

THE CHINESE UNIVERSITY OF HONG KONG

GRADUATION THESIS (TERM 2)

Horse Racing Prediction using Deep Probabilistic

Programming with Python and PyTorch (Uber Pyro)

 Author: Supervisor:

 Yuk WONG Prof. Michael R. LYU

LYU1805

Department of Computer Science and Engineering

April 12, 2019

2

THE CHINESE UNIVERSITY OF HONG KONG

Abstract

Faculty of Engineering

Department of Computer Science and Engineering

BEng degree in Computer Engineering

Horse Racing Prediction using Deep Probabilistic Programming with Python and

PyTorch (Uber Pyro)

by Yuk WONG

In this report, we detail the process of applying deep probabilistic programming for horse

racing prediction. We investigate the effect of using different set of features for model input.

We design a Bayesian neural network model for prediction of the winning horse with a

multiple horse representation. Moreover, through repeated experiments, we show that our

model can outperform public intelligence and neural networks in terms of both accuracy and

net gain. In addition, we demonstrate the effect of different betting strategies on the

profitability of our model. Finally, we construct a betting strategy and verified its profitability

in the long run with testing data.

3

Acknowledgements

We would like to express our gratitude to our supervisor Professor Michael R. Lyu and Mr.

Edward Lau for providing guidance on data collection, project scoping, and research

direction that are essential for completing this project within limited short time frame.

We would also like to thank our friends who helped us a lot on familiarizing machine

learning and neural networks as well as setting up the training environment on department

server.

4

Contents

Contents .. 4

List of Figures ... 6

List of Tables .. 7

Chapter 1 Introduction .. 9

Chapter 2 Related Works .. 11

Chapter 3 Motivation .. 12

Chapter 4 Background .. 13

4.1 Probabilistic Programming ... 13

4.2 Bayesian Inference .. 14

4.3 Bayesian Inference Algorithms ... 15

4.3.1 Enumeration ... 15

4.3.2 Markov Chain Monte Carlo Algorithms .. 15

4.3.3 Variational Inference.. 16

4.4 Artificial Neural Networks.. 18

4.4.1 Neural Network Training ... 19

4.5 Deep Probabilistic Programming .. 20

4.5.1 Bayesian Neural Networks ... 20

4.6 Horse Racing ... 22

Chapter 5 Data .. 24

5.1 Data Collection ... 24

5.2 Data Description ... 24

5.3 Features Analysis .. 27

5.3.1 Origin ... 27

5.3.2 Age ... 29

5.3.3 Color .. 31

5.3.4 Sex.. 33

5.3.5 Draw ... 35

5.3.6 Old place .. 37

5.4 Feature Selection ... 39

5.4.1 Excluded Features .. 39

5.4.2 Included Features ... 40

5.4.3 Investigated Feature ... 41

5

5.5 Data Preprocessing .. 43

5.5.1 Real Value Data ... 43

5.5.2 Categorical Data ... 43

Chapter 6 Design... 44

6.1 Design Goals ... 44

6.2 Race Representation .. 44

6.2.1 Single Horse Representations .. 44

6.2.2 Multiple Horses Representations ... 45

6.3 Network Design .. 46

6.3.1 Distribution Selection for Neural Network Parameters ... 46

6.3.2 Number of Layers and Neurons in Network .. 47

Chapter 7 Implementation ... 49

7.1 Pyro ... 49

7.2 Bayesian Neural Network in Pyro .. 49

7.3 Data Augmentation ... 52

7.3.1 Data Cropping .. 52

7.3.2 Data Shuffling .. 52

Chapter 8 Results .. 53

8.1 Setup ... 53

8.2 Results ... 53

8.3 Discussion ... 66

8.3.1 Profitability of Horse Racing ... 66

8.3.2 Optimal Number of Neurons per Layer ... 66

8.3.3 Optimal Feature Set ... 68

8.4 Kelly Betting ... 71

8.4.1 Discussion .. 71

8.5 Comparison with Related Works .. 83

Chapter 9 Conclusion .. 85

9.1 Conclusion .. 85

9.2 Future Work .. 85

References ... 86

6

List of Figures

Figure 1. A unit in neural networks, taken from [18] .. 18

Figure 2. Origin distribution of winning horse .. 28

Figure 3. Condition Origin distribution of winning horse ... 28

Figure 4. Age distribution of winning horse .. 30

Figure 5. Conditional Age distribution of winning horse .. 30

Figure 6. Color distribution of winning horse ... 32

Figure 7. Conditional Color distribution of winning horse.. 32

Figure 8. Sex distribution of winning horse... 34

Figure 9. Conditional Sex distribution of winning horse ... 34

Figure 10. Draw distribution of winning horse .. 36

Figure 11. Conditional Draw distribution of winning horse .. 36

Figure 12. Old place distribution of winning horse ... 38

Figure 13. Conditional Old place distribution of winning horse ... 38

Figure 14. Number of horses in each race ... 45

Figure 15. Distribution of weights in different deep neural networks 46

Figure 16. Our 4–layer neural network with 16 neurons per layer .. 47

Figure 17. Flow of our neural network with final categorical sampling 48

Figure 18. Implementation of Bayesian neural network model in Pyro 50

Figure 19. Implementation of variational distribution for Bayesian neural network in Pyro .. 51

7

List of Tables

Table 1. Types of bets in Single–race Pool .. 22

Table 2. Types of bets in Multi–race Pool ... 22

Table 3. Types of bets in Jackpot Pool .. 23

Table 4. Percentage of Pool Payout in Single Pool ... 23

Table 5. Percentage of Pool Payout in Merged Pool ... 23

Table 6. Race features from HKJC website ... 25

Table 7. Horse features from HKJC website ... 26

Table 8. Weather features from TimeAndDate .. 26

Table 9. Extracted features .. 26

Table 10. Past results of different input features from [29]. .. 39

Table 11. Excluded features ... 39

Table 12. Included features .. 40

Table 13. Investigated features .. 41

Table 14. Features used in each feature set.. 42

Table 15. Testing performance of 12-horse model with different features and number of

neurons ... 54

Table 16. Testing performance of 14-horse model with different features and number of

neurons ... 54

Table 17. Betting curves of 12-horse model with different features and number of neurons . 60

Table 18. Betting curves of 14-horse model with different features and number of neurons . 65

Table 19. Betting curves of profitable 14-horse models .. 67

Table 20. Performance of 12-horse model without data augmentation 68

Table 21. Betting curves of 12-horse model without data augmentation 70

Table 22. Kelly betting performance of 12-horse model with different features and number of

neurons ... 72

Table 23. Kelly betting performance of 14-horse model with different features and number of

neurons ... 72

8

Table 24. Kelly betting curves of 12-horse model with different features and number of

neurons ... 77

Table 25. Kelly betting curves of 14-horse model with different features and number of

neurons ... 82

Chapter 1 Introduction

9

Chapter 1 Introduction

Horse racing, sport of running horses at speed, is one of the oldest of all sports and its basic

concept has undergone virtually no change over the centuries. In Hong Kong, horse racing is

not only a highly developed sport, but also a popular entertainment and gambling game. All

betting over horse racing in Hong Kong is regulated and held by the non-profit organization

Hong Kong Jockey Club, which holds a legal monopoly and provides different types of bet

according to Pari-mutuel betting system. Because of the regulated and transparent betting

system, the profitability of horse racing is under active research by statisticians and machine

learning specialist alike. However, to the best of our knowledge, there has been no published

work obtaining a net profit with neural networks. We attribute this mainly to the variability of

horse racing and the insufficiency of training data. The variability of horse racing calls for a

complex neural network model in order to model accurately the relations, while the lack of

enough training data hinders the training of the large number of parameters associated with a

complex model.

One potential way to overcome the shortage of training data is Bayesian inference, a

probabilistic technique which has been shown capable of learning from fewer examples [1]

[2]. [1] build a Bayesian implementation of learning from just one to five examples by taking

advantage of knowledge coming from previously learned categories, no matter how different

these categories are might be, while [2] developed a density over transforms shared by many

classes and developed a classifier based only a single training example for each class by

using the density as prior knowledge. These examples suggest that Bayesian inference may

be effective in overcoming the deficit of training data of in our horse racing prediction.

However, both works tailor build their models from scratch as one–off systems, limiting their

scope and extensibility, and hampering applications of the models to other problems. Due to

the time and resources constraints of this project, we do not build our model from zero,

instead, we build our model with a probabilistic programming language, Pyro, which

provides primitives for sampling and inferring probabilistic distribution, and utilize build–in

inference algorithms of Pyro to conduct Bayesian inference.

Probabilistic programming languages unify techniques for the formal description of

computation and for the representation and use of probabilistic knowledge [3]. Instead of

Chapter 1 Introduction

10

programming probabilistic models by hand, probabilistic programming languages provides an

abstract means of describing and inferring arbitrary programming models. This enables

programmers to build and train large models with less programming efforts.

In this project we build a Bayesian neural network for horse racing prediction with deep

probabilistic programming language Pyro. We test different feature selections as well as the

different hyperparameters. To demonstrate the performance of our Bayesian neural network,

we test two different betting method, fixed betting and Kelly betting. We are able to predict

12 horse races with 22.29% win accuracy and net profit of 7.54%, and 14 horse races with

22.66% win accuracy and net profit of 14.43%.

The rest of the report is structured as follows: Chapter 2 summarizes the past efforts by

related works. Chapter 3 describes the motivation of our work. Chapter 4 introduces the

background of probabilistic programming, Bayesian inference, and horse racing in Hong

Kong. Chapter 5 details our data collection method and preprocessing. Chapter 6 introduces

the structure of our model. Chapter 7 describes the implementation of the model. Chapter 8

records the results. Chapter 9 concludes.

Chapter 2 Related Works

11

Chapter 2 Related Works

Despite the abundant amount of data produced every week in horse racing, few works have

been published on the prediction of horse racing. Nonetheless, these few works, utilizing

techniques ranging from multinomial logit regression [4] [5] to Support-Vector-Machines [6]

and to neural networks [7] [8], have produced motivating results that makes horse racing

prediction an attractive topic.

Bolton and Chapman [4] [5] have proposed a multinomial logit modeling approach to

handicapping horse races. Sophisticated handicapping factors and a large data base is used to

apply a 20-variable pure fundamental multinomial logit model to a 2,000 Hong Kong races,

achieving expected returns in excess of 20%. Chung et al. [6] utilized Support-Vector-

Machines on a 3-year dataset with 2691 races and 33532 horse records from Hong Kong

races. By setting the threshold between highest horse and second highest horse, win accuracy

of 35.85%, 56.36%, and 70.86% are achieved at threshold of 0, 0.05, and 0.1, yielding a

840,164.1%, 13692.2%, 2494.8% return respectively.

Cheng and Lau [7], Liu and Wang [8] have used neural networks for horse racing prediction.

Cheng and Lau [7] used 16-year dataset of Hong Kong races from 2001 to 2016. Data from

2001 to 2014 are used for training dataset, while data from 2015 to 2016 are used as testing

dataset. Their single horse neural network model achieved win accuracy of 21.42%, and

when betting on a threshold of 80%, can gain a net profit of 30% in the testing dataset.

However, when the threshold is not used, the model result in a loss of over 20%. Liu and

Wang [8] used dataset of Hong Kong races from January 2011 to April 2018 with 5029 races

and 63459 horse records. Data from 2011 to 2017 are used for training models, while data in

2018 are used as testing data. When betting only on races of specific race classes (Class 1 and

Class 2), their best model is able to achieve 48.57% win accuracy and a net gain of 17.45%,

but drops to 24.51% and result in a net loss of 25.78% when betting on all races.

Our prior work [9] have used Bayesian neural networks for predicting the place of each

individual horse, and achieved 27.96% accuracy and net gain of 39.77% when betting only

on specific classes (Class 1 and Group 3), but drops to 25.92% accuracy and net loss of –

20.09%.

Chapter 3 Motivation

12

Chapter 3 Motivation

Past works on applying neural networks for horse racing prediction [7] [8] have not been able

to achieve high accuracy. We attribute this mainly to the variability of horse racing and the

insufficiency of training data. The variability of horse racing calls for a complex neural

network model in order to model accurately the relations, while the lack of enough training

data hinders the training of the large number of parameters associated with a complex model.

Therefore, this project aims to predict horse racing with Bayesian neural networks which has

been shown to able to generalize well from fewer examples [1] [2] compared to other

methods.

In addition, past works utilizing neural networks [7] [8] requires additional criteria, such as

confidence levels or betting on specific race classes, to generate a profit. The selection of

additional criteria after the testing results in information leakage from testing data and

therefore cannot be taken as valid result for profitability on unseen data. Thus, this project

aims to build a model for end to end prediction of horse racing and generate a profit under all

circumstances.

Moreover, it is observed that the although the model of [7] [8] has been able to optimize well

in terms of objective function such as mean square error and binary cross entropy, this fails

translate to accurate prediction of the winning horse. We attribute this to the fact that the

model of [7] [8] only takes one horse into an account during its prediction, thus unable to

capture the interaction of different horses in a real race and the small error in individual

horses accumulate and reduce the resultant accuracy. In this project, we investigate the effect

of employing a multiple horse model and compares its performance with single horse

representation of [7] [8].

Chapter 4 Background

13

Chapter 4 Background

4.1 Probabilistic Programming

Probabilistic programs are usual functional or imperative programs, but with two addition

properties [10]:

1. The ability to draw values at random from distributions

2. The ability to condition values of variables in a program via observations

However, unlike usual programs which are written for execution, the purpose of probabilistic

programs is usually to implicitly infer a probability distribution. For example, probabilistic

programs can be used to represent probabilistic graphical models, which use graphs to denote

conditional dependences between random variables. The purpose in this example is then to

infer the resulting conditional dependences between the unseen variables given the observed

subset of random variables.

Compared with non–probabilistic machine learning methods, probabilistic programming

techniques has been shown capable of learning from fewer examples [1] [2]. [1] build a

Bayesian implementation of learning from just one to five examples by taking advantage of

knowledge coming from previously learned categories, no matter how different these

categories are might be, while [2] developed a density over transforms shared by many

classes and developed a classifier based only a single training example for each class by

using the density as prior knowledge. These examples suggest that Bayesian inference may

be effective in overcoming the deficit of training data of in our horse racing prediction.

However, both works tailor build their models from scratch as one-off systems, limiting their

scope and extensibility, and hampering applications of the models to other problems.

The main goal of probabilistic programming languages is to relieve programmers the burden

of programming complicate programs for probabilistic sampling and inference which can be

represented by only a few mathematical statements [10]. Probabilistic programming

languages hides the details of sampling and inference inside the compiler and runtime and

enable programmers to express models using their domain expertise and dramatically reduce

the programming effort of the programmer for probabilistic modeling. Programmers can then

Chapter 4 Background

14

refocus their effort into developing sophisticated probabilistic models that can accurate model

their real–world observations, instead of spending most of their time in programming the

details of sampling and inference of their models.

4.2 Bayesian Inference

Bayesian inference gives us a method for learning from data: given a set of latent variables 𝑧,

we specify a prior distribution 𝑝(𝑧) quantifying what we know about before 𝑧 observing any

data; then, we specify how the observed data 𝑥 relates to 𝑧 by specifying a likelihood

function 𝑝(𝑥|𝑧); finally, we apply Bayes’ rule

𝑝(𝑧|𝑥) =
𝑝(𝑥|𝑧)𝑝(𝑧)

𝑝(𝑥)

to give the posterior function [11]. In the context of probabilistic programming, the model has

observations 𝑥 and latent variables 𝑧has a joint probability density of the form

𝑝(𝑥, 𝑧) = 𝑝(𝑥|𝑧)𝑝(𝑧)

with the following properties:

1. We can sample from each 𝑝

2. We can compute the pointwise log pdf 𝑝

Bayesian inference is used for probabilistic programs to condition the values of latent

variables 𝑧 via observations, or in other words, inferring the posterior probability 𝑝(𝑧|𝑥)

given observations 𝑥. Applying Bayes’ theorem, the posterior probability 𝑝(𝑧|𝑥) is calculated

by computing the right–hand side of Bayes’ theorem. Since 𝑝(𝑥|𝑧) can be sampled from

forward executions of the model and 𝑝(𝑧) is directly defined in the model, only 𝑝(𝑥) is

remained to be determined for Bayesian inference.

𝑝(𝑥) can be rewritten into the form

𝑝(𝑥) = ∫ 𝑝(𝑥|𝑧)𝑝(𝑧)𝑑𝑧

but this is difficult to evaluate in general. This is because the integral over the latent variables

𝑧 often require exponential number of computations for variables of limited possible values,

and intractable to calculate if variables 𝑧 are unbounded with infinite possible values.

Therefore, various inference algorithms are developed to conduction Bayesian inference.

Chapter 4 Background

15

4.3 Bayesian Inference Algorithms

Exact Bayesian inference via evaluation of Bayes’ theorem is difficult to achieve because

calculation of evidence probability 𝑝(𝑥) is expensive or even intractable. In this section, we

describe two main family of algorithms for Bayesian inference, Markov Chain Monte Carlo

algorithms and Variational Inference, the first approximates the evidence probability 𝑝(𝑥) via

sampling techniques, while the latter approximates the posterior probability 𝑝(𝑧|𝑥) by

introducing a parameterized distribution serving the approximation to the posterior. In

addition, we discuss an algorithm to solve the evidence probability 𝑝(𝑥) in the special case

where the latent variables 𝑧 of the model have limited possible values.

4.3.1 Enumeration

In the special case that latent variables 𝑧 of the model have limited possible values, we can

enumerate all the possible values of 𝑧 and sample the corresponding 𝑝(𝑥|𝑧) to obtain 𝑝(𝑥).

In this way, 𝑝(𝑥) are determined by

𝑝(𝑥) = ∑ 𝑝(𝑥|𝑧)𝑝(𝑧)

𝑧

and the conditioned value (probability density) of the latent variables 𝑧 is given by

𝑝(𝑧|𝑥) =
𝑝(𝑥|𝑧)𝑝(𝑧)

∑ 𝑝(𝑥|𝑧)𝑝(𝑧)𝑧

4.3.2 Markov Chain Monte Carlo Algorithms

Markov Chain Monte Carlo algorithms estimate a distribution by first taking a sample 𝑧0

from initial distribution 𝑞(𝑧0), then iteratively sample 𝑧𝑖 from the transitional distribution

based the previous sample, and by judiciously choosing the transitional distribution, the

outcome of this procedure with be a random procedure that converges in distribution to the

exact posterior 𝑝(𝑧|𝑥) [11]. The basic idea for MCMC algorithms tend to follow the

following framework:

1. Sample 𝑧0 from the initial distribution 𝑞(𝑧0)

2. Propose a new sample 𝑧𝑖
′

3. Accept or reject probabilistically using the 𝑞(𝑧𝑖|𝑧𝑖−1) and 𝑝(𝑥|𝑧)

4. If the proposal is accepted, return to step 2 with 𝑧𝑖

Chapter 4 Background

16

5. If the proposal is rejected, return to step 2 with 𝑧𝑖−1

6. After specified number of iterations, return all 𝑧0 to 𝑧𝑛−1

The main difference between MCMC algorithms is how the new sample is proposed and how

the proposal is decided for acceptance. Here, we introduce one of the simpler Markov Chain

Monte Carlo Algorithms: Metropolis Algorithm [12]. The Metropolis algorithm uses a

normal distribution to propose a jump. This normal distribution has a mean value μ which is

equal to the current position and takes a parameter known as proposal width for its standard

deviation σ. The proposal width is a parameter of the Metropolis algorithm and has a

significant impact on convergence. A larger proposal width will jump further and cover more

space in the posterior distribution but might miss a region of higher probability initially.

However, a smaller proposal width won't cover as much of the space as quickly and thus

could take longer to converge.

Once new state has been proposed, we need to decide (in a probabilistic manner) whether it is

a good move to jump to the new position. In Metropolis algorithm, the ratio of the proposal

distribution of the new state and the proposal distribution of the current state is used as the

probability of accepting proposal, 𝑝:

𝑝 =
𝑝(𝑧′|𝑥)

𝑝(𝑧|𝑥)
=

𝑝(𝑥|𝑧′)𝑝(𝑧′)

𝑝(𝑥|𝑧)𝑝(𝑧)

Therefore, we are visiting regions of high posterior probability 𝑝(𝑧|𝑥) relatively more often

that those of low posterior probability.

4.3.3 Variational Inference

Variational inference provides a different approach to approximate Bayesian inference. The

basic idea of variational inference is to introduce a parameterized variational distribution

𝑞(𝑧) to approximate the posterior 𝑝(𝑧|𝑥) [13] [14]. To make the approximate as close as

possible to the actual posterior, we search over the space of approximating distributions to

find the particular distribution with the minimum Kuller–Leibler divergence with the actual

posterior. Then, the problem of inferring the posterior probability is transformed to an

optimization problem minimizing the Kuller–Leibler divergence

KL(𝑞(𝑧)||𝑝(𝑧|𝑥)) = E𝑞 [log
𝑞(𝑧)

𝑝(𝑧|𝑥)
] = ∫ 𝑞(𝑧) log

𝑞(𝑧)

𝑝(𝑧|𝑥)
𝑑𝑧

Chapter 4 Background

17

which is the measure of the divergence of one probability distribution from a second,

reference probability distribution [15]. This measure goes to zero when the approximation

𝑞(𝑧) perfectly matches 𝑝(𝑧|𝑥).However, since 𝑝(𝑧|𝑥) is intractable to compute, we cannot

minimize the Kuller–Leibler divergence exactly. A simple derivation from [16] yields an

alternative representation allowing minimization

KL(𝑞(𝑧)||𝑝(𝑧|𝑥)) = E𝑞 [log
𝑞(𝑧)

𝑝(𝑧|𝑥)
]

 = E𝑞[log 𝑞(𝑧)] − E𝑞[log 𝑝(𝑧|𝑥)]

 = E𝑞[log 𝑞(𝑧)] − E𝑞 [log
𝑝(𝑥,𝑧)

𝑝(𝑥)
]

 = E𝑞[log 𝑞(𝑧)] − E𝑞[log 𝑝(𝑥, 𝑧)] + log 𝑝(𝑥)

 = −(E𝑞[log 𝑝(𝑥, 𝑧)] − E𝑞[log 𝑞(𝑧)]) + log 𝑝(𝑥)

The term inside the bracket is known as Evidence Lower Bound

ELBO = E𝑞[log 𝑝(𝑥, 𝑧)] − E𝑞[log 𝑞(𝑧)]

which can be directly maximized because both 𝑝(𝑥, 𝑧) and 𝑞(𝑧) can be computed efficiently.

Notice that log 𝑝(𝑥) does not depend on q, therefore, minimizing the Kuller–Leibler

divergence in the parameter space of 𝑞(𝑧) is the same as maximizing the ELBO, which can

be done via gradient ascent [13]. Let ϕ be the parameters that defines distribution 𝑞(𝑧), then,

each step of variation inference that maximize ELBO at the learning rate of α are as follows:

1. Calculate ELBO(𝑥, 𝑧, ϕ)

2. Calculate δ𝜙 =
𝜕ELBO

𝜕𝜙

3. Update 𝜙 ← 𝜙 + αδ𝜙

Chapter 4 Background

18

4.4 Artificial Neural Networks

Artificial neural networks are collections of connected units or nodes called artificial neurons

inspired by the biological neural networks in animal brains [17] [18]. The figure below shows

the structure of a unit in neural networks:

Figure 1. A unit in neural networks, taken from [19]

Each unit in neural networks are composed of an input function, a linear component that

computes the weighted sum of the unit’s input values, and an activation function, a nonlinear

activation component that transforms the weighted sum into a final value serving as the unit’s

activation value (output value) [19]. The choice of activation functions is different for

different network, but the sigmoid function, hyperbolic tangent (tanh), and rectified linear

unit (ReLU) are the most popular activation functions. For example, let 𝑎𝑗 be the inputs of the

unit 𝑖, 𝑊𝑗,𝑖 be the weights of the unit, 𝑔 be the activation function. The input function

computes

𝑖𝑛𝑖 = ∑ 𝑊𝑗,𝑖𝑎𝑗

𝑗

, and the activation function transforms the weighted sum into the final output value

𝑎𝑖 = 𝑔(𝑖𝑛𝑖) = 𝑔(∑ 𝑊𝑗,𝑖𝑎𝑗

𝑗

)

Despite the simple structure of neural networks, it has been found that multilayer feedforward

networks can approximate any functions [20]. A 2–layer neural network with 1 hidden layer

can approximate any continuous functions, while 3 or more layers neural network with 2 or

more hidden layers can approximate any functions. This makes neural networks very useful

for modeling unknown relations.

Chapter 4 Background

19

4.4.1 Neural Network Training

Neural networks are commonly trained using gradient descent, which calculates the partial

derivative of the error with respect to each parameter by chain rule and adjust the parameter

by the product the learning rate and the derivative [19]. For example, let 𝐸 denote the error,

𝑊𝑗,𝑖 denotes the weight matrix of the unit to adjust, 𝑔 be the activation function, 𝑎𝑗 be the

inputs of the unit, and 𝛼 denote the learning rate. If the unit is located at the final layer, then

the gradient of the weighted sum 𝑖𝑛𝑖 can be calculated directly

δ𝑖 =
𝜕𝐸

𝜕 𝑖𝑛𝑖
= 𝑔′(𝑖𝑛𝑖) × 𝐸

and the gradient of each weights

δ𝑗,𝑖 =
𝜕𝐸

𝜕𝑊𝑗,𝑖
= 𝑎𝑗

𝜕𝐸

𝜕 𝑖𝑛𝑖
= 𝑎𝑗 × δ𝑖 = 𝑎𝑗 × 𝑔′(𝑖𝑛𝑖) × 𝐸

Then, each weight is updated by

𝑊𝑗,𝑖 ← 𝑊𝑗,𝑖 + 𝛼 × δ𝑗,𝑖

However, if the unit is not located at the final layer, the gradient needs to be calculated by

backpropagation, which the error in latter layer 𝑖 are propagated to earlier layer 𝑗:

δ𝑗 = 𝑔′(𝑖𝑛𝑗) ∑ 𝑊𝑗,𝑖

𝑖

δ𝑖

and the gradient of each weights

δ𝑘,𝑗 =
𝜕𝐸

𝜕𝑊𝑘,𝑗
= 𝑎𝑘

𝜕𝐸

𝜕 𝑖𝑛𝑗
= 𝑎𝑘 × δ𝑗 = 𝑎𝑘 × 𝑔′(𝑖𝑛𝑗) ∑ 𝑊𝑗,𝑖

𝑖

δ𝑖

Then, each weight is updated by

𝑊𝑘,𝑗 ← 𝑊𝑘,𝑗 + 𝛼 × δ𝑘,𝑗

With gradient descent and backpropagation, each parameter of the neural network can be

updated accordingly in each step based on the error after one inference. The whole process is

repeated until the network converges [19].

Chapter 4 Background

20

4.5 Deep Probabilistic Programming

Deep probabilistic programming combines neural networks with probabilistic models [21]

[22]. By combining neural networks with probabilistic models, deep probabilistic

programming is capable of handling hierarchical representation learning while accounting for

uncertainty. There are many kinds of different models where neural networks are embedded

in probabilistic models, for example, neural networks can be used as for modeling the

probabilistic relations between latent variables and observations. The most used deep

probabilistic programming models are Bayesian neural networks.

4.5.1 Bayesian Neural Networks

Bayesian neural networks are artificial neural networks inferred by Bayesian inference [23].

Compared to traditional neural networks trained using back propagation, Bayesian neural

networks are trained with a distribution instead of a single value for each parameter in the

neural networks, such as weights and biases. In context of previous sections, the parameters

of the Bayesian neural networks are then latent variables 𝑧 of a probabilistic model, and the

data points are the observations 𝑥. Applying Bayesian inference, parameters of Bayesian

neural network can be obtained by Bayes’ theorem

𝑝(𝑧|𝑥) =
𝑝(𝑥|𝑧)𝑝(𝑧)

𝑝(𝑥)

Here, we encounter the same problem of intractable 𝑝(𝑥), which calls for the various

Bayesian inference algorithms to be applied to infer the parameters of neural networks. For

example, consider a Bayesian neural network with prior on the weights and biases 𝑧 to be the

unitary normal and trained using Variational Inference. The prior on the parameters can be

expressed as

𝑝(𝑧) = Normal(0,1)

Applying Variation Inference, we introduce the variational distribution 𝑞(𝑧) to approximate

the posterior distribution 𝑝(𝑧|𝑥). In this example, we let the variational distribution to be a

normal distribution with learnable parameters 𝜇, ρ. To avoid negative values of standard

deviation, a softplus function is placed over ρ.

𝑞(𝑧) = Normal(𝜇, log(1 + eρ))

Then, each step of variation inference at the learning rate of α are as follows:

Chapter 4 Background

21

1. Sample ϵ from Normal(0,1)

2. Sampled 𝑧 = 𝜇 + ϵ log(1 + eρ)

3. Calculate ELBO(𝑥, 𝑧, 𝜇, 𝜌)

4. δµ =
𝜕𝐸𝐿𝐵𝑂

𝜕𝑧
+

𝜕𝐸𝐿𝐵𝑂

𝜕µ

5. δρ =
𝜕𝐸𝐿𝐵𝑂

𝜕𝑧

ϵ

1+e−ρ
+

𝜕𝐸𝐿𝐵𝑂

𝜕ρ

6. Update µ ← µ + αδµ, ρ ← ρ + αδρ

Note that
𝜕𝐸𝐿𝐵𝑂

𝜕𝑧
 can be obtained from the backpropagation of standard neural networks.

Chapter 4 Background

22

4.6 Horse Racing

Horse racing, sport of running horses at speed, is one of the oldest of all sports and its basic

concept has undergone virtually no change over the centuries. In Hong Kong, horse racing is

not only a highly developed sport, but also a popular entertainment and gambling game. All

betting over horse racing in Hong Kong is regulated and held by the non–profit organization

Hong Kong Jockey Club, which holds a legal monopoly and provides different types of bet

according to Pari-mutuel betting system.

Pari-mutuel betting is a betting system in which the stake of a particular bet type is place

together in a pool, and the returns are calculated based on the pool among all winning bets

[24] Dividend will be shared by the number of winning combinations of a particular pool.

Winners will share the percentage of pool payout in proportion to their winning stakes. The

following tables taken from [24] show the different betting types:

Single–race Pool Dividend Qualification

Win 1st in a race

Place 1st, 2nd or 3rd in a race, or 1st or 2nd in a race of 4 to 6

declared starters

Quinella 1st and 2nd in any order in a race

Quinella Place Any two of the first three placed horses in any order in

a race

3 Pick 1 (Composite Win)

Winning Trainer (Composite Win)

Winning Region (Composite Win)

Composite containing the 1st horse in a race

Tierce 1st , 2nd and 3rd in correct order in a race

Trio 1st, 2nd and 3rd in any order in a race

First 4 1st, 2nd , 3rd and 4th in any order in a race

Quartet 1st, 2nd , 3rd and 4th in correct order in a race
Table 1. Types of bets in Single–race Pool

Multi–race Pool Dividend Qualification

Double 1st in each of the two nominated races

Consolation :1st in 1st nominated race and 2nd in 2nd nominated race

Treble 1st in each of the three nominated races

Consolation : 1st in the first two Legs and 2nd in 3rd Leg of the three

nominated races
Table 2. Types of bets in Multi–race Pool

Chapter 4 Background

23

Jackpot Pool Dividend Qualification

Double Trio 1st, 2nd and 3rd in any order in each of the two nominated races

Triple Trio 1st, 2nd and 3rd in any order in each of the three nominated races

Consolation :Select correctly the 1st, 2nd and 3rd horses in any

order in the first two Legs of the three nominated races

Six Up 1st or 2nd in each of the six nominated races

Six Win Bonus :1st in each of the six nominated races
Table 3. Types of bets in Jackpot Pool

Among these pools, Hong Kong Jockey Club does not pay out 100% of the pool amount.

Instead, the percentage of the pool payout are according to the following tables from [24]:

Single Pool Percentage of Pool Payout

Win / Place / Quinella / Quinella Place / Double 82.5%

Tierce / Trio / First 4 / Quartet / Double Trio / Triple

Trio / Treble / Six Up
75%

Table 4. Percentage of Pool Payout in Single Pool

Merged Pool Percentage of Pool Payout

Win (including Composite Win) 82.5%

Quartet & First 4 75%
Table 5. Percentage of Pool Payout in Merged Pool

Because Hong Kong Jockey Club does not pay out 100% of the pool amount, there is an

expected loss of 17.5% for bets Win, Place, Quinella, Quinella Place, and Double bets, and

an expected loss of 25% for Tierce, Trio, First 4, Quartet, Double Trio, Triple Trio, Treble,

Six Up. The expected loss makes generating profit from horse racing a challenging task. In a

Pari-mutuel pool with 100% payout, an individual only has to slightly beat the public

intelligence to have a net gain, but to generate a profit from a Pari-mutuel pool with only 75%

or 82.5% payout, an individual needs to beat the public intelligence by a large amount to

generate profit.

Chapter 5 Data

24

Chapter 5 Data

5.1 Data Collection

Many companies sell horse racing data online. One possible way to obtain training data for

our model is to purchase from them. However, due to the lack of budget and the questionable

authenticity of these data, we decided to collect the data from the official website of Hong

Kong Jockey Club.

5.2 Data Description

The horse racing dataset contains 8 years of racing data from January 1, 2011 to December

31, 2018. Each entry in the dataset represent the information of a horse in a race. The dataset

contains 77562 records from 6251 races taken place in Hong Kong. In addition to race data,

we also scrape corresponding horse data from HKJC website and weather data from

TimeAndDate. Apart from the obtaining raw data, we also add some features extracted from

the data.

The dataset is split into two parts: training dataset and testing dataset. The training dataset

contains data from 2011 to 2017 with 68074 records and 5461 races, while the testing dataset

contains data of the year 2018 with 9489 records and 790 races.

The following tables describes the races features, horse features obtained from HKJC

website, weather features obtained from TimeAndDate, and additional features we extracted.

Chapter 5 Data

25

Feature Description Types Values

raceyear Year of the race Date –

racemonth Month of the race Date –

raceday Day of the race Date –

raceid Unique id of the race Index –

location Location of the race Categorical ST, HV

class Class of the horses Categorical Class 1 to 5, Group 1 to 3

distance Distance of the race Categorical 1000, 1200, 1400, 1600,

1650, 1800, 2000, 2200, 2400

course Track used for the race Categorical A, A+3, AWT, B, B+2, C,

C+3

going Soil measurement Categorical FIRM, GOOD TO FIRM, GOOD, GOOD

TO YIELDING, YIELDING, YIELDING

TO SOFT, FAST, SLOW, WET FAST, WET

SLOW

raceno Race number in a race

day

Categorical 1 to 11

horseno Number assigned by

HKJC to horse

Categorical 1 to 14

horseid Unique id of horse Categorical 4373 distinct values

jockeycode Unique id of jockey Categorical 169 distinct values

trainercode Unique id of trainer Categorical 147 distinct values

draw Draw of the horse in race Categorical 1 to 14

actualweight Weight added to horse Real value –

horseweight Weight of horse itself Real value –

winodds Bet return on win Real value 1 to 99

place Place of horse in race Categorical 1 to 14

finishtime Finishing time of horse Real value –

Table 6. Race features from HKJC website

Chapter 5 Data

26

Feature Description Types Values

origin Place of origin Categorical

age Age of horse Real value 3 to 10

color Color of horse Categorical Bay, Black, Brown, Chestnut,

Dark, Grey, Roan

sex Sex of horse Categorical Colt, Filly, Gelding, Horse,

Mare, Rig

sire Father of horse Categorical 786 distinct values

dam Mother of horse Categorical 3786 distinct values

dam’s sire Maternal grandfather of

horse

Categorical 1009 distinct values

horseid Unique id of horse Categorical 4373 distinct values

Table 7. Horse features from HKJC website

Feature Description Types Values

location Location of the race Categorical ST, HV

temperature Air temperature Real value –

weather Description of weather Categorical Bay, Black, Brown, Chestnut,

Dark, Grey, Roan

wind _speed Wind speed in km/h Real value –

wind_direction Wind direction Categorical –

humidity Humidity Real value 0 to 100

moon Moon phase Real value 0 to 29.5305882

raceid Unique id of the race Index –

Table 8. Weather features from TimeAndDate

Feature Description Types Values

dn Day or Night Categorical D, N

old_place Place of horse in last race Categorical 1 to 14

weightdiff Difference in weight

from previous race

Real value –

Table 9. Extracted features

Chapter 5 Data

27

5.3 Features Analysis

Some features, like origin, age, color, and sex of the horse are traditional considered as

important factors in determining the wining horse. In this section, we investigate the effect of

these features on the winning horse.

5.3.1 Origin

Historically, the best performing horses comes from Britain, Ireland, and the United States,

but recently some of the best horses come from Australia and New Zealand [25]. In addition,

the guiding principle for breeding winning racehorses has always been best expressed as

“breed the best to the best and hope for the best” [26]. Therefore, the origin of the horse may

have an impact on the horse performance.

To analyze whether the origin of the horse is really correlated to the winning probability, we

have plotted the origin distribution of winning horse on the next page.

Note that the origin distribution of winning horse alone is not enough to determine the

winning probability of horses of different origin, since the distribution is obscured by the

origin distribution of all horses. Therefore, we also plot the conditional origin distribution of

winning horses.

From the figure, it can be inferred that the origin of the horses has an influence over the

winning probability with horses from Japan and Australia having the highest winning

probability and horses from Brazil and Spain having the lowest winning probability.

Therefore, the origin of the horses should be included for the model input.

Chapter 5 Data

28

Figure 2. Origin distribution of winning horse

Figure 3. Condition Origin distribution of winning horse

Chapter 5 Data

29

5.3.2 Age

The racing career of the horse is from age 2 to 10 and retirement is mandatory at age 11. The

age of the horse is directly related to its performance. Usually, horses reach their peak

performance at age 4 to 6 [27], and start to age subsequently and decrease in performance.

To verify whether the statement above is true, the age distribution and the conditional age

distribution of the winning horse is shown on the next page.

From the figure, it can be inferred that horse’s age has a large influence on performance, with

age 2 horses having the highest winning probability and age 4 having the second highest

winning probability. Therefore, age is an important feature for predicting the winning horse

and should be included for the model input.

In addition, it should be noted that age 2 horses are not common and only contribute to a

small number of wins, which may because these age 2 horses are prodigies with exceptional

performance. Other horses join horse racing at age 3 and takes a year to gain experience and

reach peak performance.

Chapter 5 Data

30

Figure 4. Age distribution of winning horse

Figure 5. Conditional Age distribution of winning horse

Chapter 5 Data

31

5.3.3 Color

It is commonly believed that the color of the horse indicates the horse’s performance. In

Hong Kong, the major types of colors are Chestnut, Brown, Bay and Grey [27]. To analyze

whether color is a factor correlated to winning probability, the color distribution and the

conditional color distribution of the winning horse is shown on the next page.

From the figure, it can be inferred that color is correlated to winning probability with horses

of dark and roan color being more likely to win while horses of bay, black, brown, and

chestnut have similar winning probability. Therefore, color should be included for model

input.

Chapter 5 Data

32

Figure 6. Color distribution of winning horse

Figure 7. Conditional Color distribution of winning horse

Chapter 5 Data

33

5.3.4 Sex

The sex of the horse is mainly classified into Gelding, Colt, or Filly. Over 90% of the runners

in Hong Kong are geldings [27]. The different hormones levels of different sex may lead to

different performance [28]. To analyze whether sex affects winning performance of the

horses, the sex distribution and conditional sex distribution of winning horse is shown on the

next page. The analysis of sex distribution of winning horse reveals that sex is also important

in determination of winners and should be included for the model input. In general, it can be

inferred that male horses (Colt, Gelding, Horse, Rig) has a higher winning probability than

female horses (Filly, Mare).

Chapter 5 Data

34

Figure 8. Sex distribution of winning horse

Figure 9. Conditional Sex distribution of winning horse

Chapter 5 Data

35

5.3.5 Draw

In general, horses starting with an inside draw (smaller draw number) have a competitive

advantage, since an inside rail has a shorter distance at turns [29]. However, the distance and

the running style of the horse may also impact the influence of draw number. For example,

Shatin Turf 1000M Straight has no turns and there is no advantage for having an inside draw.

In addition, as there is less damage to the track on the outskirts of the track, horses that start

from an outside draw (larger draw number) have a competitive advantage.

To verify whether the above principle is correct, we plot the draw distribution and the

conditional draw distribution of winning horse.

The figures indicate that horses with smaller draw number are more likely to win, which

supports the general principle of [27]. Therefore, it can be concluded that draw is indeed an

important feature and should be included for the model input.

Chapter 5 Data

36

Figure 10. Draw distribution of winning horse

Figure 11. Conditional Draw distribution of winning horse

Chapter 5 Data

37

5.3.6 Old place

Apart from the intrinsic characteristic of the horse, the past performance of the horse is also

important. Intuitively, a horse with a track record of all first places is more likely to win then

a horse with a track record of all last places.

To verify whether our intuition is correct, we plot the old place distribution of winning horse

and the conditional old place distribution of winning horse below. Here, –1 indicates that

there is no past record for the horse.

The data shown has clearly points out that winners will remain winners, and losers will

remain losers. Therefore, the old place of the horse is also an important feature for prediction

of horse place and should be included for model input.

Chapter 5 Data

38

Figure 12. Old place distribution of winning horse

Figure 13. Conditional Old place distribution of winning horse

Chapter 5 Data

39

5.4 Feature Selection

5.4.1 Excluded Features

Some of the features in the data are not used for the model input. Features like raceyear are

excluded as they are artificial numbering system. On the other hand, features like horseid,

sire, dam are excluded as our past result from [9] shown below in indicates that they can only

slightly improve accuracy but at the same time decrease the net gain. In the table below,

Features Set A contains no identity features, B contains only human identity features, and C

contains both human and horse identity features.

Feature Set A A+Odds B B+Odds C C+Odds

Accuracy 0.1840 0.2576 0.1798 0.2592 0.1830 0.2634

Net Gain –184.68 –184.5 –177.45 –164.65 –220.29 –188.06

Return/Bet –0.2165 –0.2163 –0.2080 –0.2009 –0.2583 –0.2205

Table 10. Past results of different input features from [9].

Therefore, the complete list of excluded features is shown below.

Feature Description Reason

raceyear Year of the race Artificial numbering system

racemonth Month of the race Replaced by weather features

raceday Day of the race Replaced by weather features

raceid Unique id of the race Artificial numbering system

raceno Race number in a race day Artificial numbering system

horseno Number assigned by HKJC to horse Artificial numbering system

horseid Unique id of horse Too many distinct values /

cannot handle unseen horses

place Place of horse in race Information cannot be gained

before the race

finishtime Finishing time of horse Same reason as place

sire Father of horse Same reason as horseid

dam Mother of horse Same reason as horseid

dam’s sire Maternal grandfather of horse Same reason as horseid

Table 11. Excluded features

Chapter 5 Data

40

5.4.2 Included Features

The included features used for model input are listed in the following table.

Feature Description Types Values

location Location of the race Categorical ST, HV

class Class of the horses Categorical Class 1 to 5, Group 1 to 3

distance Distance of the race Categorical 1000, 1200, 1400, 1600, 1650,

1800, 2000, 2200, 2400

course Track used for the race Categorical A, A+3, AWT, B, B+2, C, C+3

going Soil measurement Categorical FIRM, GOOD TO FIRM, GOOD,

GOOD TO YIELDING,

YIELDING, YIELDING TO SOFT,

FAST, SLOW, WET FAST, WET

SLOW

jockeycode Unique id of jockey Categorical 169 distinct values

trainercode Unique id of trainer Categorical 147 distinct values

draw Draw of the horse in race Categorical 1 to 14

actualweight Weight added to horse Real value –

horseweight Weight of horse itself Real value –

winodds Bet return on win Real value 1 to 99

origin Place of origin Categorical

age Age of horse Real value 3 to 10

color Color of horse Categorical Bay, Black, Brown, Chestnut, Dark,

Grey, Roan

sex Sex of horse Categorical Colt, Filly, Gelding, Horse, Mare,

Rig

temperature Air temperature Real value –

weather Description of weather Categorical Bay, Black, Brown, Chestnut, Dark,

Grey, Roan

wind _speed Wind speed in km/h Real value –

wind_direction Wind direction Categorical –

humidity Humidity Real value 0 to 100

moon Moon phase Real value 0 to 29.5305882

dn Day or Night Categorical D, N

old_place Place of horse in last race Categorical 1 to 14

weightdiff Difference in weight from

previous race

Real value –

Table 12. Included features

Chapter 5 Data

41

5.4.3 Investigated Feature

Compared to our past work [9], we have added a set of weather features for model input. The

features under investigate are listed in the table below.

Feature Description Reason

temperature Air temperature Investigate effect of weather

weather Description of weather Investigate effect of weather

wind _speed Wind speed in km/h Investigate effect of weather

wind_direction Wind direction Investigate effect of weather

humidity Humidity Investigate effect of weather

moon Moon phase Investigate effect of weather

dn Day or Night Investigate effect of weather

winodds Bet return on win Investigate influence of public intelligence

Table 13. Investigated features

To compare the effect of adding such features, we create three sets of features for model

input, all features, without “winodds” feature, and without weather features. The list of used

features in each features set is shown in the following table. The total number of features in

asset and the resultant input dimension per horse is also included.

Chapter 5 Data

42

Feature\Feature Set All Features Without “winodds" Without Weather

location X X X

class X X X

distance X X X

course X X X

going X X X

jockeycode X X X

trainercode X X X

draw X X X

actualweight X X X

horseweight X X X

winodds X X

origin X X X

age X X X

color X X X

sex X X X

temperature X X

weather X X

wind _speed X X

wind_direction X X

humidity X X

moon X X

dn X X

old_place X X X

weightdiff X X X

Total features 24 23 17

Input Dimension 455 454 391

Table 14. Features used in each feature set

Chapter 5 Data

43

5.5 Data Preprocessing

5.5.1 Real Value Data

We apply normalization on real value data to make training less sensitive to the scale of

individual features. We use the z–score normalization to make the data have zero mean and

unit variance. To prevent information leakage, we use the mean and variance of the training

data for normalization. The data is then normalized according to the following equation:

�̂� =
𝑋 − 𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑑(𝑋)

5.5.2 Categorical Data

We use one hot encoding to represent categorical data. This approach, while creating a high

dimension and memory intensive, represents categorical data in an unbiased way so that

every class is equally separated and unrelated. This approach is also the most straight forward

way to represent categorical data. For example, suppose we have data of different categories

as follows:

Item Category

1 Apple

2 Orange

3 Banana

After one hot encoding, the data will be transformed into the following:

Item Is Apple Is Orange Is Banana

1 1 0 0

2 0 1 0

3 0 0 1

Note that the dimension of the data is increased by the number of categories.

After this step, the dimension of the data is increased by over 20 times from 21 to 455. One

approach to overcome the high dimensionality and large memory consumption is to train an

embedding network for each of column of the data set. However, this requires careful

selection of embedding dimension and complicated network design. Since our dataset are still

well within the size of available memory, it is not deemed as necessary to use embedding

networks.

Chapter 6 Design

44

Chapter 6 Design

In this chapter, we describe the design of our model and explain the design decisions made.

In addition, we highlight the key design differences of our model with related works.

6.1 Design Goals

The design goals of our model are to accurately predict the winning horse and to generate

profit with the “win” bet provided by the Hong Kong Jockey Club. All subsequent design

choices are evaluated by 1. Accuracy of the prediction of the winning horse and 2. Simulated

testing return with the “win” bet provided by the Hong Kong Jockey Club.

6.2 Race Representation

In this section we describe the different representations of horse races. In previous studies [7]

[8], regression on finishing time and binary classification on win/lose are mainly studied,

while our previous work [9] focused on multi–class classification of place to model horse

performance.

6.2.1 Single Horse Representations

1. Finishing time regression – Regression on finishing time is a simple yet effective way

to interpret horse racing results. In this approach, finishing time of each individual

horse are predicted and the horses are ranked based on the predicted time.

2. Win/lose binary classification – Binary classification on win/lose is another

straightforward way to predict whether the horse is going to win. However, binary

labeling the data of win/lose will result in highly uneven distributed labels with less

than 10% of positive data and more than 90% of negative data.

3. Place prediction – Directly predicting the place of the horses is more complicated

method but give even data to each class. Moreover, score of each place of a horse can

be interpreted as the probability of the horse getting each place, which facilitates

building a probabilistic model. Although this may result in duplicated place within the

same race, the score for each place can be used for ranking the horses in a race.

However, in races with less than the maximum number (14) of horses, this model is

not coherent with intuition and gives probability for impossible places.

Chapter 6 Design

45

6.2.2 Multiple Horses Representations

All of the above methods predict their result based on the information of a single horse,

which is unable to capture the interaction of different horses in a real race. In addition, the

small errors in each individual horse may accumulate to lead to a large error in prediction. In

this project, instead of using single horse representation, our model predicts the race result

based on information from all the horses. However, this requires different models for

prediction of races with different number of horses because of the difference in input and

output dimension caused by the different number of horses. This is amortized by most races

having 12 or 14 horses, as shown below in Figure 14. Therefore, by building two separate

models for races of 12 horses and 14 horses, we can handle over 75% of the races.

Figure 14. Number of horses in each race

For multiple horses, there are also different possible representations:

1. Multiple horse finishing time regression – Regression on finishing time is a simple yet

effective way to interpret horse racing results. In this approach, finishing time of each

individual horse are predicted and the horses are ranked based on the predicted time.

However, this leads to a difficult choice of activation function for the output layer and

may requires an additional transformation from the output of the model to the final

output for training.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

4 5 6 7 8 9 10 11 12 13 14

R
el

at
iv

e
Fr

eq
u

en
cy

Number of Horses

Number of Horses in Each Race

Chapter 6 Design

46

2. Winning horse classification – Binary classification on win/lose is a straightforward

way to predict whether the horse is going to win. In addition, in the multiple horse

case, binary labeling the data with win/lose will not result in uneven data labels, since

in each race, there is always a horse which wins.

3. Multiple horses place prediction – Directly predicting the place of the horses is more

complicated method that predict more information about the relative rankings of the

horses apart from the winning horse. However, it requires a two–dimensional output

layer for representing place probability for each of the horses.

In this project, we choose to use winning horse classification because it is the simplest

representation that avoids the difficult choice of activation functions and the two–

dimensional output layer while still being able to predict the winning horse. In addition, while

finishing time regression and place prediction can yield additional information about the

rankings of individual horses, we are only concerned with the prediction of the winning horse

and betting on the “win” bet of Hong Kong Jockey Club in this project.

6.3 Network Design

6.3.1 Distribution Selection for Neural Network Parameters

Han et al. [30] [31] have studied the weight distribution of three state of the art deep neural

networks, LeNet [32], AlexNet [33] and VGGNet [34], shown below in Figure 15.

Figure 15. Distribution of weights in different deep neural networks

Chapter 6 Design

47

The weight distribution in these neural networks has been found to resemble narrow normal

distributions with mean very close to zero. Therefore, in our model, both the prior

distributions and variational distributions are set to be normal distributions.

On the other hand, despite narrow distribution of parameters found by Han et al. [30] [31]

with standard deviation less than 0.01, we set our prior distribution to be fairly wide with

standard deviation of 1, Normal(0,1), to accommodate a larger range of possible values.

6.3.2 Number of Layers and Neurons in Network

In our previous work [9], we have determined that neural network with 4 layers of which 3 of

them hidden works best. Therefore, in this work, we retain the same number of layers in the

neural network. Instead, we test different number of neurons each layer ranging from 16 to

256 and select the best number of neurons. Figure 16 below illustrates our 4–layer network

structure with 16 neurons per layer. The dimension of the input layer in the figure has been

reduced to 20 for a better presentation. The output of this neural network will then be used as

rank probabilities during training. The complete flow is shown in Figure 17.

Figure 16. Our 4–layer neural network with 16 neurons per layer

Chapter 6 Design

48

Figure 17. Flow of our neural network with final categorical sampling

Chapter 7 Implementation

49

Chapter 7 Implementation

We have implemented our model on Python 3.7 with PyTorch 1.0.1 and Pyro 0.3.1. In this

section, we describe the process of translating our model to implementation on Pyro.

7.1 Pyro

Pyro is a probabilistic programming language build on Python as a platform for developing

advanced probabilistic models [22]. It leverages PyTorch on the backend to support neural

networks, backpropagation, and automatic differentiation. As a probabilistic programming

language, it abstracts probabilistic sampling and inference with simple primitives. For

example, only one statement is needed in Pyro to sample a Normal(0,1) distribution,

x = pyro.distributions.Normal(0.0, 1.0).sample()

Given the model model and variational distribution guide, (stochastic) variational inference

can be done with a few lines as follows:

svi = SVI(model, guide, optimizer, loss=Trace_ELBO())
for i in range(num_epochs):
 svi.step(data)

Similarly, Markov Chain Monte Carlo sampling can be done as simple as:

nuts_kernel = pyro.infer.mcmc.NUTS(model, adapt_step_size=True)
posterior = pyro.infer.mcmc.MCMC(nuts_kernel, num_samples=num_epochs).run(data)

Running either would yield the approximate posterior distribution 𝑝(𝑧|𝑥), stored in guide or

posterior, depending on whether variational inference or Markov Chain Monte Carlo is

used.

7.2 Bayesian Neural Network in Pyro

The following code implements our Bayesian neural network as described in Section 6.3 :

Chapter 7 Implementation

50

class Net(Module):
 def __init__(self, num_feature, num_hidden, num_rank):
 super(Net, self).__init__()
 self.hidden1 = Linear(num_feature, num_hidden) # hidden layer 1
 self.hidden2 = Linear(num_hidden, num_hidden) # hidden layer 2
 self.hidden3 = Linear(num_hidden, num_hidden) # hidden layer 3
 self.predict = Linear(num_hidden, num_rank) # output layer
 self.nonlinear = ReLU() # ReLU activation for intermediate layers
 self.softmax = Softmax(1)) # Softmax activation for final layer

 def forward(self, x):
 hid1 = self.nonlinear(self.hidden1(x))
 hid2 = self.nonlinear(self.hidden2(hid1))
 hid3 = self.nonlinear(self.hidden3(hid2))
 pred = self.softmax(self.predict(hid3))
 return pred

def model(data):
 # Create unit normal priors over the parameters
 loc = pyro.zeros(num_hidden, num_feature)
 scale = pyro.ones(num_hidden, num_feature)
 bias_loc = pyro.zeros(num_hidden)
 bias_scale = pyro.ones(num_hidden)
 loc2 = pyro.zeros(num_hidden, num_hidden)
 scale2 = pyro.ones(num_hidden, num_hidden)
 bias_loc2 = pyro.zeros(num_hidden)
 bias_scale2 = pyro.ones(num_hidden)
 loc3 = pyro.zeros(num_hidden, num_hidden)
 scale3 = pyro.ones(num_hidden, num_hidden)
 bias_loc3 = pyro.zeros(num_hidden)
 bias_scale3 = pyro.ones(num_hidden)
 loc_out = pyro.zeros(num_rank, num_hidden)
 scale_out = pyro.ones(num_rank, num_hidden)
 bias_loc_out = pyro.zeros(num_rank)
 bias_scale_out = pyro.ones(num_rank)

 w_prior = Normal(loc, scale).independent(2)
 b_prior = Normal(bias_loc, bias_scale).independent(1)
 w_prior2 = Normal(loc2, scale2).independent(2)
 b_prior2 = Normal(bias_loc2, bias_scale2).independent(1)
 w_prior3 = Normal(loc3, scale3).independent(2)
 b_prior3 = Normal(bias_loc3, bias_scale3).independent(1)
 w_prior_out = Normal(loc_out, scale_out).independent(2)
 b_prior_out = Normal(bias_loc_out, bias_scale_out).independent(1)
 priors = {'hidden1.weight': w_prior, 'hidden1.bias': b_prior, 'hidden2.weight':
w_prior2, 'hidden2.bias': b_prior2, 'hidden3.weight': w_prior3, 'hidden3.bias':
b_prior3, 'predict.weight': w_prior_out, 'predict.bias': b_prior_out}

 lifted_module = pyro.random_module("module", Net, priors)
 lifted_reg_model = lifted_module()
 x_data = data[:, :-1]
 y_data = data[:, -1]
 with pyro.plate("map", len(data)):
 prediction_mean = lifted_reg_model(x_data)
 pyro.sample("obs", Categorical(prediction_mean), obs=y_data)

Figure 18. Implementation of Bayesian neural network model in Pyro

Chapter 7 Implementation

51

def guide(self, data):
 # define our variational parameters
 w_loc = data.new_tensor(pyro.randn(num_hidden, num_feature))
 w_log_sig = data.new_tensor(pyro.zeros(num_hidden, num_feature))
 b_loc = data.new_tensor(pyro.randn(num_hidden))
 b_log_sig = data.new_tensor(pyro.zeros(num_hidden))
 w_loc2 = data.new_tensor(pyro.randn(num_hidden, num_hidden))
 w_log_sig2 = data.new_tensor(pyro.zeros(num_hidden, num_hidden))
 b_loc2 = data.new_tensor(pyro.randn(num_hidden))
 b_log_sig2 = data.new_tensor(pyro.zeros(num_hidden))
 w_loc3 = data.new_tensor(pyro.randn(num_hidden, num_hidden))
 w_log_sig3 = data.new_tensor(pyro.zeros(num_hidden, num_hidden))
 b_loc3 = data.new_tensor(pyro.randn(num_hidden))
 b_log_sig3 = data.new_tensor(pyro.zeros(num_hidden))
 w_loc_out= data.new_tensor(pyro.randn(num_rank, num_hidden))
 w_log_sig_out= data.new_tensor(pyro.zeros(num_rank, num_hidden))
 b_loc_out= data.new_tensor(pyro.randn(num_rank))
 b_log_sig_out= data.new_tensor(pyro.zeros(num_rank))

 # register learnable params in the param store
 mw_param = pyro.param("guide_mean_weight", w_loc)
 sw_param = Softplus(pyro.param("guide_log_scale_weight", w_log_sig))
 mb_param = pyro.param("guide_mean_bias", b_loc)
 sb_param = Softplus(pyro.param("guide_log_scale_bias", b_log_sig))
 mw_param2 = pyro.param("guide_mean_weight2", w_loc2)
 sw_param2 = Softplus(pyro.param("guide_log_scale_weight2", w_log_sig2))
 mb_param2 = pyro.param("guide_mean_bias2", b_loc2)
 sb_param2 = Softplus(pyro.param("guide_log_scale_bias2", b_log_sig2))
 mw_param3 = pyro.param("guide_mean_weight3", w_loc3)
 sw_param3 = Softplus(pyro.param("guide_log_scale_weight3", w_log_sig3))
 mb_param3 = pyro.param("guide_mean_bias3", b_loc3)
 sb_param3 = Softplus(pyro.param("guide_log_scale_bias3", b_log_sig3))
 mw_param_out = pyro.param("guide_mean_weight_out", w_loc_out)
 sw_param_out = Softplus(pyro.param("guide_log_scale_weight_out", w_log_sig_out))
 mb_param_out = pyro.param("guide_mean_bias_out", b_loc_out)
 sb_param_out = Softplus(pyro.param("guide_log_scale_bias_out", b_log_sig_out))

 # guide distributions for w and b
 w_dist = Normal(mw_param, sw_param).independent(2)
 b_dist = Normal(mb_param, sb_param).independent(1)
 w_dist2 = Normal(mw_param2, sw_param2).independent(2)
 b_dist2 = Normal(mb_param2, sb_param2).independent(1)
 w_dist3 = Normal(mw_param3, sw_param3).independent(2)
 b_dist3 = Normal(mb_param3, sb_param3).independent(1)
 w_dist_out = Normal(mw_param_out, sw_param_out).independent(2)
 b_dist_out = Normal(mb_param_out, sb_param_out).independent(1)
 dists = {'hidden1.weight': w_dist, 'hidden1.bias': b_dist, 'hidden2.weight':
w_dist2, 'hidden2.bias': b_dist2, 'hidden3.weight': w_dist3, 'hidden3.bias': b_dist3,
'predict.weight': w_dist_out, 'predict.bias': b_dist_out}

 lifted_module = pyro.random_module("module", Net, dists)
 return lifted_module()

Figure 19. Implementation of variational distribution for Bayesian neural network in Pyro

Chapter 7 Implementation

52

7.3 Data Augmentation

To create more data points from available data, we employ data augmentation to transform

data entries into additional entries. Data augmentation is often used in machine learning to

prevent overfitting as a result of small training dataset, especially for tasks where manual

labeling is expensive, such as image recognition [32] [33] [34]. However, for horse racing,

data augmentation is a challenging task. Unlike image recognition where a human can easily

distinguish between different labels given the input image, in horse racing the winning horse

cannot be determined by a human given only the input data. In addition, for image

recognition, noise filter placed over the input data does not drastically changes the label, but

for horse racing, slight differences in the race condition can lead to different outcome.

Therefore, we do not modify the values of the data, but only crop and shuffle the ground truth

data.

7.3.1 Data Cropping

The presence of 13-horse races and 14-horse races present an opportunity for creating

additional data for training 12-horse model. We crop the top 12 horses from 13-horse and 14-

horse races for use in training the 12-horse model. As a result, the number of training races

for the 12-horse model doubles from 2292 12-horse races to 4605 races of 12-horse, 13-horse

and 14-horse combined. For the 14-horse model, there are no additional data that can be

created from cropping because there is no race with more than 14 horses, so the number of

training data for 14-horse model is only 1940 races.

7.3.2 Data Shuffling

In our multiple horse representation, the input features of different horses are symmetric, and

there is no information encoded in the relative positions between the features of different

horses. For example, for an input vector of 12 horses as follows:

Horse 1 Horse 2 Horse 3 Horse 4 Horse 5 Horse 6 Horse 7 Horse 8 Horse 9 Horse10 Horse11 Horse12

There is no difference in information encoded if the input vector is flipped:

Horse12 Horse11 Horse10 Horse 9 Horse 8 Horse 7 Horse 6 Horse 5 Horse 4 Horse 3 Horse 2 Horse 1

This enables an additional dimension for data shuffling.

Therefore, during training, the training data is shuffled along two dimensions, the order of

training data and the order of each horse’s features, before running each step of variational

inference or Markov Chain Monte Carlo sampling.

Chapter 8 Results

53

Chapter 8 Results

8.1 Setup

We have implemented our model on Python 3.7 with PyTorch 1.0.1 and Pyro 0.3.1. All

experimented are run on CentOS Linux 7 with Nvidia Titan V. We have trained our models

with 100,000 epochs of variation inference over the training dataset with Adam optimizer

with an initial learning rate of 0.0001. The amount of epochs is selected so that even the

model with the largest number of parameters are trained to convergence. Since the variational

distribution are not able to be directly used as network parameters, we sample the most likely

set of weights and biases from our model by setting them to the mean of the variational

distribution. Note that this is different from our previous approach [16], where 100 different

sets of neural weights and biases from the variational distribution were sampled and the

average performance taken as the result. We demonstrate in later sections that this approach

of using the most likely model reduces the variability and improves the prediction accuracy

and net gain.

8.2 Results

We use the following criteria to evaluate the different models:

1. Accuracy: accuracy of predicting the winning horse in testing dataset

2. Net gain: overall net gain of win over the testing dataset and ratio of return over bet

To generate the net gain, we bet a fixed amount of 1 for each race in the testing dataset on the

predicted winning horse. This results in bet amount of 341 for 12-horse model and 203 for

14-horse model. The following tables show the performance of the model corresponding to

the three set of features, All Features, Without “winodds” Feature, and Without Weather

Features. The bet based on the public intelligence (lowest “winodds”) is also shown for

comparison. To better illustrate the trend of our total asset during the testing process, we also

included the betting curve showing the value of our total asset throughout the testing year.

Chapter 8 Results

54

12-horse Model (Tested with 341 12-horse races)

Feature Set Neurons Accuracy (%) Net Return Return/Bet (%) Profit?

Public Intelligence N/A 22.87 –114.5 –33.58 No

All Features

16 7.62 –136.0 –39.88 No

32 17.01 –88.9 –26.07 No

64 22.58 –26.9 –7.89 No

128 17.60 –31.7 –9.30 No

256 18.18 –80.6 –23.64 No

Without “winodds”

Feature

16 8.80 –185.2 –54.31 No

32 8.80 –185.2 –54.31 No

64 20.82 –15.8 –4.63 No

128 16.42 –67.6 –19.82 No

256 17.60 –43.1 –12.64 No

Without Weather

Features

16 9.68 –47.6 –13.96 No

32 22.29 25.7 7.54 Yes

64 19.35 –82.7 –24.25 No

128 17.30 –73.5 –21.55 No

256 17.30 –87.3 –25.60 No

Table 15. Testing performance of 12-horse model with different features and number of neurons

14-horse Model (Tested with 203 14-horse races)

Feature Set Neurons Accuracy (%) Net Return Return/Bet (%) Profit

Public Intelligence N/A 27.59 –36.9 –18.18 No

All Features

16 5.91 –117.6 –57.93 No

32 16.75 –41.6 –20.49 No

64 14.29 –35.3 –17.39 No

128 22.66 29.3 14.43 Yes

256 17.24 –21.1 –10.39 No

Without “winodds”

Feature

16 9.85 –117.7 –57.98 No

32 15.76 –44.0 –21.67 No

64 18.23 –27.5 –13.55 No

128 23.15 15.4 7.59 Yes

256 17.73 –38.6 –19.01 No

Without Weather

Features

16 5.91 –117.6 –57.93 No

32 20.20 –23.8 –11.72 No

64 23.15 7.5 3.69 Yes

128 15.76 –58.2 –28.67 No

256 17.24 –49.7 –24.48 No

Table 16. Testing performance of 14-horse model with different features and number of neurons

Chapter 8 Results

55

12-horse Model (Tested with 341 12-horse races)
Feature Set Neurons Betting Curve

Public Intelligence N/A

All Features

16

32

Chapter 8 Results

56

64

128

256

Chapter 8 Results

57

Without “winodds”

Feature

16

32

64

Chapter 8 Results

58

128

256

Without Weather

Features
16

Chapter 8 Results

59

32

64

128

Chapter 8 Results

60

256

Table 17. Betting curves of 12-horse model with different features and number of neurons

14-horse Model (Tested with 203 14-horse races)
Feature Set Neurons Betting Curve

Public Intelligence N/A

All Features 16

Chapter 8 Results

61

32

64

128

Chapter 8 Results

62

256

Without “winodds”

Feature

16

32

Chapter 8 Results

63

64

128

256

Chapter 8 Results

64

Without Weather

Features

16

32

64

Chapter 8 Results

65

128

256

Table 18. Betting curves of 14-horse model with different features and number of neurons

Chapter 8 Results

66

8.3 Discussion

8.3.1 Profitability of Horse Racing

From Table 15 and Table 16, we observe that both the 12-horse model and 14-horse model

can generate a net profit with certain combination of feature set and number of neurons. The

profit is 7.54% for 12-horse model with feature set Without Weather Features at 32 neurons,

14.43%, 7.59% and 3.69% for 14-horse model with feature set All Features at 128 neurons,

Without “winodds” Feature at 128 neurons, and Without Weather Features at 64 neurons

respectively. This suggests that it is possible to generate profit via horse racing betting and

our Bayesian neural network is suitable for predicting horse racing and can generate a net

profit.

8.3.2 Optimal Number of Neurons per Layer

For the 12-horse model, best performance for each feature set is obtained at 64 neurons, 64

neurons, and 32 neurons respectively. For the 14-horse model, best performance for each

feature set is obtained at 128 neurons, 128 neurons, and 64 neurons respectively. Here we

observe two trends, first, the optimal number of neurons for 12-horse model is consistently

smaller than that of 14-horse model across all three feature sets, and second, the optimal

number of neurons for Without Weather Features is consistently smaller than that of other

feature sets across both 12-horse model and 14-horse model.

The reduced optimal number of neurons per layer of 12-horse model compared to 14-horse

can be explained by the reduction in number of features as a result of less horses. The number

of features per horse is 455 after preprocessing, thus the number of features for 12-horse

model is 455×12=5460 while the number of features for 14-horse is 455×14=6370.

Therefore, the optimal number of neurons per layer of 12-horse model is smaller than that of

14-horse model.

Similarly, the reduced optimal number of neurons for feature set Without Weather Features

can be explained by the reduced complexity of the smaller number of features when weather

features are removed. While removing the real valued “winodds” only decrease the features

per horse from 455 to 454, removing weather features with many categorical data reduce this

number by 64 to 391. This 14% decrease in number of features has led to the reduced optimal

number of neurons for feature set Without Weather Features.

Chapter 8 Results

67

Profitable 14-horse Model (Tested with 203 14-horse races)
Feature Set Neurons Betting Curve

All Features 128

Without “winodds”

Feature
128

Without Weather

Features
64

Table 19. Betting curves of profitable 14-horse models

Chapter 8 Results

68

8.3.3 Optimal Feature Set

To better understand the effect of using different feature sets, we extract the three profitable

betting curves of 14-horse model from Table 18 to Error! Reference source not found.. F

rom the table, we can see that the betting behavior using All Features is different from that of

Without “winodds” Feature and Without Weather Features and is more stable without

exhibiting large losses throughout the betting in the testing year, while removing either

“winodds” or weather features results in a large initial drop in asset. This suggests that the

combined knowledge of “winodds” or weather are important in predicting horse racing.

While this may contradict with the result for 12-horse model, where the only profitable

feature set is Without Weather Features, we attribute this result to the influence of other

factors in data augmentation. To verify our hypothesis, we rerun the experiment for 12-horse

model without data cropping of 13 or 14-horse race and only use 12-horse races for training.

Due to time and resources constraint, we only rerun the experiment with the optimal

configurations of 12-horse model and 14-horse model. The results are shown in Table 20 and

Table 21. Without data augmentation, the performance of using all features are the best in

terms of both accuracy and net return. Therefore, we can conclude that using All Features are

the best when there is no data augmentation. This seems to suggest that data augmentation by

cropping influences the performance of model under different feature set. Further

investigation of influence of data augmentation must be done in order to explain how data

augmentation influence the performance of model under different feature set.

12-horse Model without Data Augmentation (Tested with 341 12-horse races)

Feature Set Neurons Accuracy (%) Net Return Return/Bet (%) Profit?

All Features
64 20.53 0.0 0.0 No

128 17.01 –1.3 –0.38 No

Without “winodds”

Feature

64 19.65 –14.3 –4.19 No

128 14.66 –39.7 –11.64 No

Without Weather

Features

32 19.35 –64.7 –18.97 No

64 15.84 –87.3 –25.60 No

Table 20. Performance of 12-horse model without data augmentation

Chapter 8 Results

69

12-horse Model without Data Augmentation (Tested with 203 14-horse races)
Feature Set Neurons Betting Curve

All Features

64

128

Without “winodds”

Feature
64

Chapter 8 Results

70

128

Without Weather

Features

32

64

Table 21. Betting curves of 12-horse model without data augmentation

Chapter 8 Results

71

8.4 Kelly Betting

The fixed betting in the previous sections may not be the optimal betting strategy of a rational

being. Indeed, experienced human betters may not bet fixed amounts on every race even

when they hold different confidences about the races [35]. To incorporate confidence into

betting, we employ Kelly betting on each model. Kelly betting is a formula for bet sizing that

leads to optimal wealth increase in the long run as the number of bets goes to infinity [35]. It

sets the bets size by maximizing the expected logarithm of wealth which is equivalent to

maximizing the expected geometric growth rate.

For example, let 𝑝 be the probability of winning, and 𝑏 be the return per unit bet, which is the

amount won per unit bet on top of getting the bet amount back. Also, we denote the current

amount of asset to be 𝐴. Then, the Kelly bet is

𝑓 = 𝐴 ×
𝑝(𝑏 + 1) − 1

𝑏

In our experiments, we take the output of the neural network as the probability of winning of

each horse. The sum of this output is 1, which is consistent to be interpreted as probability.

To give a fair comparison to fixed betting, the initial asset is set to equal to 341 for 12-horse

model and 203 for 14-horse model. The results are shown on the next page.

8.4.1 Discussion

From the results, most of our models lost all the asset when utilizing Kelly betting, even

when it can generate a profit using fixed betting. One possible explanation is that while our

models are comparatively accurate in predicting the winning horse, they are over confidence

in its prediction and therefore lost all of their asset.

One notable exception is the 14-horse model with 64 neurons using Without “winodds”

Feature feature set. This model obtained a 403.22% net gain of 818.5 and the highest amount

reached in the process is over 35000. However, without additional testing data, we are unable

to conclude whether this model is about to make a profit in the long run.

Chapter 8 Results

72

12-horse Model (Tested with 341 12-horse races)

Feature Set Neurons Accuracy (%) Net Return Return/Bet (%) Profit?

Public Intelligence N/A 22.87 –114.5 –33.58 No

All Features

16 7.62 –313.6 –91.95 No

32 17.01 –340.6 –99.90 No

64 22.58 –336.3 –98.61 No

128 17.60 –340.1 –99.75 No

256 18.18 –315.3 –92.50 No

Without “winodds”

Feature

16 8.80 –341.0 –100 No

32 8.80 –341.0 –100 No

64 20.82 –341.0 –100 No

128 16.42 –340.2 –99.77 No

256 17.60 –341.0 –100 No

Without Weather

Features

16 9.68 –315.7 –92.57 No

32 22.29 –314.9 –92.34 No

64 19.35 –332.4 –97.48 No

128 17.30 –338.6 –99.30 No

256 17.30 –341.0 –100 No

Table 22. Kelly betting performance of 12-horse model with different features and number of neurons

14-horse Model (Tested with 203 14-horse races)

Feature Set Neurons Accuracy (%) Net Return Return/Bet (%) Profit

Public Intelligence N/A 27.59 –36.9 –18.18 No

All Features

16 5.91 –203.0 –99.98 No

32 16.75 –202.7 –99.86 No

64 14.29 818.5 403.22 Yes

128 22.66 –201.6 –99.29 No

256 17.24 –202.6 –99.79 No

Without “winodds”

Feature

16 9.85 –203.0 –99.98 No

32 15.76 –203.0 –99.99 No

64 18.23 –203.0 –100 No

128 23.15 –203.0 –100 No

256 17.73 –203.0 –99.98 No

Without Weather

Features

16 5.91 –203.0 –99.98 No

32 20.20 –202.5 –99.75 No

64 23.15 –202.9 –99.95 No

128 15.76 –202.8 –99.89 No

256 17.24 –202.7 –99.86 No

Table 23. Kelly betting performance of 14-horse model with different features and number of neurons

Chapter 8 Results

73

12-horse Model (Tested with 341 12-horse races)
Feature Set Neurons Kelly Betting Curve

All Features

16

32

64

Chapter 8 Results

74

128

256

Without “winodds”

Feature
16

Chapter 8 Results

75

32

64

128

Chapter 8 Results

76

256

Without Weather

Features

16

32

Chapter 8 Results

77

64

128

256

Table 24. Kelly betting curves of 12-horse model with different features and number of neurons

Chapter 8 Results

78

14-horse Model (Tested with 203 14-horse races)
Feature Set Neurons KellyBetting Curve

All Features

16

32

64

Chapter 8 Results

79

128

256

Without “winodds”

Feature
16

Chapter 8 Results

80

32

64

128

Chapter 8 Results

81

256

Without Weather

Features

16

32

Chapter 8 Results

82

64

128

256

Table 25. Kelly betting curves of 14-horse model with different features and number of neurons

Chapter 8 Results

83

8.5 Comparison with Related Works

In this project, we used a similar dataset as Liu and Wang [8] with Hong Kong races from

2011 to 2018. The data of the same time period from 2011 to 2017 are used as training set,

while the testing data set are extended to races of the whole year 2018 instead of only from

January to April to minimize testing noise and provide a better measure of the model

performance. The use of training data on the same period allows a direct comparison between

our work and that of Liu and Wang [8].

The best model of Liu and Wang [8] can achieve 24.51% in win accuracy and result in a net

loss of 25.78%. Our best 14-horse model have win accuracy of 22.66% and a net gain of

14.43%, and 12-horse model have win accuracy of 22.29% and a net gain of 7.54%. While

our model does not exceed that of [8] in terms of accuracy, we note that the number of horses

in a race of their testing data ranges from 6 horses to 14 horses, thereby increasing the testing

accuracy as a result of less uncertainty due to less horses in a race, while our testing data is

only composed of 12-horse races and 14-horse races. A fair comparison of accuracy cannot

be done without setting the same number of horses in the testing data for [8] and our model.

In terms of net gain however, our model can generate a net profit while that of Liu and Wang

[8] cannot.

Apart from Liu and Wang [8], Cheng and Lau [7] have also used neural networks for horse

racing prediction. Compared to our work and Liu and Wang [8], Cheng and Lau [7] used a

larger 16–year dataset of Hong Kong races from 2001 to 2016. Their neural network model

achieved win accuracy of 21.42%, and when the threshold is not used, the model result in a

loss of over 20%. Our best 14-horse model have win accuracy of 22.66% and a net gain of

14.43%, and 12-horse model have win accuracy of 22.29% and a net gain of 7.54%.

Therefore, our model performed better than that of [7] in terms of both accuracy and net gain.

While our Bayesian neural network model does not perform significantly better than neural

network models of Cheng and Lau [7], Liu and Wang [8] in term of accuracy, we are able to

perform better in terms of net gain. We partly attribute this to the difference of objectives

between Bayesian neural network and neural network, the first attempts to infer the true

posterior probability of the network weights, while the latter optimizes directly on accuracy.

In the last term, we have used a similar Bayesian neural network model as current model but

for predicting the place of each individual horse [9], and achieved 25.92% accuracy and net

Chapter 8 Results

84

loss of –20.09%. Our best 14-horse model have win accuracy of 22.66% and a net gain of

14.43%, and 12-horse model have win accuracy of 22.29% and a net gain of 7.54%. Similar

to [8] the test data we used last term [9] has number of horses in a race ranging from 6 horses

to 14 horses, thereby increasing the testing accuracy as a result of less uncertainty due to less

horses in a race, while our testing data is only composed of 12-horse races and 14-horse

races. A fair comparison of accuracy cannot be done without setting the same number of

horses in the testing data for our past model [9] and our current model. In terms of net gain

however, our current model can generate a net profit for both 12-horse races and 14-horse

races while that of our past model [9] cannot.

In conclusion, comparison with works utilizing neural networks and single horse

representations [7] [8] [9] for modeling the races demonstrate that our multiple horse

representation is able to achieve comparable win accuracy and superior net gain. This

suggests that our multiple horse representation is more suitable than single horse

representations for modeling horse racing.

Chapter 9 Conclusion

85

Chapter 9 Conclusion

9.1 Conclusion

This report has detailed the process of using deep probabilistic programming to predict horse

racing. Though repeated experiments, we shown that horse racing prediction with deep

probabilistic programming and Bayesian neural network can beat public intelligence and

generate net profit in the long run under all circumstances, with our best 14-horse model have

having accuracy of 22.66% and net gain of 14.43%, and 12-horse model having win accuracy

of 22.29% and net gain of 7.54%. We also observed that more neurons per layers are needed

for fully capturing the relations when the input dimension is increased, whether it is due to

increased number of horses or increases number of features. In addition, our results suggest

that both odds data and weather data can be useful for horse racing prediction. Finally,

through comparison with related works using single horse representations, our multiple horse

representation is able to achieve comparable win accuracy and superior net gain, and is more

suitable than single horse representations for modeling horse racing.

9.2 Future Work

One of the main limitations is of our model is that separate models are needed for races with

different number of horses. In the future, we plan to research on the direction of transfer

learning, network parameter sharing and transformations [1] [2], to alleviate the need of

training separate models.

Another short coming of our model is that it is unable to generate accurate confidence. While

this does not affect the prediction accuracy of the winning horse, it leads to poor performance

when the betting requires an accurate estimate of confidence, such as Kelly betting. Also,

although we obtained a distribution from the model, only the mean is used during prediction.

In the future, we plan to incorporate the variance of the distribution to obtain an estimate of

model confidence for use in betting.

86

References

[1] F.–F. Li, R. Fergus and P. Perona, "One–shot learning of object categories," IEEE

transactions on pattern analysis and machine intelligence, vol. 28, no. 4, pp. 594–611,

2006.

[2] E. G. Miller, N. E. Matsakis and P. A. Viola, "Learning from one example through

shared densities on transforms," in IEEE Conference on Computer Vision and Pattern

Recognition, Hilton Head Island, USA, 2000.

[3] N. D. Goodman and A. Stuhlmüller, "The Design and Implementation of Probabilistic

Programming Languages," 2014. [Online]. Available: http://dippl.org. [Accessed 1

April 2019].

[4] R. N. Bolton and R. G. Chapman, "Searching for positive returns at the track: A

multinomial logit model for handicapping horse races," Management Science, vol. 32,

no. 8, pp. 1040–1060, 1986.

[5] R. G. Chapman, "Still searching for positive returns at the track: Empirical results from

2,000 Hong Kong Races," in Efficiency of racetrack betting markets, World Scientific,

2008, pp. 173–181.

[6] W.–C. Chung, C.–Y. Chang and C.–C. Ko, "A SVM–Based committee machine for

prediction of Hong Kong horse racing," in 2017 10th International Conference on Ubi–

media Computing and Workshops (Ubi–Media), Pattaya, Thailand, 2017.

[7] T. T. Cheng and M. H. Lau, "Predicting Horse Racing Result using TensorFlow,"

Department of Computer Science and Engineering, Hong Kong, 2017.

[8] Y. Liu and Z. Wang, "Predicting Horse Racing Result with Machine Learning,"

Department of Computer Science and Engineering, Hong Kong, 2018.

87

[9] Y. Wong, "Horse Racing Prediction using Deep Probabilistic Programming with

Python and PyTouch (Uber Pyro)," Department of Computer Science and Engineering,

2018.

[10] A. D. Gordon, T. A. Henzinger, A. V. Nori and S. K. Rajamani, "Probabilistic

Programming," in Proceedings of the on Future of Software Engineering, Hyderabad,

India, 2014.

[11] T. Salismans, D. P. Kingma and M. Welling, "Markov Chain Monte Carlo and

Variational Inference: Bridging the Gap," in Proceedings of the 32nd International

Conference on Machine Learning, Lille, France, 2015.

[12] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,

"Equation of state calculations by fast computing machines," The Journal of Chemical

Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[13] M. D. Hoffman, D. M. Blei, C. Wang and J. Paisley, "Stochastic variational inference,"

The Journal of Machine Learning Research, vol. 14, no. 1, pp. 1303–1347, 2013.

[14] D. M. Blei and M. I. Jordan, "Variational inference for Dirichlet process mixtures,"

Bayesian analysis, vol. 1, no. 1, pp. 121–143, 2006.

[15] S. Kullback and R. A. Leibler, "On Information and Sufficiency," Annals of

Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[16] D. Wingate and T. Weber, "Automated Variational Inference in Probabilistic

Programming," arXiv, 2013.

[17] W. McCulloch and W. Pitts, "A Logical Calculus of Ideas Immanent in Nervous

Activity," Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[18] S. Haykin, Neural networks, Prentice hall: New York, 1994.

[19] S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach (International

Edition), Prentice Hall International, 2012.

[20] K. Hornik, M. Stinchcombe and H. White, "Multilayer feedforward networks are

universal approximators," Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

88

[21] J. Burroni, G. Baudart, L. Mandel, M. Hirzel and A. Shinnar, "Extending Stan for Deep

Probabilistic Programming," arXiv, 2018.

[22] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R.

Singh, P. Szerlip, P. Horsfall and N. D. Goodman, "Pyro: Deep universal probabilistic

programming," Journal of Machine Learning Research, vol. 20, no. 1, pp. 973–978,

2019.

[23] R. M. Neal, Bayesian learning for neural networks, Springer Science & Business

Media, 2012.

[24] Hong Kong Jockey Club, "Pari–Mutuel Pools," 1 August 2018. [Online]. Available:

https://special.hkjc.com/racing/info/en/betting/guide_qualifications_pari.asp. [Accessed

23 November 2018].

[25] Hong Kong Racehorse Owner Association, "Breeding Strategies," 1 August 2018.

[Online]. Available: http://www.hkroa.org/en/breeding_strategy.php. [Accessed 23

November 2018].

[26] The Editors of Encyclopaedia Britannica, "Encyclopæ dia Britannica," Encyclopæ dia

Britannica, inc., 1 August 2018. [Online]. Available:

https://www.britannica.com/sports/horse–racing. [Accessed 23 November 2018].

[27] Hong Kong Jockey Club, "Racing 101," 1 August 2017. [Online]. Available:

https://entertainment.hkjc.com/entertainment/common/images/learn–racing/racing–

academy/pdf/Racing_101_201708_Eng_Final.PDF. [Accessed 23 November 2018].

[28] M. Cox, "Balls and all: why Hong Kong horses are mostly geldings," South China

Morning Post, 5 February 2017. [Online]. Available:

https://www.scmp.com/sport/racing/article/2068269/balls–and–all–why–hong–kong-

horses–are–mostly–geldings. [Accessed 23 November 2018].

[29] Hong Kong Jockey Club, "Racing 201," 1 August 2017. [Online]. Available:

https://entertainment.hkjc.com/entertainment/common/images/learn–racing/racing–

academy/pdf/Racing201_201708_Eng_Final.PDF. [Accessed 23 November 2018].

89

[30] S. Han, J. Pool, J. Tran and W. J. Dally, "Learning both Weights and Connections for

Efficient Neural Networks," in Advances in neural information processing systems,

2015.

[31] S. Han, H. Mao and W. J. Dally, "Deep Compression: Compressing Deep Neural

Networks with Pruning, Trained Quantization and Huffman Coding," in International

Conference on Learning Representations, 2016.

[32] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient–based learning applied to

document recognition," Proceedings of IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[33] A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet classification with deep

convolutionalneural networks," in Advances in neural information processing systems,

2012.

[34] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large–scale

image recognition," arXiv, 2014.

[35] J. L. Kelly, "A new interpretation of information rate," The Bell System Technical

Journal, vol. 35, no. 4, pp. 917–926, 1956.

[36] D. Tran, "Deep probabilistic programming," arXiv, 2017.

[37] Uber Pyro, "Pyro Examples and Tutorials," Uber Pyro, 23 May 2018. [Online].

Available: http://pyro.ai/examples/. [Accessed 23 November 2018].

[38] R. Ranganath, S. Gerrish and D. M. Blei, "Black Box Variational Inference," arXiv,

2014.

[39] D. P. Kingma and M. Welling, "Auto–Encoding Variational Bayes," arXiv, 2014.

[40] A. Mnih and K. Gregor, "Neural Variational Inference and Learning in Belief

Networks," arXiv, 2014.

[41] V. Mullachery, A. Khera and A. Husain, "Bayesian Neural Networks," arXiv, 2018.

[42] C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra, "Weight Uncertainty in

Neural Networks," arXiv, 2015.

90

[43] S. Levine, "Reinforcement Learning and Control as Probabilistic Inference: Tutorial

and Review," arXiv, 2018.

[44] J. M. Hernández–Lobato, M. A. Gelbart, R. P. Adams, M. W. Hoffman and Z.

Ghahramani, "A General Framework for Constrained Bayesian Optimization using

Information–based Search," arXiv, 2015.

[45] A. Shah and Z. Ghahramani, "Parallel Predictive Entropy Search for Batch Global

Optimization of Expensive Objective Functions," arXiv, 2015.

[46] J. M. Hernández–Lobato, M. W. Hoffman and Z. Ghahramani, "Predictive Entropy

Search for Efficient Global Optimization of Black–box Functions," arXiv, 2014.

[47] S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics, MIT Press, 2005.

[48] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[49] K. P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.

