to better performance). We notice that
OpenPose, Lightweight OpenPose, and AlphaPose are not suitable for our use
case due to the low real-life performance (0 and 3-4 FPS) and all three models
are more suitable for devices with a dedicated GPU, which is not the intended
target of our research. Because of that, for our research, we have decided to

focus on the remaining 3 models, LitePose, BlazePose, and MoveNet.

Table 4.3: Performance of different algorithms

Method \ CPU/GPU' FPS
OpenPose CPU 0
BlazePose CPU 15
AlphaPose CPU 3-4
LitePose Phone 30-35
Lightweight Openpose CPU 3-4
MoveNet CPU 14-16
T

Devices used:
Phone: Samsung Galaxy Note 10 with Snapdragon 855
CPU 1: AMD Ryzen 5 Pro 3500U with Radeon Vega 8

CPU 2: Intel Core i5-7300HQ with NVidia GTX 1050

CHAPTER 4. EVALUATION 60

4.2.2 LitePose

LitePose [95] is the most efficient architecture when it comes to pose estima-
tion. Originally inspired by HRNet, this pose estimation architecture is able
to remove redundant parts and improving the overall architecture, through Fu-
sion Deconv and Large Kernel Convs, enabling it to perform in low computing
devices. This also allows the architecture to perform with much lower latency

compared to its predecessor while not sacrificing its accuracy.

Table 4.4: Litepose inference run on mobile

From Table 4.4, we can see that Litepose manages to estimate the poses
correctly. However, with Litepose, there are moments where the model inaccu-
rately estimate the poses, especially in regards to detecting background objects

as part of a pose, shown in Table 4.4.

CHAPTER 4. EVALUATION 61

4.2.3 Movenet

MoveNet, released in 2022, is another architecture that is suitable for our
project. The model offers great performance for real-time video, easy to use
(offered as part of TensorFlow Hub), and it has different models for different
goals. MoveNet uses a combination of Convolution layer, Max Pooling, Dense
layer, and Up sampling layer. With Movenet, we manage to do an inference run
on local device, and it manages to locate the keypoints correctly, as shown in
Table 4.5. Compared to Litepose, it doesn’t perform as smooth; however, pose

estimation accuracy is better in Movenet compared to Litepose.

Table 4.5: Movenet inference run on CPU

CHAPTER 4. EVALUATION 62

4.2.4 BlazePose

Built for low end devices, BlazePose is another architecture fit for our project.
Not only that it doesn’t require a high computational device to operate it, it
also has some perks, which are customizable through python, supports more
keypoints and many others. However, we also find that there are times where
this tool fall short, especially when handling pollution, where it is not able to
determine correctly the keypoints on the body. This happens because of its

nature of approach on bottom-up.

Table 4.6: BlazePose inference run on CPU

In conclusion, we found that LitePose, although have the best performance
from Table 4.3, it suffers from slightly in accuracy, mentioning that the model

is designed to be simpler than the original HRNet in favour of performance.

CHAPTER 4. EVALUATION 63

However, the biggest problem that LitePose have is the lack of support for
non NVidia GPU machine, which makes it not suitable for our project. Mean-
while, BlazePose and Movenet perform very similar between each other; but,
BlazePose manage to do this with more keypoints plotted (33 in BlazePose vs
17 in Movenet). Because of that, for our project, we are leaning towards using
BlazePose as our pose estimation model, although we still keep Movenet as a

second option.

4.2.5 LSTM Model

Succeeding in finding different pose estimation tools that are available to use,
we began to find more on how to process those poses in a sequence where the
poses detected connect together to form an action. Different researches points
out that we are able to use and integrate Long Short-term Memory to our
existing pose estimation. This is possible since the pose estimation system that
we use enables us to only extract the keypoints from different body parts that
are detected in the frame. In addition to that, for each and every single one
of keypoints that are used in BlazePose are in form of arrays, this enables us
to do concatenation for unification through numpy and thus enables us to have

the structure to do training.

Data Collection & Preparation

No model is able to be run in anything without the data. That is the real-
ization that we had as we thought of this solution. Now that the keypoints
are collected in form of numpy array, it is easier for us to collect sequences of
image. Initially there are several datasets that are available and well known for
action recognition, namely UCF101[80], Kinetics|46], Moments [61] and many

more. However, we decided not to use those datasets for several reasons. First,

CHAPTER 4. EVALUATION 64

those dataset takes very long time to train, as the length / sequence that each
dataset have are varying from 1 sec to 15 minutes. With the amount of data in
one dataset, we believe that it will take some time to train all of them. Second,
we envision that the actions that are to be detected in the model is simple
gestures used in our daily lives, such as raising hand, swiping and rotating. As
we look at the datasets, most of them contains obscure actions that we don’t
need and would be weird instead if implemented, such as breakdancing, high
kick, tai chi.

Because of this reasons, we decided to take our own data. This could be
done by recording 30 videos of 30 frames for each movements. This way, we
would have sufficient data to train the activity for it to be recognizable. In a
single frame, it contains the coordinates of keypoints extracted from that frame,
in total 258 coordinates (x, y, z) for keypoints on pose, right hand and left hand
captured through BlazePose. This frame by frame recording will imitate as if
there are a certain movement done through the keypoints.

There is not much to be done for the data preparation before the model

training, apart from splitting the data collected to be training and testing data.

Model Designing

For us to have the machine learning model that has the capability to use every
frame, it means that we need to use an algorithm that allows the training to
go through the whole sequence that are available in the dataset we collected.
Hence, we decided to use LSTM as the machine learning algorithm. Not only
to just use one layer in the infrastructure, but also to use two layers to im-
itate multi-step forecasting for the movements. The rest of the architecture
is explained through the Figure 4.4. Also, the architecture explained through

Tensorboard would also help explain on the more detail on the graph, which

CHAPTER 4. EVALUATION 65

is shown in Figure 4.5. For this model, Adam is utilized in this model as the
optimization technique since it can give one that can manage difficulties with

sparse gradients and noise.

model = Sequential()

model.add({LSTM({128, return_sequences=True, activation='relu’, input_shape:(BGJZSS}}ﬂ
model.add(L5TM(64, return_seguences=False, activation="relu'})
model.add(Dropout(8.2))

model.add(Dense(64, activation="relu'))

model.add({Dense(32, activation="relu'))

model.add({Dense(actions.shape[@], activation="softmax'))

Figure 4.4: LSTM Model

CHAPTER 4. EVALUATION 66

,,,,,,,,,,,,,,,,,,

Rankc1

cast/y

;;;;;
aaaaaaaaaaaaa

categorical_cros. amenson e dmension
a2

eeeeeeeeeee

“““““““

Figure 4.5: Architecture of the LSTM model

4.2.6 Action Recognition
MotionBERT

MotionBERT was introduced in 2022, where it is trying to tackle the issue of
heterogeneity of available data resource. With their method of functionality,
they are able to utilize the different data that is able to be extracted in their
algorithm, and able to use all the data in a way that helps them to have more

accurate result of the motion. By having 3D pose representation, Mesh recovery

CHAPTER 4. EVALUATION 67

and skeletal-based action recognition, this model is able to become state of the
art solution for 3D action recognition. This is what mentioned as unified way

of learning human motion representation.

Video 3D Pose Mesh Action

I’%\ /w Hopping (1.00)

Figure 4.6: MotionBERT in action

The only problem with this model is that it is reliant on Alphapose. It in
itself is not a problem, but since the way they got the data for the skeletal-pose
data is through the output result of Alphapose, it means that it’s only able to
process the result after processing the video before. This causes this project
to not be viable for real-time evaluation, especially mentioning the fact that

Alphapose is not suitable for low computational device evaluation too.

PYSKL (ST-GCN)

Although we mentioned earlier that PYSKL is a toolkit that is able to support
multiple skeletal based action recognition, but it is also supported to be the
official implementation of ST-GCN++, an improvement from ST-GCN [97],
where they improved ST-GCN algorithm with improved architecture on spatial
module and temporal module [23]. This modification help them to be able to
reach the status of state of the art for both 2D and 3D action recognition based
on NTU RGB+D.

Not only that, they also allow inference in CPU. Even though it is not
compared to what is capable in NTU RGB+D model, but it has 15 pretrained

CHAPTER 4. EVALUATION 68

motions according to HaGRID [45]. The motions that are registered are Call,
Dislike, Fist, Four, Like, Mute, OK, One, Palm, Peace, Rock, Stop, Three
[Middle 3 Fingers|, Three |Left 3 Fingers|, Two Up.

call dislike fist four like mute palm
peace peace inv. rock stop stop inv. three three 2 two up two up inv.

KMHI‘-N%&A

Figure 4.7: Gesture recognized through HaGRID

4.3 Overall evaluation

4.3.1 Accuracy evaluation

LSTM

On the training for the model, we thought that we need a lot of epochs for
the model to learn., so we set it to around 1000 epochs. However, the training
categorical accuracy reaches 99% accuracy pretty quickly. We decided to finish
the training early in 60 epochs, so the model won’t overfit. This decision is
not just a hunch, as it is revealed in more iterations of model building that
overfitting prone to happen quite quickly, and thus it is wise to use enough
epoch for it to train. Figure 4.9 and Figure 4.10 describe the graph produced

on the accuracy and loss on the training.

CHAPTER 4. EVALUATION

Eraph = "handmp'
modality = "J°

model = dict(

type="RecognizerGCN",

backbone=dict(
type="5TGCN",
in_channels=2,
gcn_adaptive="init’,
gcn_with res=True,
tcn_type="mstcn’,
num_stages=6,
down_stages=[6],
inflate stages=[6],

graph_cfg=dict(layout=graph, mode='spatial’)),
cls head=dict(type="GCNHead", num classes=48, in channels=128))

test pipeline = |

dict(type="PreNormalize2D', threshold=8, mode='auto’),
dict(type="GenSkeFeat', dataset=graph, feats=[modality]),
dict(type="UniformSample', clip len=18, num clips=1),

dict(type="PoseDecode’),

dict(type="FormatGCNInput®, num_person=1)},
dict(type="Collect", keys=['keypoint®', 'label’'], meta keys=[]),
dict(type="ToTensor", keys=["keypoint'])

69

Figure 4.8: ST-GCN model, where it utilizes some of the parts from libraries

that are supported by PYSKL

CHAPTER 4. EVALUATION 70

Figure 4.9: Training statistics on accuracy

Figure 4.10: Training statistics on loss

As seen on the figures above, we can see that there are a significant drop in
the accuracy in around 20 epochs. This drop is however, without any reason
whatsoever since from there it will increase with stability and hitting constant

accuracy above 95 percent.

vtrue

[1, 3, 8, 1, B, 3]
yhat
[1, 3,8, 1, 8, 2]

multilabel confusion_matrix(ytrue,yhat)

array([[[4. 8],
[e, 211,

[[4, e],
[e, 211,

[[4,],
[e, 2111, dtype=int&4)

accuracy_score(ytrue,yhat)

i.e

Figure 4.11: Confusion Matrix on the testing data

CHAPTER 4. EVALUATION 71

After the model is built, the thing that is needed to test is the accuracy.
The way to test this accuracy is through a method called confusion matrix, to
test whether the result of the model and expected value are the same. As we
can see on Figure 4.9, our model is able to hit accuracy score of 1.0. This prove
that the model that was built had a good performance in detecting the gestures
correctly.

However, in the real application, the LSTM model can be inaccurate in
detecting the motions. In case of there’s no movement detected, sometimes the
model will detect that the user is doing a rotating motion.

PYSKL (ST-GCN) PYSKL provides the checkpoint of the HaGRID,
where the keypoints are extracted by MediaPipe Hands, then it will just predict
the movement based through the ST-GCN++ model they have. It is able to
accurately depict each motions and gestures that are made to the camera,
and we found that it is working better compared to LSTM for hand movement.
However, as we mentioned, this model is only limited to one hand only, whereas
the LSTM model is able to depict the whole body movement.

4.3.2 Speed evaluation

Now that the part of stage 2 is ready, then the speed or the performance of
the integration is able to be tested. Initially, it was pretty hard to determine
accurately on the speed, since the speed varies a lot on whether a certain part
is detected or not (it varies if only keypoints are detected, or when a motion
that form the gesture trained in the model is detected). Most of the time a
motion is registered in the camera, the system will print out the latest gesture
that the user made. So in Figure 4.12, it can be seen that the latest motion
that is made by the user is Swipe Right (SwipeR), and the FPS shown on user’s
CPU (AMD Ryzen 5 PRO 3500U) is showing 4 FPS. Despite its low number,

CHAPTER 4. EVALUATION 72

the interaction with camera shows that it is smoother than 4 FPS that was
achieved in comparison done in Table 4.3. Trial on another CPU (Intel Core i5

7300HQ) shows that the performance of the model improves a lot, reaching 12
FPS.

Figure 4.12: Stage 2 evaluation on speed (FPS is shown on top left corner)

With the integration from the both model in Flask, LSTM suffers from
performance issue both in FPS, notably 50% cut in FPS, from the OpenCV
evaluated (9 FPS) to less than 6 FPS. Although the model doesn’t suffer from
accuracy cut, but this performance cut add more delay in the website. However,
as PYSKL doesn’t need to be converted to different format to run, it is able to
run in Flask without performance issue, able to achieve 14 FPS.

Accuracy wise, since the dataset that PYSKL is trained with, HaGRID, it
is able to detect hand motion more accurately compared to the LSTM. The
contributing factor to this is that the size of dataset it is trained with. THe
previous LSTM model, since we made the dataset ourselves, it is limited in the
training data, where each motion only have the size of 4 MB. If we see the
HaGRID dataset [45], we can see that each motion will have around 40 GB of

CHAPTER 4. EVALUATION 73

HD Video as the whole dataset. This difference in dataset size also shows that

the more data that is used, the more accurate the model will be.

4.3.3 Website performance

The website is able to perform well with satisfying performance, where for each
button press, it is able to respond to it under 0.2 seconds. For the login part,
it will take 15 frame from the webcam, where each frame returns the username
of the detected face. Based on the performance of the OpenCV on this part,
it means that this part will take around 3 seconds before it is able to pass the
aggregated username. Motion detection will take only 10 frames of majority
action, which means it will take less than 1 seconds to record every motions

(assuming there is motion read through camera).

Chapter 5

Conclusion

5.1 Summary

In this semester, we have done improvements on our face recognition and pose
estimation algorithms which resulted in a better system, combine Stage 1 and
Stage 2 of GestHome into a smooth system with the help of Flask as our back-
end framework and other programs such as MongoDB, and added features
that is necessary for GestHome. With utilizing one-shot learning for our face
recognition, we have managed to improve the accuracy without sacrificing any
performance, which shows how effective one-shot learning is and the suitability
of one-shot learning for our case. Furthermore, swapping LSTM to PYSKL for
our action recognition program prove to be the right choice as it gives more
accuracy and performance increase.

With the completion of website and API listener, it means that all the
functionalities that is expected to work in a Smart Home system has been
completed, where it is able to execute the commands that is given by the user
through camera, in which the API listener will reply to the user through text-

to-speech.

74

CHAPTER 5. CONCLUSION 75

5.2 Problem Encountered

Our research in developing a smart home system using face recognition and
pose estimation has their own sets of problem. For face recognition, our biggest
hurdle is in finding the right balance between accuracy and performance. Since
our system will be applied to low power hardware, we have to find the right algo-
rithm that performs decently accurate in recognizing faces but doesn’t take too
much power to run. This is a challenging task in face recognition since popular
face recognition models utilize layers of Convolutional Neural Network (CNN)
with various degree of complexity, which negatively impact the performance of
GestHome. This is why our team has spent a good amount of time research-
ing the most suitable face recognition model, since a suitable model matters a
lot in our case. The same situation also happens in action recognition part of
GestHome.

Another struggle that we found during our research is the necessary hard-
ware to do inference testing on the models for face recognition and action recog-
nition. With models of both subject consists of various amounts of neural net-
works, many times the model we have chosen needed to be run on powerful
hardware, such as multiple GPUs. The hardware requirements on these models
meant that we couldn’t utilize them on our research even though some models
looks promising in terms of accuracy, with many reaching state-of-the-art ac-
curacy. This issue is amplified with the necessity of GestHome to be able to
run in a low power hardware.

The action recognition module that we are using in the end product, which
is PYSKL, has a limitation on which OS it is using. There are a certain depen-
dencies on Linux, where it disables user to use it on different OS. This limits

the host server to only available on Linux.

CHAPTER 5. CONCLUSION 76

The website implementation on Flask takes time, because there are unfore-
seen errors that are not usual, and there is not much help available, leading us
having to resort to the blindly experimenting through the official documenta-
tion or trying to debug ourselves. However, though it is difficult, we managed
to put all the stages and features that we have into GestHome website.

Lastly, utilizing Flask as the framework of GestHome has negatively impact
the performance of GestHome. In face recognition, we notice a drop in frames
by up to 40 percent, from average of 9 FPS if we run the model outside of Flask
vs & FPS if we run the model with Flask. The same problem is also encountered
with the action recognition model. This creates a burden in our research since

that means we have to be even more wary about the performance of our model.

Chapter 6
Distribution of Work

In this project, our team have contributed equally throughout the entire year.
We have collaborated on creating the ideas for this project, doing research on
similar projects, writing the codes , and . With the components of the project
being very similar with each other, we decided that collaborating will be much
better, rather than separating the projects into different components. Further-
more, with both of us having various knowledge on AI and Computer Vision,
we manage to bring new perspective and ideas that might not be imagined by
only one person. We have also regularly updated our professor and supervisor
with the progress of our project and communicate to them regarding the dif-
ficulties we encounter when building our project. This way, our professor and
supervisor know the progress of our project and they are able to help us with
any issue arising and give helpful suggestions to our project. The details of the

distribution of labour will be written in the following table:

7

CHAPTER 6. DISTRIBUTION OF WORK

Details of Work

Responsible Member

Designing the system architecture

Christopher Albert Priatko
and Theodore Fabian Rudy

Research on various pose estimation
system and face recognition

Christopher Albert Priatko
and Theodore Fabian Rudy

Building the face recognition system

Christopher Albert Priatko

Building the pose estimation system

Theodore Fabian Rudy

Building the back-end infrastructure

Theodore Fabian Rudy

Designing the front-end

Christopher Albert Priatko
and Theodore Fabian Rudy

78

Bibliography

1]

2]

3]

5]

6]

A. Amini, A. S. Periyasamy, and S. Behnke. T6d-direct: Transformers
for multi-object 6d pose direct regression. CoRR, abs/2109.10948, 2021.

A. Amini, A. S. Periyasamy, and S. Behnke. Yolopose: Transformer-based

multi-object 6d pose estimation using keypoint regression, 2022.

R. Bajpai and D. Joshi. Movenet: A deep neural network for joint profile
prediction across variable walking speeds and slopes. IEEE Transactions

on Instrumentation and Measurement, 70:1-11, 2021,

T. Baltrusaitis, P. Robinson, and L.-P. Morency. Constrained local neural
fields for robust facial landmark detection in the wild. In Proceedings of

the IEEFE international conference on computer vision workshops, pages
354-361, 2013.

T. Baltrusaitis, P. Robinson, and L.-P. Morency. Openface: an open
source facial behavior analysis toolkit. In 2016 IEEE Winter Conference
on Applications of Computer Vision (WACYV), pages 1-10. IEEE, 2016.

V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang, and
M. Grundmann. Blazepose: On-device real-time body pose tracking,
2020.

79

BIBLIOGRAPHY 80

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and
M. Grundmann. Blazeface: Sub-millisecond neural face detection on mo-
bile gpus, 2019.

G. S. Behera. Face recognition wusing siamese network.

https://medium.com/wicds/face-recognition-using-siamese-networks-
84d6f2e54ead, 2021.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1798-1828, 2013.

S. Benhur. A friendly introduction to = siamese
networks. https://towardsdatascience.com/
a-friendly-introduction-to-siamese-networks-85ab17522942,
2020.

C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiw:1912.06680, 2019.

A. F. Bobick and J. W. Davis. The recognition of human movement using
temporal templates. IEEFE Transactions on pattern analysis and machine
intelligence, 23(3):257-267, 2001.

A. Bowes, A. Dawson, and D. Bell. Ethical implications of lifestyle mon-
itoring data in ageing research. Information, Communication & Society,
15(1):5-22, 2012.

J. Bromley, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah. Signature

BIBLIOGRAPHY 81

[15]

[16]

[17]

18]

[19]

[20]

[21]

verification using a" siamese" time delay neural network. Advances in

neural information processing systems, 6, 1993.

7. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh. Openpose:
Realtime multi-person 2d pose estimation using part affinity fields, 2018.

Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2d
pose estimation using part affinity fields. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 7291-7299,
2017.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko. End-to-end object detection with transformers. In Fu-

ropean conference on computer vision, pages 213-229. Springer, 2020.

Y. Chao, S. Vijayanarasimhan, B. Seybold, D. A. Ross, J. Deng, and
R. Sukthankar. Rethinking the faster R-CNN architecture for temporal
action localization. CoRR, abs/1804.07667, 2018.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pat-
tern analysis and machine intelligence, 40(4):834-848, 2017.

Y. Chen, Z. Zhang, C. Yuan, B. Li, Y. Deng, and W. Hu. Channel-wise
topology refinement graph convolution for skeleton-based action recog-
nition. In Proceedings of the IEEE/CVFE International Conference on
Computer Vision, pages 13359-13368, 2021.

B. Cheng, B. Xiao, J. Wang, H. Shi, T. S. Huang, and L. Zhang. High-

BIBLIOGRAPHY 82

erhrnet: Scale-aware representation learning for bottom-up human pose

estimation, 2019.

[22] M. Crawshaw. Multi-task learning with deep neural networks: A survey.
arXw preprint arXiw:2009.09796, 2020.

23] H. Duan, J. Wang, K. Chen, and D. Lin. Pyskl: Towards good practices
for skeleton action recognition. arXiv preprint arXiv:2205.09443, 2022.

24] A. El-Nouby and G. W. Taylor. Real-time end-to-end action detection
with two-stream networks. CoRR, abs/1802.08362, 2018.

|25] H.-S. Fang, J. Li, H. Tang, C. Xu, H. Zhu, Y. Xiu, Y.-L. Li, and C. Lu. Al-
phapose: Whole-body regional multi-person pose estimation and tracking

in real-time, 2022.

[26] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu. Rmpe: Regional multi-person

pose estimation, 2016.

|27] L. Fe-Fei et al. A bayesian approach to unsupervised one-shot learning
of object categories. In proceedings ninth IEEE international conference
on computer viston, pages 1134-1141. IEEE, 2003.

28] Z. Geng, K. Sun, B. Xiao, Z. Zhang, and J. Wang. Bottom-up human

pose estimation via disentangled keypoint regression, 2021.

129] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international con-
ference on computer vision, pages 14401448, 2015.

[30] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies

for accurate object detection and semantic segmentation. In Proceedings

BIBLIOGRAPHY 83

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

of the IEEE conference on computer vision and pattern recognition, pages
580-587, 2014.

T. Grel. Region of interest pooling explained. https://deepsense.ai/

region-of-interest-pooling-explained/, 2017.

R. A. Giiler, N. Neverova, and 1. Kokkinos. Densepose: Dense human
pose estimation in the wild. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 72977306, 2018.

K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. B. Girshick. Masked
autoencoders are scalable vision learners. CoRR, abs/2111.06377, 2021.

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep con-
volutional networks for visual recognition. In Computer Vision — ECCV
201/, pages 346-361. Springer International Publishing, 2014.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition, 2015.

S. Herath, M. Harandi, and F. Porikli. Going deeper into action recogni-
tion: A survey. Image and vision computing, 60:4-21, 2017.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9:1735-80, 12 1997.

R. Hou, C. Chen, and M. Shah. Tube convolutional neural network (T-
CNN) for action detection in videos. CoRR, abs/1703.10664, 2017.

BIBLIOGRAPHY 84

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861,
2017.

A. Jain. One shot face-recognition using siamese network, 2019,

Y. Jiaxin, W. Fang, and Y. Jieru. A review of action recognition based

on convolutional neural network. Journal of Physics: Conference Series,
1827(1):012138, mar 2021.

P. Jin, V. Rathod, and X. Zhu. Pooling pyramid network for object
detection. arXww preprint arXiv:1807.03284, 2018.

K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang,
R. Wang, X. Wang, and W. Ouyang. T-CNN: Tubelets with convolutional
neural networks for object detection from videos. IEEE Transactions on
Circuits and Systems for Video Technology, 28(10):2896-2907, oct 2018.

A. Kapitanov, A. Makhlyarchuk, and K. Kvanchiani. Hagrid - hand ges-

ture recognition image dataset, 2022.

W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al. The kinetics
human action video dataset. arXww preprint arXiv:1705.06950, 2017.

D. E. King. Dlib-ml: A machine learning toolkit. The Journal of Machine
Learning Research, 10:1755-1758, 2009.

T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. arXww preprint arXiv:1609.02907, 2016.

BIBLIOGRAPHY 85

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

G. Koch et al. Siamese neural networks for one-shot image recognition.
2015.

O. Kopiiklii, A. Gunduz, N. Kose, and G. Rigoll. Real-time hand ges-
ture detection and classification using convolutional neural networks. In
2019 14th IEEE International Conference on Automatic Face € Gesture
Recognition (FG 2019), pages 1-8. IEEE, 2019.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. Burges, L. Bot-
tou, and K. Weinberger, editors, Advances in Neural Information Pro-

cessing Systems, volume 25. Curran Associates, Inc., 2012.

B. Lake, C.-y. Lee, J. Glass, and J. Tenenbaum. One-shot learning of
generative speech concepts. In Proceedings of the Annual Meeting of the

Cognitive Science Society, volume 36, 2014.

B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. One shot learn-
ing of simple visual concepts. In Proceedings of the annual meeting of the

cognitive science society, volume 33, 2011.

J. Lee, M. Lee, D. Lee, and S. Lee. Hierarchically decomposed graph con-
volutional networks for skeleton-based action recognition. arXiv preprint
arXiv:2208.10741, 2022.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg. SSD: Single shot MultiBox detector. In Computer Vision — ECCV
2016, pages 21-37. Springer International Publishing, 2016.

[. Logunova. A friendly introduction to siamese networks. https://

serokell.io/blog/nn-and-one-shot-learning, 2022.

BIBLIOGRAPHY 86

[57]

58]

[59]

[60]

[61]

62]

[63]

[64]

65]

M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. Smpl:
a skinned multi-person linear model. ACM Trans. Graph., 34:248:1-
248:16, 2015.

A. Maas and C. Kemp. One-shot learning with bayesian networks. 2009.

D. Maji, S. Nagori, M. Mathew, and D. Poddar. Yolo-pose: Enhancing
yolo for multi person pose estimation using object keypoint similarity
loss, 2022.

D. Marikyan, S. Papagiannidis, and E. Alamanos. A systematic review of

the smart home literature: A user perspective. Technological Forecasting
and Social Change, 138:139-154, 2019.

M. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S. A. Bargal,
T. Yan, L. Brown, Q. Fan, D. Gutfruend, C. Vondrick, et al. Moments in
time dataset: one million videos for event understanding. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, pages 1-8, 2019.

S. Mroz, N. Baddour, C. McGuirk, P. Juneau, A. Tu, K. Cheung, and
E. Lemaire. Comparing the quality of human pose estimation with
blazepose or openpose. In 2021 4th International Conference on Bio-
Engineering for Smart Technologies (BioSMART), pages 1-4, 2021.

A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human

pose estimation, 2016.
OpenAl. Openai five. https://blog.openai.com/openai-five/, 2018.

D. Osokin. Real-time 2d multi-person pose estimation on cpu:
Lightweight openpose. arXww preprint arXiw:1811.12004, 2018.

BIBLIOGRAPHY 87

66]

67]

[68]

169]

[70]

[71]

[72]

73]

[74]

D. Qi, W. Tan, Q. Yao, and J. Liu. Yolobface: why reinventing a face
detector. arXww preprint arXiv:2105.12931, 2021.

R. Rakhimov, E. Bogomolov, A. Notchenko, F. Mao, A. Artemov,
D. Zorin, and E. Burnaev. Making densepose fast and light, 2020.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 779-788, 2016.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time

object detection with region proposal networks, 2015.
N. Renotte. Face recognition, 2021.

A. Rosebrock. Face detection with dlib (hog and cnn).
https:/ /pyimagesearch.com/2021/04/19/face-detection-with-dlib-hog-
and-cnn/, 2021.

S. Ruder. An overview of multi-task learning in deep neural networks.
arXw preprint arXiww:1706.05098, 2017.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages
4510-4520, 2018.

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified em-
bedding for face recognition and clustering. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), June
2015.

BIBLIOGRAPHY 88

[75]

[76]

[77]

78]

[79)

[80]

[81]

[82]

S. Sepasgozar, R. Karimi, L. Farahzadi, F. Moezzi, S. Shirowzhan,
S. M. Ebrahimzadeh, F. Hui, and L. Aye. A systematic content review
of artificial intelligence and the internet of things applications in smart
home. Applied Sciences, 10(9), 2020.

S. I. Serengil and A. Ozpinar. Lightface: A hybrid deep face recognition
framework. In 2020 Innovations in Intelligent Systems and Applications
Conference (ASYU), pages 23-27. IEEE, 2020.

M. Shafiq, Z. Gu, O. Cheikhrouhou, W. Alhakami, and H. Hamam. The
rise of “internet of things” review and open research issues related to

detection and prevention of iot-based security attacks. Wireless Commu-
nications and Mobile Computing, 2022:12, 08 2022.

Z. Shou, J. Chan, A. Zareian, K. Miyazawa, and S. Chang. CDC:
convolutional-de-convolutional networks for precise temporal action lo-
calization in untrimmed videos. CoRR, abs/1703.01515, 2017.

K. Simonyan and A. Zisserman. Two-stream convolutional networks for
action recognition in videos. CoRR, abs/1406.2199, 2014.

K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXw preprint arXiv:1212.0402,
2012.

L. Stoffl, M. Vidal, and A. Mathis. End-to-end trainable multi-instance
pose estimation with transformers. arXw preprint arXiw:2103.12115,
2021.

G. Sung, K. Sokal, E. Uboweja, V. Bazarevsky, J. Baccash, E. G. Bazavan,

BIBLIOGRAPHY 89

[83]

[34]

[35]

[86]

[87]

[88]

[89]

C.-L. Chang, and M. Grundmann. On-device real-time hand gesture
recognition. arXiv preprint arXw:2111.00038, 2021.

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the
gap to human-level performance in face verification. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages
1701-1708, 2014.

P. Tehria. One-shot image classification by meta learning. https:
//medium.com/nerd-for-tech/one-shot-learning-fe1087533585,
2021.

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning
spatiotemporal features with 3d convolutional networks. In Proceedings of

the IEEE international conference on computer vision, pages 4489-4497,
2015.

M. Turk and A. Pentland. Eigenfaces for recognition. Journal of cognitive
neuroscience, 3(1):71-86, 1991.

J. Uijlings, K. Sande, T. Gevers, and A. Smeulders. Selective search for
object recognition. International Journal of Computer Vision, 104:154—
171, 09 2013.

S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans, D. Dai,
and L. Van Gool. Multi-task learning for dense prediction tasks: A survey.

IEEE transactions on pattern analysis and machine intelligence, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017,

BIBLIOGRAPHY 90

[90]

[91]

[92]

193]

[94]

[95]

O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg,
W. Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds,
D. Horgan, M. Kroiss, I. Danihelka, J. Agapiou, J. Oh, V. Dalibard,
D. Choi, L. Sifre, Y. Sulsky, S. Vezhnevets, J. Molloy, T. Cai, D. Budden,
T. Paine, C. Gulcehre, Z. Wang, T. Pfaff, T. Pohlen, D. Yogatama,
J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, C. Apps,
K. Kavukcuoglu, D. Hassabis, and D. Silver. AlphaStar: Mastering the
Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/,

2019.

J. Walsh, N. O’ Mahony, S. Campbell, A. Carvalho, L. Krpalkova,
G. Velasco-Hernandez, S. Harapanahalli, and D. Riordan. Deep learn-

ing vs. traditional computer vision. 04 2019.

J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu,
M. Tan, X. Wang, W. Liu, and B. Xiao. Deep high-resolution represen-

tation learning for visual recognition, 2019.

L. Wang, B. Huang, Z. Zhao, Z. Tong, Y. He, Y. Wang, Y. Wang, and
Y. Qiao. Videomae v2: Scaling video masked autoencoders with dual
masking, 2023.

M. Wang and W. Deng. Deep face recognition: A survey. Neurocomput-
ing, 429:215-244, 2021.

Y. Wang, M. Li, H. Cai, W.-M. Chen, and S. Han. Lite pose: Efficient
architecture design for 2d human pose estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13126-13136, 2022.

BIBLIOGRAPHY 91

[96]

[97]

98]

[99]

[100]

101

102]

B. Xiao, H. Wu, and Y. Wei. Simple baselines for human pose estimation
and tracking, 2018.

S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional
networks for skeleton-based action recognition. CoRR, abs/1801.07455,
2018.

L. Yang, L. Lou, X. Song, J. Chen, and X. Zhou. An improved object de-
tection of image based on multi-task learning. In 2022 3rd International
Conference on Computer Vision, Image and Deep Learning € Interna-

tional Conference on Computer Engineering and Applications (CVIDL
¢ ICCEA), pages 453-457, 2022.

C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang. Bisenet: Bilateral
segmentation network for real-time semantic segmentation. In Proceedings

of the European conference on computer vision (ECCV), pages 325-341,
2018.

C. Z. Yue and S. Ping. Voice activated smart home design and imple-

mentation. In 2017 2nd International Conference on Frontiers of Sensors
Technologies (ICFST), pages 489-492, 2017.

B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang. Real-time action
recognition with enhanced motion vector cnns. CoRR, abs/1604.07669,
2016.

C. Zhang, W. Liu, H. Ma, and H. Fu. Siamese neural network based gait
recognition for human identification. In 2016 ieee international conference

on acoustics, speech and signal processing (ICASSP), pages 2832-2836.
IEEE, 2016.

BIBLIOGRAPHY 92

[103] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C.-L.
Chang, and M. Grundmann. Mediapipe hands: On-device real-time hand
tracking. arXiw preprint arXiv:2006.10214, 2020.

[104] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2881-2890, 2017.

[105] W. Zhu, X. Ma, Z. Liu, L. Liu, W. Wu, and Y. Wang. Learning
human motion representations: A unified perspective. arXiv preprint
arXiw:2210.06551, 2022.

[106] Y. Zhu, Z. Lan, S. D. Newsam, and A. G. Hauptmann. Hidden two-stream
convolutional networks for action recognition. CoRR, abs/1704.00389,
2017.

