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Reinforcement Learning has become popular since the appearance of Alphago. It           

has been applied to multiple areas in the world and now we would like to study and                 

apply reinforcement learning in horse racing, which is the most famous gambling            
event in Hong Kong. In this report, we collect data from Hong Kong Jockey Club and                

Hong Kong Observatory. After analysing them, we first use XGBoost regressor to            
build a model to predict the horse racing result. Then, we will construct the Deep Q                

Network model using the result of XGBoost and conclude our work. This is called a               

model based Reinforcement Learning. 
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Chapter 1  Introduction 

1.1 Overview 

The topic of this final year project is trying to learn how to bet on horse racing with                  

rein, throughout this report we will demonstrate the work done during the first             

semester. This chapter offers a brief overview of this final year project and             
introduction to the topic. Moreover, it provides related work and previous approaches            

on the horse racing predictions. In the end, it introduces the difficulties in predicting              
horse racing results and the coming objective in the second semester. 

 
 

1.2 Motivation 

Nowadays, artificial intelligence has become the most popular technique in the           
world. As one of the areas of artificial intelligence, machine learning is applied to              

many different uses in the world, and many softwares and hardwares have born             
because of machine learning. For example, many CPUs and GPUs have claimed            

that they are more powerful in machine learning. The most popular electric car             

company in the world, Tesla, has also developed the Autopilot AI using deep neural              
networks [1]. Google created the best AI chess player Alphago which beat all human              

chess players [2]. The trend of machine learning attracts us to study about machine              
learning and apply machine learning to one of the most popular events in Hong              

Kong, horse racing. The gambling of horse racing can bring lots of money to us. This                

attracts us to study horse racing. 
 

Before this project, there are the other projects to apple machine learning in horse              
racing. For example, LYU1603 Final Year Project used Tensorflow to predict the            

horse racing result [3]. LYU1703 Final Year Project used a deep neural network to              

predict the result [4]. LYU1805 Final Year Project used deep probabilistic           
programming [5]. All of them used supervised learning to predict the result. Instead             

of supervised learning, we are going to use reinforcement learning. 
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Reinforcement learning becomes famous in these years due to Alphago who has            
used reinforcement learning. Before that, people have used reinforcement learning          

to play different games. However, no one has ever used reinforcement learning to             
predict the result of horse racing or teach the AI to bet. That is why we would like to                   

apply reinforcement learning in horse racing. 
 
 

1.3 Backgound 

1.3.1 Horse Racing 

Horse racing has been popular for many years in Hong Kong. This event started in               

the 1840s when Hong Kong was not yet transferred to China [6]. With the complete               
and strict law of gambling, Hong Kong citizens love betting in horse racing. In              

2019/2020, Hong Kong Jockey Club has recorded the total amount bet of horse             

racing by customers is around 121.0 billion [7]. 
 

There are multiple components of horse racing including racecourse, system, horse,           
jockey, trainer and wager [8]. 

 
1.3.1.1 Basic of Horse Racing 

There are two main racecourses in Hong Kong. They are Sha Tin Racecourse and 

Happy Valley. 
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 Mainly Host Number of 
races per 
race meeting 

Track Max. 
Number of 
starters 

Sha Tin 
Racecourse 

Sunday day races 10 Turf of 
All-Weather 

14 

Happy 
Valley 
Racecourse 

Wednesday night 
races 

8 Turf 12 



 

The system of horse racing includes season, distance, class, rating, weight and 
draw. The race season is from September to July with 99 race meetings. Distance 

can be classified as short, middle and long. 

 
The horses are classified from Class 1 to Class 5 where Class 1 is the highest class                 
and Class 5 is the lowest. A new horse starts with 52 rating. Around 5 to 7 points will                   

be added to the rating for each win. First 4 in the race will add points while losing in                   

the race will deduct points. 
 

 
 

There are handicaps which means runners carry different weights to equalise their            
chances of winning. The higher rating horse carries more weight. Also, with more             

additional weight, the horse will get more rating if it wins. 
 

The draw refers to the horse’s starting position in the starting gate. The smaller              

number of the draw means the closer to the inside rail. The horse may get a different                 
advantage from the draw depending on the horse’s characteristics. 

 
The jockey rides the horses according to the trainers’ instruction. The trainer trains             

and cares for the horses and manages operation. They all get licenses from Hong              

Kong Jockey Club. 
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Short 1000M 1200M 1400M 

Middle 1600M 1650M 1800M 

Long 2000M 2200M 2400M 



 

 
 
1.3.1.2 Bet 

Odds decides how much you get if you win. Usually, higher odds mean lower chance               
of winning. For example, if the win odds is 1.5 and you win with $10, you will get the                   

dividend $15 back including the cost $10. There are two types of odds which are Win                

odds and Place odds. Now, the betting type of horse racing: 
 
Simple bet: 

 
Exotic Bets (Single-race): 
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Type Condition of winning 

Win Pick the winner 

Place Pick any one of the first three horses 

Quinella Pick the first and second horses in any order 

Quinella Place Pick any two of the first three horses in any order 

Banker Pick a banker which must be in all possible combinations and 
three other selections to pair with the banker. The Quinella 
combination gives a dividend. 

Multiple Pick 4 horses and there will be 6 combinations. Each Quinella 
Place combination gives a dividend. 

3 Pick 1 The horses are in 3 groups as {1st,2nd}, {3rd,4th,5th}, others. 
The dividend is given by any runner from the chosen group 
wins. The odds are special. 

Type Condition of winning 

Forecast Pick the first and second horses in correct order 

Trio Pick the first three horses in any order 

Tierce Pick the first three horses in correct order 

First 4 Pick the first four horses in any order 

Qurtet Pick the first four horses in correct order 



 

 

Exotic Bets (Multiple-race): 

 
 
1.3.2 Reinforcement Learning 

Reinforcement learning is one kind of machine learning. It is about how the agent              
learns to take actions in the environment to get the maximum reward [9].             

Reinforcement learning is totally different from the other two kinds of machine            
learning. Supervised learning trains the agent to learn from the data with labeled             

input and output. Unsupervised learning trains the agent to learn from the data with              

only input and find the pattern. More details of reinforcement learning will be             
mentioned in the chapter of reinforcement learning. 
 

1.4 Objective 

In this project, our objective is to apply reinforcement learning into horse racing. We              

want to build a model that can place the bet on the winning horse by predicting it.                 
Before the model can have positive profit, we would like the model to gamble like a                
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Type Condition of winning 

Double Trio Pick the first three horses in any order in each of the two 
nominated races 

Triple Trio Pick the first three horses in any order in each of the three 
nominated races 

Double Pick the winner in each of the two nominated races 

Treble Pick the winner in each of the three nominated races 
(Only available in the last 3 races of each race meeting) 

Six Up Pick the winner in each of the six nominated races 
(Only available in the last 6 races of each race meeting) 

All Up Placing bets on more than 1 race. They can only be simple            
bets’ combinations. It can be choosing n races with m          
combinations. The odds will be multiplied by each other. 



 

human being. We will focus on the strategy that the model takes. For example, the               
model chooses to place a bet on which horses or chooses not to bet.  

 
After training the model similar to human gambling, we would like to push the limit to                

go beyond human to gain profit in the long term or short term. We want the model to                  

be overwhelming in horse racing. The result will be compared to the other method of               
machine learning in horse racing.  
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Chapter 2 Data Preparation 

2.1 Data Collection  

There are companies selling historical data from 2000 to 2020. But due to our limited               

budget, we collect our dataset from the Hong Kong Jockey Club official website [10]              

and Hong Kong Observatory official website [11].  
 

2.1.1 Information of Horses 

The information such as weight, sex, color, dim, etc. are collected. The dataset             
contains these features from 2771 horses. 

 

2.1.2 Historical Horse Racing Records 

All the horse racing records from 2010 to 2020 are collected. Each horse participates              
in horse racing for an average of 3 to 4 years. Therefore, the horse racing records                

between 2014 to 2019 will be mainly used in our model as we want to label the horse                  
in our model. The dataset contains 37,755 records and 3,080 races from 2014 to              

2019. And 2019 to 2020 will be our testing set with 810 races and 9859 records. 

 

2.1.3 Historical Weather Data 

The average degree, pressure and humidity from 2010 to 2020 are collected. The             

data between 2014 to 2019 will be mainly used for our xgboost regressor and deep               
neural network regressor, as we only use the horse racing record from 2014 to 2020               

to train our model. The dataset contains 37,755 records for each race from 2014 to               

2019. And 2019 to 2020 will be our testing set with 9859 records. 
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2.2 Data Description  

2.2.1 Race data 

The following tables show the feature values of racing records obtained from the             

HKJC official website. There are around 3890 race records from 2014 to 2020. (End              
of the 2019.) 

 
Figure 1. Race data 

 

 

2.2.2 Horse data 

The below tables recorded the data of the horse. This record includes all horse data 

in each race. This means the same horse has different data in different races 
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because these data will change in each race. For example, after the horse may 
increase its rating, weight from the previous race. 

 

 
Figure 2. Horse data 

 
2.2.3 Weather data 

The below table is the weather data in each race. There is 3890 weather data which                

is every day of the race. Compared to the previous data (LYU1703), the feature              
values of the weather are significantly fewer. It is because we believe that some              

weather data will not help but only make noise to the model. For example, the moon                
phase of the race day is supposed not to affect the result of the horse because the                 

race court gets a lot of lighting. 
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Figure 3. Weather data 

 
2.2.4 Additional data 
 

 

 
Figure 4. Additional data 

 

We believe that if a horse wins a lot, then it is likely to win the next race. Therefore, 

we add these features to increase the accuracy of our prediction. We have also 

analyzed the correlation between these features in the next sub-chapter. 

 

2.3 Data Analysis 

In this part, we are going to find the relationship between different features values              
based on the previous project analysing the data. We will classify the data into              

continuous data and categorical data [12]. 

 

2.3.1 Continuous data 

The below table shows the correlation between two continuous values. Here, we will             

pick some significant values and analyze them. 
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Figure 5. Corr. matrix of Continuous data 

 

The correlation between the count of the first place and second place is 0.54, which               
is pretty high, and it implies that if a horse wins a lot before, then it is likely to win                    

more. The correlation between the count of the first place and third place and the               
count of the second place and third place are similar. 

 

The correlation between win odds and the place is 0.42. Supposing that the lower              
win odds get higher place and this correlation has proved that. The place is the index                

which is 1 is the highest and the correlation makes sense. 
 

The rating is also related to the count of first place, A horse wins more, then the                 

rating will increase. And there is an interesting correlation that the actual weight of a               
horse is positively correlated to the horse’s rating with 0.18. 
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2.3.2 Categorical data 

The below table shows the association between two categorical values. Here, we will             
pick some significant, meaningful values and analyze them. The association means           

the probability of getting the other data if we have data.(Forecast) This is called              
“Theil’s U” or “Uncertainty coefficient”. For example, if we have the horse_id, we can              

forecast the country, colour, sex, import type and sire name. This is certain because              

a horse can only have one country, one colour, one sex, one import type and one                
sire name. However, we can still find some interesting associations. 

 
Figure 6. Theil’s U of Continuous data 

 

The association between the jockey name and horses’ id is 0.94. This means most 
of the time the horse will only be rode by one jockey. The other association is the 

class and the race length. These mean the horse will usually train for a specific race 
length instead of changing it at a high frequency. The horse will stay in one class 

instead of changing in. 
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2.3.3 Continuous data vs categorical data 

The below table shows the correlation ratio between numerical values and 
categorical values.The correlation ratio will tell the probability of knowing the 

category if we have a number. Here, we will pick some significant values and 
analyze them. 

 
Figure 7. Correlation ratio between Continuous data and Categorical data 

  

For example, if we have the last rating of the horse, in 76% we will know what class 
the horse belongs to. In this graph, we shall see if we have numerical data, we will 

easily know which horse it is compared to the other data. This proves that most of 

the horses have unique data instead of the same data but different horses. 
 

2.3.4 Conclusion of analysis 

In machine learning, if there are highly correlated features, It harms the performance             
of the model which is called multicollinearity. So we may need to exclude those              
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features with high correlation. Luckily, there are no features with more than 0.8             
correlation between them, So we will use all of these feature values. 

 

2.4 Data preprocess 

We normalize all of the continuous data using Z-score normalization other than            
max-min normalization as we think that there are outliers between the horses. We             

want a normalization to handle those outliers. ​We will use one hot encoding on the               

categorical data. 
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Chapter 3 XGBoost 

3.1 Description 

XGBoost was developed by Tianqi Chen in 2014 as a scalable end-to-end tree             

boosting system [13]. The reason for using XGBoost in this project is there are a lot                

of feature values like horses’ data. Multivariable regression can be effectively done            
by XGBoost. In this chapter, the principle of XGBoost will be simply introduced and              

mainly introduced how to apply XGBoost into our model. 

 
3.1.1 Decision Tree 

Decision Tree is the basis of the tree boosting system. Here is a decision tree from                

the paper “XGBoost: A Scalable Tree Boosting System'' written by Tianqi Chen.            

Decision tree classifies the data by asking the input some questions. The tree below              
is classifying the input by asking whether the input's age and gender. Every node              

(split) in the tree represents the features of input. The leaf of the tree is the category.                 
There is a prediction score below the category. Decision trees can handle some             

missing feature in some input which benefits a lot in our case like setting missing in                

yes or no. 

 
Figure 8. Example of decision tree​1 

 

1A figure in the paper “XGBoost” 
URL:https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf 
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In our case, the leaf is the predicted weight of every feature value and the predicted                
weight of each feature value will be used to calculate the predicted finish time. We               

will use the predicted finish time to predict the finished position of each horse. 
 

However, decision trees usually cause overfitting problems which means training          

data’s accuracy will be very high, while the testing data cannot fit the model,              
especially there are a lot of feature values causing a lot of noise. 

 

3.1.2 Gradient Boosting Decision Tree 

As mentioned in the last part, just the decision tree is difficult to provide a good                

model to fit the testing data. Boosting is combining weak learners to become a              

strong learner [14]. Weak learners mean which prediction is not accurate. Strong            
learners mean their prediction is accurate. 

 
Tree boosting means there are a lot of decision trees with low accuracy, and then               

combined to a boosted tree with higher accuracy [16]. This is also called a tree               

ensemble. There is a boy in the figure above. If two trees combine together, the               
function of boy will become: f(boy) = (+2) + (+0.9) = 2.9 

 
If there are many trees, gradient boosting will be used. The prediction of the i-th tree                

[15]: 

 
Formula 1. The prediction of the i-th tree 

 

Therefore, the formula of the t-th . is the prediction where is            

the upcoming t-th tree and is the prediction which is combined [15]. These two              

formulas will be used in XGBoost. 
 

From the formula, the boosting will be done step by step. That is why it is called the                  

gradient boosting decision tree. 
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3.1.3 XGBoost (Extreme Gradient Boosting) 

XGBoost is based on gradient boosting decision trees. Here, the derivation of the             
learning objective is done by Corey Wade and Kevin Glynn from “Hands-On            

Gradient Boosting with XGBoost and scikit-learn” since this derivation is better for            
understanding. 

 

The learning objective for t-th boosted tree: 

 
Formula 2. The learning objective for t-th boosted tree 

 

The first part of the function is called the loss function which is the mean squared                

error for regression. is the target value in the i-th row and is the prediction in the                  
i-th row. The sum of the difference between all rows will be the error.  

Here, the second part is called regularization term which smooths the final learnt             

weights to avoid overfitting by penalizing the complexity of the model [13].  
 

 
Formula 3. Regulariztion term 

 
W gives the corresponding leaves and T is the number of trees. and are the                 
penalty. If the penalty is zero, the learning objective will be the same as gradient               

boosting decision tree’s objective. 

 
Then, Chen used second-order approximation to optimize the learning objective          

which is from Taylor’s formula. He calculated the first order and second order             

gradient by and , we can get: 
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Formula 4. The learning objective for t-th boosted tree 

 

Let  and   and the optimal weight of a leaf j: 

 
Formula 5. The optimal weight 

 
The final objective function: 

 
Formula 6. Final objective function 

 
This function can measure the quality of a tree by how well the model fits the data                 
[13] The smaller score means the better structure. 

 

In boosting, everytime the best score is calculated by best weight. However, it is              
impossible to find all possible tree structures. Therefore, exact greedy algorithm is            

used to find the best tree [13]: 
 

 
Formula 7. Exact greedy algorithm 

 

From depth = 0, starting from a single leaf and adding branches to the tree               

iteratively. [13]   and  are the penalty.  

The first term in the Eqn is the score of the left child tree. The second term is the                   
score of the right child tree. The third term is the score of not being a branch of the                   

tree. Therefore, a loop is required to find out the best tree. 
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https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BL%7D_%7Bs%20p%20l%20i%20t%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%5Cfrac%7B%5Cleft(%5Csum_%7Bi%20%5Cin%20I_%7BL%7D%7D%20g_%7Bi%7D%5Cright)%5E%7B2%7D%7D%7B%5Csum_%7Bi%20%5Cin%20I_%7BL%7D%7D%20h_%7Bi%7D%2B%5Clambda%7D%2B%5Cfrac%7B%5Cleft(%5Csum_%7Bi%20%5Cin%20I_%7BR%7D%7D%20g_%7Bi%7D%5Cright)%5E%7B2%7D%7D%7B%5Csum_%7Bi%20%5Cin%20I_%7BR%7D%7D%20h_%7Bi%7D%2B%5Clambda%7D-%5Cfrac%7B%5Cleft(%5Csum_%7Bi%20%5Cin%20I%7D%20g_%7Bi%7D%5Cright)%5E%7B2%7D%7D%7B%5Csum_%7Bi%20%5Cin%20I%7D%20h_%7Bi%7D%2B%5Clambda%7D%5Cright%5D-%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0


 

To conclude, XGBoost would find out the best G and H in the final objective function                
by ensembling trees. Then using an exact greedy algorithm to find the best branch              

adding to the tree. Here is the full algorithm [13] : 

 
Algo 1. Exact Greedy Algorithm 

 
XGBoost uses shrinkage to avoid overfitting. Shrinkage adds weight after each step            

of tree boosting [13]. The concept of shrinkage is similar to learning rate. 
 

3.2 Benefit 
There are some benefits of choosing XGBoost. Block compression and sharding           

improves the speed of reading data from the disk. Cache-aware access provides            
faster access to cache for calculation. 

 
The column block for parallel learning can reduce the time of sorting the data.  

 

The data will be put into blocks and parallel computing can be used to reduce the                
time consumed. Multiple cores of the cpu can be used.Since this project’s data is              

very large, handling the data and combining multiple trees at the same time can              
effectively reduce time. Therefore, using XGBoost can improve the performance of           

regression. 
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Here is the data provided by Chen in “XGBoost: A Scalable Tree Boosting System”:             

 

XGBoost’s performance is much better than other exact greedy methods like           

scikit-learn and R.gbm. 
 

3.3 XGBoost in Horse Racing 
 
3.3.1 Progress 

First, the target is to predict the horse’s finishing time and find out the ranking of the                 

horses and gamble by the result. Therefore, we will use XGBoost to find out which               
feature value affects the finishing time the most. We assume that we do not know               

which feature value so we will put all of them into the algorithm. 
 

3.3.1.1 Data 

The training data will be the data from 2014 to 2018. The testing data will be the data                  
from 2019. 

 

The configuration will be the race date, season, race index, horse id, race number,              
class, win odds, total race counted. These are used to group up the data and most of                 

them will not affect the finishing time. 
 

The labeled input is the rating of the horse and the place of the horse in the race.                  

These two data are labeled since we think they affect the finishing time the most.               
The labeled output will be the finishing time in seconds which is the prediction              

needed. 
 

For the feature values, there are two kinds of feature values, continuous features             

value and categorical features. Continuous features mean the features can be           
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represented in number. In our case, they include actual weight, declared horse            
weight, win odds, last rating, total count in first place, total count in second place,               

total count in third place, total count of race taken, mean degree of the day, mean                
humidity of the day, mean pressure of the day, different between actual weight and              

mean weight of the race, different between declared weight and mean weight of the              

race, and the number of candidates in the race. 
 

Categorical features are transferred to true and false. For example, there are            
multiple race lengths like 1000M, 1200M, 1400M, 2000M, 2200M. They will be            

transferred to true and false by {0,1} where 0 represents false and 1 represents true.               

The node of the tree will be (Categorical features < 0.5) to split. The categorical               
features include the length of the race, the course, the draw, the class, the name of                

trainer, the name of the jockey, country of the horse, colour of the horse, sex of the                 
horse, the import type, sire name, last place and horse id. 

 
Here is part of the training data and part of the testing data: 

 

Excluding the label, we have 37755 x 3963  training data. 

 
Figure 9. Part of the training data 
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Excluding the label, we have 9859 x 3963 data testing data. 

 
Figure 10. Part of the testing data 

 
3.3.1.2 Training 

The best component of hyperparameters is found out by function grid_search: 

● The objective is ‘reg:squarederror’ which is the loss function of the learning            
objective. 

● The learning_rate which is the shrinkage is set to 0.05. 

● The max_depth which the maximum depth of the tree is set to 5. This value               
can prevent overfitting since higher depth may cause the model to learn            

relations specific to the training data. 
● The n_estimators is set to 230. This is the number of boosted trees trained. 

● The random_state is set to 42. This can prevent too many combinations since             

there are 230 estimators. This will avoid taking too long of searching for the              
best tree. 

For the other hyperparameters, they are set to the default value provided by             
XGBoost. Final setting: 

Figure 11. Setting of XGBoost 
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Figures below are the first tree and last tree generated. 

 
Figure 12. The first tree generated 

 

Figure 13. Part of the last tree generated 
 
Then, using the trained model to predict the finishing time of the horses in 2019.  

Sort the finishing position in ascending order by the predicted finishing time and             
grouped by each race. Here is one of the predicted race: 

 
Figure 14. One of the predicted race​2 

 

2 The column “0” is the predicted time. 
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3.3.2  Result 
The result of XGBoost is satisfying. First, the first tree is meaningful: 

 
Figure 15. One of the trees generated 

 
The model notices that the length of race determines the finishing time since             
1000M’s finishing time of a horse is obviously smaller than 1400M. The last tree is               

more complex than the first tree. That means the gradient boosting is working. 
 

R2 score is 0.9974 This score means how the prediction data fits the actual data. 1                

means the same as the actual data. 0 is completely different from the actual data.               
The R2 score is near to 1 so the prediction is working well. 

 
The accuracy of predicting the first place is 30.3704% and the accuracy of predicting              

the first, second and third place is 7.1605%. The accuracy compared to the previous              

project is acceptable. 
 

3.3.3 Simulation 
For simplification, we choose only 1 betting type ‘win’, each time we bet 100 dollars               

to the first place (Win) according to the predicted data. Then find the result from the                
actual data. If we win, the cash balance will be added by 10* win_odds - 10. If we                  

lose, the cash balance will be minus by 10.  
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All the graphs below are about the cash balance. Y-axis represents the cash             
balance. X-axis represents the race order by date.  

 

 
Figure 16. Cash balance when betting on every game 

 
It is intuitive that if we just simply bet on every game, we will definitely have a                 

negative gain. Where the last cash balance is 9013, we lose 1000 eventually. 
 

So we try to find some criteria that we can obtain a positive gain which is ‘how many                  

times the horse participated in horse racing before’ 
 

 
Figure 17. Cash balance when betting based on criteri: 10 races 
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If we increase the limitation, the cash balance is higher than before. The last cash 

balance is 9308. 
 

 
Figure 18. Cash balance when betting based on criteria: 15 races 

 

Keep adding the limitation by 5. The last cash balance is now 9767. 

 
Figure 19. Cash balance when betting based on criteria: 20 races 

 
Now the limitation is set to 20. The last cash balance is positive at 10117 and most 

of the time the cash balance is above 10000. 
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Figure 20. Cash balance when betting based on different criteria 

 

 
Figure 21. Return of betting based on different criteria 

 
As shown above, the criteria of how many races the horse has participated is 

effective to decide whether to bet or not.  
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3.3.4 Conclusion and Analysis 

3.3.4.1 Analysis of the results 

● There are positive correlation between the ‘participation experience of horses’          

to the ‘win rate’ 

○ The performance of the horses are more stable  
○ These experienced horses are old and most of them belong to class            

3,4,5. 
■ The competition in these classes are not that keen 

 

● Although we can use a criteria to decide whether to bet or not, but the return                
may not be stable and maximized, and the return is not high, which may not               

be suitable to use in real life, it can also be treated as a classification problem                
whether to bet this not or. 

 

● If we just focus on the first place, it is nearly impossible for us to have a                 
positive return, although we have a criteria to decide whether to bet or not. 

 
● This prediction with 30% accuracy may help us in Reinforcement learning by            

ordering the input horses. 

○ The place we predicted, will be used as the order of the horse we input               
to the reinforcement learning model. 

 
● We learn how complicated horse racing betting is through Building this model. 

○ Highly accurate prediction is not enough, we need a strategy to bet. 
 

3.3.4.2 Conclusion 
To conclude, The accuracy of the XGBoost is pretty good. However, it is not enough               

for us to just have a nice accuracy, it is more important that if we can find some                  
betting strategies that help us to obtain positive gain. We will use the XGboost              

prediction to help construct the reinforcement learning. And find a better strategy to             
bet. 
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Chapter 4 Reinforcement Learning 

4.1 Introduction 

Reinforcement learning is a kind of machine learning that learns by interacting with             

the environment. The learner is not taught what actions to be taken but learns from               

the actions [9]. In our case, we do not want to teach the agent how to bet on horse                   
racing. Instead, we want the agent to learn by himself and find the best way to bet. 
 
 
4.1.1 Algorithm 

The basic algorithm of reinforcement learning is shown in the figure below: 
 

 
Figure 22. algorithm of RL 

 
The agent which is trained interacts with the environment by action. The action will              
be based on different policies due to different RL algorithms. After the action, the              

environment will return a new state and reward to the agent. The agent will know its  

performance by the reward. Then the agent can update the policy of action by the               
reward. 
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4.1.1.1 Markov Decision Process 

Formally, reinforcement learning problems can be modeled as Markov Decision          

Process: 

● M = {S,A,O,T,Ɛ,r} 
● S : State space containing a set of states (s) that the agent can be. 

● A : Action space containing a set of actions (a) that the agent can make. 
● O : Observation space containing observations (o) that the environment gives           

based on the agent’s state 

● T : Transition operator which is the probability of choosing the future state             
based on the current state ( p(S​t+1​|S​t​) ) 

● Ɛ : Emission probability which is the probability of getting the observation            
based the state ( p(O​t​|s​t​) ) 

● r : Reward function which is the reward from the action on the state. This can                

tell us which actions on which states are better ( r(s​t​,a​t​) ) 
 
4.1.1.2 Goal 

The goal of reinforcement learning can be written as: 

 
Formula 8. Reinforcement learning 

In words, the goal of reinforcement learning is to find the best policy which can               

bring the best expected total reward: 

  
Formula 9. Best expected total reward 

 

4.1.2 Environment 

There are many kinds of environments based on the requirement. There are discrete             

environments and continuous environments which means finite states and infinite          
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states. More kinds of environments are episodic or non-episodic, single agent or            
multi agents. 

 
In this project, there will be only one agent, finite states since we only train the agent                 

to learn how to bet. For the environment, it will be an episodic environment which               

means the current action will not affect the next action. It is partially observable since               
the agent will not know which horse wins until it finishes its action. 
 
4.1.3 Different Reinforcement Learning Algorithm 

Due to different situations in reinforcement learning, Based on the basic algorithm,            

there are other types of reinforcement algorithms including policy gradients,          
value-based, actor-critic, model based.  

 
● Policy gradient is a policy-based algorithm. The agent will take an action            

based on the policy. The policy is different actions with their probability.(Ex.            

Left 50%, Right 50%) The final reward of each episode will improve the             
policy. 

 
● Value based means the agent will take an action based on the reward after an               

action. Most likely, the reward will be given immediately after the action is             

taken. 
 

● Actor-critic combines policy gradient and value-based. Critic is a value based           
network while actor is the policy gradient. 

 
● Model based requires a base policy (model). The agent will act based on a              

built model and improve the model based on the reward. 
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4.1.4 Objective 

In this project, we are using a value-based algorithm called deep Q-learning. The             
reason for us to choose value based is value based algorithm is more similar to the                

situation of gambling. We will place a bet on a horse because we believe that that                
horse will give us reward (money). Same reason, the agent will place a bet on a                

horse because the horse will give the agent reward. We hope to find out the best                

policy to get the best profit from horse racing. 
 

4.2 Q-learning 

Q learning is a value based method which learns from the value. Although we are               

not using Q learning in horse racing, it is the basis of deep Q-learning. The reason                
for not using Q learning will be mentioned at the end of this part. 

 

4.2.1 Q function in a table 

Definition of Q function: Q(s,a) For s = state, a = action, The value of Q(s,a) will be                  

updated after each step of the episode. 

 
If we group all the Q functions together, it can be represented as a Q table: 

 
4.2.2 Algorithm 

The algorithm of Q learning is to update the Q table and based on the Q table to                  

choose the best action [17]. 
 

1. Initialize Q function Q(s,a) to some random values 
 

2. Take an action from a state using epsilon-greedy policy from Q function 
 

3. Observe the reward and the new state 
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State \ Action a1 a2 

s1 value1 value2 

s2 value3 value4 



 

 
4. Update the Q table by : 

 
Formula 10. Q-learning 

 
5. Repeat step 2 to step 4 until terminal state 

 
Epsilon greedy policy means that the action will be picked up by the best value.               

There is a parameter called Epsilon which decides the probability of choosing. Using             
the table above as the example, let epsilon be 0.9 and value1 > value2. If the agent                 

is in the state s1, there will be 90% of choosing action a1 and 10% of choosing a                  

random action. 
 
For the equation: 

 
Formula 10. Q-learning 

 
● 𝞪 is the learning rate to decide how many differences need to be learned. This               

is useful for convergence.  

 
● r is the reward obtained from the action. 

 

● 𝜸 is the discount of the future reward. The discount is to decrease the effect of                
the future reward to the current reward so the agent can learn to take the               

other action not just because of the future reward. We want a balance             
between the future reward and the current reward. 

 
MaxQ(s’,a’) means the next state’s best value of the Q function. This is the future               

reward. 

 
The whole equation is for updating the Q table by calculating the difference between              

the actual value and the estimated value. The difference will be minimized to build              
the best Q table to find the best result for best efficiency. 
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4.2.3 Example 

We chose a simple game “Cartpole” from OpenAI gym. The goal of the game is to                
prevent the pole falling over the cart. 

 
Figure 23. Capture of ‘Cartpole’ 

 

This game is just a little experiment of Q learning and we want to know how many                 
episodes are needed to finish its learning. This value will be a reference to our               

project to apply reinforcement learning to horse racing. 
In this little experiment, the reward will become larger as longer the pole staying on               

the cart. 

 

4.2.3.1 Convergency 

 
Figure 24. Reward average 
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Here, the x-axis is the episodes and the y-axis is the reward. We can see that to gain                  
the maximum reward, the agent needs 25000 episodes to finish the training to get a               

stable reward.  
 

If we apply this result to horse racing, comparing the complexity of horse racing to               

this game, it will need much more episodes and time to finish its training to make the                 
result stable.  

 

4.2.4 Reason not using Q-learning 
Q-learning usually is used in some simple problems or games. Using it in horse              
racing will cause some troubles. 

 

First, a lot of horses’ data will cause a huge Q table. There will be a lot of states and                    
for each state, there are 15 actions (Buy horse a, b, c, … ,or skip). The efficiency will                  

be very low. It is too difficult to complete the Q table. 
 

Second, although we go through all states and build a Q table to store all states and                 

actions, that only means that the agent remembers all races’ results and bet based              
on that result. When the agent meets a new race with new horses, it will take random                 

action only. 
 

Therefore, we will use the other value based method, Deep Q learning, which will be               

mentioned in the next part. 

 
4.3 Deep Q-Learning with MLP policy 
In this section, we apply reinforcement learning in horse racing. In order to update              

the function, we need to iterate through all the state. However, in real life, the(s, )Q a               

state space is too complex for the agent to go through all of the states. So, we need                  

an approximate q-value for those similar states. In deep Q-Learning, we use a neural              

network to approximate the function, by combining the Q-learning and deep   (s, )Q a        

neural network.  
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4.3.1 Deep Q-Network 

Deep Q-network Architecture: 

 
Figure 25. Deep Q-network Architecture 

 
In this project we will choose the Refined DQN. 
 
4.3.1.1 DQN Loss function 
 

 
Formula 11. DQN Loss function 

 
The above loss function is used to find the approximate q-value in the network[19], If               
the is a constant, we can use gradient descent on the loss function respect to .θ′ θ  

 

4.3.1.2 Moving target problem 

is the target network, and is the prediction. However,             

these two terms are correlated, so if we change frequently, the will change         θ   θ′    

frequently too, our network is training for a moving target which will lead to diverge. 
 
So one of the solution from DeepMind[2] states that is updated with a long         θ′       

enough interval so that we can avoid it from diverge. 

 

4.3.1.3 Experience Replay 
Q-learning always uses the reward of the last state to train the value network, but the                

optimization techniques required that the data is independent and identically          
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distributed sampling, so we store an amount of the latest step into the replay buffer,               
it performs the gradient descent on a sample minibatch. So the correlation between             

the data can be canceled out [2]. 
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Chapter 5 Applying DQN in horse racing 

In this semester, we try a simple approach, directly giving all the feature values of all                

the candidates in a single game, to see if the agent can bet on a ‘winning’ horse.                 
Several betting types of horse racing are mentioned in the first chapter, However,             

due to simplicity, we concern only one betting type ‘A bet to win’ (if the horse wins                 

the first place, you win) in this semester.  
 

5.1 Construction  

We use the Stable Baselines3 and OpenAI Gym[9] to construct our DQN            

reinforcement learning.  
 

5.1.1 Environment 

We have 10000 cash balance, and if the agent wins, we give him 10 * win odds                 
cash. If he loses, we take 10 cash from him. That means the agent can only bet 10                  

dollars. 

 

5.1.2 Observation Space  

As mentioned before, the feature values of all the horses and the cash balance are               
the observation space to the agent. Also the win odds of the horses are given. Since                

there are horse racing games which less than 14 horses participate in, we would set               
all the feature values of those invalid horses to be -99. 

 

5.1.3 Action Space 

We simply want the agent to choose whether to bet and which to bet. So there will                 

be a total 15 actions {‘1’, ‘2’, … ‘14’, ‘15’} that an agent can choose, where action                 

{‘1’, ‘2’, … ‘14’} represent to bet on the number 1, 2, … ,14 horse respectively. And                 
action {‘15’} represents not to bet. 
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5.1.4 Step 

After the agent goes through one games, The agent will receive first two major              
informations 

1. The new game state : feature values of all 14 horses of the next game and the                 
cash balance after the last game. 

2. The reward obtained based on the last action. 

3. Game over or not. 
a. Once the agent loses more than 1000 dollars where the cash balance            

< 9000, then it is game over. 
b. Once it goes through all the racing games, it is game over too. 

 

5.1.5 Reset 

In order to train the agent to learn which horse is nice to bet, other than recognizing                 
the winning horses in each state, the state jumps to random racing games everytime              

we reset, and the cumulative reward will be reset. 
 

5.1.6 Termination state 

In horse racing games, we said it is game over when the agent loses more than                

1000 dollars or when it goes through all the games. 
 

5.2 Reward Function and discount factor 

Reward for the action guides the agent to learn. It is the only feedback that the agent                 

will receive, It is extremely important for the reinforcement learning algorithm to            
perform well. A badly constructed reward function will lead to an unwanted behaviour             

of the agent. Also a good reward function can let the agent learn faster. 
 

In a horse racing game, the basic idea for the reward function is simple, when it                

wins, it receives a large reward. otherwise, it receives a penalty. Intuitively, the agent              
will not bet on any racing game if we only give reward or penalty on these two                 
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situations, as it will not receive any penalty. So we will give a penalty which is less                 
than the  ‘bet but lose’ situation. 

 

5.2.1 Idea of Reward Function  

Just simply give penalty or reward based on the change of cash balance: 

 

● (bet and win)   C Cash Balance , where C 0  R =  1 * Δ  1 >   

● (bet but lose)   C Cash Balance , where C 0  R =  2 * Δ  2 <    

● ( do not bet )   C in odds of  the true f irst place, where C 0   R =  3 * w  2 < C3 <    

 
Recall that there are invalid horses in the input, so we have to deal with the case                 

when the agent chooses to bet on a invalid horse. There are few approaches [20]: 

1. Ignore it 
a.  (bet on invalid horse) 0  R =   

2. Same penalty as ‘do no bet’ 

a.  (bet on invalid horse)  R(do not bet)  R =   

3. Large penalty 

a.  (bet on invalid horse) C  R = C4 <  3  

 

A paper [20] claims that giving a penalty to the agent is one of the common ways,                 
and masking is one of the methods to do so. However, We will not mask ‘invalid                

horse’ to ‘valid horse’ so we directly give it a reward which same as ‘do not bet’ 
 

We believe that if we choose the first option, it is not reasonable as it becomes ‘do                 

not bet’ without any penalty. Therefore, the agent may always choose this action as              
there is no penalty. 

 
For the third option, the penalty of ‘bet on a invalid horse’ is large, the agent will tend                  

to bet on those small number horses to avoid getting a large penalty, it probably will                

just choose the first five actions: ‘bet on horse 1’, ‘bet on horse 2’ … ‘bet on horse 5’                   
. Since there are at least 5 horses in every race, these actions will never be invalid                 

action. 
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5.2.2 Discount factor 

The formula below shows the total future reward G on the current step t is based on                 
all the rewards multiply  in all the future steps:γ  

 

 
Formula 12. Total future reward with discount factor 

 
Formula 13. Total future reward without discount factor 

 
Where the is the discount factor, the agent will ‘treat’ the future reward more  γ              

important if  is closer to 1 [24].γ   

 

Learning how to bet on horse racing games one by one is an episodic environment,               

each separated horse racing game will end in the same way. Rewards are given              
according to the result, which are ‘bet and win’, ‘bet but lose’ and ‘dont bet’. 

 
In a racing game, the agent is supposed to learn how to win all the bets, the future                  

bet is as important as the current bet. Also, T is a finite number as in our                 
environment, so which is the second way, the agent should treat every game  1  γ =              

at the same level. 
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5.3 DQN with MLP Policy 

5.3.1 Network Structure 

There are two hidden layers with 32 neurons each and using the tanh activation              

function, 15 neurons at the output layer. 

 
Figure 26. Network structure 

 
 

 

5.3.2 Input data structure 
There are 14 horses in a race, each horse contains 3963 features which all those               
features are the same as we used in XGboost, so there are (14 x 3963) inputs in                 

each state. 

 
Intuitively, the order of the horses will affect how the agent acts.We choose to use               

the prediction of XGBoost to order the input, from slowest to the fastest. All the               
invalid horses will be ordered as the fastest horse. The reason is that we want to                

help the agent to identify which horses are worth to bet. 
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5.4 Training and Testing 

5.4.1 Number of candidates 

There are 3080 races in our training set. 

 
Figure 27. number of candidates ​3 

 
There are 12 or 14 candidates in 74% of all the races. Which is the major of the                  

horse racing games. 
 
5.4.2 Results of reward function 

Recall the reward function: (bet on invalid horse)  R(do not bet)  R =   

As the reward of ‘bet on invalid horse’ and ‘do not bet’ is the same, so the agent will                   
treat both are the same. Assume there are 14 valid horses, if the agent does not                

want to bet, it should choose ‘do not bet’. 
 

Since reinforcement learning is learning how to play in a specific env, we will also               

provide the learning result in a training phrase, and we let the agent to bet on the                 
testing set after training. 

3 The exact number is shown in Appendix 
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5.4.2.1 Convergence of reward  

 
Figure 28. Convergence of DQN 

 
The figure shows that after around 58000 steps which is around 75 episodes in 
training, the reward converges to 80000 reward. 
 
5.4.2.2 How the agent bet in training set 

 
Figure 29. How the agent bet in training set​4 

4 ​Recall that horse n is referred to the input order.  
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The agent chose to bet on horse 14 most of the time in the 3080 races. And there is                   
a large difference, where 94% of action is ‘bet on horse 14’ and 0% in ‘do not bet’,                  
‘bet on horse 8’, ‘bet on horse 9’, ‘bet on horse 10’ and ‘bet on horse 12’. The                  
remaining action occupies around 4%.  
 

 
Figure 30. How many times the agent bet in training set 

 
Since there are invalid horses, ‘bet on horse’ does not indicate how many times it is                
bet. It bet only 31% of 3080 races. And there are 70% invalid bets/’Do not bet’. And                 
the ‘bet on horse’ 
 
5.4.2.3 How the agent bet in testing set 

 
Figure 31. How the agent bet in testing set 
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The agent chooses to bet on the horse 14 most of the time in 810 races, where 99%                  
of action is ‘bet on horse 14’. 
 

 
Figure 32. How many times the agent bet in testing set 

 
Since there are invalid horses, ‘bet on horse’ does not indicate how many times it is 
bet. The agent bet on 239 games in 810 games. Which is nearly 30%, the ratio is 
close to the ratio of training sets. 
 
5.4.2.4 Win or lose in training set 

 
Figure 33. Win rate of the agent in training set 

 
In 3080 racing games, the agent bet on 31% of games with 30% wins and 70% 
losses.  
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5.4.2.5 Win or lose in testing set 

 
Figure 34. Win rate of the agent in testing set 

 
In 810 racing games, the agent bet on 70% of games with 27% wins and 73% 
losses.  
 
5.4.2.6 Cash balance in Training Set 

Recall that the agent can only bet with 10 dollars. 

 
Figure 35. Cash balance in training set 
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Although we can only win 30% of the games, But the agent will sometimes bet on                

horse with higher win odds, there is some vertical lines in the graph, the cash               
balance is increased rapidly, the largest gain is 10*140 (betting amount* win odds) -              

10(betting amount). The cash balance is increasing and it reaches around 17000 at             

the end. 
 

5.4.2.7 Cash balance in testing Set 

 
Figure 36. cash balance in testing set 

 
The cash balance is around 10000 before the first 600 games, and after the agent 

wins some games with higher win odds, it rapidly increases near the 600th race and 

750 race. The largest gain is 10*34(betting amount* win odds) - 10(betting amount). 
 

5.5 Result Analysis 

The agent’s behaviour is developed from our rewarded function. There are some            

interesting behaviours that we observed. 
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5.5.1 Analysis on the agent behaviours 

● As we can see that most of the time the agent bet on horse 14 
○ Since horse 14 is most likely the horse to win where the accuracy is              

30% from XGBoost. 
○ It is the most likely path that the agent can receive the largest reward. 

○ If there are some horses with large win odds, it tries to bet on those               
horses to gain a larger reward. 
 

● 0 ‘do not bet’ action 

○ The reward from the ‘do not bet’ and ‘invalid horses’ is the same, the              

agent will treat it the same action. 
○ The agent bet on the fastest horse predicted in all the games with 14              

horses, which is reasonable as that horse is likely to win with 30% 
○ It can avoid the ‘do not bet’ penalty by betting all the horse 14. 

 

● When the horse with high win odds, the agent will try to bet on those horses                
as it will return a greater reward to the agent. 

○ Since the reward is based on how much it wins, when there are horses              
with high win odds, the reward of betting on those horses will be higher              

than just betting on the most safe action ‘bet on horse 14’. 

 
● Bet on the Horse racing game with 14 horses only 

○ As the penalty of selecting ‘invalid horse’ is less than ‘losing’, the agent             
may choose invalid horse other than betting on ‘invalid horse’ in most            

of the cases. 

○ In order to deal with this problem, we think there are multiple            
approaches 

■ Improve the reward function 
■ deal with the invalid horse input format 

○ It will be much easier to improve the reward function. So we try this              

approach. 
Although the cash balance is increasing so far, it is increasing because of large 

jumps. In a very long run, we can’t ensure such a large jump and it may go down 
eventually. 
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5.6 Improvement of reward function 

Although there are positive gains from the previous setting, the agent only bet on the               
games with 14 horses. The reason is that the reward of trying to bet on races with                 

different numbers of horses is likely to be less, as there are 90% of races with 1                 
invalid horse. To increase the reward we can: 

 

1. Increase the reward of ‘winning’  
2. Decrease the penalty of ‘losing’  

3. Decrease the penalty of ‘invalid betting’ 
 

The third option is not suitable as we don 't want it to be a cheaper version of 'do not                    
bet’. 

 

Recall that  
● (bet and win)   C Cash Balance , where C 0  R =  1 * Δ  1 >    

● (bet but lose)   C Cash Balance , where C 0  R =  2 * Δ  2 <    

● ( do not bet )   C in odds of  the f irst place, where C 0   R =  3 * w  2 < C3 <    

 

The parameter we need to tune is C1 and C2. 
 

5.6.1 Tuning the parameter 

After our testing, we find a set of parameters that let the agent not only bet on races                  
with 14 horses. However, the candidate number of races is limited to 13 and 14. The                

agent bet on 193 races with 13 horses races, 955 races with 14 horses races. The                
agent bet on all the games with 13 and 14 horses, there is no filtering. 

5.6.2 Comparison between reward functions 

We train the agent based on the new reward function and compare it with the agent 

with the old reward function and see if the agent behaved differently. 
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5.6.2.1 Convergence on reward  

 
Figure 37. Convergence of DQN with new reward function 

 

The agent with the newly constructed reward function converges after around 60000            
steps which is 70 episodes. 
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5.6.2.2 How the agent bets in training set 

 
Figure 38. Comparison of ‘how agent bet’ between new and old reward function in training set 

 

The agent bet most of the time on horse 13 after the improvement, there are 90% or                 

2769 times of action is ‘bet on horse 13’, and the time of ‘bet on horse 14’ action is                   

decreased by 85%. The behaviour of the agent changed. 
 

 
Figure 39. Comparison of ‘how many times it bet’ between new and old reward function in training set 

 
The new agent bet more than before, The betting amount increased from 31% to 
37%. 
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5.6.2.3 How the agent bets in testing set 

 
Figure 40. Comparison of ‘how agent bet’ between new and old reward function in testing set 

 
In total 810 races, the agent chose ‘bet on horse 13’ 94% of times,while ‘bet on                

horse 13’ 5%, and 1% with those remaining action. And the old agent chose ‘horse               

14’ most of the time. The behaviour of the agent changed. 
 

 
Figure 41. Comparison of ‘how many times it bet’ between new and old reward function in testing set 

 

The new agent bet 3 more percent on the testing set than the old agent. 
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5.6.2.4 Win or lose in training set 

 
Figure 42. Comparison of win rate between the agent with new and old reward function in training set  

 
The win rate has decreased from 30% to 25%. 
 

5.6.2.5 Win or lose in testing set 

 
Figure 43. Comparison of win rate between the agent with new and old reward function in testing set  

 
The win rate has decreased from 27% to 23%. 
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5.6.2.6 Cash balance in training set 

 
Figure 44. Cash balance between the agent with new and old reward function in training set 

 
It is clear that the cash balance curve of the agent  with new reward functions does 

not jump largely in the graph, that means the new agent doesn’t bet on those horses 
with large win odds or as it may choose to bet on more races other than betting on 

the horse with large win odds. There are around 3500$ differences at the end of the 

games. 
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5.6.2.7 Cash balance in Testing Set 

 
Figure 45. Cash balance between the agent with new and old reward function in testing set 

 
The old agent performs worse than the new agent in the first 600 games, the new                
agent can remain a positive return longer, as the old agent tends to bet on a horse                 

with large win odds and the new agent. And after some betting on higher win odds,                

the returns of the old agent is higher than the new agent. 
 

5.6.3 Analysis and conclusion 

Since we want the agent not just betting on races with 14 horses, we tune the                
parameter in the reward function. We increase the reward of ‘winning’ and decrease             

the penalty of ‘losing’ . 

 
However, the reward function is still not perfect enough to let the agent to bet on all                 

the races. The new agent just bet on races with 13 and 14 horses. 
 

  

62 



 

5.6.3.1 Result analysis 

● The new agent chose the action ‘bet on horse 13’ most of the time instead of                

‘bet on horse 14’ 

○ The ‘valid bet’ action is increased. 
○ As the reward of ‘bet on invalid horse’ is less than before. 

○ We need to modify the penalty of losing and the reward of winning             
again till perfect. 

■ It is time-consuming and inefficient, so we may need to          

construct a new RL model or new input format of invalid horses. 
 

● The new agent is more aggressive than the old agent 
○ As we increase the reward of ‘winning’ and decrease the penalty of            

‘losing’, it tries to bet more. So the new betting ratio is increased by 3%               

from the old one. 
 

● The cash balance of the new agent at the end is less than the old one. 
○ We believe that since the old agent only bet on races with 14 horses, it               

focused on learning how to win most of the races only on races with 14               

horses, so it performed much better than the old agent. 
 

● Win rate has decreased. 
○ It is expected as we encourage the horse to bet on more games, as the               

reward of losing is decreased.  

○ However, the result is also near what we expected as it is around 30%. 
 

● The cash balance is not larger than before no matter in training and testing              
set 

○ Although the agent with the new reward function tends to be more            

aggressive on betting more games, the agent is not aggressive on           
betting the higher win odds horses. As we can see in the cash balance              

graph, the cash balance never jumps rapid. 
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From these observations, We may want to set up a reinforcement learning model             
specifically, such as only races with 12 horses, other than putting all of the races in                

one single reinforcement learning model. In order to win more, we should also             
consider not just betting on more races, but also the win odds. 

 

5.6.3.2 Conclusion 

There are both positive cash balances till the end of the races in the training set and                 

testing set, It is a bit out of our expectation that how the agents bet. But there are                  

many imperfect ways such that the agent just bet on races with 14 and 13 horses, as                 
the reward function is not constructed well, although the agent can bet well in these               

races. As we fixed the amount that the agent can bet, we can’t maximize the gain. 
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Chapter 6 Conclusion and Improvement 

6.1 Betting strategy 

The cash balances based on different betting methods are shown in the following             

graph. 
 

 
Figure 46. Cash balance of different betting strategy 

 

We can see that only two betting methods return positive gain > 10000. 
1. XGboost prediction with at least 20 times the horse has been participated            

before’ 

2. Use Reinforcement learning 
 

In real life, it is extremely hard for us to find a criteria to bet or not, and most of the                     
time, we are concerned about the horses in the first place we predicted. We seldom               

consider to bet on the horses that the model predicts is in the last place. 

 

65 



 

In RL, the agent will sometimes bet on the horses with lower ranking predicted with a                
large odds ratio. It may be possible to get a better return if we combine these                

models. 
 

In this semester, we just use a simple betting method, 1 type of betting and fixed                

amount of betting. However, It will be much harder if we consider the betting types               
and how much to bet. These questions are suitable for reinforcement learning to deal              

with. 
 

6.2 Problem encountered 

There are several problems that we need to deal with and since this kind of               

application in reinforcement learning is not well developed. 
 

6.2.1 Invalid horse input in Reinforcement Learning 

Since the input order of the horses affect how the agent acts. The agent seldom bet                

on the races with less than 14 horses, as it wants to avoid the ‘invalid bet’. So we                  
need to put more effort on how to deal with the invalid horse problem, maybe from                

the input format, and focus on a fixed amount of candidate races. 
 

We have tried to tune the reward function, however it is time-consuming and not              

easy to achieve, so we may need to put effort in the other way. 
 

6.2.2 Construction of reward function 

Since the agent is sensitive to the reward function, it is hard for us to train it again                  
and again as the training is time-consuming, we have to construct the reward             

function in a better way other than just using the trial and error.  
 
We have to consider more situations, not just the three we considered in this              
semester, such as when the cash balance is high enough, then the penalty of losing               

should be less than the cash balance at a low level. 
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6.3 Future 

Since we only use XGBoost and Deep Q Network, we still have not developed other               

models of reinforcement learning. There may be some models providing better           
results. As mentioned before, in this semester we use a simple betting method, 1              

type of betting (Win) and fixed amount of betting. These will be considered in the               
next semester. 
 
6.3.1 More betting types 

In the introduction, there are multiple betting types like “Place” (Pick any one of the               

first three horses). We will train the agent to learn the other type of betting. We                
expect the accuracy of choosing “Place” should be higher since there are three             

horses who will give the reward to the agent. 
 

The other types like “Quinella” which requires picking multiple horses will be applied             

to the model. These betting types will be more difficult to train and the accuracy is                
supposed to be lower but the reward will be much larger compared to “Win” or               

“Place”. The agent needs to act multiple times to place a bet. The odds’ calculation               
will also be different. 

 

Also, multiple games betting (Pick multiple horses from multiple races) will be            
applied in reinforcement learning. For example, the agent will choose 1 horse from             

the first race, then choose 1 horse from the second race. The agent needs to act                
multiple times to place a bet. The odds’ calculation will also be different. 

 

6.3.2 Different betting amount 

In the first semester, we only train the agent to bet 10 dollars each. In reality, the                 
gambler can choose the amount of betting by himself. This means there will be              

infinity of choice. However, we cannot put infinite actions into the action table since              
this is impossible. Therefore, we will classify the betting amount to a small amount              

(Ex. $10) and a large amount (Ex. $1000). We will see how the agent chooses from                
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these two choices. The last choice we want to see is “All in” which means to bet all                  
the money it gets. We shall see the result in the next semester. 

 

6.3.3 More models 

In the first semester, we only apply Deep Q Network to horse racing. Models like               

policy gradient or actor-critic have not been used. Policy gradient which is a policy              

based reinforcement learning. We will train the probability of choosing a horse based             
on the reward gained. Then combining policy gradient and DQN, the actor-critic will             

be used. These two models will be used in the future and we will compare the result                 
to the present result. 

 

Also, the DQN can deal with the discrete output which is not suitable in our cases, so                 
we have to use another algorithm such as DDPG. 
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Appendix 

There are 3010 races in our testing set: 

 
There are 810 races in our testing set: 
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number of candidates number of races 

14 955 

13 193 

12 1332 

11 256 

10 168 

9 72 

8 51 

7 28 

6 19 

5 6 

number of candidates number of races 

14 240 

13 54 

12 343 

11 73 

10 35 

9 34 

8 14 

7 10 

6 6 

5 1 


