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Introduction to Neural Architecture Search (NAS)

What defines an NAS algorithm?

Search Space

architecture

A

What operations are allowed
e.g. in AdaBERT [11]

Convolution
Pooling

Skip connection
Zero operation

\ 4

Search Strategy

Ac A
L ey

\___/

Performance
Estimation
Strategy

performance
estimate of A

How to pick the next architecture

e.g.
Reinforcement Learning

Genetic Algorithm
Bayesian Optimization
Gradient-based

How to evaluate the performance of
the architecture

e.g.

e Full training evaluation

* Bayesian Optimization estimation



Example - DARTS: Differentiable Architecture Search

0 0

(@) (b)

Train all connection
at the same time

(Supergraph)

0

A\

"

Learn the alpha weight
by backpropagation
(Learn sub architecture)

—r
=

(d)

Take the maximum
alpha as result
(Final subgraph)




Example - DARTS

Algorithm 1: DARTS - Differentiable Architecture Search

Create a mixed operation 6'*7) parametrized by o) for each edge (i)
while not converged do

1. Update architecture « by descending Vo Lyai(w — Vo Lirain(w, ), @)
(¢ = 0 if using first-order approximation)
2. Update weights w by descending V , L¢rqin (W, )

Derive the final architecture based on the learned «.

Step 1. Learn the architecture parameter a
Step 2. Learn the supergraph model parameter (weights) w



Example - DARTS

Normal cell Reduction cell
sep_conv_3x3 max_pool_3x3 ]
(k1) |_sep_conv_3x3 c_{k-2} max_pool_3x3 skip_connect _| 2
skip_connect 2 = )
ki t c_
sep_conv_3x3 PO 3 —

skip_connect

N\

sep_conv_3x3

W 0 dil_conv_3x3 3 c_{k-1} max_pool_3x3
skip_cm14ne/ct>€ max_pool_3x3

c_{k-2}

Each cell receive two input from previous two cell.
Reduction cell is put at 1/3 and 2/3 of the total depth of the network.



Tra ﬂSfO rmeyr [17] e Sequence-to-sequence model

Decoder
 oupu e O(1) path length between long-range dependencies
robabilities . .
- (across the words, within a sentence)
Encoder “eed e Parallelizable, unidirectional (compared to RNN)
Wz o 0(1) vs O(n) sequential operations
Forward D) Nx
v | EEED | || P e Application: Translation (English-German, English-
ulti-Hea Multi-Head
==L French)[17]
] J ||\ | —,
Positio'nal D ¢ Positignal
et P T =heasin Layer Type Complexity per Layer  Sequential ~Maximum Path Length
Embedding Embedding Operations
f ! Self-Attention O(n? - d) o(1) o(1)
Inputs (Sh%‘ggf;m) Recurrent O(n - d?) O(n) O(n)
Convolutional Ok -n-d?*) O(1) O(logi(n))
Transformer, attention mechanism Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

for sequence transduction



Attention explained

Generative Pre-Training (GPT)
a7

Many Layers ...
I

'bZ i

<BOS> & 7K

GPT: left-to-right generative QKT

Attention(Q, K, V) = softmax(~—~)V
BERT: unidirectional, predictive Eren(S teotmasl \/d_k-)

Generative Pre-Training (GPT)

h
Many Layers ...
3,
V]
q1 Kkl vl

<BOS> %7K By

https://www.youtube.com/watch?v=UYPa347-DdE&ab channel=Hung-yilLee



https://www.youtube.com/watch?v=UYPa347-DdE&ab_channel=Hung-yiLee

BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding 21

» Essentially is the encoder of Transformer
Large model: BERTgpe : 110M, BERT prge : 340M parameters

* Pre-training: To understand/learn the language (self-supervised learning)

* Fine-Tuning: To learn achieving specific task

N) Mask LM Masfk LM \ /@@ @AD Start/End Span\
= *

09—

Pre-training task | BODEE BMNME A (c¢)). ()=l ]). ()|l Downstream task:
re-trainin I e
g task (on large e >l 1. Classification
corpus, 800M+2500M words): BERT R & 1 4 BERT 2. Question answering
1. Masked LM: Predict _ : : ,
ked ds by soft [fen][ & ] | & ][ Euml[ & | [&] slled] - el el [E] | | -
Masked words by softmax | "8 T o0 —C—0——— | (GLUE dataset), classification
2. Next Sentence Prediction: | [es(=] . [mo][en (o] (o] (ea)(=).. (o])(Cem)(mr]) .. (o)
Predict sentence relation ' !

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning 8




TinyBERT: Distilling BERT for Natural Language
Understanding L©]

* Knowledge distillation on BERT
* General distillation (pre-train the student) (feed large corpus)
» Task-specific distillation (fine-tune the student) (feed task-specific dataset)

Transformer Layer: D

Embedding Layer: D
Prediction Layer: <y

Layer Number: N > M

Hidden Size: d > d’
Teacher (BERT) dden dize: @ =

' Student (TinyBERT)

N =12 | — Transfi)rmer R : M M =4
bert-base-uncased <i:> Distillation <:>

(pretrained model) [ ) =

: jj
;}4—— Text Input

()




TinyBERT

 Distillation objectives

(ranked by importance towards the final
performance)

1. Attention matrices (Transformer-layer)
2. Hidden states (Embedding-layer)
3. Softmax outputs (Prediction-layer)
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General Language Understanding Evaluation
benchmark 23] (GLUE)

ColA
* Acceptability judgement of
grammatical correctness
e Correct or incorrect

Example
Correct:
They made him angry.

Incorrect:

They caused him to become
angry by making him.

Small

SST-2
e Sentiment classification, from
movie reviews
* Positive or negative

Example

Positive:

that loves its characters and
communicates something rather
beautiful about human nature

Negative:
contains no wit, only labored gags

Medium

RTE
e Textual entailment classification of a pair
of sentence
* Entailment or not entailment

Example

Not entailment:

No Weapons of Mass Destruction Found in
Iraq Yet.

Weapons of Mass Destruction Found in Iraq.

Entailment:

Valero Energy Corp., on Monday, said it
found "extensive" additional damage at its
250,000-barrel-per-day Port Arthur refinery.

Valero Energy Corp. produces 250,000
barrels per day.
Large



Motivation — Expected Redundancy

« Why BERT?

Large Text Corpus Downstream Task Dataset
- Learn language feature - Learn skill to accomplish tasks

ﬂp Mask LM Mag LM \ MNLI /@@AD Start/End Spam
= *

00—

EE (MM @A e e ) ()

| =S

- | . -

BERT R . BERT
el ] (el (Eml(E] - [&] [FoallE ]~ [Eol[Gmml[&] . [Ed]
@{ Tok 1 ] { Tok N ]( [SEP] ][TOH 1 [TokM ] (TokN 1{ [SEP] 1{ Tok 1 ] [ TokM 1
Masked Sentence A Masked Sentence B

Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training

Fine-Tuning

The resulting model for downstream task requires less language knowledge.
Redundancy is remained in the model after fine-tuning.




Motivation — Redundancy in Multi-head

[1905.10650] Are Sixteen Heads Really Better than One? (arxiv.org)

Layer | Layer |
1 -0.01% 7 0.05%
2 0.10% 8 -0.72%
3 -0.14% 9 -0.96%
4 -0.53% 10 0.07%
5 -0.29% 11 -0.19%
6 -0.52% 12 -0.12%

Table 3: Best delta accuracy by layer when
only one head is kept in the BERT model.
None of these results are statistically signifi-
cant with p < 0.01.

Keep one significant head
at each layer

Accuracy
o o
(=] oo

o
'S
L

o
o

0.0 +— T T T T T
0% 20% 40% 60% 80% 100%

Percentage pruned

(a) Evolution of accuracy on the validation set of
SST-2 when heads are pruned from BERT according
to I},.

0.8 1

0.6 1

™ 0.4

0.2 1

0.0+ T T T T
0% 20% 40% 60% 80% 100%

Percentage pruned

(¢) Evolution of F-1 score on the validation set of
MRPC when heads are pruned from BERT according
to I},.

0.6 TF—F—F——

0.4 1

0.2

Matthew's correlation

0.0 — T T T T y
0% 20% 40% 60% 80% 100%

Percentage pruned

(b) Evolution of Matthew’s correlation on the valida-

tion set of CoLA when heads are pruned from BERT
according to I},.
35
30
25
20
15 -
10 A
5 4
0-

BLEU

0% 20% 40% 60% 80% 100%
Percentage pruned

(d) Evolution of the BLEU score of our IWSLT
model when heads are pruned according to [, (solid
blue).
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https://arxiv.org/abs/1905.10650

Experiment Setup

Inherit the results of TinyBERT
Focus on Task-specific Distillation

General
Distillation

;( General ]

Task-specific
Distillation

~( Fine-tuned

Large-scale
Text Corpus

L TinyBERT J

Data Augmentation

‘ Task Dataset I

[
L

Augmented
Task Dataset

L TinyBERT

]

15



Experiment Procedure

1. Architecture Search + Distillation

2nd_General_TinyBERT 4L 312D

Teacher

2. Distillation

2nd_General_TinyBERT_4L 312D,
pruned by o

o

Fine-tuned bert-base-
uncased model on Task T°

y

Distilled_TinyBERT_4L model w
+ learnt architecture «

5.2 Experiment Procedure in the report

\

A

Distilled_pruned_TinyBERT_4L model




Search Method for Hidden Representation

Dimensions
e alpha = |aq,a,,as,...,a,], nis the hidden representation size
o forward_mask = torch.sigmoid(alpha) y
!
1+ — Example Model
[—4.53¢ — 05,—8.00,1.98, 1.23¢ — 02]
~ [0,-8,2,0]
0.5+
[4.53¢ — 05,1.00,9.93¢
— 01,2.47et— 03]
ISigmoid(a)
l +— | o | ] | i 1 _ — [— _
6 -4 -2 o 5 A . Input: [—1,-8,2,5] a = [-10,40,5,—6]
grad Scale down the gradient to (-10, 10)

grad =
100810 |grad| . . . .
5.5.1 Search Method for Representation Dimension in the report

grad: grad / 10**torch.logle(torch.abs(grad)+1le-9)) 17

.register_hook(



Search Method for Hidden Representation
Dimensions (Animation)

Example iter 1

Input: [-1,-8,2,5] a=| 5 ,5.,b#d]



Search Objective

Adopt similar approach like TAS!3!

. _ exp(z,) o log(F.pst(A)) when F 5 (A) > (1 + t)XR
arch = 08\ i exp(2) tAcosthcost Lo = 0 when (1 — t)XR < F,p5e(A) < (1 + t)XR
1 J=1 J . | —log(Feos:(A)) when Feost(A) < (1+t)XR
Y Y
Cross-entropy computational t — target ratio
classification loss cost loss R —tolerance

F.,s:(A) — computational cost metric, e.g., FLOPS

* Cross-entropy classification loss encourages the model to learn the useful architecture
 Computation cost loss encourages the model to minimize the model size

5.3 Search Objective in the report



Verifying the Effectiveness of the Search Method

(a) MNIST sample belonging to the digit ‘7’

n = 28% = 784

(Masking)

y

|

Classifier

A

Sigmoid(a)

AN

MNIST Noise ~ Gaussian

Expectation: Large «

Small a

Sequential(

(0): Linear
1): ReLU(
): Linear
): ReLU(
):
):

—

in_features=1568, out_features=128, bias=True)

N

in_features=128, out_features=64, bias=True)

~—"

Linear(in_features=64, out_features=10, bias=True)

(
(
E
(5): LogSoftmax(dim=1)

2
3
4
5

)

a~torch. Size(2n)




Verifying the Effectiveness of the Search Method

3L Experiment (15 epochs)

The basic model is evaluated to have accuracy 0.974.

Searching without FLOPS loss

Evaluation Search Target Size | Search Result Size | Search Result

(Accuracy) Ratio Ratio Split

0.975 / 0.589 [560, 363]
Searching with FLOPS loss

Evaluation Search Target Size | Search Result Size | Search Result

(Accuracy) Ratio Ratio Split

0.758 0.01 0.012 [20, 0]

0.937 0.04 0.040 [63, 0]

0.952 0.05 0.050 [78, 0]

0.970 0.10 0.100 [154, 3]

0.976 0.30 0.265 [336, 79]

0.977 0.50 0.452 [453, 255]

0.975 0.75 0.703 [588, 514]

0.976 1.0 0.951 [726, 765]

==> [act(al:n), act(p.2n)]

act(a) = count(sigmoid(a;) > 0.01)

==> Suitable compression
ratio without significant & J Z 3 &
performance drop

7 FAq

21



Verifying the Effectiveness of the Search Method

0.10 ratio (¥20% of the original image) 0.05 ratio (~10% of the original image)

Grey cells represent pruned dimensions
All digits combined covers ~50% of the grids (28*28)

Model learns to read dotted lines of writing

22



Verifying the Effectiveness of the Search Method

11L Experiment (20 epochs)

Searching without FLOPS loss

The basic model is evaluated to have accuracy 0.969.

Evaluation Search Target Size | Search Result Size | Search Result

(Accuracy) Ratio Ratio Split

0.961 ¥ 0.467 [425, 308]
Searching with FLOPS loss

Evaluation Search Target Size | Search Result Size | Search Result

(Accuracy) Ratio Ratio Split

0.113 0.01 0.010 [16, 0]

0.794 0.04 0.036 [51.7]

0.834 0.05 0.046 [69, 4]

0.916 0.10 0.100 [125, 32]

0.946 0.30 0.262 [288, 124]

0.960 0.50 0.456 [429, 287]

0.964 075 0.701 [539, 561]

0.940 1.0 0.963 [732, 778]

Sequential(
(0): Linear(in_features=1568, out_features=119, bias=True)
(1): ReLU()
(2): Linear(in_features=119, out_features=95, bias=True)
(3): ReLU()
(4): Linear(in_features=95, out_features=76, bias=True)
(5): ReLU()
(6): Linear(in_features=76, out_features=61, bias=True)
(7): ReLU()
(8): Linear(in_features=61, out_features=48, bias=True)

(9): ReLU()
(10): Linear
(11): ReLU(
(12): Linear
(13): ReLU(
(14): Linear
(15): ReLU(
(16): Linear
(17): ReLU(
(18): Linear
(19): ReLU(
(20): Linear(in_features=16, out_features=10, bias=True)
(21): LogSoftmax(dim=1)

—_

in_features=48, out_features=39, bias=True)

N

in_features=39, out_features=31, bias=True)

N N—

in_features=31, out_features=25, bias=True)

S —

in_features=25, out_features=20, bias=True)

S —

in_features=20, out_features=16, bias=True)

~—

23



Verifying the Effectiveness of the Search Method

Ratio
0.01
0.04
0.05

0.1
0.3
0.5
0.75

3L

w O o O

79
255
514
765

4L

o » O O

92
248
519
762

5L

O o0 U1 O

113
256
514
769

11L 15 epoch

5
24
140
306
549
768

11L 20 epoch

32
124
287
561
778

The number of noise dimensions used in
the resulting model

Ratio
0.01
0.04
0.05

0.1
0.3
0.5
0.75

3L
0.758
0.937
0.952
0.97
0.976
0.977
0.975
0.976

4L
0.765
0.914
0.935
0.965
0.972
0.976
0.972
0.971

5L

0.633
0.924
0.937
0.963
0.974
0.973
0.975
0.972

11L 15 epoch
0.113
0.797
0.865
0.925
0.957
0.967
0.962
0.954

11L 20 epoch

0.113
0.794
0.834
0.916
0.946

0.96
0.964

0.94

The accuracy of the resulting model

The search method performance is not good in deeper model



Search Space — Overview

r l .
Add & Norm Multi-Head Attention Scaled Dot-Product Attention
Feed )
FONA"a'd Linear t
e ] 1 MatMul
N Add & Norm Concat 4 4
o 'Yy SoftMax
c )
Scaled Dot-Product .]JA Mask (opt.)
| \—— Y Attention /]
e £l 1l Al Scale
Eosmo‘ndl @_@ ; r: r: 5
ncoding Linear P Linear P Linear MatMul
Input' 1 1
Embedding Q K v
! ¢ k&

Inputs

5.4 Search Space in the report



Search Space - Input Embedding Dimensions

Multi-Head Attention

Linear

[ Concat ]

y n ' Red variable represents the
prunable dimensions

Scaled Dot-Product

Attention ]

[lth, lH]
. : [leer lH]
[leV; lH] [lte lH] [lte, lH]

[x, y] represents a linear transformation of

5.4.1 Input Embedding in the report

a vector from x dimensions to y dimensions. .



Search Space — QKV

Hidden Representation

Dimensions (Low ran

Scaled Dot-Product Attention

(senlen, senlen)X(senlen, Y1)

k Multi-head attention)

Multi-Head Attention

[Zlv Le]

Ve ] = Genten i)

A

$

[ Softvax |
4

[ Mask (opt.) ]
1

Scale

(senlen, Ylok, )% (Slok, senlen) 4

= (senlen,senlen)[ MatMul ]

r

Q K

T

g

softmax(

V

[les Lok | [les Lok, |0 o [Les Loy ], = les Bl ]

Multihead attention forward requires Ly,

[ Concat

It

Scaled Dot-Product
Attention

-l

\%
28

= Ik, = lox; 5.4.2 QKV Hidden Representation in the report



Search Space — Feed Forward Intermediate
Representation Dimensions

| ™

Add & Norm
Feed N
Forward |/
—

N Add & Norm

Multi-Head
Attention

activation, e.g. gelu
T

R J

Positional @_(_? Linear [le, 1]

s

[lhi le]

Encoding

Input
Embedding

I

Inputs

5.4.3 Feed Forward Intermediate Representation in the report



Search Space — Multi-head

Multi-Head Attention

[ Concat ]

; [t

5.4.4 Multi-heads Pruning in the report
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Result: Searching on Input Token Embedding

Searching without FLOPS loss:

Task Evaluation

ColA 0.236 mcc (decreased by 0.19)
RTE 0.621 acc (-6.89%)
SST-2 0.894 acc (-2.50%)

Search Result
Size Ratio
0.406

0.456

0.455

TinyBERT distilled model for
comparison:

ColA (mcc) RTE SST-2
(accuracy) | (accuracy)
reproduced 4layer-
312dim TinyBERT 0.426 0.667 0.917

performance (10, 10)

5.6.1 Input Embedding Pruning in the report

Searching with FLOPS loss:

Task  Evaluation Search Target
Size Ratio
CoLA 0.267 mcc (decreased by 0.159) 0.5

CoLA 0.289 mcc (decreased by 0.137) 0.75
CoLA 0.355 mcc (decreased by 0.071) 1.0
RTE 0.646 acc (-3.14%) 0.5
RTE 0.646 acc (-3.14%) 0.75
RTE 0.653 acc (-2.09%) 1.0
SST-2  0.905 acc (-1.30%) 0.5
SST-2  0.906 acc (-1.19%) 0.75
SST-2  0.909 acc (-0.872%) 1.0

Search Result
Size Ratio
0.660
0.828
0.974
0.663
0.825
0.975
0.662
0.852
0.974

Why Large Dataset is less vulnerable to pruning?

> 10 epochs of small set)
2. Training data is more diverged, more general

1. Training involves more global steps? (10 epochs of large set




Result: Model Size

Number of parameters Ratio to original model
Bert-base-uncased 110074370 1.0
TinyBERT 4L 14591258 0.132
TinyBERT 4L input pruned 0.5 14112026 0.128

Conclusion: it is not efficient to prune away the input dimensions for compression, there
are little redundancy in the dimensions of the input embeddings.
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