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Previously on our project...

o NPC:

character not controlled by a player but by computer through artificial intelligence
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Previously on our project...

o Policy Network — Supervised Learning
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Objective

o Policy Network — Reinforcement Learning

o Evaluation Network — Supervised Learning

o Selection Strategies
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General Structure
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Piece Selector & Move Selector

Piece Selector NN Structure Move Selector NN Structure
input layer first hidden layer input layer first hidden layer
9x10x8 9x10x 32 9x10x9 9x10x 32
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output layer second hidden layer output layer second hidden layer
90 9x10x 128 90 9x10x 128




Feature Channels

Feature Channel 1 Pieces belonging to different sides
Feature Channel 2 Pieces of Advisor type

Feature Channel 3 Pieces of Bishop type

Feature Channel 4 Pieces of Cannon type

Feature Channel 5 Pieces of King type

Feature Channel 6 Pieces of Knight type

Feature Channel 7 Pieces of Pawn type

Feature Channel 8 Pieces of Rock type

Feature Channel 9 Valid moves for the selected piece

(only for Move Selector)




utput Sample
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Current chessboard Output from piece selector Output from move selector
(black cannon move (green circle on chessboard) (red circle on chessboard)

from green to red)




Reinforcement Learning

o inspired by behaviour psychology

o exploration vs exploitation

action
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o how to take actions

o to maximize the reward




Reinforcement Learning

o Assigning Rewards

o Positive Reward: 1 for moves from winning side

o Negative Reward: not used --[ Agent
state | | reward action
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o Compete with different middle version models 1

o to avoid overfitting




Training

o change the opposite model roughly every 4,000 games

o in total around 40,000 games, over 2,000,000 moves

Piece Selector Prediction

Move Selector Prediction




Piece Selector Prediction

Testing
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Results

vs Version 001

0.69

Winning ¢,
Rate

0 2 4 6 8 10 12
Version Number




Results

vs Previous Version
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vs Version 018
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Evaluation Network

o Why?
o Only Policy Network is not enough

o Need to evaluate the winning rate of a chessboard status

Classification Regression
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Evaluation Network

"6:6,';:

i‘".
A

P' \
PV
.y >
SO
| WA
o
J/, \\

three hidden layers




Network Input

Feature Length
Player Side 1

The Number of Pieces of Each Type 14
Pieces List (alive or not, xy-coordinates) 32*%3
The number of valid moves for Rock, Cannon and Knight 12
Attack and Defend Map 90




Training

o How to get the target values?

o one evaluation function from an open-source API

o do some mapping, shrink the range
0~ 100 0~ 100

+101~+700 +101~+170

over 9000 +200

o Trained over 1,900,000 chessboard statuses

o Testing Results: loss ->~ 20




How to use the models?
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Minimax Searching

o Select minimum and maximum value in turn
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Selection Strategy
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Selection Strategy Enhancement

o Eliminate moves with probabilities below Piece type Quotal Quota 2
a certain threshold at first .

King 4 4
Advisor 2 2
o Different max breadth for different layers Bishop 2 2
024->12->12 Rock 5 3
Cannon 5 3
o Different quota for different piece types Knight 4 2
Pawn 2 1




Testing

o Aliyun Server

o Socket.io c_) an E E
aliyun.com

o Multiple login




Results

o The winning rate is 76%, won 19 out of 25 games

o On average, it takes 26.3 moves to win

Number of Games Average Number of Moves
Win 19 26.3
Lose 6 37.5
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Discussion & Conclusion

o Policy Network and Evaluation Network
o Supervised Learning and Reinforcement Learning
o performed much better than the model in Term 1

o canh compete with ordinary people now

o need further improvement:
o negative reward is not working in Reinforcement Learning
o continue to train the model

o try different model structures







