

LYU1706

Using Deep Learning

for Breast Cancer

Diagnosis

SUPERVISED BY PROF. LYU RUNG TSONG MICHAEL

LI, QI 1155062147

LI, WEI 1155062146

1

Table of Contents

1 Abstract ... 3

2 Introduction ... 5

2.1 Motivation .. 5

2.2 Background .. 5

2.3 Objective .. 13

3 Related Works ... 15

3.1 Naïve Bayes for Breast Cancer Diagnosis 15

3.2 SVM for Remote Breast Cancer Diagnosis 16

3.3 Classification of Skin Cancer with DNN 17

4 Technical Support and Preliminary Study .. 20

4.1 Breast Cancer Diagnosis .. 20

4.2 Image Processing ... 23

4.3 Deep Learning .. 26

5 Method .. 31

5.1 Dataset ... 31

5.2 Preprocess .. 32

5.3 Model Architecture .. 37

5.4 Aggregation ... 41

5.5 Workflow ... 43

6 Implementation ... 45

6.1 Data Loader and Preprocess .. 45

6.2 Model ... 49

6.3 Train and Validation ... 49

6.4 Hyper-parameters ... 50

7 Results ... 51

7.1 Results of Different Image Preprocess Methods 53

7.2 Results of Different Model Architecture 54

7.3 Results of Different Segmentation Methods 65

7.4 Analysis ... 69

7.5 Comparison with Previous Works ... 73

7.6 Limitation and Difficulties .. 73

8 Conclusion .. 76

8.1 Term Review .. 76

2

8.2 Future Works .. 77

9 Acknowledgements ... 78

10 Reference .. 79

11 Appendix ... 86

11.1 ResNet Function API ... 86

11.2 Tables of results using different preprocess methods 87

3

1 Abstract

The recent years witnessed a rapid development of Artificial Intelligence

(AI). In May 2017, AlphaGo, the well-known AI program that plays the

board game Go, challenged Chinese grandmaster Ke Jie, the best Go player

in the world ranking. Go is one of the most difficult games in the field of

AI due to the large search space. Thanks to the development of deep

learning, which consists of deep neural networks, and the evolution of

computing capability of computers, especially evolution of General-

purpose computing on graphics processing units (GPUS), AI in

complicated problems such as Go became more and more possible. There

are many research teams trying to apply AI to medical diagnosis. Stanford

published a paper on Nature about diagnosis of skin cancer in February

2017. Utilizing deep learning algorithm, their model achieved an accuracy

of 91%, which is almost the comparable to a human doctor. They let the

deep neural network to figure out the common visual features of the disease.

Other top universities are also putting resources on applying deep learning

algorithms to a variety of diseases’ diagnosis, e.g. lung nodules and breast

cancer.

Take breast cancer as an example. The recent years witnessed a

considerable increase in the number of breast cancer cases. To improve the

long-term survival rate for patients, the key factors are early detection and

accurate diagnosis. However, the mismatch between increasing patients

and the lack of experienced pathologists brings a lot of challenges for

accurate diagnosis of breast cancer. The imbalance of the medical resources

in allocation also increase the chance of misdiagnose. Therefore, we will

try to build a reliable computer program to help pathologist do breast

cancer diagnosis faster and easier. While there are many automatic medical

diagnosis attempts, few of them are targeted at pathologists with little

artificial intelligence background. Pathologist may not understand terms

describing an AI or statistics an AI produces. There exists possibility that

pathologist cannot interpret a computer generated report very well. With

such limitation, cooperating with AI may instead delay decision-making.

4

Therefore, we will try to implement a complete automated breast cancer

diagnosis system. In this system, we will train a deep learning program

which can give advice to pathologists, even if s/he do not know anything

about AI. It is designed to be able to perform mammogram analysis or

pathology analysis, and detect possible tumor location. A deliverable

diagnosis and tumor positioning report will be generated at the end which

can help them make a more accurate decision on diagnosis. This problem

involves image classification, object detection and image caption together.

In term one, our primary objective is to build an accurate breast cancer

histopathological image classification model, which is the very first and

most important procedure in our system. We train and test our model with

BreaKHis, a breast cancer histopathological image dataset available to

every researcher. Experimental evidence shows that our proposed deep

learning model can effectively classify histopathological images even if the

image resolution in our task is higher than in other image classification

tasks. We achieved pretty high accuracy which was up to 90% average.

Results shows that deep learning in breast cancer diagnosis is promising.

Finally, we also study different input preprocessing techniques.

5

2 Introduction

2.1 Motivation

Reviewing patient’s biological tissue samples by a pathologist is a

conventional method for many diseases diagnosis, especially for cancer

such as breast cancer. However, reviewing samples are laborious and time-

intensive, which may delay decision-making. The reviewing of pathology

slides is a very complex task. Sometimes agreement in diagnosis for some

forms of breast cancer can be as low as 48% [1]. The difficulty in diseases

diagnosis by pathologists is inevitable because the pathologists need to

review all slides per patient while each of slide is 10+ gigapixels when

digitized at 40X magnification.

On the other hand, current automatic medical diagnosis attempts are not

targeted at pathologists with little artificial intelligence background.

Pathologist may not understand terms describing an AI or statistics an AI

produces. There exists possibility that pathologist cannot interpret a

computer generated report very well. With such limitation, cooperating

with AI may instead delay decision-making. Therefore, we will try to

implement a complete automated breast cancer diagnosis system.

2.2 Background

Since AlphaGo showed the possibility that AI can beat human in real world

tasks [2], more and more people in universities [3] [4] [5] or industries are

interested in AI for medical usage. The number of papers about AI

diagnosis is growing exponentially.

2.2.1 Development of AI Classifiers

The classification problem is an important component in the field of deep

learning. It is targeted on judging a new sample belongs to which

predefined sample category, according to a train set containing certain

6

number of known samples. The classification problem is also called

supervised classification, since all samples in train set are labeled, and all

categories are predefined [6]. Classifier is one of the pattern recognition

applications.

The most widely applied AI classifier is spam email filter, which classify

each email into “regular” or “junk”. Generally speaking, each instance in

the classification problem will be transform into a computer analyzable

vector, which is usually called “features”. A feature can be an enumeration

or a number.

Figure 2.1 AI classification

Then the Naïve Bayes classifier was proposed in 1950s. It is a group of

simple classifiers derived from the Bayes’ Theorem, assuming that all

features in the samples are strongly independent. Since its publish, it has

been widely researched. Things turned out that it performed well for text

classification, with number of occurrence of words as features. It can do

the aforementioned email classification task at a relatively low

computation amount compared to more recent algorithms while still

achieve acceptable accuracy [7]. With appropriate preprocessing, it is still

competitive.

posterior =
prior × liklihood

evidence

𝑝(𝐶𝑘|𝐹1, … , 𝐹𝑛) =
1

𝑍
𝑝(𝐶𝑘) ∑(𝐹𝑖|𝐶𝑘)

𝑛

𝑖=1

classify(f1, … , fn) = argmax 𝑝(𝐶 = 𝑐) ∏ 𝑝(

𝑛

𝑖=1

𝐹𝑖 = fi|𝐶 = 𝑐)

Sample

Class 1 Class 2 Class 3 Class 4

7

The Naïve Bayes classifier can have different assumptions for the

underlying distribution of features. For continuous variables, we can

assume they are under the classic Gaussian distribution. For text data, the

standard assumption is multinomial distribution, where the number of

occurrence of a word is taken into account. A simplified version is

Bernoulli distribution, which only consider whether a word appears or not.

The Naïve Bayes classifier is much more extensible than other algorithms.

Number of parameters it needs to learn is linear to number of features,

therefore the training time complexity is also linear. Moreover, the training

process has a well close-formed expression. For email classification

problem, the number of parameters is merely the number of unique words

in all emails. This avoid the expensive linear approximation many other

classifiers use.

Later Support Vector Machine (SVM) was introduced by Vladimir

Naumovich Vapnik and Alexey Yakovlevich Chervonenkis [8]. Given a

train set, each sample is represented by a point the hyperspace. For SVM,

samples are treated as p-dimensional vectors; SVM assumes that we can

separate these points with a (p-1)-dimensional hyper plain. There may be

may such hyper plain, and SVM will separate different categories with a

hyper plain with as large margin as possible. Thus, we will get the hyper

plain whose distance to nearest data points of two categories is maximized.

This is also why it was named “Support Vector” machine.

8

Figure 2.2 Support Vector Machine

SVM is usually a linear classifier. However, with some tricks called

“Kernel trick”, SVM can also do nonlinear classification. The main idea is,

by mapping the original sample space to a higher dimensional space, the

original non-linear separable set may become separable.

2.2.2 Development of Deep Learning

Deep learning is a subset of machine learning. It is a family of feature

learning algorithms in the area of machine learning. Observation values

can be represented in various ways, such as a vector containing RGB values

of each pixel, or more abstractly a series of edges and areas [9]. It attempts

to do highly abstract data computation with multiple process layers which

may contain a complicated structure or non-linear mapping. In general, it

is a boarder machine learning method, as it is not specific to any task. There

are multiple deep learning frameworks already widely used, such as deep

neural network, convolutional neural network and recursive neural

network. Deep learning has been widely used in applications, including

computer vision, natural language processing and bioinformatics, and

achieves supreme results.

In 1989, Yann LeCun [10] proposed the deep learning mode. Through it

could run, the computation cost was so large that the training took about

three days. The very first deep learning attempt therefore failed going into

real application. The trend of AI then shifted into Support Vector Machine.

However, in 1992, Schmidhuber [11] proposed an effective algorithm to

train neural networks. This algorithm treats each layer in the network as an

unsupervised, and then tune its parameters with supervised back

propagation algorithm. In experiment, it was shown that this training

method can indeed improve the train speed of supervised learning.

The advantage of deep learning is that it uses effective unsupervised or

Semi-supervised feature learning and layered feature extraction instead of

man-powered feature extraction. The aim of feature learning is to seek for

9

better representation of data and to create better model to learn these

representations from large-scale unlabeled dataset. The representation is

like development of real neural network, and is based on the understanding

of how information is processed and transmitted in neural-like systems [12].

Figure 2.3 A deep neural network

The basis of deep learning is the distributed representation in machine

learning. “Distributed” means the assumption that the observation is

resulted from interaction between different factors. Furthermore, deep

learning assumes that such interaction can be spliced into multiple layers,

which means the multiple abstraction of the observed value. Different

number of layers and different size of layers can be used to represent

different degree of abstraction. This idea of layered abstraction indicates

that higher-level concepts are learned from lower-level concepts. This

structure is usually constructed with greedy algorithm, which helps the

machine to learn more significant features. Many deep learning methods

are unsupervised algorithms, which enables deep learning to be applied to

unlabeled data. This is a great advantage over other algorithms. The

amount of available unlabeled data is much larger than labeled ones;

unlabeled data is also cheaper to acquire.

What even more encouraged researchers is General-Purpose computing on

Graphics Processing Units (GPGPU). The development of more powerful

hardware and increase in available data made deeper neural networks

realizable. In 2009, Nvidia stepped into the area of deep learning and

10

started promoting its GPU. It was confirmed that the involvement of GPU

can increase the training speed by more than 100 times. Since GPU is quite

suitable for matrix/vector computation in deep learning algorithm, a GPU

can reduce the time required from weeks to days.

Figure 2.4 From CPU to GPU

Since the emerge of deep learning, it has become one part of the most

advanced systems in various areas, especially in computer vision and speed

recognition. On standard verification datasets such as Cifar 10,

experiments showed that deep learning can improve recognition accuracy.

A deep learning method, convolution neural network, processed about 10%

to 20% checks in US [13]. Due to the development of deep learning, the

year 2010 witnessed a bunch of the very first industrial speech recognition

products [14].

2.2.3 Development of Deep Learning for Medical Images

In the area of medical image proceeding, deep learning is becoming more

and more attractive. The recent development in deep learning has achieved

a great leap. Generally speaking, research on deep learning for medical

images is mainly focused on four aspects: structures detection,

segmentation, labeling and captioning, and computer aided detection or

diagnosis.

Structure detection is one of the most important steps in medical image

process. Pathologists generally accomplish this task by recognizing some

anatomical feature in the image. Though the success of deep learning in

this area mainly depends on how many anatomical feature the algorithm

11

can extract. The recent trend indicates deep learning is mature enough to

solve real world problems. Shin et al. [15] proved deep learning in

computer vision applicable for medical images. On top of this, they

detected multiple organs in a series of MRI images. Meanwhile, Roth et al.

[16] presented a method to detect organ at certain body part. They trained

their deep neural network with 4298 images and achieved an error rate of

5.9%.

Segmentation is the process of dividing a digital image into many sub-

images [17]. A segment is a set of pixels, and therefore is also called hyper

pixel. The aim of image segmentation is to simplify or alter the

representation of the image so that it becomes more easy to understand or

analyze. Segmentation is usually used to locate objects or edges in the

image. More precisely, segmentation is a process to label each pixel in the

image, which makes pixels with the same label have a similar visual feature,

such as color, brightness or texture. Moeskops et al. [18] designed a

multiple-scale CNN for accurate tissue segmentation, using multiple patch

sizes and multiple convolution kernel sizes to gain multiple scale

information of each pixel, and achieved accuracy from 82% to 91%. Zhang

et al. [19] tested four CNN on the task of brain tissue segmentation. Their

experiment uses three convolution layers and a fully connected layer, and

proved CNN significantly better than traditional methods.

Figure 2.5 Typical Segmentation

Labeling and captioning is the most widely used way to describe contents

in an image. It is the classic classification problem in the area of medical

images. Continuous effort is being put in to ensure disease-specific auto

labeling. Inspired by neural networks for regular images, some research

[20] [21] introduced RNN together with latest advance in computer vision

to caption chest radiographs in certain contexts. The authors used image

12

captions in public available dataset to train the CNN. To avoid large error,

many normalization techniques were applied. Then the network was used

to describe the situation of detected disease.

Computer aided detection or diagnosis involves finding or locating

abnormalities and suspicious area, and then alert clinicians. The main aim

of computer aided detection is to increase the detection rate of infected area

and to decrease false negative due to observer’s mistake. Though it is

considered a mature area in medical images, deep learning further

improved performance in many applications and enabled some design that

was impossible in the past. Traditionally, computer detection requires a

preprocessed candidate region and manpower to extract features such as

shape or statistics in the region; inly after then the features can be feed into

the classifier. However, the advantage of feature learning is the core of the

new developments. Deep learning can learn the hierarchical features from

the dataset independently instead of depending handcrafted features

specially targeted for certain area of knowledge. It soon proved to be the

most advanced technology. Ciompi et al. [22] trained CNN with predefined

OverFeat as feature extractor, and showed that CNN is feasible to provide

useful feature description in lung images. Gao et al. [23] trained the model

from the very beginning. They solved the overfitting problem by randomly

cropping or jittering the original image, and then feed the sub images into

the model. Finally, the model was able to classify patches into normal,

fibrosis and other four abnormal classes.

Due to the prosperity in research, more and more commercial attempts is

being conducted recently. Startups entering the medical AI area is

increasing. From 2012 to 2016, investments in medical AI increases from

20 cases per year to 70 cases per year. More than 100 large companies are

trying to apply deep learning in order to decrease time to provide aids to

patient and to automatically diagnosis disease with medical images. IBM

Watson Group is supporting a research to screen cancer patients with an

affordable procedure. They are trying to make deep learning suitable for

production. Other startups include SkinVision, Flatiron Health and

Entopsis [24].

13

2.3 Objective

Deep learning has a natural advantage in features learning, which means

that it has a potential to be applied to this problem mentioned above.

Therefore, we will try to implement a complete automated breast cancer

diagnosis system. In this system, we will train a deep learning program

which can give advice to pathologists, even if s/he do not know anything

about AI.

Figure 2.6 Our Diagnosis System

This project involves image classification, object detection and image

caption together. It is designed to be able to perform mammogram analysis

or pathology analysis, and detect possible tumor location. A deliverable

diagnosis and tumor positioning report will be generated at the end which

can help them make a more accurate decision on diagnosis. The whole

system will have the following functionalities:

Figure 2.7 Workflow of Our Diagnosis System

1. Perform mammogram analysis first

To determine if a tumor is benign or malignant, we will first require the

patient's magnification mammogram image. The deep learning program

will try to make a preliminary classification: cancer, not cancer, or not sure.

More detailed diagnosis should follow.

14

2. Detect possible tumor location if classified positive

If the program categorizes image as positive, it will further detect the exact

existence of tumor. It will point out the most suspicious regions in the

image for pathologists' reference.

3. Make a more confident judgment with pathology analysis

If the program cannot achieve a pre-defined certainty threshold, it will

suggest a pathology analysis. As the pathology analysis can give more

information, very likely the program will approach the correct inference.

4. Generate human-readable report

At the last, the program will describe its output in an understandable way.

The report will indicate all its findings.

In term one, our primary objective is to build an accurate breast cancer

histopathological image classification model, which is the first computer

diagnosis procedure in the workflow. This is the entry point, and will be

the most frequently used module in the system. Therefore, we plan to spend

more effort in this part and to get a model as accurate as possible.

15

3 Related Works

3.1 Naïve Bayes for Breast Cancer Diagnosis

Starting from the emerging of AI, attempts were made to predict medical

image classes. The work from Kowal et al. [25] used a traditional Naïve

Bayes classifier for automated breast cancer diagnosis. It turned out that AI

is feasible for this diagnosis since simple classifiers can also do a good job.

In their thesis, the first step was preprocessing. Their original data was not

of high quality, and there were many noisy pixels in the image. They used

Gaussian filter to blur the image and reduce the noise. Then they stretched

the histogram to improve contrast. The second step is segmentation of

nuclei, since classification of tumor requires identifying nuclei in each cell.

they implemented four clustering algorithm: competitive neural network,

fuzzy C-means, K-means and Gaussian mixture model. Then 42 features

were extracted from each segment. The features were selected by

experienced human pathologists. Then the features were feed into

classifiers. They trained a Naïve Bayes classifier which was using

estimated kernel densities. 500 real medical images from 50 patients

formed the train dataset.

They measured the performance with n-fold cross validation method. Their

accuracy rate was about 96%-100%, which indicated AI in breast cancer

diagnosis was quite promising for production. It showed that their

preprocessing procedure and data collecting procedure could assure

accurate and objective dataset.

 KM FCM GMM CNN

Patients Accuracy 100.00% 96.00% 100.00% 98.00%`

Image Accuracy 90.22% 85.78% 88.00% 89.56%

Table 3.1 Performance of Different Classifiers

16

3.2 SVM for Remote Breast Cancer Diagnosis

The work from George et al. [26] proposed a more advanced system for

breast cancer diagnosis. They proposed a fully automatic nuclei detection

and segmentation method. Then they developed the AI tumor classification

system. They proposed 12 features for research on the most effective model.

At last, they experimentally pushed their computer aided detection and

diagnosis system to production, connecting it to a remote medical platform.

This web based service was expected to provide an intelligent and

convenient diagnosis for breast cancer patients.

Their first step was preprocessing. Since preprocess preprocessing is the

most critical factor in image processing, they shrank the image size from

2560x1920 to 640x480. Then contrast enhancement and edge sharpening

was used to manipulate the image. They used contrast limited adaptive

histogram equalization to enhance the quality of the image. CLAHE

worked within each tile of the image instead of the whole image, so that

contrast was enhanced in each tile. The next step is cell nuclei detection.

They implemented a detector combining circle detection and local

maximum finder. In the images, there may exist some blood cells which

were unwanted noisy markers. They used Fuzzy C-Means Clustering

method to remove such cells. The noise free image was then separated into

individual objects with marker-controlled watershed transform.

Figure 3.1 Workflow of SVM System

They used some meaningful features to classify the image. They proposed

two textural features and ten shape features that could yield a good

Preprocessing
Cell Nuclei
Detection

False Findings
Elimination

Cell Nuclei
Segmentation

Feature
Extraction

Classification

17

discrimination ability. The features include boundary, smoothness, etc.

Then the features were feed into SVM.

The train set and test set was generated with ten-fold cross validation

method. A total of 3260 images were used in the experiment. The

experiment result showed that their method was still effective for bloody

images or noisy images. However, due to the extreme lack of data, their

accuracy was capped at 82.6%. Some data set still did not the training goal

after 200 epochs. This paper illustrated some effective ways to preprocess

images, and proved that the performance converge is greatly correlated to

the size of train set.

3.3 Classification of Skin Cancer with DNN

Some most recent research on medical deep learning discussed deep neural

networks for classification of skin cancer. Esteva et al. [27] described a

promising method to do image classification for skin cancer diagnosis.

Instead of highly standardized images generated from specialized

instrument such as microscope, their classifier was mainly focused on

classifying images from general purpose photography instruments like

smartphone. The variety of zooming, angle and brightness brought new

challenge to the task. They used data driven method to overcome this

difficulty – they increased the size of dataset to 1.41 million which was

impossible for standardized images. The number of images made

classification more robust to the variety in images. Compared to previous

work that required many preprocess, segmentation and feature extraction,

they required no handmade functions in the classification. Their model

directly read the original image and original pixels and perform an end to

end training.

Their classification includes 2032 single diseases arranged in a tree

structure. Three root nodes represented benign, malignant and non-tumor

lesions. It was given in the bottom to top structure and therefore was very

suitable for machine classifiers.

18

They utilized the GoogleNet Inception v3 CNN architecture [28], which

was previously trained for 2014 ImageNet challenge, and then transferred

to the skin cancer dataset with transfer learning technology. This is a deep

CNN architecture which achieved 93% accuracy in the challenge. They

deleted the final classification layer, and retrained the network with the skin

cancer dataset, and fine tune parameters of each layer. During the train

process, they shrank size of each image to 299x299 pixels so that it could

fit with the input sized of the original Inception v3 network structure, and

used ImageNet to pre-train the image feature learning ability of the network.

This process was called transferred learning, which could result in the best

result with given number of data.

Figure 3.2 Structure of Inception v3

They trained the Convolution with back propagation algorithm. All layers

in the network was assign the same global learning rate. They used

Tensorflow, a deep learning framework by Google to train, validate and

test their network.

They tested their network with two methods, using nine-fold cross

validation. First, they used three top-level nodes for classification, which

classified each image into benign, malignant or non-tumor. In this task,

CNN achieved 72.1± 0.9 ％ accuracy for each patient. Two human

dermatologists achieved 65.56% and 66.0% on a subset of the test set.

Second, they classified images into different medical care requirements.

CNN achieved 55.4±1.7％ while two dermatologists achieved 55.0% and

19

53.3%. This demonstrated the effectiveness of deep learning for cancer

diagnosis. This method is mainly bounded by data; if given enough data, it

can be suitable for many other image problems.

20

4 Technical Support and Preliminary Study

4.1 Breast Cancer Diagnosis

In this section, we will discuss about the medical background we studied

for this project. Topics covered include histopathological image,

pathophysiology and current diagnosis method of breast cancer.

4.1.1 Histopathological Image

Microscopic biopsy image is the standard tool for pathologists to diagnose

breast cancer. Pathologists will inspect the size, shape, structure of cells

and tissue and try to find some specific dangerous features in the image.

Some signal used in this procedure include how each cell looks like, how

each nuclei looks like and how the tissue looks like [29].

Figure 4.1 Sample of Histopathological Image

Shape and size of the cells

Observations show that cells in a piece of tissue usually do not derivate too

much from the average overall size and shape. However, a cancerous cell

will lose its normal appearance, being either bigger or smaller than other

cells. Well-functioning cells have even shapes and structures. On the other

hand, cancer cells hardly function in a meaningful way, often with their

shapes uneven.

21

Size and shape of the cell’s nucleus

Cancer cells often do not have a nucleus with normal size or shape. On the

contrary to healthy nucleus, cancer nucleus is less likely to be located at

the center of the cell. The cancer cell tends to have an appearance like an

omelet, where the nucleus is the yolk. The nuclei of it is also bigger and

darker compared with that of a normal cell.

Distribution of the cells in tissue

Besides things inside each cell, the functionality of tissue also depends on

how cells are distributed and arranged. If the number of healthy cells is

reduced, the overall texture and even color will also change accordingly,

which leads to the shape and morphology features pathologists can directly

observe from the tissue. This is more significant in diagnosis.

4.1.2 Pathophysiology

We investigated the pathophysiology explanation of breast cancer. This

will help us understand features in the images, and help us develop a

system more specific to our task.

Cancer is immune defense failure

The immune system normally seeks out cancer cells and cells with

damaged DNA and destroys them. Breast cancer may be a result of failure

of such an effective immune defense and surveillance.

Cancer involved stromal cells and epithelial cells

These are several signaling systems of growth factors and other mediators

that interact between stromal cells and epithelial cells. Disrupting these

may lead to breast cancer as well.

Risk factors of cancer vary

1. Age: The risk of developing breast cancer increases with age.

2. Personal history: A personal history of breast cancer is also a significant

risk factor for the development of a second ipsilateral or contralateral

22

breast cancer.

3. Breast pathology: Proliferative breast disease is associated with an

increased risk of breast cancer.

4. Family history: A woman’s risk of breast cancer is increased if she has

a family history of the disease.

Lifestyle contributes to cancer

1. Alcohol consumption: Alcohol consumption has been associated with

increased breast cancer risk that is statistically significant.

2. Physical activity: It has been observed that frequent physical activity

can lower the risk of breast cancer.

3. Obesity: Obesity, specifically in postmenopausal women, has also been

shown to increase a woman’s risk of breast cancer.

4. Radiation: Radiation exposure from various sources including medical

treatment and nuclear explosion will increase the risk of breast cancer

by a slight amount.

4.1.3 Current Diagnosis Method

We also studied the current standard diagnosis method of breast cancer.

This will equip us with the knowledge about how to simplify the traditional

diagnosis process.

Breast cancer screening

Breast cancer screening is defined as the medical screening process among

women appear to be healthy for early symptoms of breast cancer [30]. It is

proposed in the will to diagnose It is widely believed that early detection

will improve patients lone-term survival rate.

Microscopic analysis of a biopsy by pathologists

If the screening result is inconclusive, the doctor may require a microscopic

analysis. The doctor will sample the fluid in the lump to do a further

diagnosis. This procedure involves needle aspiration. If the fluid is clear, it

is highly likely that the patient is healthy; however, if there exist bloody

fluid, a more detailed microscope inspect will be needed and it is possible

23

that the lump is affected [31].

This method is the most widely employed procedure. However, it is also

laborious and time consuming. The probability of misdiagnoses is high

because there can be too many variations in the process. Considering the

incredible amount of data involved, it is a huge work.

4.2 Image Processing

Preprocessing is an important step in the process. The phrase "garbage in,

garbage out" is particularly applicable to our project. Though the image

gathering methods are often strictly controlled for our dataset (i.e. same

microscope), the original data still have different attributes such as

brightness, contrast and saturation. Analyzing data that has not been

carefully normalized can produce misleading results. Thus, the

representation and quality of input data should be assured before training.

4.2.1 Feature Detection

Feature detection is a concept in the area of computer vision and image

processing. It means use computer to extract information from image and

to decide if each pixel of the image belongs to a feature or not. The result

of feature

Figure 4.2 Points Detected in Sample

Up till now there is no universal definition of “useful” or “accurate”

features. The precise choice of features usually depends on the problem or

24

specific application. It is a primary computation of many computer image

analysis algorithms, in other words, the start point of them. It checks each

pixel to determine if a feature can be extracted from that pixel. Therefore,

whether an algorithm can succeed sometimes is determined by the features

it defines and uses. There are many feature detection algorithms developed

to meet different kinds of requirements. Features they extract vary; their

computation complexity and repeatability also differs. Some most popular

shape features include perimeter, area, compactness and smoothness.

Textual features such as grey scale are also used. There are no general rules

for choosing features – we can only choose by experience and experiment,

which adds difficulty to image classification tasks.

Fortunately, the idea of Neural Networks saves us from the work. They are

designed to require little preprocessing – All the works is done

automatically be the program. This ability of learning the features is the

first reason why people invented Neural Networks. However, we still need

some slight amends to ensure things will not go wrong.

4.2.2 Data Augmentation

There is another thing to note: data augmentation. In deep learning, to

avoid the well-known overfitting problem, we usually need to feed enough

data into the model. Therefore, the amount of available data sometimes is

the most critical issue for deep learning. The problem is high quality data

is expensive and limited. One method to overcome the shortage of data is

data augmentation. We need to perform geometric transformation on the

original dataset, change pixel positions of the image while keep the original

features.

Figure 4.3 Demonstration of Data Augmentation

25

Data augmentation is very likely to improve accuracy since the model can

see more samples. The exact amount depends, though. There are many

ways to augment the dataset. Adding noise is an intuitive approach. More

generally we have simple transformations. For sparse holes in the dataset,

we can perform dimensional reduction. Several more complicated ways

include combinations of rotation, translation, rescaling, flipping, shearing,

and stretching [33].

4.2.3 OpenCV

Open Source Computer Vision Library (OpenCV) is an open source library

dedicated to the field of machine learning and computer vision. It was built

with the idea to provide a reusable common infrastructure for computer

vision applications, and to encourage the use of machine learning in real

products [34]. The library was originally proposed by the CPU company

Intel, and was later maintained by other organizations.

Figure 4.4 Logo of OpenCV

There are more than 2500 optimized algorithm included in this library. This

includes both traditional and most advanced machine learning algorithms.

This brings us convenience in developing our deep Neural Network.

OpenCV support programming languages from C, C++ to Java and Python.

The main focus of it is to improve computational efficiency and therefore

to enable interactive applications that can respond quickly to changing

26

inputs. It has a backend optimized with C/C++, and can take the full

advantage of multicore processors. It can also utilize hardware acceleration

provided by different platform.

4.3 Deep Learning

Most importantly, we searched for the latest technology and tools in the

field of deep learning. With these knowledge, we will try to build a more

advanced deep learning program.

4.3.1 Convolutional Neural Network

In machine learning, convolutional neural network is a type of feed-

forward neural network. It is inspired by biological processes in animal

vision system [35]. Various projects have applied convolutional neural

network in analyzing visual imagery. In recent years, Convolutional Neural

Network has become the state-of-art in image recognition problems,

beating different competitors. It has been observed from existing papers

[36] [37] that CNN is feasible to do microscopic and macroscopic image

classification tasks, and is possible to surpass other classifiers. It is now

believed to be the first choice for image classification type tasks.

Just like other Neural Networks, CNN consists of an input layer, multiple

hidden layers and an output layer. A notable feature of CNN is that it

assumes inputs are pictures. In this way, it can do some more specialized

optimization. In convolution layers, the neurons will only connect to a

limited region of the previous layer. This reduced computation complexity,

and enables CNN to make full use of the 2D structure of the input data.

Therefore, compared to other deep learning architecture, CNN can often

lead to better result in image or speed recognition.

27

Figure 4.4 Illustration of Convolution

CNNs use less preprocessing than other image classifiers. This feature

learning property reduces requirement of prior knowledge and hence

human effort, making CNN an attractive architecture.

4.3.2 Residual Network

The idea of stacking up more layers is not new, but it became attracting

only recently, as a result of the rapid development of Graphic Processing

Units. GPUs can perform high computational intensive tasks at pretty low

cost, thanks to their parallel architecture. However, as the depth of the

network increase, the accuracy may not proportionally increase.

Moreover, deeper networks will face the vanishing gradient problem. The

problem becomes more serious when the network is going deeper. The

hidden layer near the output layer will update its weight normally, but the

layers in the front of the network can only update their weights very slowly,

which makes the weights almost unchanged after training. It makes the first

several hidden layers merely a forward layer that do a same mapping for

all inputs. The deep network is now just equivalent to a shallow network

with the last several layers.

28

Figure 4.5 Basic Structure of Residual Network

He et al. [38] presented a residual learning framework to ease the training

of networks that are substantially deeper than those used previously in

2015. They explicitly reformulated the layers as learning residual functions

with reference to the layer inputs, instead of learning unreferenced

functions. There is empirical evidence showing that these residual

networks are easier to optimize, and can gain accuracy from considerably

increased depth. On the ImageNet dataset, He evaluated residual nets and

achieved 3.57% error on the ImageNet test set. This result won the 1st place

on the ILSVRC 2015 classification task.

4.3.3 Tensorflow

In our project, we use Tensorflow. It is also an open source software library.

By using data flow graphs, it is capable for large scale numerical

computation, one of which is machine learning. Besides fast speed, it also

supports various high-level APIs for machine learning programs [39].

29

Tensorflow supports platforms with or without GPU, from mobile, desktop

to clusters. With limited overhead, Tensorflow + Python environment

provides a much clearer program: we describe the data flow diagram with

Python, benefiting from the conciseness of this language; then Tensorflow

will execute the diagram with a C++ or CUDA backend, making full use

of the computer hardware.

Figure 4.6 Logo of TensorFlow

Tensorflow introduces two new concepts: Tensor, and data flow graph.

Data flow graph is a graph whose nodes are Tensors. Tensors are actually

matrixes; however, they can be connected to from a data flow graph. The

matrix together with the relations defines a Tensor. The word “flow” means

that data will flow from one node to another, and the computation occurs

in the transition. This gives us a very good simulation of CNNs: they both

are graphs, and both incur computation during transitions.

We are using Tensorflow 1.3.0, which is the latest version available at the

time we start to develop our project.

4.3.4 Comparing Tensorflow with Other Tools

Generally speaking, Tensorflow is more friendly to beginners than other

tools like Caffe. This partly results from Google, the author of Tensorflow.

Most other tools are supported by university academics, while Tensorflow

is supported by a commercial company. This results in difference in

30

available documents, tutorials and communities. Developing with

Tensorflow is generally more comfortable.

Though tools built for academics can provide a more detailed control over

the model, this feature is mostly not required for implementing a model

that has already been tested for many times. On the other hand, Tensorflow

is more high-level, providing conciseness in development.

Developer can use Tensorboard, the bundled debug tool along with

Tensorflow, to monitor real time statistics of the diagram. Considering

Googles’ experience in user interfaces, debugging Tensorflow models is

much more convenience than debugging Caffe models.

Moreover, as Google is a commercial company, Tensorflow is designed for

production usage at the very beginning. We can easily export the model

trained by Tensorflow and set up a RESTful query server in a couple of

lines. As our project is a medical project, we should expect users may not

have much Machine Learning background. The ease in pushing experiment

results to production is an advantage.

31

5 Method

5.1 Dataset

For our project, we are using the Breast Cancer Histopathological Image

Classification (BreakHis) dataset. It is composed of 9,109 breast tumor

tissue microscopic images. The researchers collected samples from 82

patients, and used different magnifying factors (40x, 100x, 200x, and 400x)

to process them [40].

Class 40x 100x 200x 400x

Benign 625 644 623 588

Malignant 1370 1437 1390 1232

Total 1995 2081 2013 1820

Table 5.1 Distribution of Images

The samples are stained with hematoxylin and eosin. The author of the

dataset uses breast tissue biopsy slides to generate these samples.

Pathologists from the P&D lab labeled them. The breast tumor specimens

were asses by Immunohistochemistry. The biopsy procedure was Surgical

Open Biopsy.

An Olympus BX-50 system microscope was used to capture the images.

As aforementioned, they captured image under four magnification factor,

40x, 10x 200x and 400x. The raw image was stored into the dataset without

any normalization of color standardization to avoid loss of information and

complexity in analysis. The images were in Portable Network Graphics

(PNG) format, in 3-channel RGB, 8-bit depth.

32

Figure 5.1 Same Tumor under Different Magnification

5.2 Preprocess

In this section, we will discuss how we manipulate the image before

feeding it into the model. We proposed different methods, and would

compare them in experiments.

5.2.1 Data Augmentation

Since we are training a deep learning neural network, the amount of train

data is a critical problem. The size of the original dataset, 9109, is relatively

small for our model, and is therefore very likely to cause overfitting.

Summarizing the methods used in past works [41], we can propose

multiple ways to extend the dataset systematically.

We do not propose any color standardization since all images have the same

color pattern, i.e. pink or purple. This is due to the stain method applied to

tissue samples. The data augmentation methods we propose include only

geometric transformation. They include:

1. rotations: random with angle

2. translations: random with shift

3. flipping: true or false

4. shearing: random with angle

5. stretching: random with stretch factor between 1/1.3 and 1.3

33

Figure 5.2 Examples of Data Augmentation

5.2.2 Sliding Window Crop

It is hard to process the high-resolution images since applying deep

learning algorithms on larger image sizes will tend to make the model

architecture more complicated. The model will usually have more layers,

more parameters which increase the complexity dramatically. Training and

tuning the model may be very costly in such case.

One way to solve this problem is sliding window crop. Set a window of

size n × n, slide through the image at step = 0.5n, and then crop [42].

Figure 5.3 Examples of Sliding Window Crop

34

Overlaps between crops are deliberately designed to avoid damaging the

structure information too much. The number of total crops is given by the

following formula:

#(crop) = 2 ×
IMGWIDTH

n
× 2 ×

IMGHEIGHT

n

5.2.3 Random Crop

Another way to solve the aforementioned oversized problem is random

crop. Set a window of size n × n, do random crop instead of sliding. This

is similar to the previous method.

Figure 5.4 Examples of Random Crop

The number of total crops is not fixed. However, a higher number of crops

will give more information. There will be no limit on how the random

selector crop: it may or may not capture the most important features.

For benign samples, there will be no problem. However, for malignant

samples, we cannot make sure tumor exist in every crop. Crops extracted

from malignant images may actually contains no tumor and should be

classifies as benign. This introduces noise in train data.

The gain, on the other hand, is we keep the size of network small. This

benefits in various ways: less computation complexity, less logic

complication, and most importantly, it reduces chance of overfitting by

35

limiting the parameters of the model to a reasonable amount.

5.2.4 Resizing

There always exists the method of simply shrinking the image. To avoid

moiré after resizing, we will resample the image using pixel area relation.

This is the best image interpolation method for decimation since it tends to

give a clearer image. This makes the high-resolution image generation

pointless, however.

5.2.5 Whitening

Whitening is the one of the standard preprocess methods for machine

learning. The main idea is to remove extra information dimensions in the

image. First, we represent the input dataset as

{𝑥1, … , 𝑥𝑚}

Then we computes the covariance matrix of x

Σ =
1

𝑚
∑ 𝑥𝑖𝑥𝑖

T

𝑚

𝑖=1

Therefore, we can have

𝑥rot = 𝑈T𝑥

where 𝑈 is the eigenvector of Σ.

This process maps 𝑥 into a new space that eliminates the correlation

between features. Then we can have

𝑥PCAwhite =
𝑥rot

√λ𝑖

which normalizes the dataset [43].

36

Figure 5.5 Before and After Whitening

After whitening, the new image satisfies two properties: features are less

correlated, and features have the same variance. This will significantly

accelerate the training process.

5.2.6 Contrast Limited AHE

Contrast-Limited Adaptive Histogram Equalization (CLAHE) can improve

local contrast without damaging the image too much. Consider an image

whose pixel values are limited to a specific range, it would be better to have

the values distributed in all regions of the channel. This will usually

improve the contrast of the image. Therefore, we need further scatter pixels

clustered in the “brighter” regions.

Adaptive Histogram Equalization (AHE) will do this work. However, it

sometimes will cause loss of information due to over exposing some region

that is already bright. This is because the image is not perfectly limited in

a small region of the channel. To solve this problem, we can use CLAHE

[44]. The image is divided into tiles, and each tile can perform AHE on its

own. For a tile, the brightness across this small area is more likely to be

confined. In this way, the image will be clearer.

37

Figure 5.6 Before and After CLAHE

Generally speaking, CLAHE is more important than whitening for deep

neural networks since the network can learn how to whiten images itself

without manually specify it should do it.

5.3 Model Architecture

We propose deep neural network to be the framework of our deep learning

program. To define a deep neural network, we will discuss about how we

will construct each layer of the network in the following sections.

5.3.1 Input Layer

This is the first layer of the network. It received non-linear input data and

prepare data to be fed into convolutional layers after it. Some simple

transformation such as normalization can be applied in this layer. It

produces the initial feature maps. In our experiment, the input is an image,

and the network is parameterized according to the image width, height and

depth. Since we will test multiple cropping methods, available parameter

set includes multiple values, for example 700x460, 256x256, etc.

5.3.2 Convolutional Layers

The convolution layer takes data from previous layers and a group of

trainable filters as input. A filter is just a neuron connected to a limited area

of the previous layer. Each filter will produce a feature map in the output.

38

In the convolution layer, filter will do convolutional computation on local

input data. The data window will keep sliding after filter finishes the local

computation, until it finishes all data from the previous layer.

While the input data may have a large size, the filter will only compute the

convolution on a partial data window, which is called local perception

mechanism in CNN. It is a simulation of animal focusing on a specific

object. Meanwhile, as the data window slides and the input data changes,

the filter weight is fixed during this iteration; in other words, focusing on

different area will not change the way an animal see the world. This is the

weight sharing concept in CNN.

Figure 5.7 Convolution

In this procedure, we need to specify several parameters: depth, stride and

zero-padding. Since we will test multiple model architecture, available

parameter set also includes multiple values. We will do experiments on 3x3,

5x5, 7x7 kernels.

5.3.3 Dropout

From experience, overfitting is a common problem in deep neural network.

Due to that large amount of trainable parameters in CNN, the model may

simply memorize all train data without figuring out the internal regulation

in the dataset, and cannot be generalized to new data, which leads to high

accuracy on train set but low accuracy on test set.

39

Dropout refers to the method that temporarily disable some neural network

unit at some certain probability during the train process of CNN. The

discard is temporary, and its weight is preserved. For random gradient

decline, since units are randomly disabled, the training is actually on

different networks for each mini-batch. It forces one neuron to work with

other randomly selected neurons, forces “free riders” to be trained equally,

and hence decreased the correlation among neurons. In this way, we are

actually training 2n models for a neural network with n nodes, while

keeping the number of parameters unchanged. In other words, we are

training more models with the same computation complexity. This results

in a visible improvement in the generalization ability of the network.

In our project, we applied a dropout layer after each convolution layer with

dropout rate 0.5.

5.3.4 Residual Blocks

The representation ability of a network increases if its depth increases. For

two network with same time complexity, the deeper network will perform

better [38]. However, the actual classification accuracy usually does not

increase for deeper networks; sometimes the accuracy even decrease.

To solve this problem, residual learning was proposed. If multiple non-

linear layers can be approximated by a function, we can also represent the

residual of this hidden layer as a function. Suppose a hidden layer is

H(x) − x → F(x), we can intuitively have

H(x) = F(x) + x

Then we can have the residual block. The output of the residual block is

the sum of the output of multiple cascade convolutional layers and the input

element itself, activated by an activation function where we choose ReLU.

40

Figure 5.8 A Simplified Residual Block

The residual network has some nice features. It is thin, having the number

of parameters under control. There is layered structure which can ensure

the feature expression ability of the network. It can perform subsampling

without pooling layers, and therefore improved the efficiency of back

propagation.

For actual usage, the number of convolutional layers wrapped by a residual

block may depends on scenario. For our project, we choose 5 since it is the

best balance between train time and accuracy gain.

5.3.5 Pooling Layers

The pooling layers are used to perform subsampling. The size of its output

will be reduces, but the depth will keep unchanged. It will reduce the

amount of data and the number of parameters in the model. During the

training process, it can therefore lower the computation complexity and

avoid overfitting. The polling layer uses the same sliding window

mechanism as convolution layers, and is defined as

y = max
local window

(x)

In our model, there will be a pooling layer after each convolution layer, so

their activity is strictly determined by convolution layers. The filter size we

used is 2x2 and the stripe size is 2, which will reduce the amount of data

41

by 75%. Larger sizes may be destructive to the network.

5.3.6 Activation Layers

Activation layers are introduced for adding non-liner classification ability

to neural networks. Though it is logically just a function, usually we regard

it as a layer. In our model, we use Rectified Linear Unit (ReLU) as the

activation function. It is a commonly used one for CNN. The ReLU

function is defined as

𝑓(𝑥) = max (0, 𝑥)

Figure 5.9 ReLU

As shown in the graph, the activation function ReLU that we used is just a

threshold at zero. It is proved to be a better simulation of animal brains [45].

For particle usage, it simplifies the computation required.

5.3.7 Fully Connected Layer

The fully connected layer has connection to all neutrons of the previous

layer. We have only one fully connected layer. It is used at the end of the

network to produce final prediction results.

5.4 Aggregation

As aforementioned, some images are sliced into patches; we need to

aggregate patches to get the classification for the whole image. For patient

42

level diagnosis, we also need to draw an overall conclusion from all

histopathological slides. We propose different aggregation rules inspired

by Kittler [46] here, and will test their performance for both two tasks.

5.4.1 Sum

This aggregation rule assumes that a posteriori probability will not deviate

too much from the prior knowledge. It takes into consider the ratio of

benign samples and malignant samples among all patients. In such case we

can assume that the posterior satisfies

𝑃(𝑤𝑘|𝑥𝑖) = 𝑃(𝑤𝑘)(1 + 𝛿), 𝛿 ≪ 1

Therefore

𝑃(𝑤𝑘) ∏(1 + 𝛿𝑘) = 𝑃(𝑤𝑘) + 𝑃(𝑤𝑘) ∑ 𝛿𝑘

By applying the Bayes' theorem, we have

𝑃 = (1 − 𝑅)𝑃(𝑤𝑘) + ∑(𝑤𝑘|𝑥𝑖)

We will assign

Prediction = argmax[(1 − 𝑅)𝑃(𝑤𝑘) + ∑ 𝑃(𝑤𝑘|𝑥𝑖)]

5.4.2 Plurality Vote

This is a simple rule that reports the majority of all samples. However, this

method is not likely to perform well, since an image should be classified

as malignant once there is a tumor, no matter if tumor cells takes up the

majority space of the image. We use this as the baseline for assessment. We

will assign

Prediction = argmax(∑ Δ𝑖)

5.4.3 Average

This rule can be view as a more advanced voting. It computes the average

of predictions for each class over all samples; then it performs maximum

43

likelihood estimate. We will assign

Prediction = argmax(
1

R
∑ 𝑃(𝑤𝑘|𝑥𝑖))

Thus, this rule assigns classes in a more reasonable manner, since an

outliner tumor can still affect the average and therefore affect the final

classification result. By summing up all predictions, it balances between

popular opinion and individual judgement.

5.4.4 Exist

This rule is another extreme, in contrast to plurality vote. Once if a tumor

is detected, the final prediction will be malignant. This rule will impose

more false positive, but may be more useful in real applications since

people are more tolerant to false positive than false negative. We will

assign

Predition = {
malignant, ∑ Δ𝑖 > 0

benign, ∑ Δ𝑖 = 0

5.4.5 Exist-n

This rule is a variant of the exist rule. It adds a threshold of n to the

prediction, in other words, the final prediction will be malignant if and only

if three samples report tumor at the same time. We will assign

Predition = {
malignant, ∑ Δ𝑖 ≥ n

benign, ∑ Δ𝑖 < n

5.5 Workflow

To develop a more accurate model, we have the following development

workflow cycle. The cycle includes five elements: design, implement, train,

44

validate and test.

Figure 5.10 Development Workflow

After we implement a model, we will train it. Validation will be performed

occasionally. If the validation result is not satisfying, we will cut off the

training and attempt to find out the reason. After the train accuracy

converges, we will do a thorough test of the model and compute some

quantitative measurement to determine if our design works well. We will

try to analyze the factors that affect the performance, and perform

incremental modifications accordingly.

45

6 Implementation

Applying and combining methodologies we mentioned above, we have

successfully implemented a ResNet model, and trained it with

preprocessed BreakHis dataset, which has also been introduced before. In

this part, we will divide our implementation to several parts according to

code logic and introduce details of each part one by one. Also, we will

explain and show our assigned parameters in this section.

6.1 Data Loader and Preprocess

This part is about the implementation of loading data and preprocessing

images to fit them into ResNet model.

6.1.1 Data Loader

There are kinds of diseases such as mucinous carcinoma and adenosis in

original dataset. Each disease is divided into two classes, benign and

malignant, and has a file to record paths and image numbers of it.

SOB/mucinous_carcinoma/SOB_M_MC_14-18842/200X : 16

SOB/mucinous_carcinoma/SOB_M_MC_14-18842/400X : 9

SOB/mucinous_carcinoma/SOB_M_MC_14-18842/100X : 22

SOB/mucinous_carcinoma/SOB_M_MC_14-18842/40X : 15

SOB/mucinous_carcinoma/SOB_M_MC_14-13418DE/200X : 14

SOB/mucinous_carcinoma/SOB_M_MC_14-13418DE/400X : 11

SOB/mucinous_carcinoma/SOB_M_MC_14-13418DE/100X : 15

SOB/mucinous_carcinoma/SOB_M_MC_14-13418DE/40X : 15

SOB/mucinous_carcinoma/SOB_M_MC_14-18842D/200X : 16

Figure 6.1 Example of One Record File

46

To read all files recording the path of each disease, we use regex in

python and store all image paths in a list shuffled_walk :

 shuffled_walk = []

 regex =

re.compile('(?:{data_set_dir}).(\w+).SOB.(\w+).([\w-]+).({magn})X'.format(

 data_set_dir=re.escape(data_set_dir),

 magn=re.escape(str(FLAGS.magn))

))

 for dirname, _, filenames in os.walk(data_set_dir):

 if regex.match(dirname):

 tumor_class, tumor_type, slide_id = regex.match(dirname).group(1, 2, 3)

 shuffled_walk.append((dirname, filenames, tumor_class, tumor_type,

slide_id))

 print (shuffled_walk)

Figure 6.2 Read All Files

To divide data into train dataset and test dataset, and keep them unchanged

on accuracy test of different model, we simply use remainder of

shuffled_walk ’s index to divide the data:

 i1 = [i for i in range(len(shuffled_walk)) if i%4 == 0]

 i2 = [i for i in range(len(shuffled_walk)) if i%4 != 0]

 index = i1 + i2

 tmp = shuffled_walk

 shuffled_walk = []

 for i in range(len(tmp)):

 shuffled_walk.append(tmp[index[i]])

Figure 6.3 Divide Data into Test and Train Dataset

6.1.2 Image Segmentation

After storing image paths, we need to do image segmentation to fit image

with proper size into our DNN model. As mentioned above, we use three

kinds of strategies to do image segmentation: sliding window crop,

47

random crop and resizing, which have been introduced in section 5.2

Preprocess. The implementation and explanation of arguments and

outputs are as follow:

Args:

 Image: 3-d numpy array. The raw image to be segmented.

 sub_slides: list. The list of segmented batch.

Returns:

 A new list of segmented batch containing the segmentation result of

input image.

def resizing(image,sub_slides):

 image_shape = np.shape(image)

 indexes = np.random.choice(image_shape[1] - image_shape[0], 50)

 for i in indexes:

 sub_slides.append(image[:,i:i+IMG_HEIGHT])

 return sub_slides

Figure 6.4 Resizing

def sliding_window_crop(image, sub_slides):

 image_shape = np.shape(image)

 col_step = int(IMG_WIDTH / 2 - (IMG_WIDTH - image_shape[0] %

IMG_WIDTH) / (image_shape[0] / IMG_WIDTH * 2))

 row_step = int(IMG_HEIGHT / 2 - (IMG_HEIGHT - image_shape[1] %

IMG_HEIGHT) / (image_shape[1] / IMG_HEIGHT * 2))

 for col in range(0, image_shape[0] - IMG_WIDTH + 1, col_step):

 for row in range(0, image_shape[1] - IMG_HEIGHT + 1,

row_step):

 sub_slides.append(np.array(image[col:col + IMG_WIDTH,

row:row +IMG_HEIGHT]))

 return sub_slides

Figure 6.5 Implementation of Sliding Window Crop

def random_crop(image,sub_slides):

 image_shape = np.shape(image)

 x = np.random.choice(image_shape[0]-IMG_HEIGHT,100)

48

 y = np.random.choice(image_shape[1]-IMG_WIDTH,100)

 for i in range(100):

 sub_slides.append(image[x[i]:x[i]+IMG_HEIGHT,y[i]:y[i]+IMG_W

IDTH])

 return sub_slides

Figure 6.6 Implementation of Random Crop

6.1.3 Image Preprocess

After slicing images into patches, we implemented different preprocess

methods to test whether is suitable for histopathological image, which has

been introduced before (section 5.2). The implementation and explanation

of arguments and outputs are as follow:

Args:

 Image: 3-d numpy array. The raw image to be preprocesed.

Returns:

 Image: 3-d numpy array. A new preprocessed image.

def whitening_image(image_np):

 for i in range(np.shape(image_np)[0]):

 mean = np.mean(image_np[i])

 # Use adjusted standard deviation here, in case the std ==

0.

 std = np.max([np.std(image_np[i]), 1.0 /

 np.sqrt(IMG_HEIGHT * IMG_WIDTH * IMG_DEPTH)])

 image_np[i] = (image_np[i] - mean) / std

 return image_np

Figure 6.7 The implementation of whitening

def subtract_gaussian_smooth_image_and_CLAHE(image_np):

 for i in range(np.shape(image_np)[0]):

49

 blur = cv2.GaussianBlur(image_np[i], (GAUSSIAN_KERNEL_SIZE,

GAUSSIAN_KERNEL_SIZE), 0)

 clahe_input = cv2.cvtColor(image_np[i] - blur,

cv2.COLOR_BGR2YUV)

 clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))

 clahe_input[:, :, 0] = clahe.apply(clahe_input[:, :, 0])

 image_np[i] = cv2.cvtColor(clahe_input, cv2.COLOR_YUV2BGR)

 return image_np

Figure 6.8 One Version of CLAHE Implementation

def CLAHE_image(image_np):

 for i in range(np.shape(image_np)[0]):

 clahe_input = cv2.cvtColor(image_np[i], cv2.COLOR_BGR2YUV)

 clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))

 clahe_input[:, :, 0] = clahe.apply(clahe_input[:, :, 0])

 image_np[i] = cv2.cvtColor(clahe_input, cv2.COLOR_YUV2BGR)

 return image_np

Figure 6.9 Another Version of CLAHE Implementation

def past_pre(image_np):

 mean = np.mean(image_np,axis=0)

Figure 6.10 Method in Past Paper [47]

6.2 Model

Our model is not implemented in a single inference function, but we

implement functions for different usage. The parameters and outputs of

each function are explained and shown in section 11, Appendix.

6.3 Train and Validation

As usually used in DNN, a model is trained by firstly feeding it input and

generates the output (prediction) for comparison with the label of input.

50

This kind of comparison is done by calculating the loss. We used cross

entropy to represent loss function [48].

 def loss(self, logits, labels):

 labels = tf.cast(labels, tf.int64)

 cross_entropy =

tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,

 labels=labels, name='cross_entropy_per_example')

 cross_entropy_mean = tf.reduce_mean(cross_entropy,

name='cross_entropy')

 return cross_entropy_mean

Figure 6.11 Loss Function Implementation

6.4 Hyper-parameters

In this section, we will briefly explain the parameters related to research

results we used and its assigned value.

learning rate: 0.001, initial leaning rate.

learning rate decay factor: 0.5, how much to decay the learning rate

each time.

decay_step_0: 500, the first step to decay the learning rate.

decay_step_1: 2000, the second step to decay the learning rate.

weight decay: 0.0002, weight decay for L2 regularization.

train batch size: 64

dropout proportion: 0.5

train steps: 3000

regularizer: L2 regularizer, a process of introducing additional

information to reduce overfitting.

51

7 Results

In the previous part, we introduced kinds of methods to do image

preprocess, image segmentation and model construction. In this part, we

will compare different methods and parameters together and compete with

the past paper result using the same dataset to see whether our model is

optimized enough.

Following the experimental protocol proposed in [40], we used cross-

validation method [49] to do evaluation, the dataset was split so that

patients used to build the training set (75% patients) are not used for the

testing set (25% patients) to guarantee that our model can generalize to

those patients not in the dataset, the results presented in this work are the

average of four trials with the selected results after converging and a

suitable early stop.

Training protocol used here is the purely supervised type, the Stochastic

Gradient Descent (SGD) method [50], with backpropagation to compute

gradients was used to update the network’s parameters. All fixed hyper-

parameters of training are given in the Implementation section.

The ResNet model were trained on a NVIDIA Tesla K40m GPU [53] using

the Tensorflow framework [39]. Training took about 5 hours for the

256×256 input size and 10 hours for the 512×512, which is corresponding

to a much more complex training set.

When we discuss the results of medical images, there are three ways to

report the results in our report: batch level, image level and patient level.

Batch level can be understood by batch-wise, the unit is simply each input

we fit into the neuron network. The recognition error at the image level can

be calculated by:

Image Recognition Accuracy =
Ncorrect

Nall

Where Ncorrect is the number of cancer images which is correctly

52

classified, and Nall is the number of cancer images in the test dataset.

Patient level is a little different, each patient score is defined as:

Patient Score =
Ncorrect−in−p

Np

Where Ncorrect−in−p is the number of cancer images of Patient P which is

correctly classified, Np is the number of cancer images of Patient P. Then

the global patient error is calculated by:

Patient Error = 1 −
∑ Patient Score

Total Number of Patients

Besides basic error results, we also calculated confusion matrix, precision,

recall and F1 score [54] on either/both image level or/and patient level.

Precision, recall and F1 score are defined as:

Precision

=
Number of images labeled and predicted as malignant

Number of images labeled as malignant

Recall =
Number of images labeled and predicted as malignant

Number of images predicted as malignant

F1 score =
2 × Precision × Recall

Precision + Recall

Also, we use Area under the curve (AUC) [55] to measure the performance

of different models, the AUC of a classifier is equal to the probability that

the classifier will rank a randomly chosen positive example higher than a

randomly chosen negative example, i.e.

𝐴𝑈𝐶 = 𝑃(𝑠𝑐𝑜𝑟𝑒(𝑥+) > 𝑠𝑐𝑜𝑟𝑒(𝑥−))

Because there are millions of parameters and hundreds of hyper-parameters,

therefore which parameters need to be tuned among the test should be

considered carefully. Through our study on both medical and deep learning

field, we selected three major hyper-parameters (directions) to do our test:

Preprocess method, model architecture and image segmentation method.

For each hyper-parameter, we tested kinds of values or situations based on

our guess and motivation, so each block below will contain several sub-

53

blocks to explain each guess and its corresponding results in detail.

7.1 Results of Different Image Preprocess Methods

Preprocess is one of the most important part in image classification,

especially in histopathological image classification. According to the

previous section, we have introduced different kinds of preprocess method

and showed the code, in this part, we will test different preprocess method

by keeping other parameters same.

Typically, the model architecture of all cases in this part is normal model

architecture (Figure 7.1, left) and all inputs are segmented by different

functions with size 256×256.

Figure 5.4 and 5.5 show the preprocess results of one given image to offer

reader an intuitive feeling. Table 11.2.1-11.2.7 in the section 11, appendix,

report the results of different preprocess methods in both batch level and

image level in detail respectively, while table 7.1 is a rough comparison

among different preprocess methods.

From the table below, we can find that different preprocess method has a

huge influence on the results, typically, CLAHE shows a best performance

on the higher magnification, where it shows that it is able to achieve an

accuracy of about 5% better than the results of raw input. However,

CLAHE won’t work when the magnification factor is 40× while whiten

operation can help model to overcome this problem.

54

magnific

ation
preprocess method

image level batch level

best

aggregation

method

accurac

y (%)
F1 score (%)

accurac

y (%)
AUC (%)

40×

raw vote 81.95 86.85 80.03 80.68

Gaussian, CLAHE exist 68.42 80.37 65.09 68.89

CLAHE, whiten vote 87.03 91.05 86.17 82.80

CLAHE exist 81.20 89.59 82.93 82.19

whiten, CLAHE average 86.28 90.48 85.84 80.97

whiten vote 86.64 90.96 85.82 78.65

demean vote/average 79.51 85.64 79.42 82.41

100×

raw exist3 78.64 85.58 79.09 79.42

Gaussian, CLAHE vote 69.12 80.41 69.28 70.39

CLAHE, whiten exist3 81.69 87.50 81.44 79.42

CLAHE exist3 84.74 89.39 83.37 76.98

whiten, CLAHE vote 82.23 87.76 81.42 82.23

whiten vote 83.12 88.25 82.32 82.19

demean exist3 79.89 86.10 79.01 81.54

200×

raw vote/average 88.87 92.13 87.74 88.36

Gaussian, CLAHE average 77.19 83.83 75.90 81.52

CLAHE, whiten vote 85.77 90.15 84.96 85.41

CLAHE vote 88.87 92.87 88.33 85.02

whiten, CLAHE vote/average 85.22 89.79 84.65 87.63

whiten average 85.22 89.73 84.31 86.22

demean vote/average 84.67 89.45 83.91 82.62

400×

raw exist 82.99 88.22 81.09 85.73

Gaussian, CLAHE vote 80.37 85.64 78.26 82.15

CLAHE, whiten exist3 80.56 86.73 80.15 82.05

CLAHE exist3 86.73 90.62 86.15 82.61

whiten, CLAHE vote 82.80 87.99 81.75 83.38

whiten vote/average 81.31 87.01 80.49 83.11

demean exist 84.67 89.24 82.96 82.97

Table 7.1. Overall results using different preprocess methods

7.2 Results of Different Model Architecture

Model architecture is also one of the features we selected to test the result

and it is usually the most critical part in DNN. Previous section has

introduced the basic structure of residual block, in this part, we will

55

evaluate the results of slightly different model architectures, which are all

based on residual blocks.

Tested architectures follow the form in Figure 7.1 and 7.2; the detail can

be found in Table 7.2. These networks’ inputs are segmented by Resizing

(section 5.2.4) and preprocessed by method CLAHE (section 5.2.6) with

size 256×256.

Figure 7.1 Normal, Feature Map Doubled and 2 Pools Architecture

7×7 conv, 16

3×3 conv, 16

residual block, 16

residual block, 16

max pool, /2

residual block, 16

residual block, 16

residual block, 16

input

7×7 conv, 16

3×3 conv, 32

residual block, 32

residual block, 32

max pool, /2

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

residual block, 256, /2

residual block, 256

residual block, 256

residual block, 256

residual block, 256

avg pool

fc, 2

predict

input

7×7 conv, 16

3×3 conv, 16

max pool, /2

input

Normal
feature maps

doubled
2 pools

3×3 conv, 16

3×3 conv, 16

max pool, /2

residual block, 512, /2

residual block, 512

residual block, 512

residual block, 512

residual block, 512

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

residual block, 256, /2

residual block, 256

residual block, 256

residual block, 256

residual block, 256

avg pool

fc, 2

predict

residual block, 16

residual block, 16

residual block, 16

residual block, 16

residual block, 16

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

avg pool

fc, 2

predict

3×3 conv, 16

3×3 conv, 16

residual block, 16

residual block, 16

max pool, /2

residual block, 16

residual block, 16

residual block, 16

input

3×3 conv

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

residual block, 256, /2

residual block, 256

residual block, 256

residual block, 256

residual block, 256

avg pool

fc, 2

predict

7×7 conv, 16, /2

residual block, 16

residual block, 16

residual block, 16

residual block, 16

residual block, 16

input

Stride 2

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

residual block, 256, /2

residual block, 256

residual block, 256

residual block, 256

residual block, 256

avg pool

fc, 2

predict

56

Figure 7.2 3×3 Conv and Stride 2 Architecture

7×7 conv, 16

3×3 conv, 16

residual block, 16

residual block, 16

max pool, /2

residual block, 16

residual block, 16

residual block, 16

input

7×7 conv, 16

3×3 conv, 32

residual block, 32

residual block, 32

max pool, /2

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

residual block, 256, /2

residual block, 256

residual block, 256

residual block, 256

residual block, 256

avg pool

fc, 2

predict

input

7×7 conv, 16

3×3 conv, 16

max pool, /2

input

Normal
feature maps

doubled
2 pools

3×3 conv, 16

3×3 conv, 16

max pool, /2

residual block, 512, /2

residual block, 512

residual block, 512

residual block, 512

residual block, 512

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

residual block, 256, /2

residual block, 256

residual block, 256

residual block, 256

residual block, 256

avg pool

fc, 2

predict

residual block, 16

residual block, 16

residual block, 16

residual block, 16

residual block, 16

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

avg pool

fc, 2

predict

3×3 conv, 16

3×3 conv, 16

residual block, 16

residual block, 16

max pool, /2

residual block, 16

residual block, 16

residual block, 16

input

3×3 conv

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

residual block, 256, /2

residual block, 256

residual block, 256

residual block, 256

residual block, 256

avg pool

fc, 2

predict

7×7 conv, 16, /2

residual block, 16

residual block, 16

residual block, 16

residual block, 16

residual block, 16

input

Stride 2

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

residual block, 256, /2

residual block, 256

residual block, 256

residual block, 256

residual block, 256

avg pool

fc, 2

predict

57

Layer

name

Output

size
Normal

3×3

conv

Stride

conv

Block number

changed

Feature map

doubled
2 pools

conv00_x

256×256
7×7,

16

3×3,

16

7×7,

16,

stride

2

7×7, 16

256×256 3×3, 16

NA

3×3, 16 3×3, 32 3×3, 16

128×128
2×2 max

pool, stride 2
2×2 max pool, stride 2

conv01_x

128×128

NA

3×3, 16

128×128 3×3, 16

64×64
2×2 max pool,

stride 2

conv1_x 128×128 (
3 × 3 16
3 × 3 16

) × 5
(

3 × 3 16
3 × 3 16

)

× 4

(
3 × 3 32
3 × 3 32

)

× 5

NA

conv2_x 64×64 (
3 × 3 32
3 × 3 32

) × 5
(

3 × 3 32
3 × 3 32

)

× 4

(
3 × 3 64
3 × 3 64

)

× 5

(
3 × 3 16
3 × 3 16

)

× 5

conv3_x 32×32 (
3 × 3 64
3 × 3 64

) × 5
(

3 × 3 64
3 × 3 64

)

× 5

(
3 × 3 128
3 × 3 128

)

× 5

(
3 × 3 32
3 × 3 32

)

× 5

conv4_x 16×16 (
3 × 3 128
3 × 3 128

) × 5
(

3 × 3 128
3 × 3 128

)

× 7

(
3 × 3 256
3 × 3 256

)

× 5

(
3 × 3 64
3 × 3 64

)

× 5

conv5_x 8×8 (
3 × 3 256
3 × 3 256

) × 5
(

3 × 3 256
3 × 3 256

)

× 5

(
3 × 3 512
3 × 3 512

)

× 5

(
3 × 3 128
3 × 3 128

)

× 5

 2 × 1 average pool, fc, softmax

Table 7.2. Detailed architectures of evaluated models, building blocks are shown in brackets (see also Figure.

4.5) with the numbers of blocks stacked. Down-sampling is performed by conv1_1, conv2_1, conv3_1,

conv4_1, and conv5_1 with a stride of 2.

58

7.2.1 Normal Model Architecture

Our normal model architecture is shown on the figure above (Figure. 7.1

left). The first layer is 7×7 convolution, followed by a 3×3 convolution

and a 2×2 max pool with stride 2, to reduce the input size of following

residual network. Then we use a stack of 𝑁𝑢𝑚𝑂𝑓𝑆𝑖𝑧𝑒 × 𝑁𝑢𝑚𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠

residual blocks with 3 × 3 convolution on the feature maps of sizes

{128,64,32,16,8} respectively. 𝑁𝑢𝑚𝑂𝑓𝑆𝑖𝑧𝑒 represents the number of

sizes, and the value is 5 in this model. 𝑁𝑢𝑚𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 is one of the

hyper-parameters we can set, the value is also 5 in this model. Table 11.2.4

in the Appendix section shows the results of normal model and the analysis

of the result will be discussed later while we will focus on the comparison

with this base model in this section.

7.2.2 First Convolution with Kernel Size 3×3

In our medical research, our current goal is to classify the tumor. However,

there are four kinds of magnification factors in our dataset, which means

that tumor in different images may have different sizes, for example, tumor

in 40× image is much smaller than 400× image.

According to Table 11.2.4 we have mentioned last part, the model gained

a nice accuracy on both 400× and 200× images, but is not so exciting on

smaller magnification factors such as 40×, we doubted that it was due to

the small tumor so that 7×7 first convolution is too big to catch the local

feature of small tumor. Therefore, we tried to reduce the 7×7 to 3×3 of the

first convolution’s kernel, and detected its performance on small

magnification factor.

59

(Figure. 7.2 left) shows the basic structure of this model and Table 7.3

indicates the performance of this model, surprisingly, we found that 3×3

convolution model gains a better batch level accuracy on bigger

magnification factor and a better AUC on all factors. We analyze the result

and think the reason may be that local feature of tumor is always smaller

than 7×7, no matter what the magnification factor is. Therefore, smaller

first convolution layer’s kernel size can gain a better result in tumor

classification tasks, which is different from the ResNet used in normal

image classification problems [38].

magni

ficatio

n

Image level Batch level

aggreg

ation

method

accura

cy (%)

precisio

n (%)

recall

(%)

F1 score

(%)

accur

acy

(%)

confusion matrix

40×
sum 81.77 89.83 83.91 86.76

81.91

AUC(

%)
83.03

vote 82.33 96.61 80.66 87.92 predict

average 82.33 96.61 80.66 87.92 malignant benign

exist 81.95 99.44 78.92 88.00
actual

malignant 17013 687

exist3 82.14 98.87 79.37 88.05 benign 4126 4774

100×
sum 81.15 88.74 83.46 86.02

83.57

AUC(

%)
84.91

vote 83.84 94.51 83.09 88.43 predict

average 83.84 94.51 83.09 88.43 malignant benign

exist 84.02 98.90 80.90 89.00
actual

malignant 17147 1087

exist3 84.02 97.52 81.61 88.86 benign 3496 6170

200×
sum 86.86 95.89 86.00 90.67

88.31

AUC(

%)
89.78

vote 88.87 99.18 86.19 92.23 predict

average 89.05 99.18 86.40 92.34 malignant benign

exist 86.86 100.0 83.52 91.02
actual

malignant 17996 254

exist3 87.96 100.0 84.69 91.71 benign 2949 6201

400×
sum 86.54 96.22 84.87 90.19

86.82

AUC(

%)
89.84

vote 87.10 98.84 83.95 90.79 predict

average 87.29 99.13 83.99 90.93 malignant benign

exist 86.36 100.0 82.49 90.41
actual

malignant 16989 244

exist3 86.36 99.71 82.65 90.38 benign 3287 6280

 Table 7.3. The results of model with first convolution layer’s kernel size (3×3)

7.2.3 First Convolution with Stride 2

We perform down-sampling by pool layers in normal model, in this model,

60

we changed the stride of the first convolution from 1 to 2 and discarded the

pool layer before residual blocks, which is similar with the model

architecture in [38], this work is motivated to evaluate the influence of

convolutional layer and pool layer we added before residual blocks.

The model structure is briefly shown in Fig 7.4, right, and the detailed

results is in Table 7.4. The main discovery from Table 7.4 is that no matter

what the magnification is, the best aggregation method is always vote or

average, which are the most valid methods. At the same time, stride 2

shows a almost wonderful results comparing with normal model, which

means that stride is usually better than pool layer when doing down-

sampling.

magni

ficatio

n

Image level Batch level

aggreg

ation

method

accura

cy (%)

precisio

n (%)

recall

(%)

F1 score

(%)

accur

acy

(%)

confusion matrix

40×
sum 85.15 91.53 86.86 89.13

85.16

AUC(

%)
86.97

vote 86.65 96.61 85.29 90.60 predict

average 86.28 96.33 85.04 90.33 malignant benign

exist 81.01 99.15 78.17 87.42
actual

malignant 16932 768

exist3 83.08 99.15 80.14 88.63 benign 3179 5721

100×
sum 82.22 90.38 83.72 86.92

84.66

AUC(

%)
79.13

vote 85.82 97.25 83.69 89.96 predict

average 86.00 97.53 83.73 90.10 malignant benign

exist 84.02 99.45 80.62 89.05
actual

malignant 17494 746

exist3 84.92 99.45 81.53 89.60 benign 3534 6126

200×
sum 87.41 95.89 86.63 91.03

87.19

AUC(

%)
85.07

vote 87.59 98.36 85.27 91.35 predict

average 87.77 98.36 85.48 91.46 malignant benign

exist 85.40 100.0 82.02 90.12
actual

malignant 17857 393

exist3 86.50 100.0 83.14 90.80 benign 3116 6034

400×
sum 85.05 92.73 85.29 88.86

85.68

AUC(

%)
87.09

vote 85.98 96.80 83.88 89.88 predict

average 86.36 97.09 84.13 90.15 malignant benign

exist 84.67 98.84 81.34 89.24
actual

malignant 16563 672

exist3 85.23 98.84 81.93 89.59 benign 3165 6400

 Table 7.4. The results of model with first convolution’s stride 2

61

7.2.4 Model with Feature Map Doubled

This model is easy to understand, which is simply double the feature maps

comparing with the normal model structure, the idea is inspired by [51],

which claims that wider ResNet is helpful for image classification.

Therefore, we want to know whether it works on histopathological images

or not.

The model structure diagram is shown in (Figure 7.1, middle) and the

detailed result can be found in Table 7.5, we can see that doubled feature

maps can in deed increase the study capacity of model because almost all

magnification’s AUC increase, which is like 3×3 convolution model.

Typically, sum becomes a pretty good aggregation method in this model.

magni

ficatio

n

Image level Batch level

aggreg

ation

method

accura

cy (%)

precisio

n (%)

recall

(%)

F1 score

(%)

accur

acy

(%)

confusion matrix

40×
sum 82.89 90.40 84.88 87.55

84.91

AUC(

%)
84.15

vote 86.28 97.46 84.35 90.43 predict

average 86.09 97.46 84.15 90.31 malignant benign

exist 83.83 99.44 80.73 89.11
actual

malignant 16962 738

exist3 84.59 99.15 81.62 89.54 benign 3275 5625

100×
sum 81.87 90.11 83.46 86.66

81.93

AUC(

%)
82.91

vote 83.30 95.05 82.19 88.15 predict

average 83.12 95.05 81.99 88.04 malignant benign

exist 79.17 99.18 76.16 86.16
actual

malignant 17080 1156

exist3 80.43 98.63 77.54 86.16 benign 3885 5779

200×
sum 88.87 99.18 86.19 92.03

88.14

AUC(

%)
91.21

vote 88.69 100.0 85.48 92.17 predict

average 88.50 100.0 85.28 92.06 malignant benign

exist 85.58 100.0 82.21 90.23
actual

malignant 18218 32

exist3 86.13 100.0 82.77 90.57 benign 3217 5933

400×
sum 87.85 95.64 86.81 91.01

86.56

AUC(

%)
89.53

vote 86.73 98.55 83.70 90.52 predict

average 86.54 98.55 83.50 90.40 malignant benign

exist 84.67 99.71 80.90 89.32
actual

malignant 16833 396

exist3 85.61 99.71 81.86 89.91 benign 3207 6364

 Table 7.5. The results of model with feature maps doubled

62

7.2.5 Model with Two Pooling Layers Before Resnet

Our model faces a serious over-fitting problem, which will be introduced

in detail in the following section 7.6.1. This model, with 2 pool layers

before ResNet, is a try to solve the overfitting problem because we doubt

that the study capacity of ResNet is so large that the net remembers all

special features of train dataset, which results in over-fitting. Therefore, we

want to apply more naïve convolutional layers, which has a smaller study

capacity than ResNet, and less Residual blocks.

The model diagram is shown in Figure 7.1, right, and the results can be

found in Table 7.6. We can see that almost all results have no difference

from normal architecture, which means that Residual blocks are not the

reason for overfitting.

magni

ficatio

n

Image level Batch level

aggreg

ation

method

accura

cy (%)

precisio

n (%)

recall

(%)

F1 score

(%)

accur

acy

(%)

confusion matrix

40×
sum 81.20 86.72 85.28 85.99

83.03

AUC(

%)
79.76

vote 83.65 93.22 83.97 88.35 predict

average 83.65 93.22 83.97 88.35 malignant benign

exist 83.46 99.44 80.37 88.89
actual

malignant 16313 1387

exist3 84.21 98.87 81.40 89.29 benign 3128 5772

100×
sum 80.79 89.29 82.70 85.87

83.40

AUC(

%)
79.99

vote 84.38 96.15 82.74 88.95 predict

average 84.02 95.60 82.66 88.66 malignant benign

exist 84.56 99.73 79.08 88.21
actual

malignant 17386 843

exist3 84.56 99.73 81.03 89.41 benign 3788 5883

200×
sum 88.87 98.36 86.71 92.17

88.15

AUC(

%)
88.06

vote 88.69 100.0 85.48 92.17 predict

average 88.87 100.0 85.68 92.29 malignant benign

exist 84.67 100.0 81.29 89.68
actual

malignant 18181 69

exist3 85.77 100.0 82.39 90.35 benign 3178 5972

400×
sum 88.04 97.38 85.90 91.28

86.10

AUC(

%)
86.47

vote 86.17 99.13 82.77 90.21 predict

average 86.36 99.42 82.81 90.36 malignant benign

exist 83.36 100.0 79.45 88.55
actual

malignant 16971 256

exist3 84.30 100.0 80.37 89.12 benign 3470 6103

 Table 7.6. The results of model with 2 pool layers before ResNet

63

7.2.6 Normal Model with Dropout

Dropout is well known to be an effective way to solve over-fitting [52],

therefore we also tried to apply dropout in our network. The model

architecture is same as the normal model (Fig 7.3, left) , and we set up an

additional dropout before the final fc layer with dropout rate 0.5. The result

of normal model with dropout is in Table 7.7. The accuracy has a little

improve comparing with the result of normal model, but we can still regard

it as an effective method since almost all results are changing with a nice

direction.

magni

ficatio

n

Image level Batch level

aggreg

ation

method

accura

cy (%)

precisio

n (%)

recall

(%)

F1 score

(%)

accur

acy

(%)

confusion matrix

40×
sum 81.58 87.85 84.97 86.39

82.94

AUC(

%)
81.81

vote 84.02 93.79 84.05 88.65 predict

average 84.02 93.79 84.05 88.65 malignant benign

exist 81.77 99.15 78.88 87.86
actual

malignant 16469 1231

exist3 82.71 98.02 80.32 88.30 benign 3306 5594

100×
sum 81.33 89.56 83.16 86.24

83.99

AUC(

%)
82.38

vote 84.92 97.80 82.41 89.45 predict

average 84.92 97.80 82.41 89.45 malignant benign

exist 83.84 99.45 80.44 88.94
actual

malignant 17626 603

exist3 84.20 99.45 80.80 89.16 benign 3863 5808

200×
sum 87.59 96.71 86.31 91.21

88.08

AUC(

%)
87.02

vote 88.87 98.90 86.36 92.21 predict

average 88.87 98.90 86.36 92.21 malignant benign

exist 85.40 100.0 82.02 90.12
actual

malignant 17975 275

exist3 86.86 99.73 83.68 91.00 benign 2992 6158

400×
sum 86.92 97.67 84.42 90.57

87.14

AUC(

%)
84.77

vote 87.66 99.42 84.24 91.20 predict

average 87.85 99.71 84.28 91.34 malignant benign

exist 85.61 100.0 81.71 89.93
actual

malignant 17064 163

exist3 86.36 100.0 82.49 90.41 benign 3284 6289

 Table 7.7. The results of model with dropout

64

7.2.7 Overall Comparison among Different Model Structures

This part compares the results of different model architectures and the

comparison is shown in Table 7.8.

magnific

ation
Model architectures

image level batch level

best

aggregation

method

accurac

y (%)
F1 score (%)

accurac

y (%)
AUC (%)

40×

normal exist 81.20 89.59 82.93 82.19

3×3 conv vote 82.33 87.92 81.91 83.03

stride 2 vote 86.65 90.60 85.16 86.97

feature maps doubled vote 86.28 90.43 84.91 84.15

2 pools exist3 84.21 89.29 83.03 79.76

dropout vote/average 84.02 88.65 82.94 81.81

100×

normal exist3 84.74 89.39 83.37 76.98

3×3 conv exist 84.02 89.00 83.57 84.91

stride 2 average 86.00 90.10 84.66 79.13

feature maps doubled vote 83.30 88.15 81.93 82.91

2 pools exist3 84.56 89.41 83.40 79.99

dropout vote/average 84.92 89.45 83.99 82.38

200×

normal vote 88.87 92.87 88.33 85.02

3×3 conv average 89.05 92.34 88.31 89.78

stride 2 average 87.77 91.46 87.19 85.07

feature maps doubled vote 88.69 92.17 88.14 91.21

2 pools average 88.87 92.29 88.15 88.06

dropout vote/average 88.87 92.21 88.08 87.02

400×

normal exist3 86.73 90.62 86.15 82.61

3×3 conv average 87.29 90.93 86.82 89.84

stride 2 average 86.36 90.15 85.68 87.09

feature maps doubled sum 87.85 91.01 86.56 89.53

2 pools sum 88.04 91.28 86.10 86.47

dropout average 87.85 91.34 87.14 84.77

Table 7.8. Overall results using slightly different model methods

From the table above, we can find that there are no huge differences

comparing with the input pre-process because we adopted ResNet as our

fundamental.

However, there are still some rules that can be found in the results, among

65

all models, we can conclude that dropout and feature maps doubled are

helpful for classification no matter what the magnification is, and stride 2

has a huge improvement on dataset of magnification 40× and 100×.

However, model with 2 pools, the contrast of feature maps doubled model,

which reduces the complexity of model, do not get a performance boost. In

comparison, we conclude that more complex structure can still make learn

the features better.

7.3 Results of Different Segmentation Methods

Different segmentation methods will produce inputs of different size,

which will absolutely be fed into different model architectures. Last section

introduces the results of different model architectures, and the difference

between these two parts is that the former one focused on the model

architecture difference and kept input size same, while this section will

mainly discussion the influence of different image segmentation methods.

When we study on the dataset, we found that tumor in low magnification

images, such as 100×, was too small to be obviously found (Figure 7.3).

We guess that the input size should be smaller when magnification is

smaller to catch the local feature of tumor. To verify our guess, we

implement and test our methods. Figure 7.5 shows the structure we used

for different segmentation size and Table 7.9 is the overall comparison

among different segmentation methods.

66

Figure 7.3 An example of 100× image, the tumor is too small

Figure 7.4 An example of 400× image, the tumor is obvious

67

Figure 7.5 Structure for Different Segmentation Methods

7×7 conv, 16

3×3 conv, 16

max pool, /2

input

512 × 512

7×7 conv, 16

3×3 conv, 16

residual block, 16

residual block, 16

max pool, /2

residual block, 16

residual block, 16

residual block, 16

input

256 × 256

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

residual block, 256, /2

residual block, 256

residual block, 256

residual block, 256

residual block, 256

avg pool

fc, 2

predict

residual block, 16

residual block, 16

residual block, 16

residual block, 16

residual block, 16

input

128 × 128

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

residual block, 256, /2

residual block, 256

residual block, 256

residual block, 256

residual block, 256

avg pool

fc, 2

predict

64 × 64

residual block, 16

residual block, 16

residual block, 16

residual block, 16

residual block, 16

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

residual block, 256, /2

residual block, 256

residual block, 256

residual block, 256

residual block, 256

avg pool

fc, 2

predict

7×7 conv, 16

3×3 conv, 16

max pool, /2

residual block, 16

residual block, 16

residual block, 16

residual block, 16

residual block, 16

input

residual block, 32, /2

residual block, 32

residual block, 32

residual block, 32

residual block, 32,

residual block, 64, /2

residual block, 64

residual block, 64

residual block, 64

residual block, 64

residual block, 128, /2

residual block, 128

residual block, 128

residual block, 128

residual block, 128,

avg pool

fc, 2

predict

68

According to Table 7.9, 64×64 and 128×128 ranks top 2 on both 40× and

100× test dataset while 256×256 and 512×512 dominates the results of

200× and 400× dataset, which is keeping with our guess. Also, we found

that random segmentation method, which increases the variance of train

dataset, is a little better than sliding window method.

magnif

ication

Segmentation

method

Input

size

image level batch level

best

aggregation

method

accurac

y (%)

F1 score

(%)

accuracy

(%)

AUC

(%)

40×

random 512×512 NA NA NA NA NA

Random 256×256 exist 81.20 89.59 82.93 82.19

random 64×64 vote 85.71 90.13 83.20 78.90

sliding window 128×128 average 87.41 91.15 84.56 82.69

sliding window 64×64 sum 85.34 89.54 83.88 82.12

100×

random 512×512 NA NA NA NA NA

Random 256×256 exist3 84.74 89.39 83.37 76.98

random 64×64 vote/average 87.61 91.34 84.80 81.61

sliding window 128×128 vote/average 86.36 90.45 83.66 86.65

sliding window 64×64 vote 86.89 90.86 84.40 83.86

200×

random 512×512 NA NA NA NA NA

Random 256×256 vote 88.87 92.87 88.33 85.02

random 64×64 sum 88.14 91.68 86.27 86.05

sliding window 128×128 vote/average 89.05 92.41 87.10 86.42

sliding window 64×64 average 88.50 92.06 86.84 89.38

400×

random 512×512 vote/average 87.10 90.71 86.56 85.26

Random 256×256 exist3 86.73 90.62 86.15 82.61

random 64×64 average 87.10 90.76 84.22 85.00

sliding window 128×128 vote 86.91 90.72 84.37 85.78

sliding window 64×64 vote/average 86.73 90.55 82.89 86.81

Table 7.9. Overall results using different image segmentation methods, segmentation method has been

introduced in section 5.2 and 512×512 input size is too large to run correctly in 40×, 100× and 200×

magnification factors.

69

7.4 Analysis

One of the advantages using DNN are that we needn’t design a feature

extractor by a medical expert, but instead the model will learn it by itself.

Figure 7.6 displays the 16 feature maps learned on the first convolutional

layer of our model. We can see that first convolution actually learned a

edge detection rule by itself.

Figure 7.6 feature maps learned by first convolution layer, right side is

the raw data and left side is 16 feature maps the model learned

From the idea of [57], we are able to visualize the location prediction of

our model. We use the filter of last layer (shape 256×2) and the output of

penultimate layer (shape 8×8×256) and implement a tensor-multiplication,

after getting two feature maps with size 8×8, we resize the 8×8 image to

input size, which is 256×256. Finally, we can use the resized image to

visualize the local prediction to input of our model. Figure 7.7 shows an

example of this kind of analysis.

70

Figure 7.7 an example of localization prediction. Left: raw input. Middle:

resized 256×256 prediction, red means more likely, blue means less

likely. Right: the combination of two images before to visualize the

result.

According to former experiments we have done, we can get a solid

conclusion that datasets with different magnification factors need different

hyper-parameters considering features of tumor. Typically, in this part, we

implemented an “best” model combing former conclusions we got. We

adapt the model architecture of Stride 2 (Fig 7.4, right), and add a dropout

layer before the final fc layer. And CLAHE (section 5.2.6) is used to

preprocess the data when magnification factor is not 40×, otherwise the

preprocess method is CLAHE + whiten (section 5.2.5, section 5.2.6).

Table 7.10 shows the detailed results of “best” model and Fig 7.11 indicates

one example of its ROC curve.

71

magni

ficatio

n

Image level Batch level

aggreg

ation

method

accura

cy (%)

precisio

n (%)

recall

(%)

F1 score

(%)

accur

acy

(%)

confusion matrix

40×
sum 88.72 97.74 86.93 92.02

86.80

AUC(

%)
82.82

vote 87.41 99.44 84.41 91.30 predict

average 87.78 99.44 84.82 91.55 malignant benign

exist 81.58 100.0 78.32 87.84
actual

malignant 17522 178

exist3 83.08 100.0 79.73 88.72 benign 3334 5566

100×
sum 84.92 94.78 84.15 89.15

85.22

AUC(

%)
82.35

vote 85.46 97.90 82.38 89.89 predict

average 85.46 97.90 82.38 89.89 malignant benign

exist 82.94 100.0 79.30 88.46
actual

malignant 17959 273

exist3 84.38 100.0 80.71 89.33 benign 3850 5818

200×
sum 88.50 98.08 86.47 91.91

88.50

AUC(

%)
89.85

vote 89.05 99.73 86.05 92.39 predict

average 88.87 99.45 86.02 92.25 malignant benign

exist 86.31 100.0 82.95 90.68
actual

malignant 18043 207

exist3 87.77 100.0 84.49 91.59 benign 2945 6205

400×
sum 86.73 93.60 86.79 90.07

90.43

AUC(

%)
89.94

vote 86.17 96.51 84.26 89.97 predict

average 86.35 96.80 84.30 90.12 malignant benign

exist 85.61 99.13 82.17 89.86
actual

malignant 16494 739

exist3 86.17 98.55 83.09 90.16 benign 2937 6630

 Table 7.10. The results of “best” model whose parameters are selected manually to get good results

Figure 7.8 one example of ROC in our model results

72

We can obtain some general information about general result, aggregation

methods and AUC value from these results above (comparison of different

methods has been discussed above):

1. Our model achieves really high precision on image level, which is very

practical because almost all malignant patients can be predicted as

malignant.

2. Five aggregation methods we apply above have slightly different

influence on results of image level, in summary, vote/average shows a

better performance.

3. Lower magnification results have a lower AUC value, which means

that more batches are labeled with not solid predictions. (Prediction of

probabilities are closer to [0.5,0.5]). Therefore, we can conclude that

lower magnification images have less information for learning.

magnific

ation
Approach

Patient level Image level

accuracy (%)
accuracy

(%)

F1 score

(%)

40×

[58] 83.00 NA

[40] 83.80 82.80 87.80

[47] 88.60 89.60 92.90

[56] 84.00 84.60 88.00

This work 88.26 88.72 92.02

100×

[58] 83.10 NA

[40] 82.10 80.7 86.10

[47] 84.50 85.00 88.90

[56] 83.90 84.80 88.80

This work 88.17 85.46 89.89

200×

[58] 84.60 NA

[40] 85.10 84.20 88.50

[47] 85.30 84.00 88.70

[56] 86.30 84.20 88.70

This work 92.27 89.05 92.39

400×

[58] 82.10 NA

[40] 82.30 81.20 86.30

[47] 81.70 80.80 85.90

[56] 82.10 81.60 86.70

This work 90.34 86.73 90.12

Table 7.11. Accuracy and F1 score compared with those presented in [58], [40], [47] and

[56]

73

7.5 Comparison with Previous Works

Table 7.11 shows the overall comparison between our results and past

paper’s using same dataset.

Compared with accuracy and F1 score, which we defined earlier, our

methods out-performs pervious work in [40], [47], [56] and [58] at both

patient and image level generally. Our work is better than other research

using same dataset in almost all of cases, only in the 40× zoom level our

results are a little worse than previous best work. In the remaining cases,

the accuracy and F1 score achieved at least 0.5% better, and the difference

can be as large as 5% in most cases. Which means that our method is much

better than pervious methods.

One guess for the reason of low accuracy at 40× zoom level, may be that

images in low magnification factors, such as 40× and 100×, has a fewer

information and features for model to catch and learn, this is what we

conclude in last section. However, the advantage of our applied model,

learn capacity, cannot make contribution to the result, which makes the

results similar at 40× and 100× zoom level.

7.6 Limitation and Difficulties

Despite the result we get as aforementioned, we are also facing some

limitation and difficulties. The following section will describe the

problems and our proposed solutions.

7.6.1 Overfitting

We faced serious overfitting problem since we adopted ResNet. As we can

see in Figure 7.9, the train accuracy can be easily up to 99% but the test

accuracy is not as good as we expected.

74

Figure 7.9 Train and validation accuracy comparison. Left: train error,

which is close to 0 gradually. Right: validation error, which maintains at

0.08 level.

We have tried different technical to solve the problem, early stop, L2

regularization and dropout, all of them did not make a huge improvement

but early stop can get an obvious increase, which can increase 2 to 3

percentage. We thought the reason may be the poor dataset, the dataset we

used contain only 82 patients although there are thousands of images. We

thought overfitting may also be the reason why past paper did not get a

good-looking accuracy as well.

7.6.2 Out of Memory

Another difficulty we are facing now is the famous problem, OOM. ResNet

consumed plenty of GPU memory due to the deep layers. Bigger input size

will consume bigger memory and previous work of ResNet only fit an input

with size 64×64 or 32×32.

But current input size our model adopts is 256×256, because malignant

images can contain normal cells. If the image is divided into small patches

such as 32×32, it is not guaranteed that tumor appears in all patches.

Malignant patches without tumor become noise during training, and

confused the network (Figure 7.10). For higher magnification and bigger

crop size, this problem is less severe, as tumor cells will be larger and hence

less likely to be missed.

75

Figure 7.10. If red circle indicates a malignant tumor, then blue rectangle can be

labeled as malignant correctly while black rectangle will become noise because there

is no malignant tumor in it.

This is, therefore, the reason we build a traditional CNN above ResNet, we

need a pool layer to implement down-sampling, which reduces the input

size of ResNet to reduce memory allocation.

76

8 Conclusion

8.1 Term Review

When we started our final year project, we knew little about Tensorflow

and histopathological image preprocess method or even some practical

techniques in machine learning. We, therefore, regarded this project as a

good chance for us to enhance our knowledge about deep learning and

machine learning.

After continuous research and study from the related paper, we think we

have achieved our basic goal, learning and understanding deep learning.

At the beginning we selected our project, we re-implemented the result of

past papers with the help of professor Michael R. Lyu and his PhD student

Zeng Jichuan, at the same time, we are looking for related paper on

histopathological image preprocess and image classification by DNN.

With the successful re-implementation and our further understanding of

DNN and histopathological image preprocess, we started to try designing

our own model combing the feature of histopathological image and

techniques using image classification using DNN. The final base model we

use is ResNet, a state-of-the-art model in image classification with a top

accuracy in general classification tasks.

But we did many adjustments to fit the histopathological images into

ResNet model better, for example, adding a traditional CNN before ResNet

to increase the size of model input, and we have tried different parameters

or methods considering the feature of histopathological images and ResNet,

all details and results can be found in Section Result. Finally, we achieved

pretty high accuracy which was up to 90% average comparing with 86%

average in past paper using same dataset.

77

8.2 Future Works

Our project is about breast cancer diagnosis using DNN and our primary

goal is building a diagnosis system which help doctors to make decisions

accurately and quickly. Therefore, our FYP is not only about

histopathological image classification but also some other methods to help

diagnosis.

During the study of Fast RCNN, which achieves satisfactory object

detection accuracy [59], we find it possible to do object detection and

image caption efficiently using current state-of-the-art methods. Therefore,

our future work will be mainly about another model construction: building

a high-accuracy DNN model using mammogram as input to do

classification and tumor location detection due to the fact that our current

task has an acceptable result comparing to the past paper.

Also, we will continue tuning our current models according to the

shortcomings in Section Limitation we found.

78

9 Acknowledgements

Our deeper gratitude goes from first and foremost to our final year project

advisor professor Michael R. Lyu and his PhD student Zeng Jichuan.

Without their help and guidance, this research wouldn’t be in the right path,

especially professor Michael, who listened to our weekly presentation

carefully every time and gave us many suggestions such as trying to do

kinds of testing by controlling variables. Also, we are also extremely

grateful for all authors in reference papers. This is our first time to truly

understand the sentence by Newton: “If I have seen further, it is by standing

on the shoulders of giants”. We truly feel our lack of knowledge when

standing on the shoulder of so many great engineering elites, which

encourages us to be a great elite like them.

79

10 Reference

[1] J. G. Elmore, G. M. Longton, P. A. Carney, B. M. Geller, T. Onega, A.

N. A. Tosteson, H. D. Nelson, M. S. Pepe, K. H. Allison, S. J. Schnitt, F.

P. O’Malley, and D. L. Weaver, “Diagnostic Concordance Among

Pathologists Interpreting Breast Biopsy Specimens,” Jama, vol. 313, no.

11, p. 1122, 2015.

[2] [Online]. Available:

https://en.wikipedia.org/wiki/AlphaGo_versus_Ke_Jie

[3] [Online]. Available: http://groups.csail.mit.edu/medg/index.html

[4] [Online]. Available: http://www.imperial.ac.uk/people/g.z.yang

[5] [Online]. Available:

http://www.bioeng.nus.edu.sg/oeil/OCTAGON.html

[6] E. Alpaydin, Introduction to machine learning. Cambridge

(Massachusetts): MIT Press, 2010.

[7] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.

Upper Saddle River, NJ: Prentice Hall, 2003.

[8] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for

optimal margin classifiers,” Proceedings of the fifth annual workshop on

Computational learning theory - COLT 92, 1992.

[9] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.

521, no. 7553, pp. 436–444, 2015.

[10] P. J. Werbos.Beyond Regression:New Tools for Prediction and

Analysis in the Behavioral Sciences.PhD thesis, Harvard University,

1974.

80

[11] J. C. B. C. Schmidhuber, “Learning Complex, Extended Sequences

Using the Principle of History Compression,” Neural Computation, vol.

4, no. 2, pp. 234–242, 1992.

[12] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive

field properties by learning a sparse code for natural images,” Nature, vol.

381, no. 6583, pp. 607–609, 1996.

[13] [Online]. Available: https://indico.cern.ch/event/510372/

[14] [Online]. "From not working to neural networking" The Economist.

Available: https://www.economist.com/news/special-report/21700756-

artificial-intelligence-boom-based-old-idea-modern-twist-not

[15] Shin HC, Orton MR, Collins DJ, Doran SJ, Leach MO. Stacked

autoencoders for unsupervised feature learning and multiple organ

detection in a pilot study using 4D patient data. IEEE Transactions on

Pattern Analysis and Machine Intelligence. 2013;35:1930–1943.

[16] Roth HR, Lee CT, Shin HC, Seff A, Kim L, et al. Anatomy-specific

classification of medical images using deep convolutional nets.

Proceedings of IEEE International Symposium on Biomedical Imaging

(ISBI) 2015

[17] L. G. Shapiro and G. C. Stockman, Computer vision. Upper Saddle

River, NJ: Prentice Hall, 2001.

[18] Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders

MJNL, Iśgum I. Automatic segmentation of MR brain images with a

convolutional neural network. IEEE Transactions on Medical Imaging.

2016;35:1252–1261.

[19] Zhang W, Li R, Deng H, Wang L, Lin W, et al. Deep convolutional

neural networks for multi-modality isointense infant brain image

segmentation. NeuroImage. 2015;108:214–224.

81

[20] Mao J, Xu W, Yang Y, Wang J, Huang Z, Yuille A. Explain images

with multimodal recurrent neural networks. ArXiv.org Web site.

[Accessed April 1, 2017]. https://arxiv.org/abs/1410.1090.

[21] Socher R, Karpathy A, Le QV, Manning CD, Ng AY. Grounded

compositional semantics for finding and describing images with

sentences. Trans Assoc Comput Linguist. 2014;2:207–218.

[22] Ciompi F, de Hoop B, van Riel SJ, Chung K, Scholten ET, et al.

Automatic classification of pulmonary peri-fissural nodules in computed

tomography using an ensemble of 2D views and a convolutional neural

network out-of-the-box. Medical Image Analysis. 2015;26:195–202.

[23] Gao M, Bagci U, Lu L, Wu A, Buty M, et al. Holistic classification

of CT attenuation patterns for interstitial lung diseases via deep

convolutional neural networks. Computer Methods in Biomechanics and

Biomedical Engineering: Imaging & Visualization. 2016;0:1–6.

[24] [Online]. Available: https://www.cbinsights.com/research/artificial-

intelligence-startups-healthcare/

[25] M. Kowal, P. Filipczuk, A. Obuchowicz, J. Korbicz, R. Monczak,

"Computer-aided diagnosis of breast cancer based on fine needle biopsy

microscopic images", Computers in Biology and Medicine, vol. 43, no.

10, pp. 1563-1572, 2013.

[26] Y. M. George, H. H. Zayed, M. I. Roushdy, and B. M. Elbagoury,

“Remote Computer-Aided Breast Cancer Detection and Diagnosis

System Based on Cytological Images,” IEEE Systems Journal, vol. 8, no.

3, pp. 949–964, 2014.

[27] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,

and S. Thrun, “Dermatologist-level classification of skin cancer with

deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017.

82

[28] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z.

Rethinking the inception architecture for computer vision. Preprint at

https://arxiv.org/abs/1512.005672015

[29] V. Kumar, N. Fausto, A. K. Abbas, and R. N. Mitchell, Robbins basic

pathology. Philadelphia, Pa: W.B. Saunders, 2008.

[30] J. P. Kösters and P. C. Gøtzsche, “Regular self-examination or

clinical examination for early detection of breast cancer,” Cochrane

Database of Systematic Reviews, 2003.

[31] G. Majno and I. Joris, Cells, tissues, and disease: principles of

general pathology. New York: Oxford, 2004.

[32] W. H. Wolberg, W. Street, and O. Mangasarian, “Machine learning

techniques to diagnose breast cancer from image-processed nuclear

features of fine needle aspirates,” Cancer Letters, vol. 77, no. 2-3, pp.

163–171, 1994.

[33] [Online]. Available: https://cartesianfaith.com/2016/10/06/what-you-

need-to-know-about-data-augmentation-for-machine-learning/

[34] [Online]. Available: https://opencv.org/about.html

[35] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional

architecture of monkey striate cortex,” The Journal of Physiology, vol.

195, no. 1, pp. 215–243, Jan. 1968.

[36] van Tulder G, de Bruijne M. Combining generative and

discriminative representation learning for lung CT analysis with

convolutional restricted boltzmann machines. IEEE Transactions on

Medical Imaging. 2016;35:1262–1272.

[37] Dou Q, Chen H, Yu L, Zhao L, Qin J, et al. Automatic detection of

cerebral microbleeds from MR images via 3D convolutional neural

networks. IEEE Transactions on Medical Imaging. 2016;35:1182–1195.

83

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for

Image Recognition,” 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[39] Abadi, Martín, et al. "Tensorflow: Large-scale machine learning on

heterogeneous distributed systems." arXiv preprint arXiv:1603.04467

(2016).

[40] F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “A Dataset

for Breast Cancer Histopathological Image Classification,” IEEE

Transactions on Biomedical Engineering, vol. 63, no. 7, pp. 1455–1462,

2016.

[41] [Online]. Available:

https://datascience.stackexchange.com/questions/5224/how-to-prepare-

augment-images-for-neural-network

[42] L. G. Hafemann, L. S. Oliveira, and P. Cavalin, “Forest Species

Recognition Using Deep Convolutional Neural Networks,” 2014 22nd

International Conference on Pattern Recognition, 2014.

[43] A. Kessy, A. Lewin, and K. Strimmer, “Optimal Whitening and

Decorrelation,” The American Statistician, 2017.

[44] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz,

T. Greer, B. T. H. Romeny, J. B. Zimmerman, and K. Zuiderveld,

“Adaptive histogram equalization and its variations,” Computer Vision,

Graphics, and Image Processing, vol. 39, no. 3, pp. 355–368, 1987.

[45] D. Attwell and S. B. Laughlin, “An Energy Budget for Signaling in

the Grey Matter of the Brain,” Journal of Cerebral Blood Flow &

Metabolism, vol. 21, no. 10, pp. 1133–1145, 2001.

[46] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining

classifiers,” IEEE Transactions on Pattern Analysis and Machine

84

Intelligence, vol. 20, no. 3, pp. 226–239, 1998.

[47] Spanhol, Fabio Alexandre, et al. "Breast cancer histopathological

image classification using convolutional neural networks." Neural

Networks (IJCNN), 2016 International Joint Conference on. IEEE, 2016.

[48] Deng, Lih-Yuan. "The cross-entropy method: a unified approach to

combinatorial optimization, Monte-Carlo simulation, and machine

learning." (2006): 147-148.

[49] Kohavi, Ron. "A study of cross-validation and bootstrap for accuracy

estimation and model selection." Ijcai. Vol. 14. No. 2. 1995.

[50] L. Bottou, “Stochastic gradient tricks,” in Neural Networks, Tricks

of the Trade, Reloaded, ser. Lecture Notes in Computer Science (LNCS

7700), G. Montavon, G. B. Orr, and K.-R. Müller, Eds. Springer, 2012,

pp. 430–445.

[51] Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual

networks." arXiv preprint arXiv:1605.07146 (2016).

[52] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural

networks from overfitting." Journal of machine learning research 15.1

(2014): 1929-1958.

[53] NVIDIA Corporation. (2015) Nvidia tesla product literature.

[Online]. Available:

http://www.nvidia.com/object/tesla_product_literature.html

[54] Powers, David Martin. "Evaluation: from precision, recall and F-

measure to ROC, informedness, markedness and correlation." (2011).

[55] Hanley, James A., and Barbara J. McNeil. "A method of comparing

the areas under receiver operating characteristic curves derived from the

same cases." Radiology 148.3 (1983): 839-843.

http://www.nvidia.com/object/tesla_product_literature.html

85

[56] Spanhol, Fabio A., et al. "Deep Features for Breast Cancer

Histopathological Image Classification."

[57] Oquab, Maxime, et al. "Is object localization for free?-weakly-

supervised learning with convolutional neural networks." Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

[58] N. Bayramoglu, J. Kannala, and J. Heikkila, “Deep learning for

magnification independent breast cancer histopathology image

classification,” in 23rd International Conference on Pattern Recognition,

vol. 1, December 2016.

[59] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international

conference on computer vision. 2015.

86

11 Appendix

11.1 ResNet Function API

output_layer(input_layer, num_labels,is_training,test)
For creating the final layer which generates the prediction.

Args:
 input_layer: 2D tensor

 num_labels: Int. The number of output labels. (2 in our project)

Returns:
 output layer, which is calculated by Y = WX + B.

batch_normalization_layer(input_layer, dimension)
For doing batch normalization

Args:
 input_layer: 4D tensor to be normalized

 dimension: Int. The depth of the 4D tensor, which is actually the

number of feature maps in our project.

Returns:
 the 4D tensor being normalized.

conv_bn_relu_layer(input_layer, filter_shape, stride)
For helping to do convolution, batch normalization and ReLU sequentially.

Args:
 input_layer: 4D tensor

 filter_shape: list of integers. The shape of filter.

 stride: stride size for convolution

Returns:
 4D tensor, which is calculated by Y = Relu(bn(conv(X)))

bn_relu_conv_layer(input_layer, filter_shape, stride)
For helping to do batch normalization, ReLU and convolution sequentially.

Args:
 input_layer: 4D tensor

 filter_shape: list of integers. The shape of filter.

 stride: stride size for convolution

Returns:
 4D tensor, which is calculated by Y = conv (Relu (conv(bn(X)))

residual_block(input_layer, output_channel,

87

is_training,first_block=False)
For defining one residual block (Image [])

Args:
 input_layer: 4D tensor

 output_channel: int. The number of output's feature maps.

 first_block: Boolean value. If this is the first residual block in the

whole network. (If yes, no down-sampling will be operated)

Returns:
 4D tensor

inference(input_tensor_batch, n, is_trainning = True)
For defining the whole model structure of our project

Args:
 input_tensor_batch: 4D tensor, which is actually [batch, image height,

image width, image channels] in our project.

 n: int. Number of residual blocks in each part with same number of

output channels.

 is_trainning: Boolean value. False if is testing, else True..

Returns:
 last layer in the network, which is also the prediction of the model.

11.2 Tables of results using different preprocess methods

1. The results using RAW image as input (no preprocess method) in both

batch level and image level

2. The results whose images are preprocessed by subtracting Gaussian

image and applying CLAHE

3. The results using both CLAHE and whiten methods (keep the function

order) in both batch and image level

4. The results using CLAHE in both batch level and image level

5. The results using both whiten and CLAHE methods (keep the function

order) in both batch and image level

6. The results using whiten method in both batch level and image level

7. The results using preprocess method in past papers, simply demean the

images

8. Overall results using different preprocess methods

88

magnification

Image level Batch level

aggregation

method

accuracy

(%)

precision

(%)

recall

(%)

F1 score

(%)

accuracy

(%)
confusion matrix

40×

sum 79.51 84.46 84.70 84.58

80.03

AUC(%) 80.68

vote 81.95 89.55 84.31 86.85 predict

average 81.77 89.27 84.27 86.69 malignant benign

exist 77.63 93.79 77.34 84.80
actual

malignant 15594 2106

exist3 78.95 92.37 79.37 85.38 benign 3205 5695

100×

sum 77.56 82.42 83.10 82.76

79.09

AUC(%) 79.42

vote 77.56 87.91 79.80 83.66 predict

average 77.56 87.91 79.80 83.66 malignant benign

exist 78.28 98.35 75.69 85.54
actual

malignant 16097 2131

exist3 78.64 96.98 76.57 85.58 benign 3981 5691

200×

sum 88.32 95.89 87.72 91.62

87.84

AUC(%) 88.36

vote 88.87 97.81 87.07 92.13 predict

average 88.87 97.81 87.07 92.13 malignant benign

exist 84.67 99.45 81.57 89.63
actual

malignant 17699 551

exist3 86.13 99.18 83.22 90.50 benign 2782 6368

400×

sum 77.94 86.92 80.38 83.52

81.09

AUC(%) 85.73

vote 82.24 95.06 80.74 87.32 predict

average 82.42 95.35 80.79 87.47 malignant benign

exist 82.99 99.13 79.49 88.22
actual

malignant 16016 1219

exist3 82.99 97.97 80.05 88.10 benign 3850 5715

Table 11.2.1 The results using RAW image as input (no preprocess method) in both batch level and image level

89

magnification

Image level Batch level

aggregation

method

accuracy

(%)

precision

(%)

recall

(%)

F1 score

(%)

accuracy

(%)
confusion matrix

40×

sum 62.40 65.54 74.83 69.87

65.09

AUC(%) 68.89

vote 65.22 84.75 69.61 76.43 predict

average 65.79 85.59 69.82 76.90 malignant benign

exist 68.42 97.18 68.52 80.37
actual

malignant 14944 2756

exist3 67.48 95.20 68.37 79.57 benign 6529 2371

100×

sum 59.42 49.73 80.80 61.56

69.28

AUC(%) 70.39

vote 69.12 96.98 68.68 80.41 predict

average 68.76 96.98 68.41 80.23 malignant benign

exist 67.50 98.90 67.04 79.91
actual

malignant 17400 833

exist3 67.68 98.63 67.23 79.95 benign 7739 1928

200×

sum 75.18 74.79 86.12 80.06

75.90

AUC(%) 81.52

vote 76.64 87.67 79.40 83.33 predict

average 77.19 88.77 79.41 83.83 malignant benign

exist 73.91 96.99 72.84 83.20
actual

malignant 15872 2378

exist3 74.45 96.44 73.49 83.41 benign 4225 4925

400×

sum 77.76 81.40 83.58 82.47

78.26

AUC(%) 82.15

vote 80.37 90.99 80.88 85.64 predict

average 80.18 91.28 80.51 85.56 malignant benign

exist 71.78 98.26 69.98 81.74
actual

malignant 15433 1796

exist3 74.21 97.38 72.20 82.92 benign 4031 5540

Table 11.2.2 The results whose images are preprocessed by subtracting Gaussian image and applying CLAHE

90

magnification

Image level Batch level

aggregation

method

accuracy

(%)

precision

(%)

recall

(%)

F1 score

(%)

accuracy

(%)
confusion matrix

40×

sum 85.90 95.48 85.14 90.01

86.17

AUC(%) 82.80

vote 87.03 99.15 84.17 91.05 predict

average 86.84 99.15 83.97 90.93 malignant benign

exist 82.89 100.0 79.55 88.61
actual

malignant 17374 326

exist3 84.21 100.0 80.82 89.40 benign 3352 5548

100×

sum 78.64 86.54 81.82 84.11

81.44

AUC(%) 79.42

vote 81.87 93.68 81.38 87.10 predict

average 82.05 93.96 81.43 87.24 malignant benign

exist 81.15 98.90 78.09 87.27
actual

malignant 17085 1142

exist3 81.69 98.08 78.98 87.50 benign 4035 5638

200×

sum 81.39 88.49 84.33 86.36

84.96

AUC(%) 85.41

vote 85.77 97.81 83.61 90.15 predict

average 85.40 97.26 83.53 89.87 malignant benign

exist 82.48 99.73 79.30 88.35
actual

malignant 17691 559

exist3 83.58 99.45 80.49 88.97 benign 3562 5588

400×

sum 77.94 86.63 80.54 83.47

80.15

AUC(%) 82.05

vote 80.75 95.06 79.18 86.39 predict

average 80.56 94.77 79.13 86.24 malignant benign

exist 78.69 99.13 75.44 85.48
actual

malignant 16182 1047

exist3 80.56 98.84 77.27 86.73 benign 4273 5295

Table 11.2.3 The results using both CLAHE and whiten methods (keep the function order) in both batch and image level

91

magnification

Image level Batch level

aggregation

method

accuracy

(%)

precision

(%)

recall

(%)

F1 score

(%)

accuracy

(%)
confusion matrix

40×

sum 81.58 86.72 85.75 86.23

82.93

AUC(%) 82.19

vote 82.89 93.50 82.96 87.92 predict

average 83.08 93.50 83.17 88.03 malignant benign

exist 81.20 99.72 78.10 89.59
actual

malignant 16542 1158

exist3 82.89 99.15 79.95 88.52 benign 3382 5518

100×

sum 80.07 87.09 83.20 85.10

83.37

AUC(%) 76.98

vote 84.20 94.51 83.50 88.66 predict

average 84.20 94.51 83.50 88.66 malignant benign

exist 83.30 98.90 80.18 88.56
actual

malignant 17051 1185

exist3 84.74 92.35 81.92 89.39 benign 3456 6208

200×

sum 87.77 96.99 86.34 91.35

88.33

AUC(%) 85.02

vote 88.87 99.73 85.85 92.27 predict

average 88.69 99.73 85.65 92.15 malignant benign

exist 86.31 100.0 82.95 90.68
actual

malignant 18128 122

exist3 87.22 100.0 83.91 91.25 benign 3075 6075

400×

sum 83.18 91.86 83.60 87.53

86.15

AUC(%) 82.61

vote 86.73 97.67 84.21 90.44 predict

average 86.73 97.67 84.21 90.44 malignant benign

exist 86.17 99.71 82.45 90.26
actual

malignant 16743 487

exist3 86.73 99.71 83.05 90.62 benign 3225 6345

Table 11.2.4 The results using CLAHE in both batch level and image level

92

magnification

Image level Batch level

aggregation

method

accuracy

(%)

precision

(%)

recall

(%)

F1 score

(%)

accuracy

(%)
confusion matrix

40×

sum 84.40 91.24 86.13 88.61

85.84

AUC(%) 80.97

vote 86.09 98.02 83.82 90.36 predict

average 86.28 98.02 84.02 90.48 malignant benign

exist 84.40 100.0 81.01 89.51
actual

malignant 17278 422

exist3 84.02 99.44 80.92 89.23 benign 3345 5555

100×

sum 79.17 88.46 81.31 84.74

81.42

AUC(%) 82.23

vote 82.23 97.53 79.77 87.76 predict

average 81.69 96.70 79.64 87.34 malignant benign

exist 80.43 100.0 79.64 86.98
actual

malignant 17614 617

exist3 81.51 99.73 78.06 87.58 benign 4566 5103

200×

sum 82.66 89.32 85.34 87.28

84.65

AUC(%) 87.63

vote 85.22 97.53 83.18 89.79 predict

average 85.22 97.53 83.18 89.79 malignant benign

exist 81.39 99.73 78.28 87.71
actual

malignant 17731 519

exist3 82.85 99.18 79.91 88.51 benign 3686 5464

400×

sum 79.81 90.41 80.57 85.21

81.75

AUC(%) 83.38

vote 82.80 97.97 79.86 87.99 predict

average 82.62 97.97 79.67 87.87 malignant benign

exist 79.07 99.42 75.66 85.93
actual

malignant 16668 565

exist3 80.19 99.42 76.68 86.58 benign 4325 5242

Table 11.2.5 The results using both whiten and CLAHE methods (keep the function order) in both batch and image level

93

magnification

Image level Batch level

aggregation

method

accuracy

(%)

precision

(%)

recall

(%)

F1 score

(%)

accuracy

(%)
confusion matrix

40×

sum 85.15 94.07 85.17 89.40

85.82

AUC(%) 78.65

vote 86.84 99.44 83.81 90.96 predict

average 86.65 99.44 83.61 90.84 malignant benign

exist 82.14 100.0 78.84 88.17
actual

malignant 17444 256

exist3 83.46 100.0 80.09 88.94 benign 3516 5384

100×

sum 81.69 92.31 81.95 86.82

82.32

AUC(%) 82.19

vote 83.12 96.98 80.96 88.25 predict

average 82.94 96.70 80.92 88.11 malignant benign

exist 81.33 99.73 77.90 87.47
actual

malignant 17590 644

exist3 82.05 98.90 78.95 87.80 benign 4288 5378

200×

sum 80.66 87.67 83.99 85.79

84.31

AUC(%) 86.22

vote 85.04 96.71 83.45 89.59 predict

average 85.22 96.99 83.49 89.73 malignant benign

exist 82.30 99.73 79.13 88.24
actual

malignant 17516 734

exist3 83.58 99.45 80.49 88.97 benign 3564 5586

400×

sum 79.25 89.24 80.58 84.69

80.49

AUC(%) 83.11

vote 81.31 97.38 78.64 87.01 predict

average 81.31 97.38 78.64 87.01 malignant benign

exist 77.57 99.13 74.45 85.04
actual

malignant 16616 616

exist3 78.69 98.84 75.56 85.64 benign 4613 4955

Table 11.2.6 The results using whiten method in both batch level and image level

94

magnification

Image level Batch level

aggregation

method

accuracy

(%)

precision

(%)

recall

(%)

F1 score

(%)

accuracy

(%)
confusion matrix

40×

sum 79.32 84.46 84.46 84.46

79.42

AUC(%) 82.41

vote 79.51 91.81 80.25 85.64 predict

average 79.51 91.81 80.25 85.64 malignant benign

exist 76.88 96.33 75.61 84.72
actual

malignant 16256 1444

exist3 77.07 94.63 76.48 84.60 benign 4031 4869

100×

sum 72.35 75.27 81.07 78.06

78.01

AUC(%) 81.54

vote 78.10 87.64 80.56 83.95 predict

average 78.54 87.64 81.17 84.28 malignant benign

exist 78.99 95.70 77.02 85.75
actual

malignant 15927 2311

exist3 79.89 95.33 78.51 86.10 benign 3823 5839

200×

sum 80.47 88.22 83.42 85.75

83.91

AUC(%) 82.62

vote 84.67 97.53 82.60 89.45 predict

average 84.67 97.53 82.60 89.45 malignant benign

exist 83.94 98.90 81.12 89.14
actual

malignant 17520 730

exist3 84.12 98.63 81.45 89.22 benign 3680 5470

400×

sum 80.75 88.08 83.01 85.47

82.96

AUC(%) 82.97

vote 83.55 93.60 82.99 87.98 predict

average 83.74 93.90 83.03 88.13 malignant benign

exist 84.67 98.84 81.34 89.24
actual

malignant 16002 1237

exist3 84.49 97.38 81.91 88.98 benign 3329 6232

Table 11.2.7 The results using preprocess method in past papers, simply demean the images

