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Introduction (Motivation)

e Reinforcement learning becomes popular in different areas especially
gaming

e Horse racing and the related gambling is very popular and famous in
Hong Kong

e Combine them to find out more ways to apply reinforcement learning and

may make great profit




Introduction (Background)

e Reinforcement learning is one kind of machine learning and it is about
how the agent learns to take actions in the environment to get the
maximum reward

e At this moment, we focus on choosing the winning horse in the race

e Using reinforcement learning in horse racing means that the agent learns

how to bet in horse racing to get the largest profit at the end



Introduction (Objective)

e Our objective is to build a model to place the bet on the winning horse

e The model gambles like a human. This means it can know when to bet

and not to bet

e Then, we want the model to gamble better than human beings



Data (Collection)

e Use Python Beautifulsoup to do web scraping
e The horse racing data is collected from Hong Kong Jockey Club

e The weather data comes from Hong Kong Observatory
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Data (Description)

e 3890 race records from 2014 to 2020 (End of 2019/2020 season)
e 2771 horse data
e 3890 weather data for each race day

e 47614 dataset for each horse in each race



Data (Description)

Race data

Features Description Type Values
race_date The date of the race Index /
race_no The numer of a race in a day Index /
race_index Unique id of the race Index /
location Location of the race Categorical HV, ST
Class 1to 5, Group 1
class Class of the horses Categorical o3 ¥
1000, 1200, 1400,
race_length Distance of the race Categorical 1600, 1650, 1800,
2000, 2200, 2400
course Track of the race Categorical A, A+3,B, B+2, C, C+3
draw Draw of the horse in a race Categorical 14 distinct values
FAST, SLOW, WET FAST,
s : WET SLOW, FIRM, GOOD
going Condition of the track Categorical TO FIRM, GOOD, GOOD TO
YIELDING, YIELDING,
horse_id Unique id of the horse Categorical 2744 distinct values
jockey_name Unique id of jockey Categorical 113 distinct values
trainer_name Unique id of trainer Categorical 112 distinct values
actual_weight Weight added to the horse Real value /
declared_horse_weight Weight of the horse Real value /
win_odds The odds of betting the horse Real value /
place The final place of the horse in a race Categorical 14 distinct values
finish_time_sec Finishing time of the horse in a race Real value (Seconds)




Data (Description)

Horse data

Features Description Type Values
last_actual_weight The actual weight of last race Real Value /
last_declared_horse_weight The last weight in last race Real Value /
Difference actual weight between
diff_actual_weight present race and last race Real Value /
Difference declared weight between
diff_declared_horse_weight present race and last race Real Value /
country the country of the horse Categorical  US,AUS,etc.
age The age of the horse Real Value /

Bay,
colour The colour of the horse Categorical Chestnut, etc.
sex The sex of the horse Categorical Gelding
import_type The import type of the horse Categorical PP,PPG

Acclamation,
sire_name The name of the horse's sire Categorical = Patagan,etc.
last_plc The place in the last race Index /
last_rating The rating in the last race Index /
rating The rating now Index /




Data (Description)

e Weather data

e Additional data

Features Description Type Values
mean_degree The mean of the temperature of the race day Real Value /
mean_humidity The mean of the humidity of the race day Real Value /
mean_pressure  The mean of the air pressure of the race dat  Real Value /
total_first_count The total count of first place Real Value /
total_second_count The total count of second place Real Value /
total_third_count The total count of the third place Real Value /
total_race_count The total count of joined race Real Value /




Data (Analysis)

e Correlation
between
continuous data

e Show whether the
data is valid
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Data (Preprocess)

e Continuous data; z-score normaliztion

e (ategorical data: One hot encoding (YES/NO — {1,0})




XGBoost (Regressor)

e Developed by Tiangi Chen in 2014

e A scalable end-to-end tree boosting system

e As aregressor to predict the finishing time of the horses

e Result will be used in reinforcement learning and compared to the result

of reinforcement learning



XGBoost (Reason using it)

e Alot of people have used it to win machine learning challenges
e Proved as a high efficiency and high accuracy system

e Easyto use and tune for different purposes



XGBoost (Process)

e Seperate the dataset to training set and testing set
e Training setis the dataset from 2014 to 2018
e Testing set is the dataset from 2019



XGBoost (Hyperparameter)

XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=@, gpu_id=-1,
importance_type='gain', interaction_constraints='",
learning_rate=0.05, max_delta_step=0, max_depth=5,
min_child_weight=1, missing=nan, monotone_constraints="()",
n_estimators=230, n_jobs=0, num_parallel_tree=1, random_state=42,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,
tree_method='exact', validate_parameters=1, verbosity=None)




XGBoost (Result)

e The tree generated by
XGBoost

e Prove the modelis
successful

cat__x0_2000M<0.5
leaf=5.09743452

cat__x0_2200M<0.5

yes, missing \no

leaf=6.14197779




XGBoost (Result)

e R2Score: 0.9974
e Accuracy of predicting the first place: 30.37%
e Accuracy of predicting the first, second, third place: 7.16%

[] df_date race_date season race_index horse_id race_no class win_odds_ total_race_count_ finish_time_sec rating plc
9856 99.330414 2019-12-29 2019/12/29 19/20 293 HK_2018_C197 10 Class 3 3.9 12 100.15 64.0 3
9849 99.410896 2019-12-29 2019/12/29 19/20 293 HK_2018_C443 10 Class 3 5.1 4 100.69 72.0 8
9851 99.426056 2019-12-29 2019/12/29 19/20 293 HK_2017_B023 10 Class 3 5.8 25 100.83 63.0 11
9845 99.607193 2019-12-29 2019/12/29 19/20 293 HK_2017_8B189 18 Class 3 8.9 35 100.49 77.0 5
9858 99.632103 2019-12-29 2019/12/29 19/20 293 HK_2014_T098 10 Class 3 12.0 69 100.13 61.0 2
9854 99.680313 2019-12-29 2019/12/29 19/20 293 HK_2017_8B161 18 Class 3 10.0 17 100.30 72.0 4
9855 99.829094 2019-12-29 2019/12/29 19/20 293 HK_2016_A193 10 Class 3 13.0 45 100.82 63.0 1@
9852 99.874359 2019-12-29 2019/12/29 19/20 293 HK_2017_8B317 10 Class 3 16.0 21 101.25 70.0 12
9847 99.891357 2019-12-29 2019/12/29 19/2@ 293 HK_2017_B353 18 Class 3 15.0 18 100.51 67.0 6
9857 100.045280 2019-12-29 2019/12/29 19/2@ 293 HK_2017_B203 10 Class 3 25.0 25 100.09 70.0 1
9848 100.065971 2019-12-29 2019/12/29 19/20 293 HK_2015_v338 18 Class 3 33.0 41 100.51 77.0 7
9850 100.530182 2019-12-29 2019/12/29 19/20 293 HK_2016_A127 10 Class 3 69.0 19 102.16 76.0 14
9853 100.536362 2019-12-29 2019/12/29 19/20 293 HK_2017_B330 10 Class 3 74.0 14 101.71 78.8 13
9846 100.768089 2019-12-29 2019/12/29 19/20 293 HK_2018_C489 10 Class 3 102.0 3 100.69 69.0 9




XGBoost (Simulation)

Betting Simulation:

e Each bet: $10
e Win: $10 * win_odds - $10 (Cost)
e Loss:-$10



XGBoost (Simulation)

Bet on every game




XGBoost (Simulation)

Bet on horse that has pariticipated in 10 races before
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XGBoost (Simulation)
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XGBoost (Simulation)

cash balance
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XGBoost (Simulation)

cash balance
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XGBoost (Simulation)

Return
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XGBoost (Conclusion)

e Positive correlation between participation experience and the win rate
e Although there are criteria, the return is not high
e Prediction with 30% accuracy can help in reinforcement learning

e Great experience of studying machine learning in horse racing



Reinforcement Learning (Algorithm)

r > Agent .

State

~M— Action

Environment [¢«&——




Reinforcement Learning (Algorithm)

The goal of reinfocement learning is to find the best policy which can bring the
best expected total reward: ek [Z (50, 2¢)

t

Best policy:  ¢g* — arg max Er opelr) [zt: r(st, at)]




Reinforcement Learning (Objective)

Value-based algorithm:

e Improve the policy based on value (reward)

e Similar to the situation of gambling

o We place a bet on a horse since we believe the horse will bring us money

o The agent place a bet on a horse since he believes the horse will bring him reward

Deep Q-learning!!!



Reinforcement Learning (Q-learning)

e Value-based algorithm

e Q-funtion: Q(s,a)

e Q-table:
State \ Action al a2
s1 value1 value2
S2 value3 value4




Reinforcement Learning (Q-learning)

Algorithm of Q-learning:

1. Initialize Q function Q(s,a) to some random values
Take an action from a state using epsilon-greedy policy from Q function

Observe the reward and tha nawrctata
Update the Q table by : Q(s,0) = Q(s,a) + a(r + ymazQ(s'a’) — Q(s, a))

oo WD

Repeat step 2 to step 4 until terminal state



Reinforcement Learning on playing games

e “Cartpole” from OpenAl gym
e Prevent the pole falling over the

cart

.

Episode 10




Reinforcement Learning on playing games

Running Average

200 A

175 1

150 1

125 1

100 +

75

50 A

25 A

0 10000 20000 30000 40000 50000




Reinforcement Learning on playing games

Reason not using Q-learning:

e Only can be used in some simple problems or games

e Lots of data causing a huge Q-table and the efficiency is too low to
complete the Q-table

e Impossible to test since it will only take random action while meeting new

races with new horses.



Reinforcement Learning on horse racing

e Deep Q Learning with MLP policy
o Use neurall network to approximate Q-function
o Loss Function: Esars[((r+vmaxQ(s,4;8)) — Q(s,4;6))’]
m Stochastic gradient descent

e Moving target problem

o change 8 -> 8" will be affected
m Freeze the 8 long enough from DeepMind



Reinforcement Learning on horse racing

Environment

e Observation Space
o the features of 14 horses, including invalid horses (set to -99)

e Action Space

o 15 actions: {'bet on horse 1/, ..., ‘bet on horse 14, ‘do not bet’}, referring to the input order
o bet with a fixed amount 10 dollars
e State

o 1 state =1 horse racing game

e Termination state

o Lose more than $1000
o goes through all the horse racing games



Reinforcement Learning on horse racing

Reward Function

ldea

(@)
(@)

Reward of winning $100 > Reward of winning $11

R(bet and win)

R(bet but lose) =

R( do not bet )

i * ACash Balance , where C, > 0

C, * ACash Balance , where C » <0

C; *win odds of the true first place, where C, <C; < 0



Reinforcement Learning on horse racing

Invalid action

e Ignoreit
o notreasonable, cheaper version of ‘do not bet’

e Same penalty as ‘do not bet’
o it will treat betting on invalid horse as ‘do not bet' if there are less than 14 horses

e Large penalty
o Betonly on races with 5 horses OR ‘do not bet’

R(bet on invalid horse) = R(do not bet) is chose



Reinforcement Learning on horse racing

Input Order

e Shuffle the order of the horse -> do not converge on reward

e We use the prediction from XGBoost to order the input
o The horse with largest number is the fastest horse we predicted in a race
o Ifthere are only 13 horses, then the horse 14 is a invalid horse
m tosee if the agent learns the exist of ‘invalid horse’



Convergency
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How agent bet

training set
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Invalid and valid betting

training set

How many times it bet

m Valid bet = Invalid bet/ Do notbet

testing set

How many times it bet

m Valid bet = Invalid bet/ Do notbet




Win ratio

training set

How many times it wins

s Win s Lose

testing set

How many times it wins

s Win = lose




Cash balance in training set

cash balance

~— Capital

Largest win: 10 * 140 1700

IIIII




Cash balance in testing set

cash balance

Largestwin:10*34 | ==




Result analysis

e 0'do not bet’ action
o Same as our expectation,

m The agent treat ‘bet on invalid horse ‘as ‘do not bet’

m It means the agent bets on all the races with 14 horses
e can't learn the meaning of the aciont ‘do not bet'?
e Dbetting on every races with 14 horses is a nice choice?

e Large win odds
o Bet on those horse with high win odds to gain a larger reward



Result analysis

e Betonraces with 14 horses ONLY

o Reward is maximized when it only bet on the races with 14 horses
o Penalty of losing is larger than betting on a invalid horse
o More explanation in the next result

e ‘Bet on horse 14" most of the time
o The horse 14 is the most likely the winning horse in races with 14 horses
o This is the most safe action
m  30% accuracy in races with 14 horses
m ‘invalid horse’ most of the time, which is do not bet
e the penalty is less than ‘losing’



Improve the reward function

We want to encourage the agent to bet more, not just limited to races with 14
horses.

Solution:

e Increase the reward of ‘winning’
e Decrease the penalty of ‘losing’
e Decrease the penalty of ‘invalid betting’



Comparison of how agent bet
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Comparison of Invalid or valid betting

How many times it bet

NN

old reward function new reward function

m Valid bet = Invalid bet/ 'Do not bet'




Comparison of Win ratio

How many times it wins

m Win = Lose

old reward function new reward function




Comparison of cash balance

cash balance
= RL_with old reward function
= RL_with new reward function
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Result analysis

e (0'do not bet action
o Same as our expectation,
m The agent treat betting on invalid horse as ‘do not bet’
m It still bet on all the races with 13 and 14 horses
e Best choice?
e cantlearn well?

e Win ratio is decreased

o lItisthe reason why the old agent refused to bet on races less than 14 horses
m It will lower the win rate and the reward is less than before

e ‘Bet on horse 13' most of the time
o Refuse to bet more
m The winratio is decreased
m Thereward is maximized

o So ltisstill imited to bet only on races with 13 and 14 horses
S



Betting strategy

cash balance
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Conclusion

e |nput order/format matters!
o Invalid horse
o ordered by the win odds?
e Bet on races with particular number of candidates only
o maybe build up a specified model
m 14 horses RL model
m 13 horses RL model ...
e Combinining all the races
o races with different counts of candidates may become the 'noise’ to each other

e Construction of reward function

o Itis hard to balance the reward and penalty
o It will affect how the agent bet



Conclusion

e More Betting types
o Quinella
o Place
)
e Different betting amount
o The betting amount should not be fixed

e Based on the needs above
o different model is required.
m policy gradient or actor-critic
m continuous output



Thank You!



