

Eksibition - Virtual Exhibition

Guide on Smart Phone

LYU 1503

Prepared by JIN, Peng (1155014559)

Supervised by Michael R. Lyu 

this page is intentionally left blank  

Page � of �2 77

Contents

Contents 3

Abstract 6

1. Introduction 7

1.1. Overview 7

1.2. Motivation 7

1.3. Objectives 8

1.4. Milestones 9

2. Wireframe Design 10

3. Study of BLE Technology 11

3.1. Hardware 11

3.1.1.Advertisement Frame 11

3.1.2.Ranging 11

3.2. Estimote Beacons 12

4. Study of Indoor Positioning 13

4.1. Approach by Analyzing RSSI 13

4.1.1.Trilateration 13

4.1.2.Accuracy 14

4.2. Approach by Using Estimote Indoor Location SDK 14

5. Study of Custom Indoor Map Design 16

5.1. Approach by Using Mapbox 16

5.2. Approach by Using a High-resolution Image 17

6. Study of Developing Backend Using Node.js 19

6.1. Building RESTful APIs With Express4 19

6.2. Using MongoDB to Save Data 21

7. Developing Application With Swift 23

7.1. Model-View-Controller 23

7.2. 3D Touch 23

7.2.1.Home Screen Quick Actions 24

7.2.2.Peek and Pop 25

Page � of �3 77

7.3. Centralized Soundtrack Player 26

8. Google Maps 27

8.1. Google Maps SDK for iOS 27

8.2. Map View Animations 27

8.3. Marker customization 28

8.4. Info Window 28

8.5. Google Maps Directions API 29

8.5.1. Request format 29

8.5.2. Directions Responses 30

8.6. Navigation Information Panel 32

9. Apple Pay 34

9.1. Workflow of Apple Pay 34

9.2. Client-side 35

9.3. Server-side 35

9.4. Stripe 36

10. Apple Wallet 38

10.1.Turning a Ticket into a Pass 38

10.2.Sign and Distribute Passes 43

11. Redeem System 44

12. News System 45

12.1.UI Design 45

12.1.1.News List 45

12.1.2.News View 46

12.2. Study of Apple Push Notification Services (APNs) 46

12.2.1.The Path of a Remote Notification 47

12.2.2.Security Architecture 49

12.3.Pushing Notifications with Node.js 51

12.3.1.Node.js Module: APN Agent 51

12.4.Receiving and Processing News Notification in iOS 52

12.5. Core Data 53

13. Multiple Language Support 54

Page � of �4 77

13.1.Client Side Design 54

13.2.Server Side Support 54

13.2.1.Database 54

13.2.2.Format of Response Data 55

14. Account Managing System 56

14.1.Client Side Design 56

14.1.1.Account Manager 56

14.2.Server Side Implementation 57

15. Web Admin Panel 61

16. Backend Code Revision 67

16.1.Standardize HTTP Response 67

16.2.Protecting APIs with Middleware 68

17. Difficulties in the Project 71

18. Contribution and Reflection 73

18.1.Contribution 73

18.1.1.Fall 2015 73

18.1.2.Spring 2016 73

18.2.Reflection 74

19. Summary 75

Reference 76

Page � of �5 77

Abstract

Eksibition is a mobile smart guide who can provide a great tour experience for visitors in

museums and exhibitions. Our goal of the project is to implement the full features of this

application on iOS devices.

In this report, we will go through all the topics that we have been studied, all the

achievements we have made and all the problems we have encountered.

The first part is the introduction of this project, indicating the motivation of this project and

how we are going to implement this idea. The second part is the original wireframe design of

this application, briefly showing the features of it. Then we will describe our studying process

of the Bluetooth Low Energy (BLE) technology. Since we are going to make use of iBeacon™, a

sub-category of BLE device, to provide the guide service, a study on the hardware is very

necessary. The rest part are the showcases of features we developed. We will also talk about

the key technologies being used in each part and all the technical problems we overcame.

At the end of the report, a summary will be given to explain the division of labor and my

contributions in greater detail.  

Page � of �6 77

1. Introduction

1.1. Overview

Apple introduced a protocol called iBeacon™ at the Apple Worldwide Developers Conference

in 2013 [1]. iBeacon™ is a protocol allowing the Bluetooth Low Energy (BLE) devices to

broadcast their identifier information to nearby portable electronic devices including BLE

enabled smart phones [2]. Although it seems quite simple, applications can still do a lot of

things by taking advantage of this technology. Our application Eksibition is one of them.

Imaging a mobile application can know where you are in a museum and introduce the item or

artwork in front of you through both text and audio, visiting a museum could be a more

interesting activity even without a real guide explaining what is happening. Eksibition is not

only a tour guide, but also an integrated smart extension for the museums, which can help

visitors buy tickets, schedule visit time and redeem tickets, etc.

1.2. Motivation

Nowadays, people don’t appreciate exhibitions and museums in a way it used to be.

Sometimes when time is limited, we just go to the museums to see one or two items we are

interested in, but we don’t know the exact location of them. Sometimes when we see our

favorite item, it may be inconvenient for us to learn the interesting background of it unless we

Google it or take an extra device from the museum to listen to it. Or for some people, they

usually have a real tour guide to guide them and introduce to them, with a cost ranging from

20 USD/hour up. On account of these facts, we feel it is really necessary to have an application

that can make everything easier and more interesting when visiting a museum.

When we are trying to figure out how to make an application for users as if a guide will be

walking next to them, we found the iBeacon™ and the Bluetooth Low Energy (BLE) technology

very useful, which perfectly help to enhance the features of our application.

Such that, we had this project started, named Eksibition - Virtual Exhibition Guide on Smart

Phone.

Page � of �7 77

1.3. Objectives

As stated in the last section, we are developing an application to fulfill the demands from both

visitors and museum organizations and also to improve the whole visiting experience. The

features below are to be implemented:

• Ticketing system: Users can purchase tickets within our application and retrieve the tickets

as Ticket Pass, which can be stored in the newly introduced Apple Wallet (it’s called

Passbook before iOS 9). The electronic tickets on the user’s side can later be redeemed at

the entrance of the museum. We also developed a redeem application, which is a

separated companion application distributed to museum staffs to redeem users’ tickets at

the entrance. These whole process is paperless and environment-friendly.

• Showing nearby items: Users can see the nearest item in our application when getting

close to it. They can also choose any one of the already visited items to view the detail

information, which includes more images and descriptions. Users can even listen to the

introduction soundtrack of items.

• Like and share: Users can like an item and share the related information to social

networks.

• Map view of the museum: Users can see his location and all the items on a map of the

museum, so that one can decide where to explore his favorite items.

• Direction guide: Application can help generate a direction based on the items selected by

the user and his/her location.

• News notification system: Users can get notifications from the museum promoting the

coming events when they are not physically in the museum.

• Multiple language support: Application can support switching language on the fly without

restart the application.

• Analyzing of users’ behavior: By analyzing the users’ behavior from the ticket purchase

history, liked items, etc, we can draw the conclusion of which items are users’ favorites and

what is the most popular routine, which can help the museums improve their service.

Page � of �8 77

1.4. Milestones

To achieve those objectives above, there are some technical milestones required to be

reached:

• A well-designed backend server with all the applications programming interfaces (API)

implemented to handle the possible requests from the mobile client side.

• A Bluetooth signal analyzing mechanism within the application to detect the distances

from iPhone to items.

• A map system to show the customized map of the museum, which also carries

information of the items in exhibition.

• A positioning system analyzing the users’ estimated position according to the different

signals broadcasted by iBeacons.

• A ticketing system allowing the users to purchase and redeem tickets within our app.

• Apple Pay integration, which helps to make the purchasing process easier.

• Supporting tickets to be added and managed by Apple Wallet.

• Multi-language support.

• An analyzing mechanism to collect the related information and analyze the users’

behavior.

• A web platform for event organizers to post and edit item.

• A web platform to promoting activities and send the notification to users. 

Page � of �9 77

2. Wireframe Design

This part shows the initial wireframe design of our application in the beginning. Some basic

features are shown. 

Page � of �10 77

Figure 1: Closest tab shows the image and
detail introductions of the nearest item,
allowing users to like or share the related
information.

Figure 2: Item list tab has a zoomable map
view on the top area showing the museum
map and item locations. Under the map is an
item list showing all the items in the museum.

Figure 3: Item detail page let users check the
detail information of this item

Figure 4: News tab shows the the promotions
of museum events

3. Study of BLE Technology

3.1. Hardware

Bluetooth Low Energy (BLE) is one kind of Bluetooth technology developed by the Bluetooth

Special Interest Group. BLE devices broadcast signals in a specific area.[3] Different from the

traditional Bluetooth technology, BLE can provide consistent signal with very low energy

consumption.

Devices adopting iBeacon™ protocol are typically called beacons. In our development, we use

Estimote beacons as out BLE devices. Smartphones, tablets and other smart devices will get

notified when they are in close proximity to a beacon.[2]

3.1.1.Advertisement Frame

Beacons works in an advertisement mode, in which it broadcasts its signal and notify its

presence to those smart devices who can receive the signal.[4] The signal a beacon

broadcasts follows a fixed format defined by Apple’s iBeacon™ protocol prefixed

together with UUID, major and minor identifiers[5]. Below is an example of what an

iBeacon™ advertisement frame will be like:

fb0b57a2-8228-44 cd-913a-94a122ba1206 Major 1 Minor 2

With this frame, we can make the signal broadcasted by each beacon carries different

information. For example, we can set the UUID to represent the building where the

beacon locates and set the Major and Minor numbers to represent different locations in

this building.

3.1.2.Ranging

Using the strangeness of the signal broadcast by beacons, iOS SDK will give an estimated

distance between beacons and the phone. The result is categorized into the following 3

distinct ranges [6]:

Immediate: within 0.5 meters.

Near: within 3 meters.

Far: within 70 meters.

Page � of �11 77

3.2. Estimote Beacons

In this project, we use Estimote beacons as the BLE devices. Estimote beacons and stickers are

small beacons that can be attached to any location or object. By making use of the Estimote

SDK, our application can know the proximity of nearby beacons and recognize their type,

ownership, approximate location, temperature and motion [7].

Besides the Estimote SDK, Estimote also provides another SDK especially for indoor

positioning - Estimote Indoor Location SDK, which is a set of tools for building precise, blue-

dot location services indoors [8]. We can upload the location’s map to Estimote cloud after we

set up the target location using at least 4 beacons. 

Page � of �12 77

Figure 5: Estimote beacons packaging

Figure 6: Estimote SDK

4. Study of Indoor Positioning

4.1. Approach by Analyzing RSSI

We started to do research on indoor positioning at the very beginning of our project. The first

approach we did to calculate the indoor location is to analyze the received signal strength

indicator (RSSI) from each beacon.

4.1.1.Trilateration

Trilateration is a positioning technique using different distances from different points to

determine the position of a certain point. This system has to measure the distance from

the target point to at least 3 reference points whose positions are already known. Using

these distances, we can form 3 circles surrounding each point. Then the only

intersection of these three circles is position of the target point.

Theoretically, we can get the position of the target point by collecting at least 3 relative

distances of the reference points. As can be seen from the picture, every two circles form

two intersection points, one of which is our target point. But in real situation, we know

that the distance calculated from the value of RSSI may not be accurate. Thus the 3

circles may not have a common intersection. To ensure we can get a single solution, we

made an optimization on this approach:

Page � of �13 77

Figure 7: Trilateration [15]

Step 1: calculate two possible position p1 and p2 by the distances from two of the

reference points.

Step 2: calculate the distance d3 between the target point and a third reference point.

Step 3: get the distance d1’ between p1 and the third point, d2’ between p2 and the third

point.

Step 4: if d1’ is closer to d3 then p1 is the result position. If not then p2 is the result

position.

4.1.2.Accuracy

As we can see, it is not difficult to get the target position from 3 distances of reference

points, but it is still a problem to calculate the distance from the value of RSSI accurately.

According to the researches we did, we found that the value of RSSI follows a lognormal

distribution over distance [12]:

So the same RSSI may result in different estimated distance in indoor environment, the

relation between the value of RSSI and the distance is different. So that if we really want

to get an accurate value of the distance, we need to do multiple testing under the target

environment which is unrealistic and time-consuming.

Finally, we gave up this approach and changed to another one.

4.2. Approach by Using Estimote Indoor Location SDK

As we mentioned above, Estimote provides its own SDK for developers to implement indoor

positioning by creating their own indoor map in Estimote cloud. Estimote Indoor Location SDK

requires the following things [9]:

• 1 OS X computer with Xcode 7.

• 1 iOS device preferably newer than 5.

• 1 Estimote Account.

• At least 4 Estimote beacons related to the account.

Page � of �14 77

The map creation steps are as follows [9]:

• Use the Estimote Indoor Location app to map the room into Estimote cloud and tune the

location setups to make the positioning more accurate.

• Install the Estimote Indoor Location SDK through CocoaPods.

• Add Indoor Location Manager.

• Connect the app to Estimote Cloud and then fetch and update the location.

This approach requires at least 4 Estimote beacons while we just have 3 beacons until the end

of this semester, so that this approach will be left to next semester’s development.  

Page � of �15 77

Figure 8: The developer is mapping his room to
Estimote Cloud using the Estimote Indoor Location
app. [7]

5. Study of Custom Indoor Map Design

5.1. Approach by Using Mapbox

The first approach we did to implement our customized indoor map is to use an third party

platform called Mapbox. Mapbox is a map platform for developers to design their own map

customized with their own style and data.

Basically, developers can do two things on this platform. The first one is to customize the style

of the map. Developers can change the color and size of some geographical utilities, which

makes the map looks different from the original one. The second one is to add their

customized data like markers, lines and polygons over the map.

Customized Style & Data

Since no matter how we change the style of a map, it is still a world map with the coordinate

system based on longitude and latitude. So we have two alternatives here. One is to set the

Page � of �16 77

Figure 9: Mapbox online studio interface

style to blank and transparent the world coordinate system to our own indoor coordinate

system and then draw some data as the map of the indoor map. In another word, it is using

the world as a room. Another solution is to keep the style on the map and draw the data on

the exactly position of the room indicating the in door structure of it.

During implementing this two solutions, we found the shortcomings of each solution.

• Cons of the first solution: According to the Mapbox SDK documentation, Mapbox

draws the data onto the map by rendering the provided geojson data so that when we

are trying to draw an indoor map as large as the earth, it will be very CPU consuming

and fail sometimes.

• Cons of the second solution: There are two failures of this solution. One is that it is

nearly impossible to location the room accurately. When we try to render our

customized data to show the indoor map, we have to provide the border coordinates

of the room in latitude and longitude, in which all the points owns nearly the same

value of latitude and longitude because it will be only different in 0.00001. Another

problem is that even though we manage to construct the room above the world’s map

in the right position, the map cannot be zoomed to the level where the detail of the

room is shown well.

Finally we gave up this approach and chose a simple way to design our own indoor map.

5.2. Approach by Using a High-resolution Image

The reason why we chose Mapbox as the first approach is based on the following points:

• Map box can provide a map view through its SDK implemented with the functions like

panning, zooming and rotating.

• The data we drew on the map will be shown in a vector way which means it won’t change

its resolution no matter how large the user zoom it.

• The map is stored in a JSON file which can be edited conveniently by just adding or

deleting a few keys and values.

Page � of �17 77

Based on the reasons mentioned above, we were looking for another solution which has the

same advantages. At last, we chose to use a high-resolution image as the map since it can be

zoomed smaller without losing its sharpness.

From the comparison between the two images above, we can seen that this image remain

clear after being zoomed in. 

Page � of �18 77

6. Study of Developing Backend Using Node.js

Node.js is an open-source framework for developing network applications such as server-side

web application. Node.js is distinguished for its cross-platform environment and event-driven

architecture. Additional, in the framework of Node.js, developers do not have to take care of

the thread-relative problem since Node.js is not a thread-based framework.

6.1. Building RESTful APIs With Express4

Express is a module in Node.js helping developers handle routing when developing APIs.

Making use of the event-driven architecture, we can implement an API in following steps:

• Create a .js file with the same name as the target router.

• Handle all the possible RESTful request to this router in this .js file by implement the event

handlers.

• Export this .js file as a module and add pass it a handler to the Express module.

Below is a simple code snippet implementing an API on router ‘/’:

Up to the end of this semester, we have implemented 11 APIs over 3 routers. Below is the

documentation for those APIs:

Router API Method Arguments Usage

/ticket /redeem PSOT name: ticketId

type: String

stored in: body

To let the server check is the
ticket with ticket number ticketId
is valid.

/getTicketId GET no To generate a ticket number for
testing.

/generatePass POST name: ticketId

type: String

stored in: body

To let the server create, sign and
return a pass according to the
ticket number ticketId.

Router

Page � of �19 77

router.get(‘/‘, function(req, res) {

 res.json({ message: ‘hooray! welcome to our api!’});

});

/orderHistory GET name: deviceId

type: String

stored in: body

To get all the tickets that has
been purchased by the device
with deviceId.

/setUp GET no To set up database of types for
testing.

/ticket /pay POST name: stripe_token

type: String

stored in: body

name: amount

type: String

stored in: body

name: description

type: String

stored in: body

name: contact

type: Dictionary

stored in: body

name: deviceId

type: String

stored in: body

name: quantity

type: Integer

stored in: body

To buy amount number of tickets
from the server providing
enough information. The server
will return the client a string as
ticket number if succeed.

API Method Arguments UsageRouter

Page � of �20 77

6.2. Using MongoDB to Save Data

Different from the traditional SQL database, MongoDB is a NoSql database which is

implemented in a document-oriented way. There are several reasons why we chose MongoDB

to store our data instead of the traditional SQL databases:

• MongoDB is perfectly integrated with Node.js. We can add MongoDB into our modules by

adding just one line of code in file package.json.

• MongoDB stores data in document with JSON style which is very readable and editable to

developers. JSON style data is also easy to use for client side.

/item /:uuid/:major/:min
or

GET name: deviceId

type: String

stored in: headers

To get an item object containing
all the related information. The
argument deviceId is for server to
know if this device has liked one
item.

/all GET name: deviceId

type: String

stored in: headers

To get all the items of the
museum in an array.

/like PUT name: deviceId

type: String

stored in: body

name: _id

type: String

stored in: body

To indicate the server that an
item with identifier _id is liked by
a device with identifier deviceId.

/share PUT name: _id

type: String

stored in: body

To indicate the server that an
item with identifier _id is shared
by a device with identifier
deviceId.

/view PUT name: _id

type: String

stored in: body

To indicate the server that an
item with identifier _id is viewed
by a device with identifier
deviceId.

API Method Arguments UsageRouter

Page � of �21 77

• Developers do not have to set the property like primary key or default value when creating

a schema for a table. The only thing developers have to do is to set the index name and

the value type of each column.

• Updating data becomes easier. We can update a row of data by calling the method ‘save()’.

• We do not have to care about if one of the column value is not given when adding data

into each row of the table.

We use MongoDB to store our item data and order data, and here is the schema of these two

table.  

Page � of �22 77

var ItemSchema = new Schema({

 beaconUUID: String,

 beaconMajor: String,

 beaconMinor: String,

 title: String,

 coverImage: String,

 author: String,

 country: String,

 description: String,

 soundtrack: String,

 images: Array,

 coordinateX: Number,

 coordinateY: Number,

 introduceTime: Date,

 inExhibition: Boolean,

 views: [String],

 likes: [String],

 shareCount: Number

});

var OrderSchema = new Schema({

 email: String,

 amount: Number,

 purchaser: String,

 generateDate: Number,

 redeemedDate: Number,

 generateDateObject: Date,

 redeemedDateObject: Date,

 ticketId: String,

 valid: Boolean,

 deviceId: String

});

7. Developing Application With Swift

7.1. Model-View-Controller

We designed our application in a Model-View-Controller(MVC) pattern which is to separate

objects into three roles: Model, View and Controller. Model objects is the representation of

data. Views are what users can see and interact with. Controller objects will be in charge of

updating model and view according to user’s actions. MVC is a good pattern to design our

application for the following reasons.

• It makes most of our objects reusable. The interfaces between objects are well defined.

• Our application will become more extendable since it would be relatively easy to add new

features by add a set of Model-View-Controller.

• We can use many Cocoa technologies that are based on MVC pattern.

7.2. 3D Touch

3D touch is a new technology Apple introduced this year together with iPhone 6s / 6s plus and

iOS 9. This technology allows iPhone 6s / 6s plus to know how hard a user is pressing the

screen. Integrating with 3D Touch technology can make users have more actions over our

application.

Page � of �23 77

Figure 10: MVC illustration [10]

7.2.1.Home Screen Quick Actions

The traditional way to launch an application is by tap it on the home screen. With the

help of 3D Touch, users can have quick actions on our application by pressing our icon in

the home screen and select a quick way to launch our application, which can anticipate

and accelerate a user’s interaction with our application. 

Page � of �24 77

Figure 11: Quick Actions

7.2.2.Peek and Pop

“Peek and Pop” is a new way for users to interact with iOS device supporting 3D Touch. It

allows users to take a peek or have a preview of the view, which is going to be opened.

We can make our application work in a more efficient way by implement this feature.

From our perspective, we think a user should not spend too much time on operating his

iPhone when he or she is visiting a museum. When a user is interested in one of the

items in the item list, he or she can decide whether to look into detail of it by having a

peek. This can make a user save more time and get exactly what he or she needs from

our application.  

Page � of �25 77

Figure 12: Peek and Pop

7.3. Centralized Soundtrack Player

Our application has a function to play the item introduction soundtrack. Since we are not

allowed to play multiple soundtracks at the same time, we need only one instance of the

player object to do the playing job.

We implemented a singleton player inside SoundtrackPlayer class which can only be instanced

once. Although the player can be seen in every tab of our application, it is only controlled by

the methods in class AppDelegate, which is the heart of the application. 

Page � of �26 77

Figure 13: Centralized player

8. Google Maps

In the second term, we changed our direction from indoor navigation in one single room to

multi-functional navigation of an area with a collection of items. We migrated to Google Maps

SDK for implementing new features because of its rich data set and easiness to integrate.

8.1. Google Maps SDK for iOS

Google Maps SDK for iOS [21] provides varies of services, such as handling user gestures,

showing customized markers and their corresponding information windows, etc. Google Maps

SDK automatically handles access to the Google Maps servers for more advanced features.

To start using Google Maps SDK for iOS, we first need to create a project in Google developer

console. By registering in the console, access keys need to be generated to allow using its

services from iOS devices or web browsers.

8.2. Map View Animations

The Google Maps SDK for iOS represents the real world map on the device’s flat screen.

Locations of objects are represented using latitude and longitude. The map view is modeled

as a camera looking down on a flat plane. The camera view can be controlled by several

properties: location, zoom level, bearing, viewing angle.

By modifying zoom level, bearing and viewing angle within an UIView animation block, one

can create a nice animation of initiating the map views for users while loading data from the

server. This creates a more friendly user interaction flow.

When initiating the map view, the map is centered at CUHK campus (latitude: 22.4215,

longitude: 114.2078) with zoom level 16, 120 degree bearing and 0 degree viewing angle. Then

the map view will animate its camera to 0 degree bearing and 80 degree viewing angle. The

effects are from looking down to a more natural angle, indicating the services are ready to

use.

When a walking direction is calculated and needs to be shown on the map, the camera will be

animated to zoom level so that it just contain the origin location and destination location. The

bearing angle stays at 0 degree but viewing angle changed to 0 degree to let the user have a

Page � of �27 77

better view of the overview route. All these changes are completed in 1 second of animation

with spring effect.

8.3. Marker customization

The markers of the map can be customized using a simple image or a UIView. Our approach is

using a pre-designed image to customize the markers to be more identifiable and unique.

Other customizations include changing the appearing animation to “pop”, making the marker

tracks information windows changes. Each marker represents an actual item on the map and

is associated to the information of the item.

The marker configuration code is as below for each item:

8.4. Info Window

An info window is used to display information to the users when they tap on a marker. If a

user tap on another marker while current info window is showing, the current info window

will be closed and then new info window will appear. That means only one info window can be

displayed at a time.

Page � of �28 77

let marker = GMSMarker()

marker.position = loc

marker.appearAnimation = kGMSMarkerAnimationPop

marker.icon = UIImage(named: “map_marker”)

marker.map = self.mapView

marker.tracksInfoWindowChanges = true

marker.userData = item

Figure 14: Customized marker

The default info window contains only a title and a description. To make the design consistent

with other elements and also to serve more intuitive information, we also re-designed the info

window.

The customized info window consists of a title, creator name, a thumbnail image and a “Go

There” button. This info window gives users direct but simple information about the item

represented by that marker.

8.5. Google Maps Directions API

In order to provide navigation service for a user to go to a particular item, we integrated

Google Maps Directions API [22] in our application.

8.5.1. Request format

This API is using an HTTP request for calculating directions between two locations. The

request takes the following form:

The “output” in the request is for specifying the format of the return object. It can be

either JSON or XML. In our application, we chose JSON as the return format.

The “parameters” part is for setting parameters for the calculation. Some of the

parameters are required and some are optional depending on the needs of the

application. The parameters being used in Eksibition are as follows:

• origin - the user’s current location in format of [latitude],[longitude].

• destination - the destination’s location in format of [latitude],[longitude].

https://maps.googleapis.com/maps/api/directions/output?parameters

Page � of �29 77

Figure 15: Customized info window

• key - the access key generated in Google developer console. This key is required for

using the API.

• mode - the mode of transport to use when calculating directions. In this app, we

specify the mode as “walking” always because it’s for navigation inside campus.

With that being explained, an example of a full request sent to Google server would be

like this:

8.5.2. Directions Responses

As specified in the request, the response will be in JSON format. If all of the parameters

sent to Google Maps Server are valid, the response data will contain a direction

information in detail.

Firstly, there is a “status” key in the JSON indicating wether the calculation is successful. A

detailed transport steps are in “routes” property. There may be more than one route

being returned as alternative routes to the fastest one.

In a single route, there are information including map bounds, starting address, ending

address, etc. The most important information are steps under property “legs”. “legs”

contains the accurate traveling pathways. The information we needed here are distance

and estimated traveling duration.

A complete response example JSON is as follows:

https://maps.googleapis.com/maps/api/directions/json?

origin=22.4180729,114.2085763&mode=walking&destination= 22.419873,
114.204381&key=MY_API_KEY

Page � of �30 77

{
 "geocoded_waypoints": [
 {
 "geocoder_status": "OK",
 "place_id": "ChIJlWtGnZ4IBDQRgDJB8rsq1k0",
 "types": [
 "route"
]
 },
 {
 "geocoder_status": "OK",
 "place_id": "ChIJH4l6uZwIBDQRZfqTXBkEOQY",
 "types": [
 "route"
]
 }
],
 "routes": [
 {
 "bounds": {
 "northeast": { "lat": 22.4198731,
 "lng": 114.2085304
 },
 "southwest": {
 "lat": 22.417021,
 "lng": 114.2043444
 }
 },
 "copyrights": "Map data ©2016 Google",
 "legs": [
 {
 "distance": {
 "text": "0.8 km",
 "value": 768
 },
 "duration": {
 "text": "14 mins",
 "value": 868
 },
 "end_address": "Library Blvd, Ma Liu Shui, Hong Kong",
 "end_location": {
 "lat": 22.4198731,
 "lng": 114.2043779
 },
 "start_address": "Nursery Path, Ma Liu Shui, Hong Kong",
 "start_location": {
 "lat": 22.4182063,
 "lng": 114.2085304
 },
 "steps": […],
 "via_waypoint": []
 }
],
 "overview_polyline": {
 "points": "ypygCijaxTPv@JLZD`@VN?ZSh@CCNBJf@h@N^B\

Page � of �31 77

To draw a path on the map, we need the “overview_polyline” property because it is an

encoded overview path from origin to destination. Google Maps SDK for iOS already

contains method for creating path directly from an encoded path string. We only need to

create an path object using the encoded path returned by Google Maps API, and then

set the path’s map property to the current map view:

8.6. Navigation Information Panel

When navigation information are shown, the navigation information panel will

appear on the right side of the map taking 50 pt space. The purpose of this

information panel is to intuitively let users know the distance between current

location and destination location, and the estimated walking duration.

 },
 "summary": "University Ave",
 "warnings": [
 "Walking directions are in beta. Use caution – This
route may be missing sidewalks or pedestrian paths."
],
 "waypoint_order": []
 }
],
 "status": "OK"
}

self.mapPolyLine.path = GMSPath(fromEncodedPath: encodedPath)
self.mapPolyLine.map = self.mapView

Page � of �32 77

Figure 16: Displaying directions

A close button is at the bottom. When tapped, the map will quit navigation mode and the

navigation information panel will be hidden. 

Page � of �33 77

9. Apple Pay

Apple first introduced Apple Pay in its

conference in September 2014. Tim Cook, the

CEO of Apple, illustrated that the tradition

payment system like loading a card with a

magnetic stripe and verifying a credit card by a

combination of several numbers are not that

safe. Apple Pay will be the new generation’s

payment system that can change the whole

payment system. Basically, if a user want to use

Apple Pay, he or she has to first add his card into

his Apple Wallet. After that, the user can

authorize a payment by just verifying his Touch

ID through Apple Pay in all the retail stores and

online stores supporting Apple Pay.

For developers who want to integrate Apple Pay

with their applications, there are following

prerequisites:

• A developer account with payment

processor.

• A valid Merchant Identifier.

• A public key and a private key for encryption and decryption.

• Apple Pay entitlement being included in the application.

9.1. Workflow of Apple Pay

Below is a diagram showing the workflow of Apple Pay in one purchase.

Page � of �34 77

Figure 17: Apple Pay

9.2. Client-side

What we did in the client-side:

• Setting up the project to support Apple Pay by importing Apple Pay developer kit.

• Getting the information of billing, cost, shipping address and others.

• Generating an encrypted token representing this transaction.

• Sending the token to the server and handle the callback.

9.3. Server-side

For the server-side, we did the following things:

Page � of �35 77

Figure 18: Apple Pay workflow [11]

• Creating an APIs to handle the request from client, which carries the token and other

transaction information.

• Decrypting the token and getting the payment credentials.

• Making the charge and send the result of it to the client.

9.4. Stripe

Stripe is a third party payment gateway service provider, who provides a easy platform for

business owners to charge clients more easily. By integrating Stripe SDK, implementing the

payment process with Apple Pay becomes much easier. Here is the steps we had gone

through when integrating Stripe:

• Install the Stripe library on both client-side and server-side.

• Get the public API key from Stripe and configure it on both client-side and server-side.

• Get the information of the purchaser from Apple Pay.

Page � of �36 77

Figure 19: Stripe dashboard

After these 3 steps, we can use methods in Stripe library to finish transaction. Here, Stripe

speed up the whole development process by handling all encryption, decryption and charging

with the banks for the developers. 

Page � of �37 77

Figure 20: Stripe transaction history

10. Apple Wallet

Apple Wallet is an application introduced in iOS 8.1. Before iOS 8.1, it is called Passbook, which

allows user to store their passes, like coupons, tickets and boarding passes. Apple introduced

a new generation of Passbook named Apple Wallet together with Apple Pay in this year's

conference. Users can add his own credit cards, debit cards and loyalty cards into his Apple

Wallet.

Since we have finished integrating Apple Pay in our

application, users can buy tickets right within our

application using Apple Pay. What we are going to do

now is to enable users to add purchased tickets

into Apple Wallet so that users can redeem their

tickets by just showing the passes in their Apple Wallet.

10.1.Turning a Ticket into a Pass

Before trying to add a ticket into Apple Wallet as a pass,

we have to learn what exactly a pass is. From a user's

perspective, a pass is a collection of all the relevant

information of an event. From a developer’s perspective,

a pass is a package containing a JSON file as the template,

which stores all the information and all the image

resources that are required to build the pass.

Page � of �38 77

Figure 21: “Add to Apple Wallet” badge

Figure 22: Pass structure

There are 5 different styles of passes:

Pass Style Description Example

Boarding Pass Representing a ticket to get

discount when buying goods

in the certain store.

Coupon Representing a ticket to get

discount when buying goods

in the certain store.

Event Ticket Represent a ticket to get

access to an event at a

particular time and venue.

Store Card Representing the user’s

account in a store or club.

If the purpose of the pass is

not among the above 4

categories.

Page � of �39 77

The JSON file in the pass package is for specifying the information and the style of the pass

which is in a format like this:

Taking the above code as an example, the field “eventTicket” will contain all the relevant

information shows on the front page of the pass. Below is a sample of a event ticket.

Page � of �40 77

{
"formatVersion" : 1,
"passTypeIdentifier" : "xxx",
"serialNumber" : “xxx”,
"teamIdentifier" : "HP634A2CZK",
"organizationName" : "Eksibition Team",
"description" : "CUHK Museum 1-Day Pass",
"foregroundColor" : "rgb(255, 255, 255)",
"backgroundColor" : "rgb(60, 65, 76)",
"labelColor": "rgb(177, 189, 213)",
"eventTicket" : {...}

}

"eventTicket" : {
"headerFields" : [{

"dateStyle" : "PKDateStyleMedium",
"key" : "valid_from",
"label" : "Valid From",
"value" : validFrom.format("YYYY-MM-DDThh:mmZ")

}],
"primaryFields" : [{

"key" : "event",
"label" : "EVENT",
"value" : "Paintings by CUHK Students"

}],
"secondaryFields" : [{

"key" : "loc",
"label" : "LOCATION",
"value" : "SHB 611, CUHK"

},
{

"key" : "ticket_type",
"label" : "Ticket Type",
"value" : "1-Day Pass"

},
{

"isRelative" : true,
"key" : "doors-open",
"label" : "Doors Open",
"timeStyle" : "PKDateStyleShort",
"value" : "2015-12-10T09:30+08:00"

}]
}

For different styles of pass, the layout of this field is different [16].

Pass Style Layout

Boarding Pass

Coupon

Pass Style

Page � of �41 77

Event Ticket

Store Card

Generic

LayoutPass Style

Page � of �42 77

After specifying all these fields in the JSON file and adding all the relevant images in the

package, we still have to sign our pass package using the registered Apple Developer private

key. We have go through the following steps to be able to sign a pass [13]:

• Go to iOS Developer Portal and add a pass into the pass list of our account.

• Download the certificate from the configuration of this pass and then add the certificate to

our Keychain.

• Download the Apple Worldwide Developer Relations Certification Authority (WWDR)

certificate and add it to the Keychain.

• Sign the pass package with these two certificates.

10.2.Sign and Distribute Passes

Since the key is private, we can’t just have a static pass embedded in the application. We have

to sign every single pass on our server whenever the client side request a pass. So we

improved our server by adding a new API for signing and distributing passes according to the

requests from the client-side.

We use a module called “passbook” in npm to help us do this. The module passbook requires

the two certificates in format .pem. So that we have to convert the certificated to the right

format by using the command provided by passbook.

node-passbook prepare-keys -p keys

After this, we went through the following steps to sign and distribute a pass of ticket from

server according to the request from the client-side.

• Get the ticket number from the parameters in the request and get the related information

about this ticket from the database providing the ticket number.

• Create a template for this ticket and update this template according to the information got

from the database.

• Create a pass package with the template we got and sign this pass package with the two

certificates.

• Send the package to the client and delete the local file of it. 

Page � of �43 77

11. Redeem System

After implemented the function that a user can add his or her tickets into Apple Wallet, we still

need a redeem system for the museum organizer to check if the ticket provided by the user is

valid or not. So we designed a redeem system and built another application for museum

organizers to check the tickets.

As we can see from Figure 18, each pass contains a QR code at the bottom. The museum can

use our redeemer application to scan this QR code to check the validity of the ticket.

The redeemer application will get a ticket number from the QR code and send it to the server.

The server will check if this tick number is in the right format and if it is still valid. The server

will give the redeemer application a response indicating the validity of the ticket number. 

Page � of �44 77

Figure 23: Sample Pass Figure 24: Redeem a ticket

12. News System

Event organizers often want to promote activities to attract more visitors, so we designed a

News center just for that purpose. In the 4th tab of our app, we added a news center. Users

can access all of the promotions posted by organizers here. It also takes advantage of iOS

Core Data to allow offline usage. When the app is in the iOS background or the phone is

locked, event organizers can send push notifications to these devices and the users will never

miss a thing if they enable this feature.

12.1.UI Design

12.1.1.News List

The basic element of the News tab is a

news cell. A news cell represents a single

news with titles and content preview.

There are 4 layers of the cell view. First

layer is the UITableViewCell layer, which is

the container of the cell. The 2nd layer is

the news head image. On top of the

image is a half transparent gradient layer

with black tint color. The usage of this

layer is for the ease of reading titles and

content previews so that no matter what

color the image is, the text are always

clear. The top most layer is the text layer,

which gives a quick peek of the news

content.

Page � of �45 77

Figure 25: News Tab

12.1.2.News View

The detail view of a single news consists of a title, post time, a head image and content

text. When creating new news on our web administration platform, organizer has to

follow this content format to successfully create news.

12.2. Study of Apple Push Notification Services (APNs)

Apple Push Notification Services (APNs) is the core of Apple’s the remote notification features.

It is an efficient and robust service for propagating information to Apple devices. Each of

those devices can have an authorized and encrypted IP connection with APNs and can receive

notifications through this constant connection. If one device receive a notification while the

target application is not running, the device will have an alert telling the user that there is

some data waiting for the application to receive [17].

Page � of �46 77

Figure 26: News detail view

We need use our own server to create the remote notifications to our users. In the process of

sending the notification, our server is called the provider, which decide when to sent a

notification and what data to be sent together with the notification. When we wants to send a

notification, we have to generate a payload of the notification and send it to the APNs through

a persistent and secure channel using HTTP/2 protocol. APNs will handle the rest of the

procedures of delivering the notification to the devices.

12.2.1.The Path of a Remote Notification

Every time the application is opened on a device, the server will receive the latest device

token. This is an unique string generated by Apple which is used to identify this device

during a certain period. When the provider want to sent a notification, it has to send the

target device tokens together with the notification payload.

The notification payload is just a simple JSON dictionary which contains the data we

want to send to our users, the information about the way to notify the users and some

other customized data. Below is a table showing the usage of the keys in the payload

JSON dictionary: [18]

Dictionary Key Value Type Remark

aps alert string/dictinary The system will display
an user configured alert
or a banner is this
property is included. If
this aps is a dictionary,
the description of the
keys may refer to the
next table.

badge number The red number showed
on the left-upper corner
of the icon. If this
property is not included,
the red number will not
change. If this property is
set to 0, the red number
will be removed.

sound string The name of the sound
file you want to be
played when users
receive the notification. If
‘default’ is set to this
property, the default
sound will be played.

Dictionary

Page � of �47 77

Here is an example of the payload: 

content-
available

number Assigning 1 to this
property indicating that
there is some new
content available for the
application.

category string This is a property
identifying custom action
defined in client side.

alert title string

body string

*-key, *-action string, array,
null…

Some other keys that
can be customized for
other usages.

Key Value Type RemarkDictionary

Page � of �48 77

{

 "aps" : {

 "category" : "NEW_MESSAGE_CATEGORY"

 "alert" : {

 "body" : “This is the body of the alert.”,

 "action-loc-key" : "VIEW"

 },

 "badge" : 3,

 },

 "acme-account" : “xxx.alert@gmail.com“,

 "acme-message" : "message123456"

}

Here are two figures showing the path of a remote notification with the participation of the

remote devices, APNs and maybe more than one providers.

12.2.2.Security Architecture

To provide the communication in high level of security, APNs adjusts the entry point

between the providers and devices with two different level of trust: connection trust and

token trust [17].

Connection trust makes sure that APNs is connected to a provider who is authorized to

deliver notifications. The connection between APNs and devices are also ensured by

connection trust which requires the legitimacy of the devices.

Here are two figures showing the mechanism of these two kinds of connection trust:
Page � of �49 77

Figure 27: Path with one provider

Figure 28: Path with multiple

 

Page � of �50 77

Figure 29: Connection trust between providers and APNs

Figure 30: Connection trust between devices and APNs

12.3.Pushing Notifications with Node.js

The connection between the provider (our server) and APNs can be separated into two

components. We have to implement both of them in order to deliver a productive service [19].

• Gateway Component: The gateways component is the TLS connection showed in the

previous chapter. As a provider, our server has to construct a connection to APNs to send

message and let APNs process the message to users. Apple recommends a constant

connection to be established between a provider and APNs, which is always on, no matter if

there is any message to be sent.

• Feedback Component: The feedback mechanism make it possible for providers to

occasionally get a list of devices that are not acceptable of receiving the notifications for a

certain application. We also have to implement a feedback workflow before going to

production since Apple is monitoring all providers’ usage of APNs in order to make sure

providers are not wasting resources on those devices which can not receive notifications.n.

12.3.1.Node.js Module: APN Agent

APN Agent is a Node.js module developed to facilitate the procedure of sending remote

notifications with APNs. It is integrated with many features that makes it easier for

developers to implement a provider for pushing notifications. The main features we use

are:

• Maintaining a persistent connection between the server and APNs gateway.

• Configuring the connection to be auto-reconnect when error occurs.

• Using the chain-able message builder to customize messages.

• Using the feedback service to get a list of those devices which can not receive

notifications any more.

Installation: $ npm install apnagent

Set up with certificate:

Page � of �51 77

var pfx = join(__dirname, './sslcert/aps_development_key.p12');

agent.set('pfx file', pfx).set(‘passphrase',
'passphrase').enable('sandbox');

Establish the connection:

Push notifications:

Deal with Feedback:

12.4.Receiving and Processing News Notification in iOS

iOS push notification are handled by the OS itself and then are passed to the application for

further processing. When receiving a push notification from our server, such as a new activity

promoting, there are 3 states the application can be, and need to be handled accordingly:

• Completely not started:
Page � of �52 77

agent.connect(function (err) {

 if (err && err.name === 'GatewayAuthorizationError') {

 console.log('Authentication Error: %s', err.message);

 process.exit(1);

}

var env = agent.enabled(‘sandbox') ? 'sandbox'

 : 'production';

console.log('apnagent [%s] gateway connected', env);

});

agent.createMessage()

 .device(deviceToken)

 .alert(news.title)

 .set('newsId', news.newsId)

 .set('tab', 3)

 .badge(1)

 .send();

feedback = new apnagent.MockFeedback();

feedback.set('interval', ‘30s').connect();

feedback.use(function (device, timestamp, done){

……

});

The app will start and do its initialization, check permission and register notification

service. Then a delegate method will be called to check the remote notifications.

• Background mode:

The app will become active and check notifications in the delegate method.

• Active mode:

The app will directly run the code inside the delegate callback function without

showing notification bar on the top.

12.5. Core Data

Core Data [23] is an object graph and persistence

framework provided by Apple in the OS X and iOS

operating systems. Core Data are used to store

fetched news in local space so that when there is

no internet connection, users can still check old

news. In our application, we store fetched news in

SQLite and fetched images in Data Container in

the app’s sandbox.  

Page � of �53 77

Figure 31: iOS app storage

13. Multiple Language Support

13.1.Client Side Design

For the need of change the language on the fly, there is a global variable indicating current

language code stored in the persistent storage. The code is either “en” for English or “cn" for

Chinese. When the user interface needs to configure text, it first get the unique key of the text,

then go to corresponding language file to fetch the text for current language. After

implementing the mechanism, when adding new text, all needed to do is only translating the

text in different language file.

13.2.Server Side Support

In order to support the multiple language features, we have to do some modifications on our

database and also change the way we generate response data from server.

13.2.1.Database

The first thing we have to improve in database is the schema of some tables which are

storing the data to be displayed on the client side.Taking the table item as an example:

title and description are the two columns that stores the data to be displayed on client

side. So we have to add two more columns to this table for a new language.

Here are the original schema and the updated schema for item table:

Page � of �54 77

beaconUUID: String,
beaconMajor: String,
beaconMinor: String,
title: String,
coverImage: String,
author: String,
country: String,
description: String,
soundtrack: String,
images: Array,
lat: Number,
lng: Number,
introduceTime: Date,
inExhibition: Boolean,
views: [String],
likes: [String],
shareCount: Number

beaconUUID: String,
beaconMajor: String,
beaconMinor: String,
title: String,
coverImage: String,
author: String,
country: String,
description: String,
soundtrack: String,
images: Array,
lat: Number,
lng: Number,
introduceTime: Date,
inExhibition: Boolean,
views: [String],
likes: [String],
shareCount: Number,
title-zh: String,
description-zh: String

13.2.2.Format of Response Data

In order to keep the consistency of the API design, we decided not to add new APIs for

multiple languages. In consequence, we decided to change the format of the response

data of some API to support multiple languages.

Take API item/:uuid/:major/:minor as an example. This API is to get all the information of

one certain item and the response data is a JSON object. We changed some properties

of this JSON object from string type to array to support multiple language.

Here are the updated format and an example for the response data. 

Page � of �55 77

beaconUUID: String,
beaconMajor: String,
beaconMinor: String,
title: {
 languages: {
 en: 0,
 zh: 1
 },
 content: Array
},
coverImage: String,
author: String,
country: String,
description: {
 languages: Array,
 content: Array
},
soundtrack: String,
……
views: [String],
likes: [String],
shareCount: Number

…
title: {
 languages: {
 en: 0,
 zh: 1
 },
 content: {
 “English
content.”,
 “Chinese
content.”
 }
},
…
description: {
 languages: {
 en: 0,
 zh: 1
 },
 content: {
 “English
content.”,
 “Chinese
content.”
},

14. Account Managing System

14.1.Client Side Design

With account system, users can bind purchased tickets to their account so that they can

access their tickets from different devices. In the front-end, we implemented a sign in / sign up

page for using personal accounts. Facebook login is also supported to make the whole

process more convenient.

In Settings tab, when user tap the account cell, sign in page will show up. When using it the

first time, user needs to sign up first by tapping “Sign Up” button on the navigation bar and

the sign up page will appear if the user wants to sign up using emails.

If a user wants to just use Facebook account to sign in, he/she doesn’t need to do extra

register step. Our backend will handle its first sign in to register a new account.

14.1.1.Account Manager

To manage the status of current user, we implement a singleton called Account

Manager.

Page � of �56 77

Figure 32: Account views

Whenever we need to access users sign-in status, we only need to contact the Account

Manager singleton object to do corresponding operations.

The operation are listed as follows:

14.2.Server Side Implementation

We have implemented all the APIs related to users’ actions under the router api/users. Below

is a table illustrating the usage of these APIs:

Method Availability Description

isLoggedIn() -> Bool Public Check if user has logged in

logOut() Public Log out current user

logIn(withAccessToken
token: String, userId: String,
nickname: String?,
imagePath: String?)

Public Call api to log in using credentials input by user

updateAccessToken(token:
String?)

Private To be used in logIn() to configure access token
after successfully log in

accessToken() -> String? Public Get the access token, which is needed when
making account related API call

updateUserId(userId: String?) Private To be used in logIn() to configure user ID after
successfully log in

userId() -> String? Public Get user ID of current user

updateNickname(userId:
String?)

Private To be used in logIn() to configure nickname of
user after successfully log in

nickname() -> String? Public Get user’s nickname

updateImagePath(userId:
String?)

Private To be used in logIn() to configure image path
after successfully log in

imagePath() -> String? Public Get profile image path

API Method Permission Arguments Usage

/register post public email: string
password: string
name: string

Create a new user regarding to the information
provided. If the email is already used for another
user, our server will response with error code 481.
If success, our server will response with a JSON
object containing user’s data.

API

Page � of �57 77

/login post public type: string
email: string
password: string
facebookId: string

There are two login type: “email” and “facebook”. If
the user is trying to login with email, he has to
provide email and password. If the user is trying to
login with Facebook , he has to finish the
authorization procedure in client side and then our
application will send his facebookId to the server.

/bind post user token: string
facebookId: string

This API is for an logged in user to bind his email
account with his Facebook account. So that this
API need token to be provided indicating the login
status of the user. Our server will find out the
corresponding user account according to the
token and bind a Facebook account to this existing
user account.

/logout post user token: string Log out a user from our application.

/all post admin No Get a list of all users from our database. This API
requires admin permission to process.

Method Permission Arguments UsageAPI

Page � of �58 77

Below is a diagram showing the workflow of registering new users:

 

Page � of �59 77

Below is a diagram showing the workflow of logging in:

Page � of �60 77

15. Web Admin Panel

We have built a website as an admin panel for the administrators of our application so that

they can have a user interface to manipulate and update data more conveniently. This website

requires admin account to log in. The URL of this website is https://elvinjin.com:8081/panel/

login.

After the administrator logged in the panel, he/she can see all the data in detail at the

homepage. In addition to the total number of the items, users, orders and news, the

administrator can also see a sales report showing the number of sold tickets and redeemed

tickets in recent 5 months. A list of the latest 5 orders will also be showed on the right side.

Page � of �61 77

Figure 33: Admin panel - log in

Instead of just having a view on the data, administrators can also do modification in this

website. Following is a table showing all the functions of each page:

URL title Usage

/panel/home Dashboard Administrators can see a summary of all kind of data here.

/panel/item Items Administrators can see all the items stored in the database displayed
in a google map. Each marker on the google map corresponds to one
item. Administrators can go to another page to modify the information
of one item by just click the corresponding marker. If the administrator
wants to add a new item, he can click the button “Add New Item” to do
so.

/panel/addItem New Item In this page, the administrator can add a new record of item into the
database by type in all the required information. Once the form is
submitted, the browser will jump back the previous page and the
administrator can see the new item he just added.

/panel/editItem Edit Item In this page, the administrator can do any modification he wants on
the taggert item, including change title, author, description, beacon
information and even related images. Once the form is submitted, the
browser will also jump back.

/panel/user Users A list of all registered users’ information will be showed in this page.

/panel/order Orders A list of all registered orders’ information will be showed in this page.

/panel/newsList News List The administrator can see a record of all pushed news and he can go
to the detail of each piece news by clicking on it. He can also choose
to push a new piece of news by clicking on the button “Create News”.

/panel/newsDetail News Detail A page shows the detail content of a certain piece of news, which can
be pushed again.

/panel/addNews Push News In this page, the administrator can create a new piece of news by fill in
the form and submit it.

Page � of �62 77

 

Page � of �63 77

Figure 34: Dashboard

Figure 35: Item list

Page � of �64 77

Figure 36: Add new item

Figure 37: Users

 

Page � of �65 77

Figure 38: Orders

Figure 39: News list

Page � of �66 77

Figure 40: News detail

Figure 41: Create news

16. Backend Code Revision

As the number of features grows, we added more APIs in the backend and the total length of

the code is becoming larger. We did a revision on the backend implementation and

modularized some part of the code in order to make the whole structure clearer and more

scalable.

16.1.Standardize HTTP Response

In the former version of our backend code, we were dealing with each response separately

and with no stander to follow. After we have implemented more and more APIs, we feel

obliged to standardize the way we modifying the HTTP response.

We customized two HTTP status code to indicate what kind of error is happening.

• 480: In our design, code 480 will be received in two situation. The first one is logic error. For

example, one API requires 3 arguments in HTTP request, while the client only provided 2 of

them, or the name of the parameter is different from what the server is expecting. The

second one is database internal error. For example, the server can not get/save a record

from/into the database.

• 481: Code 481 will be received when the provided data is invalid. For example, wrong user

name, wrong email, wrong new ID and other data error.

We implemented an appHelper module to deal with all these HTTP responses and other

things that can be modularized out from the router file like exchanging data from database.

Below is how we deal with HTTP responses in router file last semester:

Page � of �67 77

res.status(481).send({

 success: false,

 message: "No matching item."

});

res.json({

 success: true,

 message: "User registered.”

});

Below is how we deal with HTTP response now:

In appHelper.js:

16.2.Protecting APIs with Middleware

Middleware is functions that will be involved by the Express.js routing layer before we actually

handle the request, so that it is placed between the raw request and the final intended

handler. We usually see these functions as middleware stack because they are always invoked

according to the order they are placed [20].

Below is an example of a middleware and how this middleware is used:

Page � of �68 77

appHelper.errorResponse(res, 481, 'error', 'Cannot get item.');

var resData = appHelper.userInfoWithToken(user, token);

res.status(200).send(resData);

exports.errorResponse = function(res, code, title, message){

 res.writeHead(code, title);

 res.write(message);

 res.end();

}

exports.userInfoWithToken = function(user, token){

 var ret = {

 userId: user.id,

 name: user.name,

 email: user.email,

 facebookId: user.facebookId,

 imageURL: user.imageURL,

 type: user.type,

 token: token

 };

 return ret;

}

We can use some certain middleware to protect our APIs. We have two middleware functions

to check if the request has the permission to access its target API and both of them are

implemented in appHelper.js. The example showed above is the middleware checking if the

request is sent from an user-logged-in client.

Below is the middleware checking if the request is sent from a admin-logged-in client. 

Page � of �69 77

exports.userMiddleWare = function(req, res, next) {

 // check header or url parameters or post parameters for token

 var token = req.body.accessToken || req.get('accessToken');

 var id = req.body.userId || req.get('userId');

 if(!token || !id){

 return exports.errorResponse(res, 480, 'error', 'message');

 }else{

 JWTUserId.findOne({token:token, userId:id},function(err, result){

 if(err) throw err;

 if(result){

 next();

 }else{

 return exports.errorResponse(res, 481, 'error', '');

 }

 });

 }

}

Page � of �70 77

exports.adminMiddleWare = function(req, res, next) {

 var token = req.body.accessToken || req.get('accessToken');

 var id = req.body.userId || req.get('userId');

 if(!token || !id){

 return exports.errorResponse(res, 480, ‘error.', ‘message.');

 }else{

 JWTAdminUserId.findOne({…},function(err, result){

 if(err) throw err;

 if(result){

 next();

 }else{

 return exports.errorResponse(res, 481, 'error', '');

 }

 });

 }

}

17. Difficulties in the Project

During doing this project, we have faced the following difficulties which took us a relative long

time to solve.

• When doing the research on the indoor positioning and studying on our first approach, we

read some paper on this topic and found a solution that are relatively accurate. In order to

understand the theory behind that approach, we did research on the features of the

bluetooth energy in order to learn the way it broadcast and how its signals are interfered.

At the end we got an algorithm and a plan on how to calculate the environment of one

room and map it into a parameter for position analyzing, but we gave up this approach

because it is nearly impossible to calculate the parameter, which represents the

environment of a big and complex exhibition hall.

• Designing the indoor map also cost us a lot of time. As what we have mentioned at the

section “Study of Custom Indoor Map Design”, we spend much time on trying to use

Mapbox as a tool to create the custom indoor map, in which most of the time were spent

on how to draw the map as a .geojson file. At that time, we even developed a quite

complicated method to parse the .geojson file and draw it out by ourselves. But at the end,

we gave up Mapbox for the reasons mentioned early.

• When building the server for signing and distributing the passes, we kept failing on the

final point, which means we could not know what client side get from the server or

whether the data generated by the server is correct. Since the error occurred at the final

step, we don’t know the reason why the file failed to be downloaded and opened. After a

long time fixing, we replaced the certificate and regenerate the .pem file using the

command provided by passbook module and change the way we used to update the

template of the pass. Finally, we get out pass and can successfully add it to our passbook.

• When we were implementing the pushing notification, we were unable to push the

notifications for a long time but we can not find out the reason. The connection between

our server and APNs was working well and there were no error thrown from the console.

We finished procedure of sending the notification but had no response. After reviewing

the document of the APN agent (the node.js module we used for APNs) , we found that

one of the object named agent was used in a wrong way. Instead of creating another agent

Page � of �71 77

in the router layer, we have to use the same instance of it to send notifications after the

connection was established. We solve that problem by moving the router of pushing to

where this agent is initialized. Finally, we pushed our first notification successfully to our

application.

• When developing our admin panel, we spent a lot of time thinking how to make our admin

website safer. Because all the operations in this admin panel can change the data we store

in the data base directly, we must not let other non-admin people get the access to this

website. It seems just a problem of session storage, but how we arrange our html,

javascript and CSS resources is also very important. We set all the javascript and CSS files

as static files in order to let browsers have the access to them when loading certain html

pages. We did not set any html pages as static files to avoid other people visit this website

through file name. Instead, we build some APIs with relative path which will read the local

html files in the server and send response with html data. Once the admin has

successfully logged in the website, we will set a pair of cookies in the client side to keep

the admin logged in. Each request sent to admin APIs will be checked by an admin

middleware first so that unapproved actions will be rejected. At last, we think our admin

panel is safe enough.

• When implementing the news tab in our iOS app, a very important part of the

implementation is to store the received news locally. The first solution we came out was to

store all the information in the form of SQLite inside the persistent memory of the

application. But SQLite is only designated for light storage, while we may have some large

image to store. Finally, we decided to store the image separately in the data store of the

sandbox and then store the path of this image together with other information as SQLite.

This solution was proved feasible and very efficient. 

Page � of �72 77

18. Contribution and Reflection

18.1.Contribution

18.1.1.Fall 2015

This project kick off in fall semester of 2015. In the first few weeks, my main tasks are

studying Apple’s newest technologies and trying to think what we can use in this project.

In this period, I gained deeper understanding of how the new technologies works and

how they help people achieve more convenient life.

The project itself was also in the designing phase. Because I have studied basic design

theories via online course before, I took the responsibility of designing the UI interface.

Design is always my interest at spare time. As a engineer, we sometimes need to think

as a designer to have better understanding of how users interact with the app. So I took

my time designing the app, wanting to make every pixel to its best design.

When the design phase is finished, my partner Ryan is responsible for backend API

development and I’m responsible for iOS front-end development. There are 5 tabs in our

application, a.k.a. Current, Explore, Ticketing, News and Settings. I started to implement

each tab one by one.

By the end of this term, I finished Current tab, Explore tab and Ticketing tab.

18.1.2.Spring 2016

In this semester, we no longer limit ourself to do the indoor navigation. Instead, we took

advices from Professor Lyu and Dr. Edward, which is to scale the application to CUHK

guide. After the main goal revised, I modified my design and then continued the work

left since last semester.

When doing push notification feature, I work with Ryan closely because the backend also

needs support to finish this task. With prior experience of manage Apple provisioning

files and certificates, I helped backend generate the push certificates and successfully

implement the push notification feature.

Page � of �73 77

18.2.Reflection

During the development, I gained knowledge and practice of more cutting edge technologies

such as node.js, swift, 3D touch, Apple Pay, Apple Wallet, APNs, Facebook SDK, Google Maps

SDK, Core Data, etc. I think this was really a great experience for me because besides learning

hard skills, I also learnt how to work with people with different backgrounds and learn from

them. I think this would be valuable for my future self development. 

Page � of �74 77

19. Summary

After developing our application for 2 semesters, we finally implemented all the features

planned. During the entire period of development, user experience is alway of the first

priority. When we were implementing one feature, we wanted to implement it in a robust way.

We were not just developing it for demonstration purpose, but we see the goal of our project

as developing a product which have complete functions and can be put into the market.

By the end of this semester, our application is equipped with its user account system, map

system, ticket system, news system and other basic functions.

In application side, besides those traditional user interactions, we also took advantage of the

latest iOS features such as 3D Touch, Apple Pay and Apple Wallet. In server side, we also have

an admin panel website for administrators to manage the data.

We kept learning new technologies along the way of developing. We are getting much more

familiar with terms like BLE, beacons, RSSI, APNs, Core Data and RESTFul and tools like

Node.js, Stripe and MongoDB. Now we can make great use of these tools to develop better

applications.

At the end of this report, we would like to give our special thanks to Prof. Michael R. Lyu and

Mr. Edward Yau, who are willing to take their time to meet with us and offering constructive

comments on our project continuously. Without them we wouldn’t have tackled this much

difficulties.  

Page � of �75 77

Reference

[1] "iOS: Understanding iBeacon". Apple Inc. February 2015, https://support.apple.com/en-gb/

HT202880

[2] "Beacons: Everything you need to know.". Pointrlabs.com. 18 January 2015. http://

www.pointrlabs.com/blog/beacons-everything-you-need-to-know/

[3] Bluetooth.com, (2015). Bluetooth Low Energy | Bluetooth Technology Website. [online]

Available at: http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-

basics/low-energy [Accessed 28 Nov. 2015].

[4] Warski, B. (2014). How do iBeacons work?. [online] Blog of Adam Warski. Available at:

http://www.warski.org/blog/2014/01/how-iBeacons-work/ [Accessed 28 Nov. 2015].

[5] iBeacon.com Insider, (2014). What is iBeacon? A Guide to iBeacons. [online] Available at:

http://www.iBeacon.com/what-is-iBeacon-a-guide-to-beacons/ [Accessed 28 Nov. 2015].

[6] Developer.estimote.com, (2015). [online] Available at: http://developer.estimote.com/

[Accessed 28 Nov. 2015].

[7] Estimote.com, (2015). Estimote. [online] Available at: http://estimote.com/ [Accessed 28

Nov. 2015].

[8] Developer.estimote.com, (2015). What is Estimote Indoor Location SDK. [online] Available

at: http://developer.estimote.com/indoor/ [Accessed 28 Nov. 2015].

[9] Developer.estimote.com, (2015). Build an App With Indoor SDK. [online] Available at:

http://developer.estimote.com/indoor/build-an-app/ [Accessed 28 Nov. 2015].

[10] Developer.apple.com, (2015). Model-View-Controller. [online] Available at: https://

developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/

MVC.html [Accessed 30 Nov. 2015].

[11] Apple Pay, (2015). Getting Started With Apple Pay. [online] Available at: https://

developer.apple.com/apple-pay/Getting-Started-with-Apple-Pay.pdf [Accessed 29 Nov. 2015].

[12] Wikipedia, (2015). Log-distance path loss model. [online] Available at: https://

en.wikipedia.org/wiki/Log-distance_path_loss_model [Accessed 1 Dec. 2015].

Page � of �76 77

[13] White, T. and White, V. (2013). 10 Must Have Apps That Support Apple's Passbook |

BestAppSite. [online] BestAppSite. Available at: http://www.bestappsite.com/10-must-have-

apps-that-support-apples-passbook/ [Accessed 30 Nov. 2015].

[15] Mics.org, (2015). NCCR - MICS - Project IP6 abstract. [online] Available at: http://

www.mics.org/micsProjects.php?groupName=IP6&action=abstract [Accessed 1 Dec. 2015].

[16] Developer.apple.com, (2015). Wallet Developer Guide: Pass Design and Creation. [online]

Available at: https://developer.apple.com/library/ios/documentation/UserExperience/

Conceptual/PassKit_PG/Creating.html#//apple_ref/doc/uid/TP40012195-CH4-SW1 [Accessed 1

Dec. 2015].

[17] Developer.apple.com. (2016). Apple Push Notification Service. [online] Available at:

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/

RemoteNotificationsPG/Chapters/ApplePushService.html [Accessed 19 Apr. 2016].

[18] Developer.apple.com. (2016). The Remote Notification Payload. [online] Available at:

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/

RemoteNotificationsPG/Chapters/TheNotificationPayload.html [Accessed 19 Apr. 2016].

[19] Luer, J. (2016). Delivering iOS Push Notifications with Node.js. [online] Engine Yard.

Available at: https://blog.engineyard.com/2013/developing-ios-push-notifications-nodejs

[Accessed 19 Apr. 2016].

[20] Safaribooksonline.com. (2014). Express.js Middleware Demystified - Safari Blog. [online]

Available at: https://www.safaribooksonline.com/blog/2014/03/10/express-js-middleware-

demystified/ [Accessed 19 Apr. 2016].

[21] “Google Maps SDK for iOS". Google Developers. Web. 19 Apr. 2016.

[22] "Google Maps Directions API". Google Developers. N.p., 2016. Web. 19 Apr. 2016.

[23] "Core Data Programming Guide: Connecting The Model To Views". Developer.apple.com.

N.p., 2016. Web. 19 Apr. 2016.

Page � of �77 77

