

THE CHINESE UNIVERSITY OF HONG KONG

FINAL YEAR PROJECT REPORT (TERM 1)

__

A Time Synchronization Protocol

based on Distributed Network

__

Author

Tsz Hin Leung
(1155079351)

Supervisor

Prof. LYU Rung Tsong Michael

LYU1804

Department of Computer Science and Engineering

Faculty of Engineering

Abstract

Network Time Protocol is one of the most important protocol in computer network

history. Most systems rely on NTP to synchronize the system time. However, the design

of this protocol is vulnerable in today’s internet environment. To mitigate the risk of man-

in-the-middle attack and distributed denial-of-service attack, using a distributed approach

of blockchain can provide a more secure time keeping mechanism.

Timechain is the blockchain-based time keeping solution introduced in this project. It

focuses on giving a more secure time instead of a more accurate time. The block structure

and the consensus algorithm are modified to achieve the purpose of time keeping.

Credibility is established when more and more blocks are appended to the chain. In the

future, it can also take into consideration the network delay to offer a more accurate time.

Table of Contents

1. Introduction ... 6

2. Background ... 8

2.1 Network Time Protocol ... 8

2.1.1 History .. 8

2.1.2 Clock strata ... 8

2.1.3 NTP packet ... 9

2.1.4 Time synchronization ... 10

2.2 Security Concerns of NTP ... 12

2.2.1 Man-in-the-middle Attack (“MITM”) .. 12

2.2.2 Single Point of Failure and Distributed Denial-of-Service Attack 15

3. Solution Design ... 17

3.1 Blockchain ... 17

3.1.1 History .. 17

3.1.2 A block ... 18

3.1.3 Consensus ... 19

3.1.4 Network .. 21

3.2 Timechain .. 23

3.2.1 Block .. 23

3.2.2 Consensus ... 24

3.2.3 Network .. 25

3.2.4 Credibility .. 26

4. Implementation ... 28

4.1 Blockchain Platforms ... 28

4.1.1 Bitcoin .. 28

4.1.2 Ethereum .. 28

4.1.4 Comparison .. 29

4.2 Golang .. 31

4.3 Implemented functions .. 31

5. Future Development .. 33

5.1 Round-trip delay calculation .. 33

5.2 Browser Plugin .. 35

5.3 2nd Term Schedule ... 35

6. Conclusion ... 36

7. Bibliography .. 37

1. Introduction

In modern days computer networking, keeping the time synchronized across all machines

on the network is critical. Without time synchronization, the local clock on each machine

will slowly drift away from each other and eventually resulted in a significant time

difference. The effect is especially crucial on time-critical systems. When these systems lost

their frame of time reference across different machines, many security protocols will fail to

work properly. For example, when you are establishing a secure communication with a

remote server, it offers you a Transport Layer Security (“TLS”) certificate to ensure its

identity. Every certificate has an expiration date, and in fact an incorrect system time is one

of the major causes for HTTPS certificate errors. A recent study of Google Chrome users

shows that 6.75% of the client-reported times were having an error of over 24 hours. [1]

The idea behind the expiration is to minimize the chance of the private key of the certificate

owner being compromised. Whenever a new certificate is being generated after the old one

expires, it ensures that the owner possess his new private key. However, if the time on the

local machine is delayed, it may consider expired certificates as valid, and hence the

certificate cannot serve the purpose of authenticating the server.

Nowadays, most systems rely on Network Time Protocol (“NTP”) and its variants (such as

Simple NTP) to get the time synchronized. These protocols are successful at providing a

high precision time. However, they were developed before the 2000s and lack modern

security features, which makes these protocols highly vulnerable to Distributed Denial-of-

Service (DDoS) and man-in-the-middle (MITM) attacks.

With the increasing popularity of blockchain, it eliminates the central authority by a

distributed network and maintain the operation by a consensus algorithm agreed by all nodes.

This distributed model of networking mitigates the risk of single-point-of-failure and MITM

attacks. It seems to be a solution in keeping the time safely. Credibility of time is being

established when more and more blocks are being appended to the ledger, and gradually

establishes a trustworthy time.

In this project, I will investigate the problems brought along by the current time

synchronization approaches and suggest an alternative solution in blockchain. This report

will be organized as follows: In chapter 2, I will investigate the design of NTP and analyze

its security concerns. In chapter 3 and 4, I will propose the Timechain solution, an

implementation of blockchain for time keeping in a distributed network. And finally, in

chapter 5, I will propose the further development for the Timechain in the following

semester.

2. Background

2.1 Network Time Protocol

2.1.1 History

NTP was originally developed by Professor David L. Mills at University of Delaware. It

was first implemented as NTP version 0 (NTPv0) in 1985 and documented in RFC 958.

However, that document only specifies the data representation and message formats and

lacks synchronizing or filtering mechanisms. [2] These algorithms were implemented in the

NTPv1, published in RFC 1059 in 1988. [3] The protocol was bought to wide attention in

the engineering community with the publication of the article in the IEEE Transactions on

Communications. [4] The latest version is NTPv4 which is specified in RFC 5905 published

in 2010. It is modified to accommodate the Internet Protocol version 6 (IPv6) addresses and

algorithms that increases the potential accuracy. [5] Following the retirement of David Mills,

the NTP project is now maintained by the Network Time Foundation.

2.1.2 Clock strata

NTP uses a hierarchy structure for time sources. Each layer is called a stratum and is given

a number starting from 0. The first layer, i.e. stratum 0, high-precision time-keeping devices,

such as atomic clocks and satellites. They generate a very accurate pulse per second signal

which are assumed that the clock skews are extremely small. They are used as the reference

clocks for the whole system. And for the remaining stratums, the hosts at stratum n

synchronize their time with other hosts in the stratum n-1. The number represents the

distance of the distance from the reference clock and is used to prevent cyclic

synchronization. Within each stratum, there also exist peer-to-peer connections for sanity

check and backup. The connection is illustrated in Figure 2.1 [6].

2.1.3 NTP packet

NTP operates over the User Datagram Protocol (“UDP”). The NTP server listens for NTP

client packets on port 123. Both NTP requests and responses share a common format, as

shown in Figure 2.2 [7].

Figure 2.1Illustration of NTP Connections

Figure 2.2 NTP Packet Format

2.1.4 Time synchronization

NTP uses the client/server model for exchange of time information. The communication

between the client and server is illustrated as follows:

1. When the client requests the server for the current time, it sends the NTP packet with

its own local timestamp t1 in “Origin Timestamp”. It is the time the packet is being

transmitted to the server.

2. When the server receives the request, it adds the server time of receive t2 in “Receive

Timestamp” in the data packet.

3. The NTP server sends the response back to the client with the timestamp of the

packet leaving the server t3 appended in “Transmit Timestamp”. The response is the

whole NTP packet, including the “Origin Timestamp” and “Receive Timestamp”.

When the client receives the response, it logs its local time of receive as t4. By doing so, the

client can derive both the server time and the round-trip network delay between the client

and the server. The round-trip delay can be modelled by the time between the client sending

the request and receiving the response minus the processing time of the server. It is given

by the following formula:

δ = (𝑡4 − 𝑡1) − (𝑡3 − 𝑡2)

And hence the offset of the client clock from the server clock can be calculated with the

following formula. It is assumed that the upstream and downstream delay is symmetric:

θ =
1

2
[(𝑡2 − 𝑡1) + (𝑡3 − 𝑡4)]

time

Server

time

Client

t1

t2 t3

t4

Figure 2.3 Round-trip delay δ

2.2 Security Concerns of NTP

2.2.1 Man-in-the-middle Attack (“MITM”)

While NTP supports both symmetric and asymmetric cryptographic authentication, they are

rarely used in practice. Symmetric cryptographic authentication requires the client to be pre-

configured manually to accept packets hashed with the correct symmetric key, which makes

this solution troublesome for public deployment. The secure distribution for symmetric key

to only trustable users is a big challenge. For example, the internet time service provided by

the National Institute of Standards and Technology (“NIST”), which is under the United

States Department of Commerce, only accepts registered users to access their authenticated

time service. The key is sent to the users only by mail or facsimile and it expires every year.

[8] Hence, this approach is not suitable to deploy public NTP service which accepts arbitrary

clients.

The asymmetric cryptographic authentication is provided by the Autokey protocol, which

is specified in RFC 5906 [9]. However, RFC 5906 is an informational document instead of

a standard requirement. Clients do not request Autokey associations by default, and most

public NTP servers do not support Autokey. The major reason for the lack of

implementation of Autokey is the performance drawback. Asymmetric cryptography

authentication is considered as computationally expensive. While symmetric key

authentication is believed to require almost constant CPU time, public key algorithms

requires a significantly more and unpredictable CPU time. As NTP servers are designed to

handle a huge number of requests, the computational overhead for asymmetric key

authentication makes it impractical to be implemented. [10]

Unauthenticated network communications are highly vulnerable to man-in-the-middle

attacks, and NTP is no exception. In fact, most operating systems take in unauthenticated

NTP packet as their time reference. It becomes extremely easy to perform an on-path attacks.

On-path attackers are attackers having a privileged position in the network. By exploiting

various traffic hijacking techniques, it is possible to hijack the NTP communications

between the client and the server. [11] For instance, NTP server is defined by either the host

name or the IP address. It is configured manually and static. If the Domain Name System

(“DNS”) is being hijacked, the domain name can be resolved to another address which

response to the NTP queries with an incorrect time.

1. DNS lookup: time.google.com

2. DNS Result

 time.google.com → 216.239.35.0

Client DNS Server

Authentic NTP Server

(216.239.35.0)

4. NTP Response 3. NTP Request

Figure 2.4 NTP Time synchronization in an expected environment. Client has NTP server

configured to time.google.com is resolved correctly to the authentic NTP server.

The implementation of NTP defines a panic threshold of 1000 seconds (16 minutes 40

seconds) to mitigate the effect of the system time being influenced by an incorrect time. If

the NTP time received instruct the local clock to alter by over the panic threshold, no

adjustment to the clock will be made. NTP also defines a step threshold of 125 milliseconds.

If the timestep is larger than the step threshold and smaller than the panic threshold, the

clock will be altered if the predefined time duration called “stepout” have elapsed since the

last clock update. [5] In the most recent implementation of the NTP daemon (ntpd v4.2.8),

the stepout value is 300 seconds. Therefore, to shift the client clock for 1 year, it requires at

least 114 days. [11]

However, there exist another method to shift the time by a great step by exploiting reboot.

In the implementation of NTP, most operating systems allow any time shift when the system

starts. This is a reasonable implementation as on-board clocks shift significantly when

powered down. Yet whenever rebooting the system due to manual intervention, system

1. DNS lookup: time.google.com

2. DNS Result

 time.google.com → 115.24.35.0

Client Hijacked DNS Server

Fake NTP Server

(115.24.35.0)

4. NTP Response

3. NTP Request

Authentic NTP Server

(216.239.35.0)

Figure 2.5 The DNS server is hijacked and time.google.com is resolved to another address. The client hence requests

the NTP time from the fake server without authenticating and update its own time accordingly.

upgrade, or power cycling, it creates a window for a fake NTP time to be injected into the

system. [11]

2.2.2 Single Point of Failure and Distributed Denial-of-Service Attack

All centralized servers are the single points of failure within a system. Their failure produces

an outage of the whole time synchronization mechanism. In the implementation of NTP

client, it is allowed to have set one or multiple sources of time as the NTP server, but by

default usually only one server is being set. Also, all centralized servers are subject to DDoS

attacks. The attacker can generate a huge amount of traffic from different sources and flood

them against the NTP server, thus disabling the ability for the server to handle proper

requests. If that single server fails or the time is tampered with, all the clients polling this

server will be unable to obtain an authentic server time.

The risk of single point of failure can be mitigated by setting multiple time servers for

reference and use NTP server pools instead of a single server. The server pool creates

redundancy for the timing service. In case a single server breaks down, other services in the

cluster can still share the load of the down server. For instance, pool.ntp.org is a project of

a big cluster of time servers. It is estimated to be serving around 5-15 million systems

worldwide. [12] However, they are also worry about the rapid increase of internet-connected

devices and the need of more timing capacity for these devices.

NTP request

Client NTP Server

Machines controlled by attacker

No response

Figure 2.6 Illustration of attacker disabling NTP server with big volume of requests.

3. Solution Design

3.1 Blockchain

Blockchain is a decentralized, distributed and public digital ledger. The ledger is maintained

by the participants of the network without a centralized authority. It allows data to be

appended to the blockchain by different nodes and each node participants in verifying and

auditing the data involved. Each block is being built on top of previous blocks such that the

blocks cannot be modified easily. Due to the distributed nature of blockchain, it eliminates

the weakness of single point of failure.

3.1.1 History

In 2008, a whitepaper titled “Bitcoin: A Peer-to-Peer Electronic Cash System” was

published by a person (or a group of people) named Satoshi Nakamoto to solve the existing

financial market problems. This paper focuses on developing a decentralized online

payment method such that no central authority is required to process the transaction. [13]

He implemented the system in the follow year. That is where the word “block chain”, as

two separate words, first appeared in a comment of his source code.

After the success of Bitcoin in recent years, the public realized the importance of blockchain

technology, not only in financial industry, in keeping that data safe from being altered. Other

blockchain platforms are being developed, such as Ethereum and Hyperledger. These

blockchains may not include a native currency but enabled other possibilities such as smart

contracts.

3.1.2 A block

The distributed ledger is represented by chain of blocks stored in a database. It is maintained

by a network of machines called nodes. Unlike traditional database models, the entire

database is stored on every node and each node is allowed to write to its own copy with

validated blocks. The moment a node joins the network, it downloads the most updated

chain of blocks and work with other nodes to keep the chain continuing.

A block mainly consists of the following fields:

➢ Block index: A block index of 0 indicates a genesis block.

➢ Timestamp: The timestamp of the block creation.

➢ Hash: The hash value of the current block. A fixed-length string is generated

according to the content of the block.

➢ Previous hash: The hash value of the previous block. It links the current block to the

previous block.

➢ Nonce: A value used to track the Proof of Work (“PoW”) algorithm counter. It will

be explained later.

➢ Block body: The data to be stored.

Hashing is the backbone of the immutability of the blockchain. It ensures no blocks are

being tampered with. As the hash of the block is computed with the content of the whole

block, it also takes into the previous hash for calculation. In other words, the hash of a block

is dependable on the hash of the previous block. In order to add a block, it has to be approved

and verified by every other node in the network. If a block in the chain is altered, the hash

will be changed and the whole the blockchain will become disconnected. To connect the

blockchain again, all hashes of the subsequent blocks have to be updated, and the resulted

blockchain will also be different. In fact, the process of updated all the blocks is extremely

difficult and computational-intensive. This will be explained in the following parts.

3.1.3 Consensus

Consensus algorithm is an important part of the blockchain system. As anyone can

participate in maintaining and updating the blockchain, it is important to setup a set of rules

such that every node adheres to to maintain the blockchain. Whenever new block is being

generated by a node, it is broadcasted to other nodes. The other nodes will verify the block

Index Timestamp

Hash

Previous Hash

Nonce

Block body

Index Timestamp

Hash

Previous Hash

Nonce

Block body

Index Timestamp

Hash

Previous Hash

Nonce

Block body

Figure 3.1 Illustration of relationship between blocks

with the consensus algorithm and only if the block is verified, it will be added to the

blockchain.

The most widely used consensus algorithm is the Proof of Work (“PoW”). It was invented

by Satoshi Nakamoto and implemented in the Bitcoin. In order to create a valid block, a

node has to solve a complicated mathematical puzzle which takes computational power. The

mathematical puzzle is nothing but to achieve a desired hash. In computing the hash, the

algorithm takes in the block content and reaches a hash of a desired pattern. The only varying

field in a block is the nonce. By taking in the content of the block with varying nonce,

eventually, a block hash of a desired pattern is reached. The block, together with the hash

and the nonce, is then being broadcasted to the network. Other nodes receiving the block

will verify if the combination of block content and nonce can come up with the desired hash.

Block content

Nonce Hash

0001 888B19A43B151683C87895F6211D9F8640F97BDC8EF……

0002 4FAC6DBE26E823ED6EDF999C63FAB3507119CF3CB……

0003 446E21F212AB200933C4C9A0802E1FF0C410BBD75F……

……

1234 03AC674216F3E15C761EE1A5E255F067953623C8B38……

Figure 3.2 Illustration of the Proof of Work mathematical puzzle. In this example, an arbitrary hashing

algorithm is used. Block content is kept constant and only the nonce is changing. The block is accepted if the

hash starts with “0”.

As the process of hashing is believed to generate a string which the probability of a pattern

is equally distributed, the process of solving this mathematical puzzle can only be achieved

by brute-force approach. The computational power required is the barrier to update a block,

or in the case of an attacker, after altering of a certain block, it requires a huge amount of

computational power to modify the hashes of all subsequent blocks. The difficulty is defined

by the complexity of the matching pattern. For instance, requiring the hash to start with two

zeros (“00……”) is more difficult of starting with one zero (“0……”).

However, in order to verify the correctness of the proof of work, it only takes constant time.

Upon receiving of a block, a node simply calculates the hash, which includes the nonce and

the block content, of it. If the resulted hash matches the hash as indicated in the block and

the desired pattern, the block can be deemed valid. This also shows that the block created

have worked on creating the block, hence the method is called Proof of Work.

Other methods of consensus also exist, such as Proof of Stake, Byzantine fault tolerance

algorithm, and the delegated Proof of Stake algorithm. In this project, I will focus on the

Proof of Work.

3.1.4 Network

The blockchain runs in the following sequence:

1. Each node collects the data and prepare its own block

2. Each node works on finding the proof of work for its block

3. If the proof of work is found, the node broadcast the block to all nodes reachable

4. Nodes that receives a block verify the PoW result and its data (if necessary)

5. If the block is being accepted, it appends the block to the end of its chain and use its

hash to work on the next block. Otherwise, it continues to work on the current block

and wait if some other nodes broadcast other solutions.

In case of multiple nodes broadcasting different versions of the next valid block at the same

time, different nodes may receive different blocks. Nodes always consider the longest chain

of blocks as the valid one. Hence, they work on the first node they received. Eventually,

when then next PoW is found and a new block is arrived, the tie will be broken. If the new

block contributed to the other chain, that chain will become longer and the chain the node

is working on will be disposed.

3.2 Timechain

Inspired by the blockchain, I have designed Timechain: a more secure time synchronization

mechanism. It is designed mainly to mitigate the security risks of NTP:

➢ It is designed mainly to mitigate the risk of man-in-the-middle attack. By nature of

blockchain, the creditability of data is established by the consensus of the whole

network. The chain is immutable and there is no single node the hacker can

compromise to get the fake data being spread in the network.

➢ As blockchain works in a distributed manner and every node holds a copy of the

ledger, the single point of failure is eliminated and almost impossible to perform a

denial of service attack. Even if the attacker compromised a number of nodes in the

network, the time synchronization mechanism can still function.

However, compared to NTP, this design of time synchronization is mainly targeted on

security applications, such as certificate expiration. In such scenario, the precision of time

is less important. It is acceptable to have a certain error, say, within 1 minute. This is

sufficient to reject a certificate which is expired by 1 minute or more. Hence, is this

implementation, the time security is more important than the time precision. It can be

worked together with NTP to achieve redundancy for time synchronization.

3.2.1 Block

The block structure of the Timechain is similar to that of a blockchain. However, in the

original implementation of the blockchain, the timestamp is recorded at the time of block

creation. As it takes time for the proof of work to be completed, by the time the block is

being broadcasted to other nodes, the time is already delayed, hence the timestamp cannot

be used directly for time synchronization.

To take into consideration the time of the block being broadcasted to the network, instead

of using a nonce value for PoW, the timestamp itself will be used as the nonce. In other

words, for every time a node calculates the hash, the timestamp on the node is being updated.

This ensures that the block comes with the timestamp being broadcasted to the network (and

the processing time for computing the hash value, but it is negligible as the time required to

compute a single hash value is constant). After subsequent blocks are being appended to the

chain, their hashes are also affected by the hash of preceding blocks that includes an updated

time, hence altering any of the blocks will break the chain.

Block content

Timestamp Hash

13:24:01.89392 24/12/2018 888B19A43B151683C87895F6211D……

13:24:01.89393 24/12/2018 4FAC6DBE26E823ED6EDF999C63……

13:24:01.89394 24/12/2018 446E21F212AB200933C4C9A0802……

……

13:24:05.29348 24/12/2018 03AC674216F3E15C761EE1A5E25……

Figure 3.3 Illustration of the Proof of Work mathematical puzzle. In this example, an arbitrary hashing

algorithm is used. The timestamp is used as the nonce.

3.2.2 Consensus

The proof of work consensus algorithm is being used in the Timechain implementation.

However, apart from validating the mathematical puzzle solution as shown above, upon

receiving a new block, each node also checks the timestamp for an acceptable range of error

(mainly due to network latency). If the time difference between the timestamp on the block

and the local time is above a certain threshold, say 15 seconds (meaning an error of 15

seconds), the block is considered having an inaccurate timestamp instead of a large delay,

and will be discarded by the node.

3.2.3 Network

The blockchain runs in the following sequence:

1. Each node repeats the following until the PoW is solved:

a. Create a block with the current timestamp

b. Calculate the hash of the block

2. If the PoW is solved, the block is broadcasted to other reachable nodes

3. Nodes that receives a block log the local time of receive and verify the PoW result

4. If the PoW is correct, a node then compare the logged time to the timestamp on the

block. Accept the block if the time difference is smaller than the threshold

5. If the block is being accepted, it appends the block to the end of its chain and use

its hash to work on the next block. Otherwise, it continues to work on the current

block and wait if some other nodes broadcast other solutions

6. For every certain amount of time, say 5 minutes, each node will broadcast the

chain of nodes on their local machines to its peers. By doing this each of the nodes

will check if they are having the same chain. If no, the longest, and yet valid chain

will replace the existing local chain.

Figure 3.4 Flow of Timechain

As a node is more likely to receive new blocks and chains announcements from nearby

nodes (nearby here refers to low network delay) first, the delay for each message is small,

but the total time delay propagates from the writer of the time blocks. The system works

well in a small scale without caring about the time delay, but when it is deployed in a wide

area network, the delay should be taken into consideration. This will be further explained

in the part of “Further Development”.

3.2.4 Credibility

As it takes time for the PoW to come up with a solution, in order to taper with a certain

block in a blockchain, all the PoW of the subsequent blocks have to be recalculated. This

requires a huge amount of computing power and makes it almost impossible to catch up

with the development of the blockchain.

For instance, an attacker attempts to alter the n-5 block, where n is the total number of

blocks currently exist in the longest chain. Suppose generating the PoW for each block

requires approximately 10 minutes. (As PoW is a brute force approach, the time required

for computation is unpredictable. This number here is just an average value.) In order to

alter the n-5 block and keeping the whole chain valid, the attacker also has to modify

blocks n-4, n-2, n-1 and n. To modify 5 blocks in total, it takes 50 minutes. By then, the

whole chain is still progressing by other nodes in the network, and probably reach the n+5

blocks already. The attacker is unable to catch up with the longest chain.

Hence, by the PoW, when more and more blocks are being appended to a chain, the more

credible and previous blocks are. The Timechain algorithm will determine the current

clock with reference to blocks few levels before the latest block. The time is more

trustworthy compared to consider only the timestamp of the latest block.

4. Implementation

4.1 Blockchain Platforms

In order to implement the Timechain blockchain, major blockchain platforms are

considered.

4.1.1 Bitcoin

Bitcoin is the first peer-to-peer payment method which operates with no central authority.

It is decentralized and every participant on the network manage transactions and issue

bitcoins collectively. [13]

4.1.2 Ethereum

Ethereum is a public, block-chained based distributed environment which is equipped with

the capability of running applications on top of it. It consists of a native currency Ether

and the decentralized virtual machine, the Ethereum Virtual Machine, which can execute

scripts on the network. The idea is to avoid a complete dependency on a single server for

data storage and manipulation. The smart contract is the programmable interface which is

mainly used to manage agreements between users. [14]

4.1.3 Hyperledger

Hyperledger is a project started by the Linux Foundation. It is designed for cross-industry

business usage. It aims to create enterprise grade distributed ledger framework and code

bases to support business transactions. It also supports smart contracts and membership

services, such that the blockchain can operated as a permissioned network. Nodes can be

configured for read/write permissions, allowing certain nodes to write to the blockchain

while some other nodes can only view what is in the blockchain. [15]

4.1.4 Comparison

 Bitcoin Ethereum Hyperledger

Governance Bitcoin Developers

Ethereum

Developers

The Linux

Foundation

Permission

restrictions

Permissionless Permissionless Permissioned

Consensus

algorithm

Proof of Work Proof of Work

Byzantine fault

tolerance

Native currency Bitcoin Ether N/A

Scripting ability Limited

High

High level language

support: Solidity

High

High level language

support: Go

Mining reward Yes Yes No

Figure 4.1 Comparison between Bitcoin, Ethereum and Hyperledger

After comparing the three major options of blockchains available, Bitcoin has a limited

customization ability, hence firstly rejected in this project. Ethereum and Hyperledger both

allows a higher level of customization. Hyperledger, designed for implementing cross-

industry business logic, is more suitable in our situation as there are less limitations

compared to Ethereum. However, the consensus algorithm in both platforms cannot be

modified easily. To modify the consensus algorithm, an extensive editing on the source code

of the consensus algorithm is required. In this project, the main purpose is to demonstrate

the ability of using the blockchain for time-keeping. To streamline the development process,

I have chosen to deploy my own blockchain.

4.2 Golang

In this project, I have chosen Golang as the language of development. It is developed by

Google in 2009 and is designed to improve programming efficiency. The language is static

typed (like C++) and designed with ease of use (like Python). It is also a great language for

system design as support for various web frameworks and concurrency is built in. [16]

4.3 Implemented functions

The following are the major functions included in the implementation:

➢ func newBlock(prevBlock Block) Block

It takes in the previous block and extracts the index number and the hash value. It

then creates a new block by filling in the corresponding values and hash the block

to attempt to match the Proof of Work pattern.

➢ func checkHash(hash string) bool

It takes in the hash of the block as a string and compare the string to the required

pattern. A Boolean value is returned.

➢ getHash(block Block) string

It is called by the newBlock function and generates the hash value of the block.

SHA256 is used here and the string of the hash value is returned.

➢ checkValid(generatedBlock Block, prevBlock Block) bool

When a new block is being received, this function is being called to check if the

block is valid. It checks the validity of the block by 4 requirements: 1. The index of

the block should be 1 larger than the previous block; 2. The previous hash of the

block should match the hash of the previous block; 3. getHash of the block should

be the same as the hash field of the block; and 4. The timestamp of the block is

within the acceptable delay range. In this implementation for demonstration purpose,

this value is configured to 5 seconds.

➢ func replaceChain(newBlocks []Block)

It checks for the length of the blockchain. If the chain is longer than the Timechain

record in the machine, the local chain will be replaced by the longest chain.

In order to test the functionality of consensus based on the timestamp, I have added support

for a manual clock deviation. It accepts a manual input of deviation value and adds it to the

timestamp being broadcasted to other nodes. If the deviation is larger than 5 seconds, other

nodes will not accept this block.

5. Future Development

5.1 Round-trip delay calculation

In the current implementation, it is assumed that all nodes are very close to each other, and

hence the network latency is negligible. However, in reality, the network delay in the worst

scenario can reach tens of seconds. Not only the time is unable to get synchronized, valid

blocks are also being rejected, creating unnecessary computations and network

communications. In order to take the delay into consideration, I will be utilizing the

blockchain announcement in the network to achieve a delay calculation.

The idea is whenever a new block is generated and being announced, it includes the

timestamp of the node time of the block leaving the node (t0). When another node receives

the block, it logs the local time of receive (t1). It then updates the local time accordingly.

After some time, the node announcing the block broadcasts its whole chain of blocks to all

other nodes. The broadcast includes the timestamp of the broadcast leaving the node (t3).

When another node receives the broadcast, it logs its local time again (t4). Notice that during

the first synchronizing, t1 is corrected to t0 already. It is assumed that the time on the two

nodes are synchronized. The resulting difference between t3 and t4 is solely due to the

network delay.

In the calculation of delay, instead of sending a request for time, the node only receives

block and chain broadcasts from other nodes. Only down stream network communication

is involved. Hence, the delay is given by the difference between t3 and t4. Also, as the time

is already synchronized without taking care of the delay, t4 is strictly larger than t3.

θ = 𝑡4 − 𝑡3

As a result, even though multiple time sources can publish their time to the blockchain and

being accepted within the allowed threshold, the calculation of network latency is simpler

than NTP. Therefore, when the chain grows, the time in all nodes will converge.

time

Node comes up

with the block

time

Node receiving

the block

t2: receives the block

t3: sends out chain t1: sends out the block

t4: receives chain

Time correction: make the

relative time of t2 becomes t1

Figure 5.1 Calculation for network delay.

5.2 Browser Plugin

Another future development for this project is a browser plugin which checks the validity

of the certificates. In the modern browsers, a warning is often displayed if the certificate of

a site is expired. This detection is based on the local clock of the machine. If there is a huge

error on the local clock, say over a day, expired certificates may still be deemed valid.

Therefore, the plugin works independently from the local machine clock. It acts as another

layer of validity check but instead of checking the validity according to the local clock, it

gets the time from the Timechain. This is a scenario where a safe, but less accurate time is

more important than a super-accurate time.

5.3 2nd Term Schedule

December 2018 – January 2019 Investigation on how to calculate the network

delay; test if the suggested method is accurate

enough in the scenario.

January – Mid-February 2019 Implement the delay calculation.

Mid-February to Mid-March 2019 Development of browser plug-in.

Mid-March to April 2019 Testing on the functionality on the whole

implementation.

6. Conclusion

In this final year project, through a set of research, I am aware that the widely-used protocol

in time synchronization, the network time protocol, is indeed highly vulnerable to various

attacks. With the increasing popularity on blockchain, it seems to be a great idea of

providing timing service in a distributed network. I examined the idea behind the blockchain,

with a more in-depth research on how the blocks are being generated and the consensus

algorithm. I also examined the different blockchain frameworks available and end up

decided to write up my own blockchain to achieve the time keeping purpose.

In the Timechain, the time is being kept on a distributed ledger across the network. All nodes

can participate in maintaining the chain by providing its own time, as well as benefit from

the chain of ensuring the local machine time is in sync with other nodes in the network.

There are difficulties as the original idea of blockchain is not designed to be real-time, hence

using the idea of blockchain for time keeping requires modifying the generation of the block

and the consensus algorithm.

The implementation, although not completed, but demonstrates the ability of Timechain

keeping an updated time and rejecting some nodes from appending an inaccurate time to the

chain. Eventually, when the chain among all the nodes are in sync, a synchronized time in

the whole network can be achieved.

7. Bibliography

[1] M. E. Acer, E. Stark, A. P. Felt, S. Fahl, R. Bhargava, B. Dev, M. Braithwaite, R. Sleevi and

P. Tabriz, "Where the Wild Warnings Are: Root Causes of Chrome HTTPS Certificate

Errors," October 2017. [Online]. Available: https://acmccs.github.io/papers/p1407-

acerA.pdf.

[2] D. Mills, "Network Time Protocol (NTP), RFC 958," September 1985. [Online]. Available:

https://tools.ietf.org/html/rfc958.

[3] D. Mills, "Network Time Protocol (Version 1) Specification and Implementation, RFC

1059," July 1988. [Online]. Available: https://tools.ietf.org/html/rfc1059.

[4] D. Mills, "Internet Time Synchronization: The Network Time Protocol," IEEE Transactions

on Communications, vol. 39, no. 10, pp. 1482-1493, October 1991.

[5] D. Mills, E. J. Martin, J. Burbank and W. Kasch, "Network Time Protocol Version 4:

Protocol and Algorithms Specification, RFC 5905," June 2010. [Online]. Available:

https://tools.ietf.org/html/rfc5905.

[6] B. D. Esham, "Network Time Protocol servers and clients.svg," Wim, September 2013.

[Online]. Available:

https://commons.wikimedia.org/wiki/File:Network_Time_Protocol_servers_and_clients.svg.

[7] A. Geoff Huston, "Protocol Basics: The Network Time Protocol," The Internet Protocol

Journal, vol. 15, no. 4, pp. 2-11, 2012.

[8] National Institute of Standards and Technology, "NIST Authenticated NTP Service,"

October 2017. [Online]. Available: https://www.nist.gov/pml/time-and-frequency-

division/time-services/nist-authenticated-ntp-service.

[9] E. B. Haberman and D. Mills, "Network Time Protocol Version 4: Autokey Specification,

RFC 5906," June 2010. [Online]. Available: https://tools.ietf.org/html/rfc5906.

[10] Network Time Foundation, "Encryption," August 2013. [Online]. Available:

http://www.ntp.org/ntpfaq/NTP-s-algo-crypt.htm#AEN2590.

[11] A. Malhotra, I. E. Cohen, E. Brakke and S. Goldberg, "Attacking the Network Time

Protocol," October 2015. [Online]. Available:

http://www.cs.bu.edu/~goldbe/papers/NTPattack.pdf.

[12] NTP Pool Project, "The NTP Pool for vendors," November 2018. [Online]. Available:

https://www.ntppool.org/en/vendors.html#ntp-pool-offer.

[13] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008. [Online]. Available:

https://bitcoin.org/bitcoin.pdf.

[14] V. Buterin, "Ethereum White Paper," [Online]. Available:

https://github.com/ethereum/wiki/wiki/White-Paper.

[15] The Linux Foundation Projects, "About Hyperledger," [Online]. Available:

https://www.hyperledger.org/about.

[16] The Go Programming Language, "Documentation," [Online]. Available:

https://golang.org/doc/.

