LYU1803:

Opensource E-voting System for 8 million mobile devices

ESTR4998 Graduation Thesis Presentation

Maxwell Chan presents

supervised by Prof. Michael Lyu

Introduction

Motivation

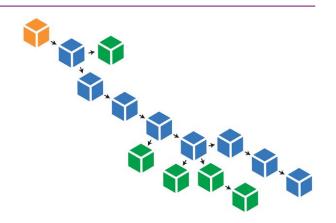
Paper-based voting

- Time and resources
- Disencourage voter
- Harm democracy

Motivation

Mistrust

- Public, Government, Computer
- Government controls computer → Public cannot monitor
- Network security / personal data leak incidents

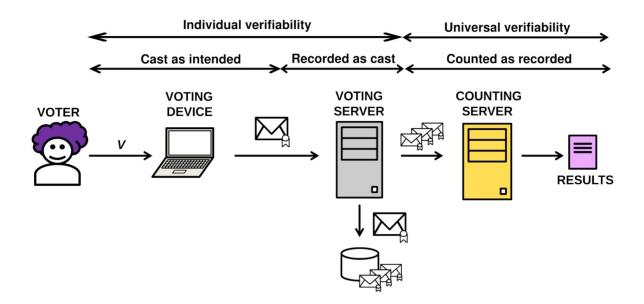

Cathay Pacific Data Breach Exposes 9.4 Million Passengers

Motivation

Blockchain

- Popular nowadays
- Reliable & trusted data
- Transparency, auditability, decentralization, ...

⇒ Voting + Blockchain


Background

- 1. E-voting consideration
- 2. Blockchain

E-voting consideration

End-to-end verifiability

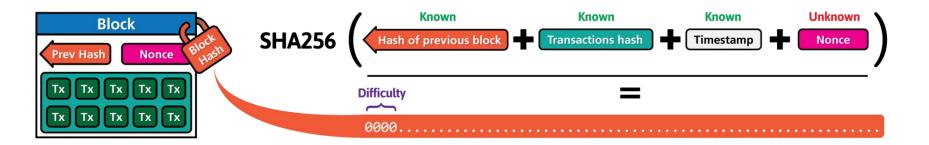
Promote overall integrity

E-voting consideration

Authentication

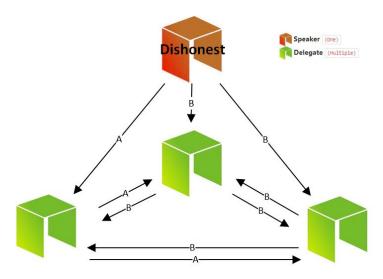
- Only eligible voter can vote
- Ballot should be anonymous

Blockchain


- A way to store data
- Non-modifiability
- Distributed & decentralized → need consensus

Blockchain

Permissionless blockchain


- Proof-of-work

Blockchain

Permissioned blockchain

- Byzantine Fault Tolerance

Objective

Goal

- E-voting application
- Satisfy e-voting consideration
- Use blockchain technology
- ⇒ Transparent & reliable e-voting for public

1st Term

- Explore and study
- System design
- Basic implementaion

Related work

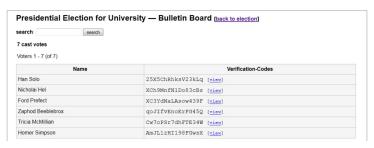
E-voting in Hong Kong

NO end-to-end verifiable system

Popvote

- Civil referendums
- Reports on security loopholes

Submit


End-to-end verifiable voting system

Prêt à Voter, Scantegrity, Punchscan, Pretty Good Democracy, ...

Helios

- Opensource + online implementation + remote voting
- Trustees: private keys
- Ballot fingerprint → ballot bulletin board
- Decrypt aggregation → Not single ballot

Candidate	Vote Code	Acknowledgment Code
ALCHEMIST	5962	218931
ANARCHIST	2168	854269
BUDDHIST	3756	129853
MARXIST	1247	875391
NIHILIST	9881	039852
		ID: 4896327

E-voting using blockchain

1 vote = 1 coin

- Intermediate result
- Provable intention

Ballot as data

- Secure storage

Design

Overview

Helios - as reference

- Cryptography
- Limitation & Modification

Blockchain - as secure storage

- Type
- Protocol design

Cryptogrpahy

Homomorphic El Gamal encryption

Create election

p: a prime number

g: a primitive root of p

For each trustee:

private key: x_i , $0 < x_i < p - 1$

public key: $y_i = g^{\wedge}(x_i) \mod p$

Election public key:

 $y = y_1 y_2 y_3 \dots mod p$

Public: $\{p, g, y\}$

Private: $\{x_1, x_2, x_3, ...\}$

Cryptogrpahy

Prepare ballot

For each option in each question:

Public: $\{p, g, y\}$

if voter choose this option, i = 1; else i = 0

$$m = g^i \mod p$$

random number: r, 0 < r < p - 1

$$c_1 = g^r \mod p$$

$$c_2 = y^r m \mod p$$

Encrypted option: $\{c_1, c_2\}$

Cryptogrpahy

Compute result

For each option in each question:

Aggregation:

Encrypted option of voter a: $\{c_{1,a}, c_{2,a}\}$

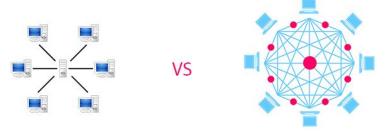
$$c_1 = c_{1,1}c_{1,2}c_{1,3}... \mod p$$

$$c_2 = c_{2.1}c_{2.2}c_{2.3}... \mod p$$

Decryption:

Public:
$$\{p, g, y\}$$
, Private: $\{x_1, x_2, x_3, ...\}$

$$g^m = c_2 (c_1^{\land}(x_1)c_1^{\land}(x_2)c_1^{\land}(x_3)...)^{-1} \mod p$$

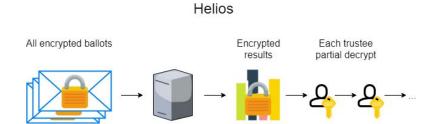

Result: m (discrete logrithm on g^m base g)

Denial of service attack

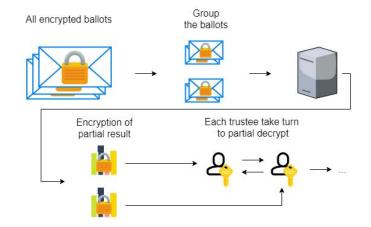
- Single server / database
- Single point of failure

⇒ Blockchain

- Distributed
- Many copy
- Better trace



Slow tally


- Aggregation
- Discrete logrithm

⇒ Allow decrypt in batch

Won't violate anonymity

Our proposal

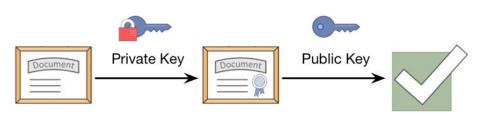
Coercion

- Voter prove to coercer
- Coercer sits next to voter
- Voter give out his credentials

Helios: allow re-voting

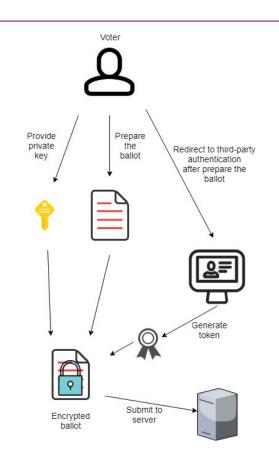
Coercion

- Keep re-voting mechanism
- ⇒ Option for in-person voting
 - Setup kiosk
 - Higher priority



Authentication

- Google / Facebook
- No public verification

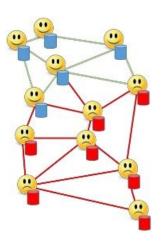

⇒ Ballot signature

- RSA key pair for each voter
- Private key sign the hash

Authentication

- Key owner = user?
- ⇒ Suggest further authentication
 - Use valuable credential
- ⇒ API
 - Generic for different election
 - Third-party authentication

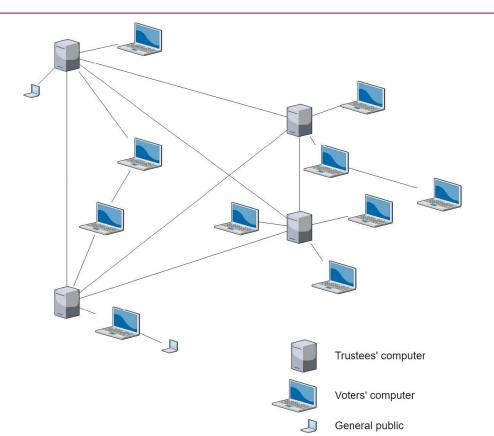
Knowledge of who has voted


- Ballot bulletin board
- Obvious voter intention → problematic
- ⇒ Not guessable voter ID
- ⇒ 'Abstention' option
- ⇒ Don't disclose voter ID

Type of Blockchain

Permissionless

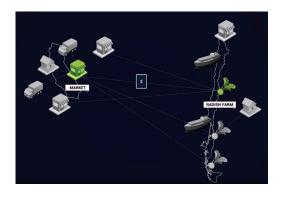
- 51% attack
- Computationally intensive consensuses


Permissioned

- Trust on trustee
- Allow private election

Roles and permission

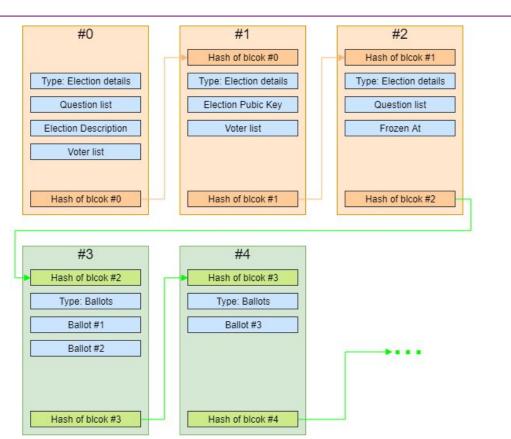
Trustee: read + write


Voter / public: read

Design a blockchain protocol for voting

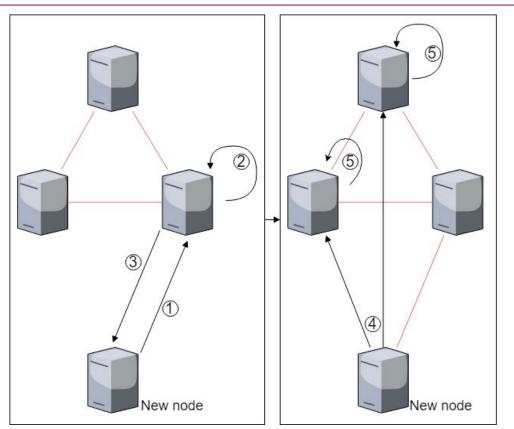
Opensource library

- Not many available
- 'Hyperledger Fabric'
- Security loopholes

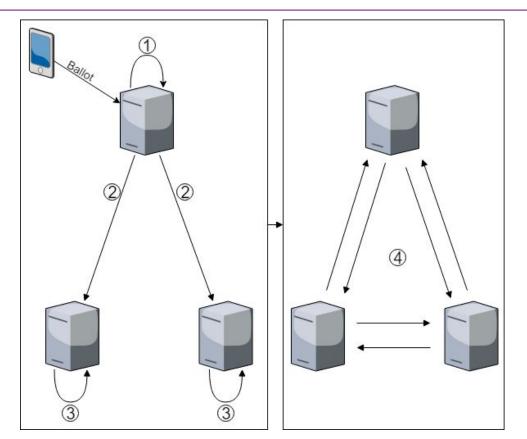


Define our protocol

- Lightweight
- Fit for voting
- New vulnerabilities → Opensource

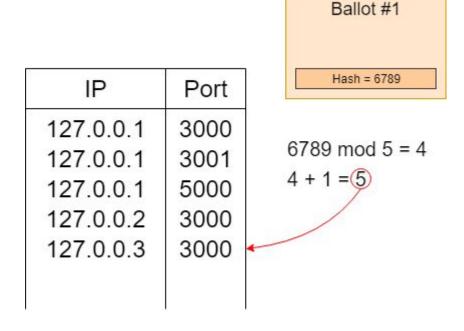

The Blocks

- 1 blockchain for 1 election
- 'Election details' & 'Ballot' blocks
- 'Ballot' block generated in a regular time interval


Handshake

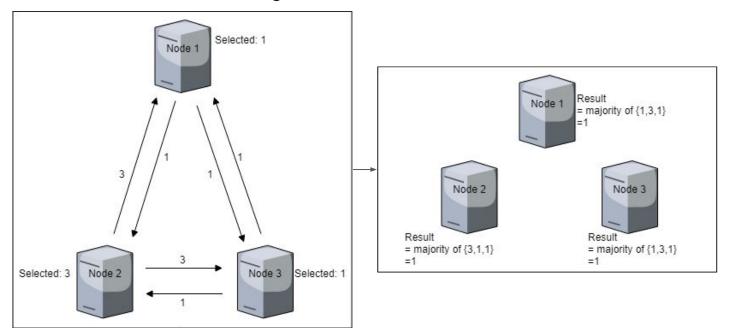
- Every trustee's node connect to each other
- Ping periodically

Ballot submission


- $>\frac{1}{2}$ trustees sign \rightarrow verified

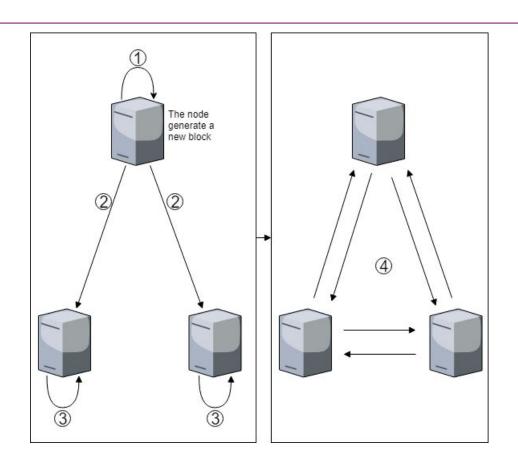
Block generation

Node selection


- Use 'last verified ballot' with time buffer
- Nodes join/leave network →
 Result may be different

Block generation

Consensus


- Byzantine Fault Tolerance algorithm

Block generation

Block broadcasting

- >½ trustees sign → block
 verified → blockchain

Implementation

Overview

Client-side (voter / election organizer)

- Create election
- Vote
- Compute result
- Almost like Helios, except user-friendly interface

Server-side (trustee's nodes)

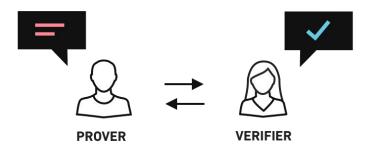
- Connect to each other
- Broadcast ballot
- Generate & broadcast block
- Voting-related function

Demo

- 1. Connecting nodes
- 2. Create an election
- 3. Vote in the election
 - Ballot validation & broadcast
 - Block generation & broadcast
- 4. Compute result

Conclusion

Summary


- Studied on end-to-end voting / blockchain voting
- Proposed modification to Helios & Designed blockchain protocols
- Basic implementation

Planned work

- 1. Zero-knowledge proof
- 2. Full blockchain verification
- 3. User interface
- 4. Apply proposed modification

Zero-knowledge proof

- Proving someone knowledge without learning other information
- Implemented in Helios

Zero-knowledge proof

Trustee knowledge on private key

- Unable to decrypt the election
- Fraud a public key \rightarrow Decrypt all ballots himself

Trustee honest decryption

- Manipulate ciphertext \rightarrow Modify election result

Voter honest encryption

- Encrypt invalid value \rightarrow Affect the result

Full blockchain verification

- Ballots re-verification in new block
- Trustee's signature verification
- Connection request validation

- ..

User interface

Web application

- Portable
- No installation
- Simpler \rightarrow Work on other aspects

Mobile application

- Personal device → Privacy
- Security
- No need to rely on browser

Apply proposed modification

- As stated in Design section
- To prove these can positively change

Q & A