Studies of Model Selection and Regularization for
Generalization in Neural Networks with
Applications

GUO, Ping

Supervisor: Professor Michael R. Lyu

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science and Engineering

(©The Chinese University of Hong Kong
November 2001

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)
intending to use a part or the whole of the materials in this thesis in a proposed publication

must seek copyright release from the Dean of the Graduate School.

Acknowledgement

To the many people who have helped me in my life and my research work, | must thank
them. In particular, my heartfelt thanks to:

First | would like to thank my supervisor Professor Michael R. Lyu for giving me
the opportunity to join his research group. He provided technical training, constructive
criticism, guidance, and inspiration. He also taught me to organize my thoughts and
communicate them in a coherent manner. | also thank Professor I. King, for giving me
some useful suggestion and special comments on parts of my research work.

| would like to thank all the members of the research group for being good friends,
thanks them for many useful discussions and lots of fun times.

| would also like to express my deep appreciation to Professor K. S. Leung, the Chair-
man of Department of Computer Science and Engineering, and Professor L. W. Chan, the
head of graduate division at Department of Computer Science and Engineering, for their
help and encouragement during my study toward to finishing this thesis.

Thanks are also due to the staff in the Department of Computer Science and Engineer-
ing for their assistance and advice, and my other friends and colleagues for their help and
understanding while | was completing this thesis.

Finally, I am grateful to my wife for her understanding, encouragement and support
during difficult times. | would like also to thank my parents and my daughter for their

love and lifelong support.

Abstract

This thesis investigates the generalization problem in artificial neural networks, attacking
it from two major approaches: regularization and model selection.

On the regularization side, under the framework of Kullback—Leibler divergence for
feedforward neural networks, we develop a new formula for the regularization parameter
in Gaussian density kernel estimation based on available training data sets. Experiments
show that the estimated regularization parameter is valid for most cases. With the derived
formula, all sample data sets can be used to estimate the smoothing parameter, which
is less computationally expensive than using the leave-one-out cross-validation method.
Furthermore, the new covariance matrix estimation formula is suitable for small sample
data with high dimension setting in the regularized Gaussian classifier case.

On the model selection side, both theory and extensive experiments are conducted
for investigating the Bayesian Ying-Yang (BYY) model selection criterion to determine
the cluster number in small sample-size cases. We derive new formula for estimat-
ing the smoothing parameters with proper approximations in the Smoothed Expectation-
Maximum (SEM) technique. Experimental results show that with improved mixture
model parameters, the BYY model selection criterion performance is enhanced.

From the model selection viewpoint, generalization can also be improved by combin-
ing several nets to form ensemble networks. The relationship between Mixture of Experts
(ME) and the ensemble networks is established in this thesis. In an approximation where
ME reduces to ensemble neural nets, the ensemble nets can be globally optimized in-

stead of being individual members. A new method is consequently proposed to average

ensemble networks in the parameter space.

The stacked generalization method provides a way of combining trained networks
altogether. This approach uses partitioning of the data set to find an overall system which
improves generalization performance. In order to investigate this scheme effectively, we
develop a new learning algorithm called Pseudoinverse Learning algorithm (PIL). The
efficiency of the PIL algorithm is demonstrated through several experiments.

Two applications are investigated in detail for model selection. The first application
is in the image processing area. Automatic determination of the region number in im-
age segmentation is a step to high level understanding and interpretation of an image by
machine. A model selection criterion can be applied to determine the region number if
the number of segments to be yielded is equal to the number of clusters in the image
feature space. Experimental results show that with the model selection criterion, we can
determine a reasonable region number for automatic image segmentation @it
knowledge.

Another application is in the software reliability modeling area. We investigate the
use of the mixture model analysis as a tool for early prediction of fault-prone program
modules. The EM algorithm is engaged to build the model. By employing only software
size and complexity metrics, this technique facilitates the development of an unsupervised
model for predicting software quality without the prior knowledge of the number of faults
in the modules. The technique is successful in classifying software into fault-prone and
non fault-prone modules with a relatively low error rate, thus providing a reliable indicator

for software quality prediction.

AL AU S 2 B R R I T A U BR AN RE T S FLFE R -2 it 5
HE

A SCER T A LA a8 H 4% b i B AN BE D R . WG RRANEE S, A
FE T ik AERGRERELGH AL, ARHHSCEE TIEW A AT sE TAE.

FIRTE AR AT A% FRAMGE I T &R L T 4 A e B3R OA 1 — R R R
TP N FEIR KNSR BB - A% 2 BURE , AR 2] —MF Tikhonov M 2% . &M
RS WE N T % AZAG ST - 280, vl B T 9l S iR A 8 iy s 2k
fhigh. BB REBUR THH A LG50 28U R A iy & W —
B AR .

TE Kullback-Leibler {5 B B MIAHELE N, 50 800 5 20 88 25 78 W 4 /D
FEASIE U T FRAMTHELL T 8 1 57 Z M M An AR . FRFERRE T 3300
i 2 h st . BRI AT AR IE N 2 EE R FREEAN . R
FrARRI A, &R HRME 28, miEEH®E 2 X5
IEFHE SR # N,

AN E B FIRET T/DBEAEASIS I T F BYY A5 B 358 452 i o 4 131 Bk
H M. 72—l s ol A T I Mmsr a2 s, &
Eaxk S B, ¥R F Bootstrap ok SEM Bk s & 228, mf DA %
BY'Y A5 B 5 5 v HI (1) HERfE 2R

&5 G 2 (B A SR M 45 A AR S 4 A L AT DAPIGE SR AN BE) . ASER i dsr
THE A HEERIEG(ME)MI AR, TERFFRIEI T » Rk —AR A o i B dig A
S B, ME SBALBIAH G SRS, TEEMERL T, S E%s 2L
JE AT AS SR T AH A A8 4% b) S 1 A A% B AR AL . AL S AR AS RO AE R T4
FZY eI H EM B kRS, LbAh, BERE T T 22 es T sk G AR A%
1T .

FA B BB AT IR — RV 4 4% T A7 BB T HE S S A AR &
GAE—RM A, Gl T MERERZNREMNEE D . B T A8 isE
FERHT, RMMBET —FEHMERFIEPIL). BB EEH PIL HikaK
= B ROR .

FT Bl o 5 I S A0 RS B R A v A B A B A i B R
SHN B B IRAMBUE BB AT 5 B H SR 5 ARAE A R A0 B8k
H IE A7 A e s 7 338 4 v HI 2R i e B H . B BB &S SR R BEAE K 2 WY
PR R AR Y g v HI m] SEECG R AY [B H . SR IR A e Bk eE B
B 53 B 52 B% R P BE o

9 IR G ABE B S5 A 3 5 HH TR 2 R 85 AR E A PR M EAT T IR e . 18
R A R~ AN A MR B B, B AR A B A TR op B E R H i St B AR
I » F EM Sk dum] g L FEl k- & . tbAh . Akaike 15 &
MER o] B R AR T L B, A5 AR T R B RR O JE AR T AR R R oy B 0 B
BUECH o FRAM AT % A B0 50T B T M A s AL B 23 B & A HE 8 AR O A H e Y
KR, i HLE Sy AR R A, B AA D FE R R & TE B A R AT B e

o

Contents

1 Introduction 1
1.1 Generalization in Artificial Neural Network 1
1.2 ThesisSOVerview i i e e e e 3
2 Regularization: Feedforward Neural Networks Case 8
2.1 Introduction e 8
2.2 System Probability Function o oL 9
2.3 Tikhonov Regularizer 12
2.4 Estimation of Regularization Parameter 17
25 EXPeriments 22
2.6 DISCUSSION e 28
27 SUMMANY . . . o o e e e e 31
3 Classification for Small Sample Set with High Dimension 32
3.1 Introduction 32
3.2 Classifications 33
3.2.1 Classification with Finite Gaussian Mixture Model 33
3.2.2 Covariance Matrix Estimation 35
3.3 Smoothing Parameter Selection. 40
3.3.1 Selecting by Monte Carlo method. 40
3.3.2 Selecting by Taylor expansion Approximation. 42
3.4 Approximations for Regularization Term 44
3.5 Comparison of KLIM with Other Discriminant Analysis Methods 47

\'

CONTENTS

3.5.1 Reviewofpreviouswork a7
3.5.2 Comparison of KLIM with RDA and LOOC 49
3.6 ExperimentResults 53
3.6.1 Syntheticdata., 53
3.6.2 RamanSpectraData, 56
3.6.3 DISCUSSIONS 57
3.7 SUMMArY e e e e 58
4 Cluster Number Selection in Small Sample Set Case 60
4.1 Introduction e 60
4.2 Cluster Number Selection. 62
4.2.1 Finite MixtureModel 62
4.2.2 BYY theory for finite mixture model and EM algorithm 62
4.2.3 Model Selection Criterion 63
4.3 Parameter Estimation with Bootstrap Technique 64
4.3.1 Bootstrap Technique 65
4.3.2 Parameter Estimation with Bootstrap 65
4.3.3 Summary for Bootstrap Technique 68
4.4 BYY Data SmoothingTheory 69
4.5 Practical Implementation Consideration 69
4.5.1 Experiments for Data Smoothing. 70
45.2 Smoothing Parameter Estimation 71
453 EXperiments 77
4.6 SUMMAIY o e e 80
5 Ensemble Neural Networks 82
5.1 Introduction 82
5.2 Relationship between ME and Ensemble Neural Networks 83
5.2.1 Reviewof Mixtureof Experts 83

Vi

CONTENTS

5.2.2 EnsembleNetworks L. 85
5.2.3 Experiments for Averaging in the Functional Space 89
5.3 Averaging ConnectingWeights 91
5.3.1 Problemsof Weights Average 92
5.3.2 Solutions for Weights Average 93
5.4 Experimental lllustration L Lo 95
5.5 Summary e 98
6 Pseudoinverse Learning Algorithm 99
6.1 Introduction 99
6.2 The Network Structure and Learning Algorithm 100
6.2.1 The network Structure oL 100
6.2.2 Existence ofthe Solution, 103
6.2.3 Pseudoinverse Solution is the Best Approximation 103
6.2.4 The Pseudoinverse Learning Algorithm 104
6.3 Adding and Deleting Samples 106
6.4 NumericalExamples 108
6.4.1 Function Mapping Examples 108
6.4.2 Generalization 111
6.5 Stacked Generalization 113
6.6 DiscussionsonPILFeatures, 119
6.7 SUMMANY o e e 124
7 Application: Automatic Image Segmentation 125
7.1 Introduction 125
7.2 Background 126
7.2.1 Clustering using Finite Mixture Model 127
7.2.2 Model Selection Criterion 127
7.2.3 Bayesian Probabilistic Classification 127

vii

CONTENTS

7.3 Application to Image Segmentation 128
7.3.1 ColorSpace. 131
7.4 Experiments for Color Space Selection 134
7.5 SUMMANY e e 136
8 Application: Software Quality Prediction 137
8.1 Introduction 137
8.2 Modeling Methodology 139
8.2.1 Finite Gaussian Mixture Model With EM Algorithm 139
8.2.2 Model Selection Criterion 142
8.2.3 Bayesian Probabilistic Classification 143
8.3 Data Description and Analysis Procedure 144
8.4 Quality Prediction Results and Discussion 152
8.4.1 Misclassificationerrors 152
8.4.2 Classification Probability 153
8.4.3 Advantages of Mixture Model Analysis 155
8.5 Summary e 156
9 Conclusions 157
A Formula of Estimating Smoothing Parameter 160
B Publication List 162

viii

List of Figures

11

2.1
2.2
2.3

24

2.5
2.6

2.7

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

Thethesisoverview. 4
Comparison of regularization in function mapping problem. 23
Training epoch for the exponential function approximation problem. . . . 24

The training mean square error (MSE) on the training data sef;aoal

the validation data set, plotted versus the smooth pararhgter. 24
Software reliability growth model approximation problem with data set

SYSL. e 25
Training epoch for the software reliability growth model data set sysl. . . 25
The MSE on the training data set afdn the validation data set, plotted

versus théh, forsysldataset. 26

The neural network output for software reliability growth model approxi-

mationwithdatasetsys3. 26

h vs. generated sample numbéro 41
TheJ(h) function with some approximation. 54
The 2-D synthetic data set with three clusters. 66
Bootstrap experiment forIrisdataset. 68
The synthetic dataset,4 clusters 71
The synthetic dataset,6¢clusters 72
The lrisdataset,3clusters 73
The quantized method for the synthetic data set with 3 clusters. 77

iX

LIST OF FIGURES

4.7 TheJ, versusk plots for different. values. 78

4.8 Gradient descent approximationvof 79

4.9 The results for the gradient descent approach that estirhadesl the
corresponding/; (k) CUrVES. 79

4.10 The results for the gradient descent approach that estirhaded the

correspondingz(k) curves. 80
5.1 The scaled test errors vs. network numker. 91
5.2 Weight space withlocal minima. 94

5.3 The individual networks output and the ensemble network output with

averaged weightparameter. 95
5.4 The output layer weights distribution of 30 networks. 96
5.5 Experiment for exponential functionmapping 97
6.1 The trained network output fgr= sin(x) function mapping problem. . 108

6.2 The trained network output for= sin(x)cos(z)+ /3 function mapping

problem. 109
6.3 The trained network output for function defined in Eq. (6.19). 109
6.4 The trained network output for function defined in Eq. (6.19). 110

6.5 The neural network model trained with software reliability Sys1 data set
(normalized). 115
6.6 The stacked generalization output for Sysl data set (normalized). 116

6.7 The three-layer network trained with software reliability Sysl data set

(normalized). 117
6.8 The stacked generalization output for Sysl data set (normalized). 118
6.9 The network output for Sys3 data set (normalized). 120

6.10 The three layer network model trained with software reliability Sys3 data

set(normalized). 121

LIST OF FIGURES

6.11 The stacked generalization output for Sys3 data set (normalized). 122
7.1 "House”image. 129
7.2 *“Sailboat”image. 131
7.3 Syntheticimagewith8classes 132
8.1 The relationship of metric TC with other metrics. 147
8.2 Datadistributioninvectorspace, 149
8.3 Thelog likelihood functionaswellasAICvVB. 150

8.4 The plot for two components of the joint density projected at principal axis.154

Xi

List of Tables

2.1

3.1
3.2
3.3

5.1

5.2

6.1
6.2
6.3

8.1
8.2

8.3
8.4

Experimental results for regularization parameter estimation. 30
Mean classification accuracy for experiment1 54
Mean classification accuracy for experiment2 55
Mean classification accuracy for experiment3 56

The ensemble network weighting parameters; and individual network

P 89
The networks Errors e 97
Generalization ability test results. Given training errdiis™. 111
Generalization ability comparison of two examples. 111

Training error and generalization error for software reliability growth model

dataset s, 119

The eigenvalues forthe MISdataset 148
Mean vector component as well as maximum and minimum value for
each metric, and the diagonal values of covariance matrices obtained by

ML with EM algorithm. 151
The classification for MIS data set by mixture model analysis. 152
Misclassification rate for randomly drawing 30 samples out of 89 mod-

ules without replacement. The mean and standard deviation are computed

based on 50 times repeated experiments. 153

Xii

Chapter 1

Introduction

1.1 Generalization in Artificial Neural Network

In recent years neural network computing has emerged as a practical technology, with suc-
cessful applications in many fields. Itis widely acknowledged that successful applications
of neural computing require a systematic approach. The principle of neural learning re-
search has experienced an explosive period and many theoretical issues have been studied
and clarified [1, 2, 3, 4, 5].

In essence, almost all of the neural network applications can be summarized as fol-
lows: Given a set of randomly generated data, and a family of neural networks all sharing
a common “architecture”, construct a neural network from this family, that best approx-
imates the data with high probability [6]. Stated in this form, the problem can be con-
sidered as nonlinear curve-fitting or nonlinear regression. What distinguishes the use of
neural networks for this limited purpose, as opposed to many other standard techniques,
is the widespread belief that “neural networks can generalize”. In other words, it is be-
lieved that, after a neural network has been “trained” on a sufficiently large number of
input-output pairs in a supervised learning manner, it can then correctly predict all future
input-output pairs, even for those inputs that the network has not seen previously. It is
shown thaperfectgeneralization by a neural network is an impossibility. Rather, all that

one can aspire to is that, after a sufficient amount of training, the trained neural network

CHAPTER 1. INTRODUCTION

can predict the correct outpwith high probabilityon a randomly selected test input.

Neural Networks, like other flexible nonlinear estimation methods such as kernel
regression and smoothing splines, can suffer from either underfitting or overfitting [7].
Therefore, they exhibit poor generalization performance in these cases. A network that is
not sufficiently complex can fail to detect fully the signal in a complicated data set, lead-
ing to underfitting. On the other hand, a network that is too complex may fit the noise,
not just the signal, leading to overfitting. Overfitting is especially dangerous because it
can easily lead to predictions that are far beyond the range of the training data in many
common types of networks. Overfitting can also produce wild predictions in multilayer
perceptrons even with noise-free data. The degree to which overfitting may happen is
related to the number of training patterns and the number of parameters in the model. In
general, with a fixed number of training patterns overfitting can occur when the model has
too many parameters.

The best way to avoid overfitting is to use lots of training data. While in some real-
world cases, it is impossible to obtain large enough number of training data. Given a
fixed amount of training data, there are two main approaches to avoid underfitting and
overfitting, and hence getting good generalization: model selection and regularization.
Model selection is to select the model which “best explains” the given data from a set
of models; Regularization is the procedure of allowing parameters bias towards what are
considered to be more plausible values, which reduces the variance of the estimates at the
cost of introducing bias. In the article of Gemea al[8], a more rigorous approach on
the trade-off between bias and variance is discussed. The statistical bias is the difference
between the average value of an estimator and the correct value. Underfitting produces
excessive bias in the outputs, whereas overfitting produces excessive variance.

In the literature, there exists some research work related to model selection or regu-
larization, for examples, Moody [9] regarding weight decay and Weigend [10] regarding

early stopping. Weight decay [9] and early stopping [10, 11] are the most popular meth-

CHAPTER 1. INTRODUCTION

ods of regularization. Combining networks [12] can be categorized as a special case of
model selection, which selects all models to form ensemble networks. To estimate gener-
alization error, Bartlett [13] obtains learning-theory results in which generalization error
is related to the.; norm of the weights instead of the Vapnik-Chervonenkis (VC) dimen-
sion [14, 15]. But some problems still need to be studied in details, for examples, model
selection criterion performance and regularization parameter estimation. The goal of this
thesis is to investigate the generalization problem in both unsupervised and supervised
learning cases. In addition to exploring the regularization in feedforward neural networks
model and in Gaussian mixture model under the framework of the Kullback-Leibler diver-
gence, this thesis investigate many other topics, including the Beyesian Ying-Yang (BYY)
model selection criterion performance in small number samples case, the generalization
with ensemble networks, and model selection in some practical applications for automatic
image segmentation as well as software reliability engineering.

Figure 1.1 shows the thesis overview. More details are described as the following.

1.2 Thesis Overview

Chapter 2: Under the framework of the Kullback-Leibler divergence, we prove that one
particular case of the system entropy with Gaussian probability density and kernel
density estimation reduces into the first order Tikhonov regularizer when conduct-
ing the maximum likelihood learning for the network parameters for feedforward
neural networks. The regularization parameter is the smooth parameter in kernel
density estimation, which can be estimated by a newly derived formula. The for-
mula is developed for online approximate estimation of the regularization parameter
using training data. Experiments show that the estimated regularization parameter
is the same order as that estimated by the validation method. The similarity and

difference of the obtained results with other’s work are also discussed.

CHAPTER 1. INTRODUCTION

Generalization in
Neural Networks

— I

Model Selection Regularization

lIback-leibler
Model selection Ensemble ivergence
e B A networks E Multilayer] Gaussian]

Neural Network Mixture Model

Regqularization parametgr
estimation formula
Small HiaH-di .
samples Ign-aimension
Small sample set

Synthetic
Data Set

Software Reliability
Growth data

Stacked

generalization

Experiments on
performance

Covariance Matrix &
regularization parameter
estimation formula

Pseudoinverss

Learning
Algorithm

Synthetic
Data Set

Figure 1.1: The thesis overview.

Synthetic
Data Set

Software module
classification

Spectra
Data Se

Chapter 3: For small sample with high dimension setting in Gaussian classification case,
if the dimensiond of variablex is comparable to the number of training samples
n; in classy, the problem becomes poorly-posed. Even worse, if the numpef
training samples is less than the dimensionality, the problem becomes ill-posed. In
this case, not all parameters can be properly estimated and classification accuracy
is degraded. To solve these problems, one of the method is regularization. Under
the framework of Kullback—Leibler information measure (divergence), the new co-
variance matrix estimation formula with regularized term is developed. An efficient
smoothing parameter approximation formula is derived too, and the approxima-
tion is found from experiments to be valid for most cases. With Kullback—Leibler

information measure, all samples can be used to estimate the smoothing parame-

CHAPTER 1. INTRODUCTION

ter without the need of partitioning data set into training and validation samples,
which is less computation-expensive than using the leave-one-out cross-validation

method.

Chapter 4: Inthis chapter, we describe the results of investigating the BYY data smooth-
ing theory in the finite Gaussian mixture model case. Both theory and intensive
experimental work are done for investigating BYY model selection for determining
the cluster number in small number samples case. Taylor expansion approximation
is used to approximate the integration in the cost functions. A new formula for
estimating smoothing parametkrs derived under a proper approximation. Ex-
perimental results show that with Bootstrap or Smoothed EM technique estimated
mixture model parameters, the BYY model selection criterion performance is im-

proved.

Chapter 5: Generalization can be improved by combining neural networks as well. The
relationship between the Mixture of Experts (ME) and the ensemble networks is
established in this chapter. As a special case that soft-max function is independent
of input variables, the ME reduces to ensemble neural networks. With this approx-
imation, it is a global optimization of the ensemble networks instead of individual
members. Simultaneously, the weighting average coefficient for the ensemble net-
works can be obtained through the EM-like algorithm. Experiments show that the
ME is more general and powerful model than the ensemble networks in param-
eter estimation with maximum likelihood learning. Besides, by using a learning
methodology to avoid networks falling into the different local minima, we make it
possible to overcome the difficulty of averaging the ensemble networks in the pa-
rameter space. Experimental results show that the adopted strategy is efficient to
improve network performance with finite training samples and the ensemble net-

work architecture is much simpler than that in the functional space.

CHAPTER 1. INTRODUCTION

Chapter 6: The method oftacked generalizatioprovides a way of combining trained
networks together, which uses partitioning of the data set to find an overall sys-
tem with improved generalization performance. However, this approach requires to
train a lot of networks for level-1 training samples, which is very computation-time
consuming when using back propagation algorithm to perform the required task.
In order to efficiently investigate the performance of the stacked generalization, we
develop a new learning algorithm called Pseudoinverse Learning Algorithm (PIL)
for feedforward neural networks. The algorithm is based on generalized linear al-
gebraic methods, and it adopts matrix inner products and pseudoinverse operations.
Incorporating with a network architecture of which the number of hidden layer
neurons is equal to the number of examples to be learned, the algorithm eliminates
learning error by adding hidden layers and gives an exact solution (Perfect Learn-
ing). Unlike gradient descent algorithms, the PIL is a feed-forward only, fully auto-
mated algorithm, including no critical user-dependent parameters such as learning
rate or momentum constant. The experimental results show the efficiency of the

PIL algorithm.

Chapter 7: The model selection can be applied to image segmentation applications. Au-
tomatically determining the region number in an image segmentation is a step to
higher level understanding and interpretation of an image by a machine. The BYY
model selection criterion can be applied to determine the region number when we
assume that the number of segments to be yield is equal to the number of clusters in
an image feature space. The influence of the color space selection on region number
determination is experimentally explored. Experimental results indicate that with
the BYY model selection criterion, in most cases we can select the reasonable re-
gion number as long as the proper color space is selected. This approach makes it

possible for automatically segmenting a given image wittaoprtiori knowledge.

CHAPTER 1. INTRODUCTION

Chapter 8: The use of the mixture model analysis as a tool for early prediction of fault-

prone program modules is investigated in this chapter. The EM algorithm is en
gaged to build the model. By employing only software size and complexity met-
rics, this technique can develop a model for predicting software quality without
the prior knowledge of the number of faults in the software modules. In addition,
Akaike Information Criterion (AIC) is employed to select the model number, which
is assumed to be the number of classes the program modules should be classified
into. The technique is successful in classifying software into fault-prone and non
fault-prone modules with a relatively low error rate, providing a reliable indicator

for software quality prediction.

Chapter 2

Regularization: Feedforward Neural
Networks Case

2.1 Introduction

It is well known that the goal of training neural networks is not to learn an exact repre-
sentation of the training data itself, but rather to build a statistical model of the process
which generates the data. In practical application of the feedforward neural networks,
if the network is over-fitting to the noise on the training data, especially for the small
number training samples case, it will give poor generalization. To control an appropriate
complexity of the network can improve generalization. There are two main approaches
for this purpose: model selection and regularization. Model selection for a feedforward
neural network requires choosing the number of hidden neurons and thereof connection
weights. The common statistical approach to model selection is to estimate the gener-
alization error for each model and to choose the model minimizing this error [16, 17].
Regularization involves constraining or penalizing the solution of the estimation problem
to improve network generalization ability by smoothing the predictions [18, 19]. Most
common regularization methods include weight decay [20] and addition of artificial noise
to the inputs during training [21, 22].

Regularization method is widely used for smoothing output [23, 24]. A value of the

regularization parameter is determined by using the statistical techniques such as cross-

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

validation [25], booststrapping [26], and Bayesian method [27]. Most work uses a vali-
dation set to select the regularization parameter [28, 29, 30, 31]. This requires to split a
given data set into training and validation sets. The optimal selection of the regularization
parameter on the validation set sometimes depends on how to partition the data set. For a
small number data set, we usually use leave-one-out cross-validation method. However, a
recent study shows that cross-validation performance is not always good in the selection
of linear models [32].

In this chapter, under the framework of the Kullback-Leibler divergence, we show
that a particular case of the system entropy with Gaussian probability density and kernel
density estimation for feedforward neural networks reduces into the first order Tikhonov
regularizer. The smoothing parameter in the kernel density function plays the role of the
regularization parameter. Under some approximation, an estimation formula can be de-
rived for estimating the regularization parameter based on training data set. There is a lot
of research work in smoothing parameter estimation of kernel density function; however,
in this chapter we only focus on comparing the obtained result with maximposte-
riori (MAP) framework [27]. Experimental results show that the new derived estimation

formula works well in the sparse and small training sample case.

2.2 System Probability Function

When given a data séb = {x;,z;},, we consider that the data can be modelled by a
probability function. At one particular architecture design, we can let the kernel density
of the given data set bye,(x, z), and the network function mapping is denoted as a joint
probability functionp(x, z) on the data seb. The relative entropy or Kullback-Leibler
divergence for this particular system denoted/loy, ©) cost function, wher® stands for

a parameter vector, then the quantity of interest is the “distance” of these two probability

densities, which can be measured as follows [33, 34],

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

J(h,0) = //ph(x,z)ln%dxdz
- —//ph(x,z)lnp(z|x)dxdz
//phxz Pr(x))d xdz

(For simplicity, unless specified, the lower value-isc, the upper value isc for those
integrals involve in probability functions in the thesis.)

Where we use the notation and Bayes theorem,

p(x,z) = p(z[x, ©)po(x). (2.2)

p(z]x, ©) is a parameter conditional probability apgx) is a prior probability function.

Ji(h,0) = — //ph(x,z) In p(z|x, O)dxdz (2.3)

is related to network parameter vectdrand smoothing parameter= {%, h. },

/ / z) In pho(x, z)dxdz,
pi(x,

pro(X,z) = Po(x) (2.4)

Ja(h)

only related to the smoothing paramefer
We can assign a prefixed kernel functifif-) and smoothing parametefs, % for
nonparametric density estimation [35, 36}gfx, z) for a given discrete training data set

D, where the kernel density function [36] is

10

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

1 .
P (X) = Y K (x—xi),
x; €D
1 — X
K (x—x;) = @K(X h:‘

) (2.5)

Note N represents the number of samples in the dat&séts the dimension of a random

variablez, and the joint distributiop, (x, z) in this work is designed as

ph(x,2) = — Z Ky, (x —xi) K} (z — ;). (2.6)

The mostly used kernel density function is Gaussian kernel,

[Ir]]?
Grhyi <Py

I(}L(T) = G(T,O,hld) = (27)

In the kernel density functiod, is ad x d dimensional identity matrix. In this chapter,
we use{d,, d.} to represent the dimension of inpuand outputz vector, respectively.
According to the principle of minimum description length (MDL) [37, 38], the best
model class for a set of observed data is the one whose representative permits the shortest
coding of the data, then the system should be optimized with optimdéatcodelength.
The parametet.,, i, should be chosen with minimized Kullback-Leibler divergence

function based on the given data set according to,

{hy,h.} = argmin, J(h,O"), (2.8)

where®* stands for learned parameter ahd:, O) is represented by Eq. (2.1).
In the following we will discuss the regularization problem with a finite training data

setD.

11

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

2.3 Tikhonov Regularizer

When estimating network parameter by Maximum Likelihood (ML) learning, we mini-
mize the function/(h, ©) to find the network paramet€r with a fixed parametef. For

a particular design, the conditional probability function can be written in the form

p(Z|X7 6) = p(Z|f(X, 6)) (29)

wheref(x, ©) is a function of input variable and paramete®.

In the network parameter learning procedure, oflys involved becausg, dose not
contain the parametér.

To evaluate the functiod;, one of the techniques is the well-knowfonte Carlo
integration[39, 40]. In theMonte Carlo integrationapproximation, when substituting
Egs. (2.6) and (2.9) into Eqg. (2.3), integration can be approximated by summation, and

we obtain

.
D, ©) = =5 S 0 p(al]f(0), (210)

where

X, =X+ €, 2 =12z +e.. (2.11)

e, €, are data points drawn from distributipr(x, z). In this case/;(h, ©) is equivalent
to a negative likelihood function of the system.

In the Monte Carlo integratiorapproximation, we need to generate a number of data
set, which is very computation-intensive.

Another method is the Taylor expansion approximation for an integral, which we use

12

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

in this chapter,

Ji(h,0) = — //ph(x,z)lnp(z|f(x,G)))dxdz. (2.12)

When we consider one special casie,| f(x, 0)) = G(z, g(x, W), o*1,.) is Gaussian

density function,

G(z,9(x, W), 0°Ly.) = z — g(x, W)|[*]

Groryir Pl 5]

Ji(h,0) = —//ph(x,z)lnG(z,g(X, W), o1,)dxdz
_ //ph(x,z)[;—sz ~ g, W)||Pdxdz + %mzm?. (2.13)
ag

In this casep = {k,o* W} stands for a network parameter set, afwl, W) is a neural
network mapping function. For example, in three-layer feedforward neural network with

k hidden neurons case,

g, W) = SO W, SO Wyx)) (2.14)

W = {W.,, W, } is a network weight parameter vectdr, . is ad, x k matrix which
connects the input spade. and the hidden spack,, ., is ak x d. matrix which
connects the hidden spa&g and the output spack.. S(-) is a sigmoidal function,

B 1
1l 4ex’

S(x) (2.15)

Eq. (2.13) will result in the traditional sum-square-errors function in maximum likeli-
hood learning case at the limit 6f— 0, when we omit some factors which are irrelevant
to the network weight parametér.

Based on consideration of that random noise is added to the input data only during
training, Bishop [41] proved that in ML estimation case, Eq. (2.10) can be reduced to the

first order Tikhonov regularizer [42] for feedforward neural network with approximations.

13

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

On the other hand, as we know, the input data points can be modelled as samples drawn
from a delta distribution function(x — x;). Intuitional speaking, wheh — 0, kernel
density functiory, (x) becomes & function. If adding random noise to the input data,
the data distribution now can be described empirically by a density distribution function
p-(x) with o controlling the noise level. Moreovey, (x) can take the similar function
form to kernel density functiop,,(x). So addition of random noise to the input data is
equivalent to smoothing in kernel density estimation, thus we can also obtain the Tikhonov
regularizer directly from Eq. (2.12).

Let f(x,z, W) = ||z — g(x, W)||?, f(x,z, W) be a scale function of vector variable
x andz. When we expand(x,z, W) as a Taylor series in powers dfx = x — x;,

Az = z —z; and denotef’(x;,z, W) = V. f(x;,z, W). When taking only up to the

second order term, then we obtain

Fx, W)~ f(xi7 W)+ (f)TAx + (AX)Tf”AX

HAX)' [Az 4 () Az + (2)! [Az (2.16)
Eq. (2.13) becomes
Ji(h,©) = //ph(x,z)[;—Qf(X,z,W)]dxdz—|— %11&2#02

2Na Z// (6, %, hola,) G2, 25, hoLa) [(3,20 W)

+(f1) Ax + (Ax)Tf”Ax + () Az + (Ax)T ! Az

%

—|—§(Az)Tf;’Az]dxdz + %ln 2o’ (2.17)

Notice that for any density function, the integration in the whole space should be equal

to one, i.e.,

//G(X, holy,)G(z, 2, h.1,)dxdz = 1 (2.18)

14

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

// (x,%;, ho 1y,)G(2Z,2,, h.14,) f(x:, 2, W)dxdz
f(XHZHW) - ||ZZ g(Xi7W)||2 (219)

For Gaussian type function integrglsie can obtain

J [Goxoxi L)Gl L) Ax 4 ()T Slixds = 0
// (x.%;, hola,) G(z, 2, h1a) [(AX)T fI Az)dxdz = 0 (2.20)

1
/ [G L)Gl L ()T 25 i

= 7tfaC€Ef”] = ho{llg' (. W)II* = [[[z: — g, W)]g" (e, W)} (2.21)

/ [G L)il 3 L (Ao 2 Azl

= ?traceﬁf”] =d.h, (2.22)
With the above results, the integration becomes

J(h,©) = //ph(x,z)[;?f(x,z,vv)]dxdz+%mzm?

v Dol gt I +
Rl 1)1 = 1 — o0 W) W)

d, d,
@ —|— EIHQTFO'Q (223)

%

+h.

Because the terrh.d. /202 in the above equation is not implicitly related to the net-

work weight parametéi’, we can omit this term in weight parameter learning. This also

1For mathematical method of Gaussian integrals, the reader is referred to Appendix B in Bishop’s
book[21].

15

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

illustrates that smoothing on output cannot improve network generalization, thus we can
let 7. — 0 without loss of generality. The last term in the above equation is irrelevant to

the weight parameter, and can be neglected too [21]. Now the equation becomes

N
1
B0 Dl = gl WIF +

[Ilg(X W)IIQ—II(—9(xi, W))g"(xi, W} (2.24)

Rewrite the equation in the form
Jy~ Js + hyd, (2.25)

where

N
I = g 3l W1
1, ,
g = m;[llg (i, WII = [I(zi — g(xi, W))g"(xi, W) (2.26)

In the above equation, represents the traditional sum-square-error function, while
J, stands for a regularization term.

In Eq. (2.26), the second derivative term is the Hessian term. Reed [43] described it
as an approximate measure of the difference between the average surrounding values and
the precise value of the filed at a point, and assumed to be zero. While Bishop [41, 44]
considered that when minimizing the cost function, the second tetf imvolving the
second derivatives of the network functigfe, V') vanishes ta0(%,). For sufficiently

small values of the smooth parametgr this leads to

Ji

%

Iy + hod, (2.27)

N
1
= 5 DAl = gl WHIP + bl (i WP}
=1

16

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

From the above we can easily see that under some approximation discussed above,
one special casé(h, ©) function is reduced to the first order Tikhonov regularizer in the
sense of maximum likelihood learning.

Furthermore, from the above results it is easy to see that the paralmetentrols
the degree of smoothness of the network mapping, just the same as the problem of con-
trolling the degree of smoothing in nonparametric estimation. The optimum valkg of
is problem-dependent. Using the traditional sum-square-error function can not select this
parameter completely with a given data set; it needs to use separated training and valida-
tion data sets, and to be optimized by the cross-validation method or another validation
data set.

In the next section we develop a formula to estimate this regularization coefficient

based on the training data set.

2.4 Estimation of Regularization Parameter

When/h # 0, according to the principle of MDL, the regularization coefficiertan be
estimated according to Eq. (2.8) with the minimiz€d distance.

In implementation, we can give a fixéd value, run optimizing algorithm such as
Back-Propagation to obtain a series of network parant&tethen give anothef, value,
so on and so forth. We choosé such that its corresponding value .6fh7%, ©) is the
smallest. This is an exhaustive search method, which is computation expensive, but it
can give an exact solution for regularization parameter. From practical implementation
consideration, in the following we will derive the formula which is approximately the es-
timation regularization parameter based on training data in the network parameter learning
processing.

For some problems, e.g. function mapping, in special cases we can assuméithat
is a uniformly distributed function and regard it asndependent. With this assumption,

from Eq. (2.1) with respect tg%J(h, ©) = 0, we can obtain the formula for estimating

17

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

regularization parameter.
To find the minimization of Eq. (2.1) corresponding/tg we conduct the following

derivation. Considerind; (4, ©) approximation (Eq. (2.27)), from Eq. (2.1) we obtain,

0 0 0
8hxj(h’®) = a—mjl(ha@)Jra—sz(h)
0
<+ gl (2.28)

From Eqg. (2.4), whe/y(h) is a continuous and differentiable function, the last term

of the above equation becomes

// O 2)) (6, 2)] ez (2.29)

While it can be proved that

// Opn(%,2) ot = 0, (2.30)

Proof. Because the joint kernel density(x,z) in this work is designed as Gaussian
kernel function,

1 N

ph(sz) = WZG() mh Idm)G(z, mh Idz) (231)
=1

We can compute the partial derivative;gf x, z),

0 d, 1o
o7 068) = 562+ gl G bl Gt =i
(2.32)
aph(x,z) o z
/ Thwd}(dz = o (X, z)dxdz (2.33)

2Nh2 //Zva mh Id.r G(z, mh Idz)HX_XzH dxdz

18

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

The first term in the above equation is

ph(sz)dXdZ = QNh Z// X7 mh Idg: G(z, mh Idz)dXdZ

= — hx (2.34)

" 2h,

As the second term is also Gaussian type integration, it can be evaluated to

2Nh2 //Zva mh Idm G(z, mh IdZ)HX—XZH dxdz

d
= —. 2.
o (2.35)
Then we have
Opn(x,2) dy dy
]
With the above results, Eq. (2.29) reduces to
aph (x,2)
In py(x, z)dxdz (2.37)
That is,
0 Jo(h) = —=" (x,2)In pp(x,z)dxdz
on, "2 T Tap, J) pri R e

QW Z// (x,%;, b1y, (2.38)

xG(z,2;, h. 12,)||x — %;|)* In pr(x, z)dxdz

For parameter optimization, the gradient descent rule becomes [45]

a.J(h,©)
=) 2,
Shy o (2.39)

When minimizing/(h, ©) with respect ta:,. , the following equation can be obtained

19

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

d;
Shy = —J, + —FE,(h), (2.40)
2h,
orletéh, =0, we get
d.E.(h)
hy = 2.41
5, (2.41)

where

Eu(h) = //ph(X,Z)lnph(x,z)dxdz
Nd h, Z// (%, %, hola,)G(2, 2, b4,)

||x — x;||? In pr(x, z)dxdz. (2.42)

X

This is a formula for estimating regularization parameter based on training data. It can
be used to optimizé,. iteratively. The integration in the above equation can be evaluated
by Monte Carlo integration

In practical implementation, especially for the small training data set case, we can use
sparse data approximation in Eq. (2.42). That is, if dasanot correlated with datafor
sparse data distribution, we can consider integrationaabundx;, z aroundz; only, and
ignore other data. With this approximation, now let us evaluate the integratibn in,

in which
// pr(x,2) Inpp(x,z)dxdz (2.43)

_ NZ{// (%%, L,)G, 2;, 1.1,)

xanG x, X, h,14,)G(2,2;, h. 1,)dxdz} — In N

20

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

Applying sparse data approximation (SDA) and considering sinale obtain,

G(x,%;, holy,)G (2, 2;, h.14.) 1nZGx, x;, o1y,)Gz, 2;, 715
7=1
G(X, z?h Idm)G(Z, mh Idz){lnG(X, mh Idm)G(Z, mh Idz)} (244)

Ix=xil|]* ||z —zl[*
2h, 2h.

7]7

%

= G(X, z?h Idm)G(z, mh Idz){_
d

—?x In(27h,) — %ln(thZ)}
The integration is reduced to

//ph x,z) In p(x,z)dxdz

o~ —?[1 + In(27h,)] — %[1 +1In(27h,)] —In N (2.45)

Nd ho Z// (%, %;, hola,) G(2, 25, b 1) [x — %) In pr(x, 2)]dxdz

Nd ha Z// (%, %;, bl)Gz, 75, b Lo)| [x — x|

Ix =l llz—zl* 4, In (2 d.
2h, 2h. 2 2

= —d, —du(d, — 1) —%[1—|—1n(27rh)] —

E.(h) = //ph(x,z)lnph(x,z)

x||x — x| In pr(x, z)dxdz
d-
2

%

X [—

In(27h.)|dxdz — In N

“[1 +1In(27h.)]—In N (2.46)

// X7 mh Id.r G(z, mh Idz)

[1 4+ In(27h,)] —In N

he) =
d.
2

%

—dQ—x[l + In(27h,)] —
—[—d, — do(d, —1)* — d2—$[1 + In(27h,)] — %[1 + In(27h,)] — In N]
= A1+ (dy — 1) (2.47)

Notice that in maximum likelihood estimation,

NZHa g(xi, W)|J? (2.48)

21

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

From the above discussion, with Egs. (2.26), (2.47) and (2.48), in sparse data approx-
imation case, from Eq. (2.41) we can obtain the following equation for rough estimation

of h,:

h NdZ[l_I_(d _1)2]E£1||Z¢—9(X¢,W)||2
x ™~ Wy T N
D im 9/ (i, W2

This is an approximate estimation bf by using the sum-square-error and penalty

(2.49)

term, which is quite different with the equation obtained in paper [46]. In implementa-
tion, we need to find . and weight?” by some adaptive learning algorithm. For example,
we can first make an initial guess for a small non-zero value,.ofnd use this value to
evaluatelV, then periodically re-estimate the value/of by Eq. (2.49) in training pro-
cessing. The advantage of this result is that only applying training data can be sufficient
in estimating regularization coefficients, aladcan be optimized on-line with minimized

generalization error.

2.5 Experiments

Several experiments have been done with dynamically adjusting regularization parameter
h... Some results are drawn in Figures 2.1-2.7. The results show that the optimal regular-
ization parametef,, can be found by seeking the minimum.gf., ©) by training data set
only. We also apply the minimal generalization error method to validate the experiment
results, and the same order/of has been obtained (see Figure 2.3). This confirms that
the new parameter estimation formula is a good approximation. Unlike early stopping
strategy, this new regularization parameter formula can work for overtraining network
and does not need a validation set to guard when the training should stop.

The function mapping problem was considered in the experiments, and the sine and
exponential functions were applied. In order to represent sufficient network complexity,
we use 15 hidden neurons in three-layer network. Only 30 training samples were gener-

ated with Gaussian noise added to their output. With this kind of network architecture, if

22

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

(a) Without regularization (b) With regularization

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

(c) Without regularization (d) With regularization

Figure 2.1: Comparison of regularization in function mapping problem.

Dots are training samples, while solid line is the network output. (a, b) are
for the sine function approximation problem. After the training is stopped,
dynamically-estimatetl, = 2.87 x107*. (c, d) are for the exponential func-
tion approximation problem. After the training is stopped, dynamically-
estimated:, = 1.27 x 107*.

23

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

0.03

0.025 ‘
0.02
0015 |

0.01 \
0.005 \X

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

(a) Without regularization (b) With regularization

Figure 2.2: Training epoch for the exponential function approximation problem.

Upper line represents validation error, while lower line depicts training er-
ror. Without regularization, training error is small while validation error is
large. With regularization, validation error is reduced and training error is
increased a little, illustrating that over-fitting does not occur.

090 hy

Figure 2.3: The training mean square error (MSE) on the training data set amdthe
validation data set, plotted versus the smooth parameter

The network was trained by 30 samples which are drawn from the exponen-
tial function. We use a validation data set with 30 data points to calculate
J1 value again after the training is stopped. For eackalue, the network
was trained until the total errof; (Eq. 2.27) was minimized, measured by
successive error difference being less than® and overl0* epoch being
passed. The minimal, indicates an optimdbg,, 7, ~ —4. Dynamically-
estimated:, value is 1.2%10~* in this case.

24

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

Ot 0t

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
(a) Without regularization (b) With regularization

Figure 2.4: Software reliability growth model approximation problem with data set sys1.

Dots are training samples, while solid line is the network output. After the
training is stopped, dynamically-estimated= 1.17 x 10~%. Because the
noise is very small, the difference with and without regularization is not

obvious.

0.0014 0.0014

0.0012 0.0012

0.001 0.001

0.0008 0.0008

0. 0006/ [Mimto, 0. 0006] s

0. 0002 0.0002
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
(a) Without regularization (b) With regularization

Figure 2.5: Training epoch for the software reliability growth model data set sys1.

Upper line represents validation error, while lower line depicts training er-
ror. Without regularization, training error is small while validation error is
a bit large. With regularization, validation error is reduced.

25

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

-3 #
-4 —J1
-5 *~— MSE /
-6 /
c /
Y
-7 T
P - /:
-8 SRR
-9 * *
10Lx o e
“i4 12 -10 -8 -6 -4 -2 0
Iog 10 hx

Figure 2.6: The MSE on the training data set aldn the validation data set, plotted
versus the:, for sysl data set.

The network was trained by 37 samples which are drawn from the sys1 data
set. Use a validation data set with 17 data points to calculatalue again

after the training is stopped. For eath value, the network was trained
until the total error/; was minimized, measured by ovEr* epoch being
passed. The minimal; indicates an optimal value arouhg,, ., ~ —9.
Dynamically-estimated,. value is 1.1%10~% in this case.

0 0.2 0.4 0.6 0.8 1

Figure 2.7: The neural network output for software reliability growth model approxima-
tion with data set sys3.

Dots are training samples, while solid line is the network output. For soft-
ware reliability growth model data set sys3. Regularization does not make
a significant difference.

26

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

without regularization, the phenomenon of over-fitting to noise can be observed as shown
in Figure 2.1. In Figures 2.1 and 2.2, itis shown that with regularization, the network out-
put is smoothed and generalization performance is improved. Figure 2.3 show the result
of validation method estimation for regularization parameter.

Real-world data sets are used in the experiments too. The data sets are software failure
data sysl and sys3, which are contained in the attached Compact DiskHdindeook
of software Reliability Engineerin#7]. The sysl data set contains 54 data points. In
order to validate the parameter estimation results, we partition the sysl data into two
parts: a training set and a validation set. The training set consists of 37 samples which
are randomly drawn from the original data set. The remaining 17 samples comprise the
validation set. The data sets are normalized to the range of values [0,1]. Normalization
is a standard procedure for data preprocessing. In the software reliability investigation
problem, the network input is the successive normalized failure occurrence times, and
the network output is the accumulated failure number. During the training phase, each
input samplex, at timet is associated with the corresponding output valuat the same
timet. The experimental results are shown in Figures 2.4-2.6. From Figure 2.5, it can
be observed that with regularization, the validation error is less than that without regular-
ization. Figure 2.6 shows that the minimal value indicates:,. in the range ofl0~® to
10~1°, while dynamically-estimatet, value is 1.1% 1075,

Another data set is sys3, which contains 278 data points. In the experiment, the num-
ber of training data is abo/3 of the total data number. That is, it consists of 186
randomly-drawn samples from the original data set. The remaining 92 samples form the
test set. Because this data set is a bit large and the noise is small, it makes no obvious dif-
ference in the obtained results with respect to regularization. The trained network output

is shown in Figure 2.7.

27

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

2.6 Discussion

In fact, the equation with regularization resulting fraln/, distance for feedforward
networks is not completely equivalent to Tikhonov regularizer. Moreover, the starting
point of deriving the regularization parameter estimation equation is different from the
Mackey’'s Bayesian evidence or the MAP for hyper-parameters[27, 48]. For example,
Mackey assumes tharior distribution of weight is Gaussian with hyper-parameter as
the regularization parameter, and the penalty term is in the weight decay form. While
we use nonparametric kernel density distribution, a particular approximation is equiva-
lent to Tikhonov regularizer. The penalty term is the first derivation of sum-square-errors
of a network mapping function. This form reduced to weight decay when the mapping

function is in a generalized linear netwogk(x, W) = 3% w; x;. Therefore,

N
2 Ny (i Wl = NZw (2.50)

where M represents the number of network weight parametersignd an element of
the matrix}¥ in a vector expression.
With the generalized linear network assumption, Eq. (2.49) becomes
N
; [3 W 2
b~ B[1 + (d, — 1) 2= 112 Af(x : il (2.51)
N E]‘:1 wy

Now let us see the similarity of MAP approximation with our result in estimating the

regularization parameter.

The cost function in Mackey’s Bayesian inference is [27, 48],

L\DRb

N
ZHZZ g(xi, W) + Zw (2.52)

In minimizing this cost function to find network weight parameitgr the effective

value of the regularization parameter depends only on the satib since an overall

28

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

multiplicative factor is unimportant. This meahs should be equivalent to/3 under
some approximation.
In Mackey'’s results[27, 48], a very rough approximation condition iss M and

N> M.

M)\j
y=Y (2.53)
7=1

)\]‘ —|— 8}
where{);} denote the eigenvalues HF, the Hessian of unregularized cost function,
1 N
— 32 _ _ a(x 2
H=pV,Ep, Ep=3 Z; ||z: — g(xi, w)|| (2.54)
The matrixA is related to parameterin the following form,
A=H+ ol (2.55)

In order to compare with Mackey’s formula, we rewrite the parametand 3 from

[27, 48] in the following:

N
8= N/2Ep = N/ Y {z: — g(xi,w)}? (2.56)
=1
j=1%;
Consequently,
N L . 2
g — MZi:l{ZZ]f(xl?w)} (258)
g Ny o w?

Here we can clearly note the similarity betwelenin Eq. (2.51)) andv/3 in Eq.
(2.58)), where their difference is only at the constant coefficient: lestimation, the
constant coefficient is dependent on the dimension of input space, whilgsiestima-
tion, the constant coefficient is the dimension of weight parameter vector. This explains

that the Mackey’s result is obtained in parameter space approximation, while our result

29

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

Table 2.1: Experimental results for regularization parameter estimation.

No Reg: No regularization; TE: Test Error; SDA: Sparse Data Approxima-

tion; MAP: Maximum A Posterioriapproximation——: Unstable value.

| | N(M) | TE(NoReg.)[h, (SDA) [TE (SDA) | h, (MAP) | TE(MAP) |
sin(x) | 30
k= (24) 0.00842 4.185 x 107 | 0.00422 | 1.464 x 10~* | 0.0043
k=15 | (45) 0.00695 2.87 x 1071 0.00418 | —— 0.097
Exp. 30
k= (24) 0.0059 1.677 x 107° | 0.0053 9.705 x 107° | 0.0051
k=15 | (45) 0.013 1.27 x 1074 0.0051 —— 0.102
Sysl | 37
k=9 |(27) 0.0003284 | 6.86 x 107 0.000318 | 3.69 x 10~° | 0.000984
k=15 | (45) 0.0000854 | 1.17x10°® 0.000267 | 1.36 x 10~* | 0.001337
k =20 | (60) 0.000311 4.29<107? 0.000258 | 1.12 x 107* | 0.00636
Sys3 | 186
k=15 | (45) 0.0001535 | 3.892 x 107'° | 0.000104 | 1.118<10~* | 0.00032
k=301 (90) 7.55 x 107% | 9.605<107* 0.0002227 | 3.612 x 10™* | 0.0003384
k=60 | (180) | 0.0001025 | 5.696x<107'° | 0.0000675 2.83 x 10~* | 0.000347

is in data space approximation. Compared to the approximation condition, our approxi-

mation is based on the sparse data set, which is a reasonable approximation for the small

number training data set case. While in Mackey’s approximation, it reqdires M.

In our function mapping experiments, we design that 30, d, = d. = 1, the hidden

neuron number ig = 15, M = (d, + 1) x k + k x d, = 45. Because the experimen-

tal condition does not satisfy Mackey’s very rough approximation conditios- M, it

cannot be successful in estimating regularization parameter on-line with Eq. (2.58). In
fact, the conditionV > M means that training sample number should be large enough
compared to network complexity. If we have enough training samples, the generalization
is also improved without regularization [21]. The experiment for data set sys3 confirms
this observation.

Table 2.1 shows the experimental results for the comparison of regularization param-

eter estimation formula performance. It is seen that when- M or N ~ M, MAP

30

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

approximation based regularization parameter estimation formula performance is good,
sometimes is better than SDA based. However, when we use lots of hidden neurons, for
the caseV < M, MAP approximation based formula performance becomes poor.

As we know, there is no free lunch for the optimization problem. To get the best
regularization parameter value, the parameter numerical evaluation involves computa-
tion of Hessian matrix and log determinant Af !, as well as eigenvalues of Hessian
in Mackey’s Bayesian inference. While in our approximation, it involves integration in
data space. To save computational cost and on-line optimizing regularization parameter,
a rough approximation is needed, but in this case the parameter value may not be the best

one, and generalization error may not be the smallest with approximations.

2.7 Summary

In this chapter, we show that one particular case of the system entropy with Gaussian
probability density reduces into the first order Tikhonov regularizer for feedforward neu-
ral networks in the maximum likelihood learning case, where the regularization param-
eter is the smoothing parameter in the kernel density function. Under the framework

of Kullback-Leibler divergence, we derive the formula for approximately estimating reg-
ularization parameter using training data only, without need to use validation data set.
Experiments show that our estimated regularization parameter is in the same order as that
estimated by the validation method. However, our method requires much less compu-
tation resource than the validation search method. The similarity and difference of the

obtained results with others’ work also discussed in this chapter.

31

Chapter 3

Classification for Small Sample Set with
High Dimension

3.1 Introduction

The goal of the classification is to assign each sample in a given data set to a class ac-
cording to some criterion of class membership. Classification has two aspects: super-
vised classification (discrimination) and unsupervised classification (clustering). In re-
cent years, several classification algorithms have been developed to partition a data set
into pre-defined classes. When the data are viewed as arising from two or more clus-
ters mixed in varying proportions, we can use the finite Gaussian mixture distribution to
analyze the data set. The Gaussian mixture distribution analysis method has been used
widely in a variety of important practical situations, where the likelihood approach to the
fitting of Gaussian mixture models has been utilized extensively [49, 50, 51, 52].

When classifying data with the Gaussian mixture model, the mean vector and covari-
ance matrix of each component are not known in advance, and they have to be estimated
from the given data set. While a large-size data set is desirable for estimating the pa-
rameters more accurately, in some real world situation, only a small-size data set can be
obtained because of some restriction, e.g, high cost in collection such data set. For a rela-
tively small-number sample data set, if the dimensgiaf variablex is comparable to the

number of training samples; in classy, the problem may become poorly-posed. Worse,

32

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

if the numbenm; of training samples is less than the dimensionality, the problem becomes

ill-posed. In this case, not all parameters can be properly estimated and classification
accuracy is degraded.

There are two possible solutions to solve this kind of problem: one is dimensionality
reduction, and the other is regularization [53]. Regularization is the procedure of allowing
parameters bias towards what are thought to be more plausible values, which reduces the
variance of the estimates at the cost of introducing bias. The regularization techniques
have been highly successful in classifying small number data with some heuristic approx-
imations [53, 54, 55]. However, heuristic methods, for example RDA [54], require to
select regularization parameters (or called Model) with some statistical techniques such
as leave-one-out cross-validation, which is computation-expensive. Furthermore, a recent
study shows that cross-validation performance is not always good in the selection of linear
models [32]. Therefore, it is worthy to develop new techniques to deal with this problem.

Kullback-Leibler information measure [33, 34] can be considered as “distance” be-
tween two probability density models. This measure is also c#idback-Leibler di-
vergence In this chapter, based on the mixture model analysis with the Kullback-Leibler
information measure [56], we present the results of investigating covariance matrix es-
timation and regularization parameter selection in the Gaussian classifier for the small-

sample set with high-dimension classification problem.

3.2 Classifications

3.2.1 Classification with Finite Gaussian Mixture Model

In supervised classification we have a set of data samples, each consisting of measure-
ments on a set of variables, with associated labels, the class types. These are used as
exemplars in the classifier design. In unsupervised classification we need to estimate
prior probability andposteriorprobability in the classifier design. If these probabilities

are known, it becomes supervised classification. So unsupervised classification is more

33

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

general than supervised classification in the mixture analysis case. Let us consider the
general case first.

The data point®) = {x;}¥, to be classified are assumed to be modelled by a mixture
of k£ Gaussian densities with joint probability density of which the mathematical expres-

sions are as the followings equations.

k

p(Xv 6) = Z Oé]‘G(X, my, Z])v

i=1

k
with a; > 0,and » a; =1 (3.1)
7=1

where

exp[—3(x — m;)TE7 (x — my)]

(2m)?2[552

G(Xv my, Z]) = (32)

is a general multivariate Gaussian density functiomlenotes a random vectat,is the
dimension of thex, and paramete® = {a;,m;, ¥;}’_, is a set of finite mixture model
parameter vectors. Here is theprior probability,m; is the mean vector, and, is the
covariance matrix of thg-th component. Based on the given data set, these parameters
can be estimated by the maximum likelihood (ML) method with Expectation-Maximum
(EM) algorithm [57, 58].

In Gaussian mixture model case the Bayesian decision rule is used to classify the
vector x into class; with the largestposterior probability. Theposterior probability
P(j|x) represent the probability that sampldelongs to clasg. Now we use Bayesian
decisionj* = argmax; P(j|x) to classifyx into class;*. The probability P(j|x) is
usually unknown and have to be estimated from the training samples. With maximum

likelihood estimation, th@osteriorprobability can be written in the form

, o;G(x,mj, 3,
P(]|X) — J é(x @])])7

withj = 1,2,--- (3.3)

34

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

Taking the logarithm to above equation and omitting the common factors of the classes,

the classification rule becomes,

J* = argmind;(x), g=12--k (3.4)
J

with

d]‘(X) = (X — mj)TZfl(x — 1’1’1]‘) —|— 1H |Z]| — 21H Oé]‘ (35)

J

This equation is often called the discriminant scorejftin class in the literature[53].
Furthermore, if thrior probabilityc; is the same for all classes, it becomes discriminant

function when omitting the termln «;.

3.2.2 Covariance Matrix Estimation

When the sample numbér is small, the sample-base estimated class-specific covariance
matrix becomes inaccurate, and hence results in lowered classification accuracy. To solve
this problem, there are several techniques are proposed. In this chapter, we address this
problem by using Kullback-Leibler divergence.

We consider that the given data can be modelled by a finite Gaussian mixture model,
from the other side, the data set can be considered as samples drawn from a nonparametric
density distributiorp,, (x) [35]. The same data set is described by two different function
with some parameters. To make the two models consistency, we should estimate the
parameters in the model based on given data. The “distance” of these two probability
densities should be minimized in principle, then this quality usually is measured with the

following Kullback-Leibler divergence[33, 34],

KL(h,k,0) = /ph(x) I 22 (3.6)

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

The abovel L function, also called the system cost function, can be rewritten in the

form,

KL(h,k,O) = —/ph(x) 1np(x,®)dx+/ph(x) In pp,(x)dx (3.7)

where

G(x,x;,By) =

% L () = @)
- exp|l—= Wj — Tig) 3.8
N(27'r d/2|Bh|5 Z p 2 Z h]‘] ()

=1 7=1

||Mz

is assigned as Gaussian kernel density for given training samples
Herex; ; represents thg-th component of the data pointB,, is a (/ x d) dimensional

diagonal matrix with general form,

hi 0 0
B,=] 0 . 0 (3.9)
0 0 hg

hi,1 = 1,2,...,d are smoothing parameters in nonparametric kernel density. In the
following we denote the sét = {,;}L,

The ordinary EM algorithm[57, 58] can be re-derived based on the minimization of
the Kullback-Leibler divergence function (3.6) in the limit— 0, which we describe as
the following [59],

E-step:

Calculate theoosteriorprobability P(j|x;) according to Eq. (3.3).

M-step:

ld
a2 G Xz,m],Z)

e — E
OldG(XZ,m],Z

1 N
= NZP(]WXZ») (3.10)

J

36

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

m,zzﬁlp(ﬂxi)xizi N Pl 1
LY E PGk > PURx (3.11)
% = n%zil P(jlx) (i — my)(x; —my)”. (3.12)

Heren; = a; N is an effective class sample number. The two steps are iterated until
convergence to one of the local minima in the parameter space.

Unlike the supervised learning, the ML with EM algorithm can be used for total, un-
labelled training data set. For small number samples, the ML estimated covariance matrix
S}, becomes singular when, < d, leading to unstable classification rate. To deal with
this difficulty, one approach is regularization. In the following we address this problem
based on Kullback-Leibler divergence with# 0.

In an nonparametric kernel density function, the smoothing pararheteGaussian
kernel density plays an important role in estimating mixture model parameters. The most
concerned problem is covariance matrix estimation in classification, the mixture weight
a; and class meam; can be estimated with summation under the 0 approximation
asin Eq. (3.12). Then we focus on covariance matrix estimation problem in the following.
When minimizing cost function (3.6), that is, settig%[x’L(h, k,©) = 0, the following
covariance matrix estimation formula can be obtained,

S pn(x)P(j]x) (X—m])(X—m])de‘

Z,
! S pn(x)P(jlx)dx

(3.13)

With above equation the parameters still need to be iterative estimating. There are
several ways to evaluate this probability-type integration in each iterative estimating step.

One of the techniques is the well knowfonte Carlo integratiof89, 40], which is
calledStochastic Approximatian paper [46]. I'Monte Carlo integratiorapproximation,

we generate’ number of samples with Gaussian distribution around the data sample

X =x; + e, (3.14)

37

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

wheree,. is the Gaussian noise drawn from the distributiefe,., 0, B;). With this ap-

proximation, the covariance matrix can be estimated according to

2N PG (g — my)(x) — my)T
M PG

now total number of samples becom¥és= (n’ + 1)N.

5 (3.15)

Another method to evaluate the integration is to use Taylor expansion approximation,
which is used in this chapter. Becausehex) term is contained in the integration of Eq.
(3.13), wherx far awaysx;, the function value becomes very small when every component
of h is small. In this case we can use Taylor expansionHgi|x) atx = x, and take up

to second order approximation.
: : : 1 :
P(jlx) ~ P(jlxi) + (x = %) Vo P(j]xi) + 5 (x— x) Hi(j)(x = x;) (3.16)

The integration of Eq. (3.13) now can be evaluated, leading to the following covari-
ance matrix estimation formulae.
1 5 S
S@(h) = (1 4+ =TracdB,H(j)])B) + —=— + ——2

whereH(y) = %Eﬁl H,(j), Hi(y) is the Hessian matridI;(j) = V2P(j|x;). Be-

(3.17)

cause this estimation is derived under the framework of Kullback-Leibler information
measure, it is called as KLIM2 in our work.

If we only consider the first order approximation, the estimate becomes
W(h) =By + 3 (3.18)

This estimation is called as KLIM1 in this work.
The following notations are used in above equations,

1 .
n = Z—an(h,]), nj=a;N,

N
S(h,j) =) TraceB,H(j)],
=1
Y. = B,H.B, (3.19)

38

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

H. is a diagonal matrix in which the diagonal elements are the eigenvalud;of

andij is represented by Eq. (3.12),

So = = S [P(1x) + 5 Trace®Hi ()] (x — m;)(x; — m,)".

J =1

The Hessian matrix of thgosteriorprobability function is computed as following,
Hi(j) = Px{E7 (xi — my)(x; — my) 57

— Z P(jx) 27! (x; — my)(x; — m;) X7}

+ PG PUx)ET = S

+2P ()Y P(i1x) S5 (% — my) — X7 (xi — my)]

i=1
k

<Y P(jlx)(xi = my) S (3.20)

j=1

The quantity in the fornEf:1 P(j|x)Q(7), whereQ(y) stands for those terms fol-
lowing P(j|x) in above equation, represents the weighted average valgeover all
classes, the above Hessian equation reflects the difference between single class quantity
and averaged quantity. If there is only one class, this Hessian matrix will become null
matrix ands\” (1) reduces int& (7).

From above, we can see that new kinds of regularized covariance matrix, thereof reg-
ularized Gaussian classifier are obtained based on Kullback-Leibler information measure,
where the smoothing parameteicontrols the degree of regularization. Because multi-
parameter optimization is more difficult than single parameter optimization, in this chap-
ter we only consider one special case that the smoothing parameters are the same for all

dimension, this means that

B, = hl,, (3.21)

39

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

wherel, is d x d dimensional identity matrix.

In the next section we discuss how an optimal value of smoothing paratneserbe

selected based on the training samples.

3.3 Smoothing Parameter Selection

There are several ways to select smoothing parameter examples, with training sam-

ples we can use statistical technique cross validation to select the optimal smoothing pa-
rameter. As we know, the goal in selecting smoothing parameter is to produce a model for
the probability density which is as close as possible to the unknown dexsit®)[21].

We can select thé by the following two methods.

3.3.1 Selecting: by Monte Carlo method

According to the principle ofy L information measure, when £ 0, the smooth param-

eterh can be estimated with minimizeld . divergence,

h* = argminJ(h), J(h) = KL(k*,0" k) (3.22)

In practical implementation, we can use exhaust search method. That is, fof,each
we compute the/ (k) function values to search the minima .6f%), and choose thé*
that minimizeJ (k). Note in this approach all the samples can be used to estimate
Therefore, it is different from cross-validation method which must split data into training
set and validation set.

When selecting optimal, we have to evaluate the integration equatiorf of). The

integral can be approximated bjonte Carlo metho@s mentioned above,

J(h) ~ S Z{ln p(x:,0) — Inpy(x))} (3.23)

40

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

In implementation, we generaté number of samples around each original sample

point, the accuracy of this approximation apparently depends.oWhenn’ — oc, it
evaluates the integration with arbitrarily small error. However, in practical evaluation

of this integration, it is impossible to use very large number of samples to calculate Eq.
(3.23), and only a limited number of generated samples is used, otherwise it is too com-
putation expensive to implement. To get sufficient approximation accuracy without using
very large generated samples set, here we can use extrapolation method. We can use an
exponential function to regress with £, after get the mapping function ef to %, we

can extrapolate the value atn’ — oo. As an example, Figure 3.1 illustrates the result

of this method. Usindgvionte Carlo methoavith extrapolation method we can compute

with higher accuracy. However, the cost is very computational intensive, especially in the

high dimension case which we deal with in this chapter.

}

3.2}
3,
2.8 $

2.6/ $

LK
2.4 }

¢
2.2¢ ¢ 3 * ¢+

150 175 200 225 250 275 300 325
Figure 3.1:% vs. generated sample numbér

These data points can be used to regress a nonlinear function, then applying
the extrapolation method to determine thealue forn’ — oc. Whenn' >

300, the / value tends to be stable. This figure is b= 6, n; = 15 and

k = 3. Sample data points are drawn from a gaussian density function

41

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

3.3.2 Selecting: by Taylor expansion Approximation

Because computing the integration blponte Carlo methods very time expensive, we
proposed to use second order approximation for estimating smoothing parameter

Applying Taylor expansion for integration,

Jh) = - / (%) In p(x, ©)dx + / pr(%) In pr (x)dxc
o)+ J.(h) (3.24)
where
Jo(h) = — / pr () In p(x. ©)dx
J(h) = / pi () In pi ().

Now we apply Taylor expansion to logarithm functionsat= x; and only keep the

second order term, the integration can be evaluated out. It results in the approximation of

Jo,
Jo(h) = Jo1(x;,0) + hJ.(x;,0) (3.25)
where
1 N k
J01(XZ', @) = —N Z In Z Oé]‘G(XZ', my, Z])
=1 7=1
1 N
. - 2 .
Ji(x:,0) = — ; TracdV?2In p(x;, ©)] (3.26)
While the logarithmic mixture density Hessian matrix can be computed as,
k
Vinp(x,0) = —{>_ PN = 57 (% — my)(x; — my) 87} (3.27)
j=1

k

HZ P(jpe)[(x; = my) "STTHY PO [(x; — my) ST}

J=1

42

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

Similar to.J,, we can obtair/, (/) term as following,

N N
1 h
J.(h) = ~ } R(xih)+ oV > TracdViR(xi,h)]

R(Xi, h) = hlph(Xi)

While V2 R(x;,) is

VIR0 = {30 A0)k — x))T = L

N

—[Z Blxi,x;)(x: = %) Blxix;)(xi — x;)]"}

i=1

where
G(x,x;,hI
ﬁ(xv Xi) = N (d))
= G, X, hly)

and note that

N N

G(X, Xy, hId)
D Bxx) =) =y =
=1 =1 Ej:l G(X7 Xi? hId)

With this relation,

% ; TracdV2R(x;, h)] = ﬁ Z{Z B(xix;)[|1x: — x5|7]

NZ:1 = ;
—Il ;ﬁ(xi,xj)(xi —x)IPH -5

Now the function/(h) can be computed based on the original samples with summa-

tion instead of integration.

43

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

For very sparse data distribution, we can use the following approximation to estimate

smoothing parameter.

N
1 1
ph(X) hlph(X) ~ ﬁ E G(X, X, hId) In WG(X, X, hId)

=1
LS~ G M= 1) — il = v
~ 2 X, X;, hly 5 n(2m 57 X — X; n

K3

J.(h) = /ph(x)lnph(x)dx

—gln(th) — g —InN
2 2

%

So we get the approximation formula fé¢h),

J(h) & Jor(xi,0) + hJ(x:,0) — gln(h) e (3.28)

where(is a constant irrelevant to.

Taking partial derivative off (%) to h and let it be equal to zero,

B d
R (h) = J,(x:,0) = 5 =0,

the very roughly estimation formula is obtained as

(3.29)

3.4 Approximations for Regularization Term

In practice, the computation gfand Hessian matrix of equations (3.19) is still complex,
some proper approximations should be adopted to simplify the calculation. Now let us

consider several special cases.

44

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

Case 1: the mean and covariance of all classes are the same (All classes are overlapped

together).
In this case, the qualityjf:1 P(jlx:)Q(7) = Q(j), itleads toH;(j) = 0. Then

n=0 (3.30)

it reduces into the first order approximation KLIM1.

Case 2: the mean of all classes is equal to each other, or using averaged mean instead

of individual class mean. Denote the weighted ave@jg1 P(jlx:)Q(5) = Q(j), then,

Hi(j) = P(jlx){E;"(x — ;) (x; —m;)" 577

J

= Y7 (x) (x; - 1) Y (3.31)
with the approximatiory_ ", P(j|x;)(x; — m;)(x; — m;)” ~ n;3;, and omit the cross
term between classes,

n~ hTracds:t — 7] (3.32)

J

Case 3: the class covariance matrices are all the same,>

Hi(j) = PUR){Z7"(xi —my)(x; —my) 8™

—[E7 (i — my)(x; —m;)TS7 ']}
+2P(j]x;) X7 [(xi — m;) — (x; — my)]

X(Xi — m]‘)TZ_l. (333)

When dropping the first two term in above equation if we assume that the difference

is very small, then,

n~ h ZTraCQP(ﬂXZ’)Z_l[(Xi — 1’1’1]‘) — (Xi — m]‘)](Xi — m]‘)TZ_l]. (334)

=1

45

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

When above approximations are used, the computation cost will be significantly re-

duced.

From above approximations, it is known that second order regularization involves in
calculation of the inverse covariance matrix. In the case;of d, we can use Eq. (3.40)
to estimate initial value oE;. While for the case:; < d, ij becomes singular, but with
KLIM1 estimator,X; is not singular as long dsis not too small. In this case, we adopt
KLIM1 estimated covariance matrix as initial value to calculHtg) ands.

In fact, if we let the eigenvector and eigenvalue of a covariance mﬁ;rb(e u; and

v;, respectively,

Z]‘ui = Uy, UZTUJ‘ = (S” (335)

The inverse matrix oE; in KLIM1 can be expressed as

4 ll'llT
ST = (kg + 557 = .
7=+) ;WM (3.36)
then,
A
—17
TracgX; '] = ;Zl " (3.37)

If ﬁj is singular, the¢§j| = 0 and hencév/ — §j| = 0. This means a singular matrix
has at least one zero eigenvalue, and resulting in one term is proportiondl to the
above equation. Itis clearly seen that as long &snot too smaII,Ej‘1 exists with finite

value and the estimated classification rate will be stable.

46

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

3.5 Comparison of KLIM with Other Discriminant Anal-
ysis Methods

3.5.1 Review of previous work

When the class membership of given training samples is known, the “hard-cut” version of

P(j]x) is used in the mean vector and covariance matrix estimation,

. 1, If x;, € classy
P(jlxi) = (3.38)
0, Ifx; ¢ classj
In this case,
B 3.39
m]_n_jzi:1xz (3.39)
~ 1 n;
Zj = n_ Zi—l(Xi — m]‘)(Xi — m]‘)T. (340)
; =

now thex; is a sample from clasg with probability one, and:; is the training sample

number of clasg. This is the traditional ML estimator. When using unbiased estimation,

& 1 nj
= ey 2 L e my) = my)” (3.41)
J

this is called sample covariance matrix in the literature[35].

Using the classification rule Eq. (3.4) and Eg. (3.5) with above covariance estimation
is called quadratic discriminant analysis (QDA). When class sample:siseapproxi-
mately equal to or small compared with the dimensipthe covariance estimation with
Eq. (3.40) will become highly variable, in this case it becomes ill- or poorly-posed classi-
fication problem. To improve classification performance, we can apply regularization as

mentioned.

a7

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

One of the regularization methods to deal with the poorly-posed problem is linear

discriminant analysis (LDA)[60]. In LDA, th& in Eq. (3.5) is replaced with following

pooled covariance matrix, also called common covariance matrix,

k
~ 1 ~
J=1

This applies a considerable degree of regularization by substantially reducing the num-
ber of parameters to be estimated.

Regularized discriminant analysis (RDA) is another regularization method which was
proposed by Friedman in 1989[54]. RDA is designed for small number samples case, the

covariance matrix takes the following form:

B0,7) = (1=)85 + 7wy, (3.43)

where

(1 —)\)anj —|—)\NZ

Ei(A) = (1= A + AN

(3.44)

The two parameters and~, which are restricted to the rangeto 1, are regular-
ization parameters to be selected according to maximum the leave-one-out classification
accuracy. controls the amount of thﬁj that are shrunk towarc%, while v controls the
shrinkage of the eigenvalues towards equality as Tkg¢e)]/d is equal to the average
of the eigenvalues of;(\).

There exists another covariance matrix estimation formula which was proposed by
Hoffbeck and Landgrebe in 1996.[55] They examine the diagonal sample covariance ma-
trix, the diagonal common covariance matrix, and some pair-wise mixtures of those ma-

trices. The proposed estimator has the following form:

48

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

S5(6) = Endiag(S) + €255 + a2+ Ejadiag(S) (3.45)

The elements of the mixing parameter = [£;, &0, €43, &54]T are required to sum
to unity: ¥;_,£; = 1. In order to reduce the computation cost, they only consider three
cases: {3, £4) =0, (§51,&4) = 0, and €;1,&;2) = 0. They called the covariance matrix
estimator as LOOC because the mixture paramgeteas optimized by Leave-One-Out

Cross validation method.

3.5.2 Comparison of KLIM with RDA and LOOC

Now let us consider a special approximation of makfik;) in order to compare KLIM
with other discriminant analysis methods.

The estimation of eigenvalue matrix pbsteriorprobability Hessian is iterative pro-
cedure, where initialization is necessary. At the beginning, we don’t know the true dis-
tribution of the samples, therefore the form of matrixis also unknown. One of the
assumptions is that &, = I; be the initial value. Under this assumption, fiesterior

probability Hessian matrix becomes:

HU) = o PR = my)x—m)T

3 PGl s - m,))

+2P(j1x:)[> Pjlxi)(xi — my) — (x; — my)]

i=1
k

X Z P(j]x:)(xi —my)"} (3.46)

Furthermore, if we regard th@tjf:1 P(j|x;)m; = m as averaged mean, the above

equation becomes,

49

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

H(j)=3%,-S+ %Z P(jx)(x; — m)(z; — m)" — =" P(jlx;)(x; — m;)(x; —m)".

=1
(3.47)

The last term represents the cross variance between individual class and common
class, if classes overlapped part is very small, this term had very little significance, so
it can be omitted under some cases. The third term can be regarded as approximately
equivalent to the two times of the common covariance matrix, under this approximation,

the Hessian matrix can be written as

H(j) =S, +3 (3.48)

When we rearrange the term in KLIM2, it leads to,

-~

. So
ev(X) + 0+ 1) (3.49)

@ py — h . e B2
N(h) = (1+ 2TrvaH(])])hId +) (3) + 57

whereev(X) stands for a diagonal matrix in which the diagonal elements are the eigen-
values ofY..

This result is interesting when compared to other’s regularized matrix estimator. The
term h?/2TracéH(;)])1, is very similar with termy/dTracéy; (A)]I; of RDA in form,
but the coefficient is different. While the terms of diagonal matrices are similar with
LOOC, especially it andij are diagonal, the eigenvalue mateix(Y) is exactly equal
to diagonalf), here again the coefficients are quite different. The most important differ-
ence of KLIM with RDA is that RDA uses two parameters control regularization, while
KLIM uses the single parametér LOOC uses single parameter to control the mixing
of two covariance matrix, while the KLIM just use the same portion to add eigenvalue

matrices of sample and common covariance matrix. From above equations, we can regard

50

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

that the KLIM includes parts of RDA and parts of LOOC, it is an integration of RDA and

LOOC.

KLIM is derived under the framework of Kullback-Leibler information measure, while
RDA and LOOC are heuristically proposed. KLIM, RDA and LOOC are similar in that
they all consider ML estimated covariance matrix and addition of extra matrices, KLIM
and RDA both have an identity matrix multiplied by a scalar, but scalar term is differ-
ent from each other. There is also a term in KLIM2 which is the eigenvalue matrix of
posteriorprobability Hessian, while RDA considers it with LDA estimation, and LOOC
considers it with the diagonal sample or common covariance matrix. Moreover, the ML
estimate in KLIM2 has the regularization coefficient which related to difference between
averaged classes quantities and single class quantities, while RDA is simply related to
sample covariance matrix estimation.

KLIM is different with LOOC in that LOOC considers mixing sample covariance ma-
trix and its diagonal, or common covariance. However, the value of mixing parameter
n; iIn LOOC is still selected by using leave-one-out cross validation statistical methods.
In KLIM, the regularization parameter is the smoothing parameter in kernel density es-
timation, which can be selected based i divergence with all samples. While in
RDA, regularization parameter is heuristically proposed, which must use some statistical
method, such as bootstrap, leave-one-out cross validation, to optimize. In this point, RDA
requires much more computation than KLIM.

In the following we show that at one special approximation, when covariance matrices
are identical to each other, thatis = c1,, we can get. =TraceX;())]/d.

From Egs. (3.26) and (3.29),

N

1

Jo(x;,0) = ﬁTraceZ[—Vi In p(x;, 0)] (3.50)
=1

while

51

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

N
=) Vinpx.0) = > > PUiIx)[ET — ST (x — my)(x; —m;) ST
=1 ;
k k
+1> PGl = my) "SI PG [(x = my) TS5
Jj=1 7=1
Using approximatio "~ | P(j|x;)(xi—m;)(x;(—m;)T = n,;5;, SN P(j|x:) = nj,
and Z;lﬁj = I, the first term in above equation is equal to zero. In considering hard-

cut case, the cross terms in second term of above equation can be omitted. The equation

reduced into

N

1

Jo(x:,0) = WTraceZ[—Vfc In p(x;, 0]
=1

%

k Ty
1 -1 Ty —1
WTI’&CGZ Z Zj (Xi — m]‘)(Xi — 1’1’1]‘) Zj

7=1 =1

k
1 _
— §Trace[z a; 571}
71=1
From the Eq. (3.29),
d d
h = ~ 3.51
2J,(xi,0) TraC(—:[Zf:1 a; X7 (3:51)
In a special case,
Z]‘ = O'Id7 h=0c= TraCéZ]‘]/d (352)

In RDA, if we let A = 1 and~ = 1, the covariance matrix will reduce to the same
equation as above. Here we can see that even in the first order approximation, there still

exists some relationship of KLIM1 with RDA.

52

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

3.6 Experiment Results

In order to investigate the performance of KLIM compared with RDA and LDA, we use

both synthetic data and the real world Raman Spectra data set to conduct experiments.

3.6.1 Synthetic data

In the experiments, the synthetic data set have been generated under different conditions.
Three experiments with various distributions adapted from Friedman’s paper[54] and four
dimension, { = 6, 10, 20,40), were carried out. 15 training samples in each class were
randomly drawn from three different Gaussian distribution, the mean and covariance ma-
trix were estimated based on these training samples. Additional 100 independent test
samples from each class were generated to be used as verifying classification accuracy.
Each experiment is repeated 26 times and the mean of classification accuracy as well as
standard deviation were reported.

In the experiments, the smoothing parameétevas estimated using Egs. (3.22) and
(3.24). This estimated value is smaller than that obtained by using Eq. (3.23). Figures
3.2a and 3.2b are typicdl) vs. k curves. We select the smallésvalue corresponding
to local minima of theJ(%). In the case of,; > d, we can use Eq. (3.29) for fast
estimation of: as an initial value. In RDA, the values of bothand~ were sampled over
a very coarse grid, (0.0, 0.25, 0.50, 0.75, 1.0), resulting in 25 data points.

In experiment 1, the covariance matrices of all three classes were equal to the identity
matrix, that is, the equal spherical covariance matrices. The mean of the first class was
at the origin, the mean of second class was 3.0 in the first variable and 0 in the other
variables, and the mean of third class was 3.0 in the second variable and O in the other
variables. Table 3.1 is the results for this experiment. In the tables presented at this
chapter, the value in parentheses represents the standard deviation and dash lines represent
the covariance matrix is singular in which case reliable results can’t be obtained.

In experiment 2, all three classes had identical, highly ellipsoidal covariance matrices.

53

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH

DIMENSION

(@)

(b)
Figure 3.2: The/(h) function with some approximation.

(@) J(h) vs. h curve computed by Monte Carlo integration approxima-
tion with Eq. (3.23). (b)J(h) vs. h curve computed by Second order
approximation with Eq. (3.24).

Table 3.1: Mean classification accuracy for experiment 1

d=6 d=10 d =20 d =140
LDA 84.5(3.58)| 75.3(6.86) | - - -
QDA | 84.5(3.58)] 75.3(6.88) | - - -
RDA | 90.2(1.43) 88.57(5.37) 87.16(2.58)| 91.2(2.09)
KLIM 1 | 90.2(1.43)] 91.73(1.29) 88.4(1.4) | 91.26(1.29)
KLIM 1T | 90.5(1.39) 92.17(1.61)| 63.9(2.07) | 63.0(3.61)

54

CHAPTER 3.

CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH

DIMENSION
Table 3.2: Mean classification accuracy for experiment 2
d=6 d=10 d =20 d =40

LDA 98.1(0.9) | 100(0.01)| - - - ---

QDA 98.1(0.9) | 100(0.01)| - - - ---

RDA 98.9(0.8) | 100(0.0) | 100(0.0)| 100(0.0)
KLIM1 | 99.88(0.16) 100(0.0) | 100(0.0)| 100(0.0)
KLIM 1l | 99.88(0.16) 100(0.0) | 100(0.0)| 100(0.0)

The covariance matrix for all three classes was a diagonal matrix whose diagonal elements

were given by

o;=[9(i—1)/(d—1) +1]? 1<i<d (3.53)

The mean vector of the first class was at the origin, the elements of the mean vector of

the second class were given by

o = 257/ fdl(d = i)/ (d/2 =)],

and the mean of last class was definedlpy= (—1)‘u .. The results of this experiments
are listed in Table 3.2.

In experiment 3, all of the mean vectors of the three classes were at the origin, but the
class covariance matrices were the unequal highly ellipsoidal. The diagonal elements of

the covariances for first class was defined by Eq. (3.53), the other two were defined by

o9 =19(d —1)/(d — 1) + 1]?, (3.54)

and

o3; =190 — (d—1)/2)/(d = 1)]? (3.55)

55

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH

DIMENSION
Table 3.3: Mean classification accuracy for experiment 3
d=6 d=10 d =20 d=40

LDA 38.8(4.79)| 42.2(4.25)| 43.16(4.5) | 39.64(5.2)
QDA 84.2(3.77)| 84.1(6.3) | - - - ---
RDA 84.0(3.27)| 84.9(5.78)| 89.73(2.62) 74.2(8.6)
KLIMT | 85.8(2.26)| 92.7(2.65)| 85.84(3.15) 81.75(3.47)
KLIM Il | 85.6(2.27)| 92.1(4.46)| 84.98(3.35)| 55.67(2.62)

In the experiment 1 and 2, in most cases, KLIM led to higher classification accuracy
than that by LDA and QDA. In experiment 3, the KLIM1 classification accuracy was
higher than other covariance matrix estimation except in one cése ¢0). Table 3.3

shows the experiment results.

3.6.2 Raman Spectra Data

This real world data set was collected in the laboratory experiments from the physics de-
partment at Peking university. It includes 37 Raman spectra whose wave number ranges
are from 320 to 1640 cm, where each spectrum measured by the Charge-Coupled De-
vice (CCD) detector with 1340 effective channel at the same time. The raw data set
consists of three classes: 3 Raman spectra for Ethanol, 5 for Acetic acid, and 29 different
time measures in synthesizing Ethyl acetate. The dimension of the raw data set is 1340
and the sample number is 37.

Because the dimension of the raw data set is very high and number is too small, we
first divide each sample into 10 samples. From every 10 variables of the raw spectrum
vector one pointis drawn and used to construct a new sample vector. By this method, each
original sample is subdivided into 10 samples, and the dimensioom 1340 is reduced
to 134. We also scale the intensity of Raman spectra to the range of [0,1].

The data set we used for classification experiments-si 34 now, where class 1 has
30 samples, class 2 has 50 samples and class 3 has 290 samples after preprocessing the

data set. In order to study the performance of the regularized classifiers, we use bootstrap

56

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

technique [26] to conduct the experiments. 20 training samples are randomly drawn from

each class and used to estimate the mean and covariance matrices. The remaining samples
are used as test samples to verify classification accuracy. The experiments is repeated 26
times, the obtained result is averaged value. The same data set is used with different
classification methods. This is still an ill-posed problem because ef d. In this case,

when we apply LDA and QDA to this Raman spectra data set, they are failed to give
reliable classification results because the covariance matrix is singular.

On the other hand, the bootstrap experiments show that for RDA gives an averaged
classification accuracy 99.27% , the standard deviation is 0.43, while the classification
accuracy for KLIM1 and KLIM2 both reaches 99.81%, the standard deviation is 0.28. The
results also illustrate that these three classes are well separated from each other in the high-
dimension space. Here we should indicate that the classification results are comparable
because we use the same data set for LDA, QDA, RDA, KLIM1 and KLIMZ2, it is not

dependent on preprocessing of the data set.

3.6.3 Discussions

From these experiments we see that the performance of various classification schemes is
generally data-dependent. For example, if all the classes have the same covariance ma-
trix, LDA will lead to a higher classification accuracy than that of QDA. In experiment 1,

the true covariance matrix is in equal sphere, which is a situation that may favor RDA as
well as KLIM1. However, KLIM1 led to either the same or a little higher classification
accuracy than RDA. In experiment 2, the classes are highly equal ellipsoidal distribution,
and their mean positions are separated well with little overlapping. Consequently, all clas-
sification estimators produced high classification accuracy. This example also illustrates
that the classification accuracy strongly depends on the degree of overlapping between
classes. In experiments 3, the classes are heavily overlapped with highly unequal ellip-

soidal distribution, in which case LDA performance is very poor. With properly selected

57

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

smoothing parameter, KLIM1 is better than RDA except in one case-(20). These

experimental results indicate that KLIM1 covariance matrix estimator can lead to a higher
classification accuracy, suggesting that KLIM1 is simple and good-enough for most cases.
From these experiments, we also find that smoothing parameter values for KLIM were not
an accurate requirement, as there exists a range of values in which a higher classification
accuracy can be obtained. This range depends on training samples distribution. In most
cases, however, smoothing parameter selection methods used in this chapter work quite
well.

In comparing KLM1 and KLIM2, KLIM2 estimator led to the same or a higher classi-
fication accuracy than KLIM1 in poorly-posed problem, but its performance is not as good
in ill-posed problem. One of the possible reason is that in ill-posed case, the computation
of covariance matriﬁj is highly variable, resulting in a large difference value between
averaged quantity and single class quantity. This leads to strong regularization in estimat-
ing iQ, consequently deteriorating KLIM2 estimation. Nevertheless, this phenomenon
occurred only in cases in which classes are overlapped. When the classes are well sepa-
rated from each other, the probability of belonging to only one class will approach 1,
resulting inp — 0 and KLIM2 automatically reduces to KLIM1. In the case that we hope
to take advantage of KLIM2, one possible method is to use pre-processed training sam-
ples, e.g., by a data dimension reduction technique such as Principal Component Analysis
(PCA) [61] to reduce the dimension of the data set.

Another advantage of KLIM1 and KLIM2 is that they can be used to classify total
un-labelled samples in small number and high dimension case, since they were derived

based on minimizindy L. divergence in which EM algorithm can be re-derived [59].

3.7 Summary

In this chapter, based ok . information measure, the KLIM covariance matrix estima-

tion was derived and investigated for the classification problem. An efficient smoothing

58

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

parameter approximation formula was derived, and the approximation was found to be

accurate for most cases in our experiments. WithifHeinformation measure, total sam-

ples can be used to estimate smoothing parameter, making it less computation-expensive
than using leave-one-out cross-validation method proposed in the literature. With the
information measure based estimation method, more than half of the experiments show
that the obtained KLIM estimator works well, as they show a little higher classification
accuracy than RDA. Besides, in all experiments KLIM estimators are consistently better

than QDA and LDA estimators.

59

Chapter 4

Cluster Number Selection in Small
Sample Set Case

4.1 Introduction

In intelligent statistical data analysis or unsupervised classification, cluster analysis is to
determine the cluster number or cluster membership of a set of given safnples, [62,
52, 63], by its mean vectofm, }_,. In most cases, the first step of the clustering is to
determine the cluster number. The second step is to design a proper clustering algorithm.
In recent years, several clustering analysis algorithms have been developed to partition
samples into several clusters, in which the number of clustepseigletermined The
most notable approaches are, for example, the Mean Square Error (MSE) clustering and
finite mixture model analysis.

The MSE clustering method typically is implemented by the well-knésmean al-
gorithm [62]. This method requires specifying the number of clusters, advance. I#
is correctly selected, then it can produce a good clustering result; otherwise, data sets can-
not be grouped into appropriate clusters. However, in most cases the number of clusters is
unknown in advance. Because it is difficult to select appropriate number of clusters, some
heuristic approaches have been used to tackle this problem. The Rival Penalized Compet-
itive Learning (RPCL) [64] algorithm has demonstrated a very good result in finding the

cluster number. However, there is still no appropriate theory being developed [65, 66, 67].

60

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

In the mixture model cluster analysis, the sample data are viewed as two or more mix-
tures of normal (Gaussian) distribution in varying proportion. The cluster is analyzed by
means of mixture distribution. The likelihood approach to the fitting of mixture models
has been utilized extensively [68, 58, 49, 69, 70, 71, 50, 72, 73]. However, the determina-
tion of the appropriate cluster number still remains one of the most difficult problems in
cluster analysis [51, 74].

The Bayesian-Kullback Ying-Yang (BYY) learning theory has been proposed in [75].
The BYY learning is a unified algorithm for both unsupervised and supervised learning
which provides us a reference for solving the problem of selecting cluster number. The
experimental results worked very well for a large set of samples when the smoothing
parameteh — 0 [76, 77]. However, for a relatively small set of samples, the Maximum
Likelihood (ML) method with the Expectation-Maximization (EM) algorithm [57] for
estimating mixture model parameters will not adequately reflect the characteristics of
the cluster structure. In this way, the selected cluster number is incorrect. To solve the
problem for the small set of samples, the BYY theory for data smoothing is developed in
[46] is approach considers the nonparametric density estimation and the smoothing factor
in the Parzen window.

In this chapter, we investigate the problem of determining the smoothing parameter
and the model selection in clustering. We compare the parameter estimation result by
using the bootstrap technique [78] and by using the smoothing EM algorithm. With this
approach, the performance of the BYY model selection criterion for determining cluster
number is greatly improved. Finally, we propose an efficient gradient descent smoothing
parameter estimation approach that not only reduces the complicated computation proce-

dure but also gives the optimal result.

61

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

4.2 Cluster Number Selection

First, we briefly review the finite mixture model and the BYY theory for model selection

[76, 79].

4.2.1 Finite Mixture Model

Let us consider a Gaussian mixture model, the joint probability density which consists of
k component Gaussians of which the mathematical expressions are the Egs. (3.1-3.2) in
Chapter 3.

Based on the given data sBt these mixture parameters can be estimated by maxi-

mum likelihood learning with EM algorithm.

4.2.2 BYY theory for finite mixture model and EM algorithm

As mentioned in [79, 80], unsupervised learning problems can be summarized into the
problem of estimating joint distributioR(x,y) of patterns in the input spacé and the
representation spadé By the Bayesian Kullback Ying-Yang theory, we have the follow-

ing Kullback—Leibler divergence [79]:

P (ylx) Par (%)
Par,(x1) Par (1)

KL(My, My) = / / Pus, (y]x) Par, (%) 1 dxdy (4.1)

whereM; and M, are two different models.

The minimization ofk" L(A, M;) can be implemented by th<ernative Minimiza-
tion procedure which alternatively minimizes one model while keeping other models tem-
porarily fixed [79].

We can obtain a general form &f L function in the Gaussian mixture model case as:

K L(My, My) = / / P(y[x)pn, (x) 1In O: éy(t)ﬁ:(;i)dxdy (4.2)

62

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

To match two model; and M, will lead to
k

P (%,0) =) a,G(x,m,,3,) (4.3)

y=1

o, G(x,my,)
PM, (Xv 6)

P(y|x) =
the K L function becomes

KL(k,h,0) = —/phm(x) In pag, (x, @)dx—l—/phm(x) In pp, (x)dx (4.4)

This function in fact is the system relative entropy function.

For mixture model parameter learning,
O = arg rrgnKL(G)), KL(©)= KL(k,h,0) (4.5)

If KL function is minimized with respect to parameéerthe EM algorithm[57, 58]
can be re-derived in the limit — 0. The mathematical expression of the EM algorithm

are written as in Chapter 3 as Eqgs. (3.3) and (3.12).

4.2.3 Model Selection Criterion

The determination of an appropriate number of clusters in a data set is one of the most dif-
ficult problems in clustering analysis [51, 74]. In the literature, there are several heuristi-
cally proposed information theoretical criteria. Following Akaike’s pioneering work [81]
in which an information criterion was first proposed for use in selecting the number of
clusters in the mixture model cluster analysis. Similar studies include AICB [82], CAIC
[83], and SIC [84]. These criteria combine the maximum value of the likelihood with the
number of parameters.

The cluster number;, is actually a structural scale parameter of the BYY system.
From the BYY system, the BYY model selection criterion for determining the correct

cluster number is derived in [76] as follows:

k = arg mkin J(k), J(k) = (4.6)

63

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

Ji(k) = Hi(k) + J3(k), Jao(k) = 5 Hi(k) + J3 (k) (4.7)
0<y <1 (4.8)
where
k k
JI(k) = Zay In/|%,] — Zay In o, (4.9)
1 N k
Hy (k) = WZZP(y|Xi)1nP(y|xi) (4.10)

If taking v, = 0, we haveJ,(k) = JJ(k). In practice, we start witlh = 1, estimate
the paramete® by the EM algorithm based on the given samples, and compute
Then, we proceed tb — £ + 1, and compute/ (k) again. We continue this process after
we gather a series of(k). The appropriate cluster numbeét,is selected from the one

with minimal J (k).
4.3 Parameter Estimation with Bootstrap Technigque

Although the model selection approach discussed above works well for a good size of
data samples, we found out, from several experimental results, that the selected cluster
number was not correct for a relatively small set of samples. The results are also incor-
rect with other theoretical information criteria mentioned above. The reason is that the
MLE with the EM algorithm that estimates mixture model parameters will not reflect the
characteristics of cluster structures adequately. As a result, it affects the correctness of
determining the cluster number. In order to study the effect of parameter estimation on
the BYY model selection, we incorporate the bootstrap technique with the EM algorithm

in the MLE of mixture parameters as described in this section [78].

64

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

4.3.1 Bootstrap Technique

The bootstrap is a random resampling technique. In principle, the sampling process is
described as following [26]:

Suppose the original data setlis = {x;}¥ ,. We randomly draw a sample from this
data set with probability /N. The definition of random sampling allows a single sample
x; to appear more than once in the sample set. By this method, a bootstrap sample set,
Dy = {x;,},, is obtained by randomly sampliny times from the samples. Using the
above resampling techniqué times, we obtair/ groups of data set$),, Dy, - - , Dyy.
These are called bootstrap data sets. For each bootstrap data set, we calculate the maxi-
mum likelihood estimation of the finite mixture model param@grusing the EM algo-
rithm. In this way, we can obtain the correspondivigsets of mixture model parameters,
@1, @2, e ,@M, for M groups of data sets. This process is calledgaemetric boot-
strapmethod.

With maximum likelihood estimation, the parametehas a normal distribution. The

mean of estimated parameters is

1 M
0= Z 0, (4.11)
7=1
The true value 08 is approximated by the mean val@e

4.3.2 Parameter Estimation with Bootstrap

In practical bootstrap implementation, the first step is to initialize the mixture parameters
randomly. Since na priori information is available, with random method the EM algo-
rithm often converges to an undesirable local minima. In this work we propose a "seed
generation” method for initializing the mixture parameters to avoid the undesirable local
minima. The "seed generation” method generates the parameters systematically instead

of randomly. Namely, we start with the whole data set to estimate the mixture parameters

65

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

3.5

2.5

15 L 0.4

0.5

(@) (b)

0.8 2

0.6

0.2

(©) (d)
Figure 4.1: The 2-D synthetic data set with three clusters.

The 2-D synthetic data set and the comparisori.of k& curves with boot-
strap to without bootstrap for three clusters. (a) data set/{b) k& curve
without bootstrap approach, (¢) — & curve with bootstrap approach, (d)A
histogram plot of mean component of a cluster, which is similar to the nor-
mal distribution as expected.

with the EM algorithm. After repeating this procedure several times, we take the most
probable parameters at each test. The obtained parameters are called “seeds” and are used
as the initial values in the bootstrap sample estimation. Because the bootstrap data set
is part of original data samples, the estimated value will be slightly different from the
“seeds” value. In this way, the mixture parameters estimated with the bootstrap data set
will be very close to the same local minima. There are two advantages for this “seeds”
initialization approach. First, it guarantees to converge to close the same local minima.
Secondly, the convergence speed is fast because only small variation is made.

Another problem in maximum likelihood estimation is that there is no label was given
to clusters in the case > 2 test. To avoid calculating the mean using different clusters

parameters, we label clusters according to their mean center position. This guarantees that

66

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

averaging the obtained parameters according to same label to compute the mean value
become meaningful. Otherwise, it will get wrong results if different cluster parameters
are used to compute the mean of a cluster.

We use some synthetic data sets and the real world IRIS data set to study the BYY
criterion with bootstrap technique.

In the synthetic data set, we usex30samples which are randomly generated from
k-Gaussian mixtures, in which each cluster consists of 30 data points. During the experi-
ment, we vary: between 1 to 8. For each generated datdsete resample it/ times
and generatd/ bootstrap data sets. In our work, = 25 is used. Parts of the data sets
and simulation results are shown in figures 4.1-4.2.

Figure 4.1 shows the experimental result of cost funcfigik) versusk for 3 different
Gaussian mixture synthetic data sets. The second example is the IRIS data set. This is
perhaps the best known database to be found in the pattern recognition literature. The
data set consists of 3 classes of 50 samples, each with 4-dimension, where each class
refers to a type of Iris plant. Within the data set, one class is linearly separable from
the other two, and the other two are not linearly separable. Using the Gaussian mixture
model approximation to investigate the structure of the IRIS data set, we found out that the
approximation is somewhat difficult but is possible to get a good approximations. Figure
4.2 is the results of the IRIS data set. Although there are two overlapping clusters, the
BYY criterion with bootstrap technique can determine the correct cluster number.

From the experiments, we find that if the parameters are estimated with the EM algo-
rithm based on a given small data set without any correlation, the BYY criterion as well
as other information criteria fail to detect correct cluster number. When the bootstrap
technique together with "seeds generation” is used to estimate the mixture parameters,
the BYY criterion can select the correct cluster number. In most cases, reasonable results

can be obtained with this combined technique.

67

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

0.8 L,

(@) (b)

0.8 v 32

0.6

0.2

(©) (d)
Figure 4.2: Bootstrap experiment for Iris data set

The Iris data set and the comparison.gf— & curves with bootstrap to
without bootstrap estimated mixture parameters. (a) data seat i, x4

axis view, (b).J; — k£ curve without bootstrap approach, (&) & curve with
bootstrap approach, (d) A histogram plot of mean component of a cluster,
which is similar to the normal distribution as expected.

4.3.3 Summary for Bootstrap Technique

For small set of samples, by incorporating the bootstrap technique with the EM algo-
rithm, we obtain a relatively robust performance for determining the cluster number with
the BYY criterion and clustering. This illustrates that the proposed approach together
with BYY criterion works well for small number sample case as long as mixture model
parameters are properly estimated.

In the next section, we investigate the BYY data smoothing theory for parameter esti-

mation.

68

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

4.4 BYY Data Smoothing Theory

Under theconditional mean field approximatipminimizing /& L function corresponding
paramete® will lead to the Smoothing EM (SEM) algorithm [80], where the updates in

E-step and M-step are given as follows:

E-step:
o, G(x;,my,
P(ylxi) = —— (0 Zy) (4.12)
Ey:l oy G(x;, my, Xy
M-step:
OldG (xi, My, 3,
) =+ Z T) (4.13)
y lozo G(xi,my, 3,)
EN— P(yx;)x; 1 N
my = S5 = —=> _ Plx)x (4.14)
22:1 P(y|xi) ayN =1
Snew 1 N T
Sy =l — Zi_l P(y|xi)[(x: — my)(x; — m,)7]. (4.15)
, _

We can find that the SEM algorithm is different from the ordinary EM algorithm in
that it employs covariance estimation correction.
According to the principle of minimizinds L function, when. # 0, the smoothing

parameter, should be estimated as

h = argmin J(h), J(h) = KL(k*, 0%, h) (4.16)

4.5 Practical Implementation Consideration

The BYY data smoothing is a quite new technique. Two aspects for implementing BYY

data smoothing should be discussed. One aspect is that we need to verify if the estimated

69

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

parameter for determining the cluster number with data smoothing. The other aspect is

the selection of a proper smoothing parameter to estimate the mixture parameter.
Without loss of generality, we use a heuristic estimation of smoothing paramiter

fast implementation. For example, we can ug#& of average distance approximation to

estimateh value as follows:

) N N
JE— P . 2
h = TNN? E E l|x; — x| (4.17)

=1 j7=1
4.5.1 Experiments for Data Smoothing

In order to investigate the data smoothing effect, we first use some synthetic data sets to
conduct the experiments.

The data sets have been generated under different conditions, such as different Gaus-
sian mixtures, different mean, , and different covariance, of each cluster. In order to
eliminate the influence of the EM algorithm that converges to different local minima, we
repeat the experiments with the same condition but with different initial parameter values
for each test.

In computer experiments, we randomly generate Béwo-dimensional samples and
50x k three-dimensional samples, wherés the number of Gaussian mixtures, varying
from 1 to 8. Three data sets and their experimental results are shown in Figures 4.3- 4.5.

The cluster number selection criterion is when the cost funcfign ©) versusk
reaches its global minimum point &t = £*, wherek is the candidate cluster number
and k™ is the actual number of Gaussians in the finite Gaussian mixture model. Figure
4.3 shows the experimental result of the cost functiefk) versusk for two dimen-
sional Gaussian mixture data set. From Figure 4.3(b), we find that the ordinary EM al-
gorithm over-estimates the actual cluster number (which gives us 6 clusters), while the

data smoothing SEM algorithm gives a reasonable result. In Figure 4.3(c) the best cluster

70

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

3.5 CRR o) 1 1

0.8 L2 0.8 L2

2.5

0.6 0.6

15 ' 0.4 0.4

0.5

0 .
0 05 1 1.5 2 2.5 3 35 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) Data set (b) Without data (c) With data smooth-
smoothing ing, h = 0.0207

Figure 4.3: The synthetic data set, 4 clusters

The 2-D synthetic data set and the comparisou gérsusk (b) The result
“without data smoothing” approach, (c) The result “with data smoothing”
approach. The results show that 4 clusters is the best number.

number is 4 from the, versusk plot. Similarly in Figure 4.4(c), the best cluster number
is 6, while the result of the ordinary EM algorithm shown in Figure 4.4(b) is 8. As for
large samples case, the experiments show no obvious difference bétwegand/ # 0
in search of the correct cluster numbers [77].

Another example is the same IRIS data set that was used in the bootstrap experi-
ment previously. Figure 4.5 depicts the results of the IRIS data set. The experimental
results show that the correct cluster number is 3 from Figure 4.5(c). We see that with data

smoothing, the performance of cluster number selection is improved.

4.5.2 Smoothing Parameter Estimation

According to the principle of minimizing L function, the optimal smoothing parameter
can be obtained from Eq. (4.16). However, the evaluation of integration is computation-
expensive. Therefore, we propose an approximation scheme in order to avoid the inte-
gration. In the following, we first review the quantized method which is recommended in
[46]; then we derive a new gradient descent approximation for estimating this smoothing
parameter..

The Quantized Method:

71

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

0.8 L2 0.8 L2

0.6 0.6

0. 4 0. 4

(a) Data set (b) Without data (c) With data smooth-
smoothing ing, h = 0.00799

Figure 4.4: The synthetic data set, 6 clusters

The 3-D synthetic data set and the comparisod wérsusk (b) The curve
“without data smoothing”, (c) The curve “with data smoothing”. The results
show that 6 clusters is the best number.

On each of the quantized levdls, » = 1,2, ..., n;,, we run the SEM algorithm to ob-
tain a series of mixture paramet@r. We then choose one. such that its corresponding
value of K'L(©*, k, h,) is the smallest. This approach is an exhaustive search method and
usually is computation-expensive.

Gradient descent approach

For the gradient descent approach, we need to find an approximation for estimating

parameter.. Referring to [46}, we first briefly review the following equation.

N N/
1
2 A~ [
hx - deN/ z;z;ﬁl(X])HX] X2|| |hgld [4-67 €q14b]
= =
where

G(x,x;,h2 1y,
ﬁz(x) (d)

B Ej\;1 G(Xv X hyzjld.r)
Note G(x, x;, h21,,) is a Gaussian density function.

Y (3 xr

Now let us denote

Theh? in Eq. [46, eq.14b] is equal th used in this report.

72

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

0.8 L2 0.8 L2

0.6 0.6

0. 4 0. 4

(a) 3-D view baser, (b) Without data (c) With data smooth-
T3, T4 AXIS smoothing ing,h = 0.0153

Figure 4.5: The Iris data set, 3 clusters
The IRIS data set and the comparisonJjofersusk (a) IRIS data set in

x1, a3, x4 aXis view. (b) The curve “without data smoothing”, (c) The curve
“with data smoothing”. The results show that 3 clusters is the best number.

N
1
h=awd [0l = x|

N
1
By [G na)= x|

Integratel,, we getl, = 2.

Because;(x) is positive and?;(x) < G(x,x;, h21y,) forV x, it lead to

Y (N

Bi(x)[x = xi|[* < G, %, hady,)% — x|

b (N xr

This indicated; < I, = k2, no matter hovk; distributed.
As we know, for any finite number of samplé8, the summation value will be less

than the integration value when the function is positive, i.e.,

()™ < I < I = ()"

73

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

From the above inequality, we can see that the approach always firfjdegardless
the data distribution and initialization. Becausgeis non-negative, the value af will
approach to zero eventually. Our experimental results verified this conclusion.

In order to cope with the above-mentioned efficiency, we derive a new equation for
estimating smoothing parametebased on Kullback-Leibler divergence.

Rewrite Eq. (4.4) in the following form:

KL©®) = /phm(x)g(x,(ﬂ)dx—l—/phm(x) In pp,, (x)dx

= Jo+ i (4.18)
where
Jo = / i, (%)g(x, ©)dx (4.19)
Jy = / P, (%) In i, (x)dx (4.20)
9(x,0) = —1In Py, (x, 0) (4.21)

If we use Gaussian kernel density

1 N

Pr(X) = Y G(x,x;, h1y) (4.22)

=1

then we have

N
Jo = /phm(x)g(x, 0)dx = %Z/G(X,Xi,hld)g(x,é))dx (4.23)

74

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

Because thé/(x, x;, hI;) term is inside the integral in above equation, wikenoves

Y (2

away fromx;, the function value becomes very small. So we can use Taylor expansion
for g(x, ©) atx = x,. Whenh is small, we can omit the higher order terms and only keep
the first order term. By doing this, we have the following approximatiod,ofdetailed

derivations are given in Appendix A):

N
1
Jo(x,0.h) A Jor(x:,0) + iy) tracdVVy(x;, 0)]
=1

= J()l(XZ', @) + th(Xi7 @) (424)

KL(x,0,h) ~ Jo(x;,0) + hJ.(x;,0) + /phm(x) In py, (x)dx (4.25)

J .. 9,
8_hA L(x,0,h) = J,(x;,0) + o /phm(x) In pp,, (x)dx (4.26)

We know that

0 B Ipr. (%) Iph, (%)
%/phm(x) Inpp, (x)dx = /lnphm(x)de+ —an dx (4.27)

where

) 1 JR—
P (%) = = dupr, (%) + N Z G(x,%;, hL)|[x — x| (4.28)
the last term in Eq. (4.27) can be calculated,
Ipn: (%) e _ (4.29)

oh

75

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

So equation (4.27) becomes

0 0
a_hjh = /lﬂphm (X)%phm (X)dX (430)
d
= 75 Ph. (%) Inpp, (x)dx

N
1
+ SR [10,60 3 Gl L P

7

From

9 B
S L(x,©,h) =0 (4.31)

and with mean center approximation (see Appendix A) we can obtain the new gradient

decent formula for estimating as:

R = b 4 péh (4.32)

wherey is a learning parameter and

N
Sh = hJ, — % > (P (%) = D) In i () (4.33)
1 N k
Jr(xi,0) = o= 3 11> Plylxo)(xi —my) T8 (4.34)

=1 y=1

Letdh = 0, we obtain the following estimation equation far

e S M I (x) = 1 In i, (x;)
JT(XZ', @)

h = (4.35)

76

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

3.5

2.5

1.5

0 0.5 1 1.5 2 2.5 3

(a) The data set, 3 clusters, each (b) The 3-D view of.J, vs. h andk
cluster 30 points.

Figure 4.6: The quantized method for the synthetic data set with 3 clusters.

From the 3-D view of/; versus:, andk, we find that a local minima occurs
atk = 3 andh is around 0.006.

4.5.3 Experiments

Now we present the experimental results for both the quantized and the gradient descent
approximations of.

In the experiments, we varyvalue from 0.001 to 0.05 andfrom 1 to 8. From Figure
4.6, we see that using the quantized methodnd/ can be determined simultaneously.
From these results, we obtairvalue at minimalk’ L(k, £*, ©*). In fact, with a range of.
value, we can determine from the.J; plot. Usually, in the range of value, we choose
h to be the smallest one. Figure 4.7 shows that whealue is between 0.005 to 0.05,
the correct:* can be determined.

From these experiments, we know that by using the gradient method, the searching
range is limited in a small region df value compared to the quantized level method.
Different & will result in different mixture model parameter®; therefore it produces
different 4 estimations. To find the optimal one, we can use the properties ahd
J, [46] to analyze the results and to determinand/. We know that ifh = 0 or & is

too small,% will be over-estimated. It is too large, the curve will be too smooth and

77

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

-1.2

-1.6

-0.9

-1.1

-1.2

-1.3

-1.4

-0.9

-11

-1.2

-1.3

-0.9

-1l

-1.2

-1.3

-1.4

-1.5

-0.9

-11

-1.2

-1.3

-1.4

@ h = 0.001

(b) h = 0.002

-1l

-1.2

-1.3

-1.4

(d)h = 0.005

(€)h = 0.006

-0.775

-0.825

-0.875

(@) h = 0.01

(h)h = 0.015

-0.925
1

(©) h = 0.004

(f) h = 0.008

-0.75

-0.8

-0.85

-0.9

() h = 0.05

Figure 4.7: The/, versusk plots for different: values.

A correct cluster number can be detected from a rangevafues. The data

set used is the same as the one in Figure 4.6 (a).

78

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

0. 08¢

0.06¢

0. 04}

0.02¢

O,‘ ‘ ‘ ‘ ‘ ‘ ‘ B
0 250 500 750 1000 1250 1500 1750

Figure 4.8: Gradient descent approximatiorkof

Iterative epochs of finding using different/. (k, ©*) for differentk. From
the top to the bottom: curves are fbr= 2, 3, 4, 5, 6, 7, respectively.
Learning factory, for this experiment is 0.0001.

-0.21 -0.75 08

-0.8 -0.85
-0.9
-0.85
-0.95
-0.9

-1l

(@) h = 0.3783. (b) h = 0.04814. (©) h = 0.03415.

-0.8
-0.85 -1
-0.9

-0.95 1.2

-1.05

-1l
-1.6

(d) h = 0.03413. (€)h = 0.0024. (f) h = 0.0006.

Figure 4.9: The results for the gradient descent approach that estitnatekthe corre-
sponding/, (k) curves.

If ~ = 0.3783, k is under-estimated, while fdr less thar).0024, thek is
over-estimated.

79

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

-0.8

-0.85

-0.9

-0.95

-1.05

(@h =0.3783.

-0.9

-1l

-1.2

-1.3

-1.4

-0.775

-0.8

-0.825

-0.85

-0.875

-0.9

-0.925

-0.8

-0.85

-0.9

-0.95

-1.05

(b) h = 0.04814.

(©) h = 0.03415.

-0.9

-1.1
-1.2
-1.3
-1.4
-1.5

-1.6

(d) h = 0.03413. (€)h = 0.0024. (f) h = 0.0006.

Figure 4.10: The results for the gradient descent approach that estiiratesthe corre-
sponding/ (k) curves.

From these figures, same phenomenon was observed as in Figure 4.9.

k will be under-estimated (see Figure 4.9 for the comparison). In most cases, we can
easily determiné and/ from the experimental results. For example, in the experiments,
the effect of data smoothing is somehow similar to increase of the number of samples.
According to the theorem in [76)/,(k*) < Ji(k) if & < k*, and J,(k*) = Ji(k) if

k > k*. Figures 4.8-4.10 show the results of the gradient descent approach. From Figure
4.10, we can easily find the possildlie is 3. From these figures, we obtain the optimal

h values, as 0.04814, 0.03413 and 0.03415, respectively, through the gradient descent

approach.

4.6 Summary

In this chapter, we first review the BYY learning theory scheme for data smoothing. For a

small set of samples, by combining the bootstrap technique with the EM algorithm, we ob-

80

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

tain a relatively robust performance for determining the cluster number. The experimental
results, both with the bootstrap and with the SEM technique, show that the BYY-based
model selection algorithm performs quite well in cluster number determination provided
that the mixture model parameters are properly estimated.

The selection of the smoothing parameteis a crucial problem. In this study, we
derive an estimating formula for the smoothing paramate©ften with the estimated
h parameter, we can obtain a correct cluster number. Based on Kullback—Leibler diver-
gence, we derive the gradient descent approach for estimating the smoothing parame-
ter. The experiments indicate that the proposed approach works very well, and it is less
computation-intensive compared to the exhausted search methods.

In fact, under the circumstance of different models, different sample sizes, and dif-
ferent data distributions, the determination of an appropriate cluster number using the
Gaussian mixture model is very difficult. From our derivations and experiments, the
BYY-based model selection criterion can select a reasonable cluster number even in a

small set of samples.

81

Chapter 5

Ensemble Neural Networks

5.1 Introduction

For a given finite data set we usually train several neural networks with different archi-
tectures and different initial weights. Combining these neural networks together forms a
committee of networks, which is called ensemble neural networks. This approach gives
the advantage that prediction using the average of the committee gives a better general-
ization than the single network in the committee[85]. In the literature, it is a common
practice to form ensemble networks with two steps[86]. First, several individual networks
were generated by various methods. For example, we can use identical training data to
train networks with different architectures, with different initial conditions, or various
training algorithms [87, 85]. We can also use statistical techniques, such as bootstrap
and cross validation[26], to partition training data set, then use the partitioned data set to
train the networks. It is calledagging predictorsif using bootstrap samples[88]. In the
application of neural networks to a classification problem, some authors pay particular
attention to this first step[89, 90, 91, 92, 93]. For the second step, we combine trained
networks together with proper weighting coefficients to form the ensemble networks. The
optimal ensemble averaging of the neural networks problem is also noted by some authors
[87, 94, 95, 96]. In this chapter, we show a more general case based on the mixture mod-

els, and address the practical implement problem encountered in averaging the ensemble

82

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

networks in the parameter space.

The mixture model, or called mixture of experts (ME) [97] as well as its alternative
model [98], employs a modular network structure and applies the soft-max gating network
to control the individual network output. This approach will make the individual network
to become an expert at some local input region, and produce biased estimations in the
special input region. When the soft-max gating network is assumed irrelevant to input
variables, ME reduces to the ensemble neural networks model. This model will globally
optimize the ensemble networks instead of its separate steps. In this model, the weighting
coefficient is based on the probability of members in the ensemble networks. Under some
approximation, it reduces to the least-square-error-based weighting coefficient.

The relationship between mixture of experts and Combining Multiple Classifiers (CMC)
has been addressed in paper [87] and [94]. In recent years, there are some new develop-
ments in the ensemble nets [99]. In the following section, we show that the ME is a more
general model than the ensemble networks, and the result in paper [99] can be obtained

as a special case of the ME.
5.2 Relationship between ME and Ensemble Neural Net-
works

5.2.1 Review of Mixture of Experts

Here we briefly review mixture of experts (ME) [97].
The ME can be described using the following conditional probabilities of network

outputz on given inputx at paramete#:

K
plalx.0) = 3" gi(x.v)plzlx. 0) (5.1)

In network output is the real casg(z|x,0;) = G(z,g(x,W'),0?1,,) is Gaussian

density,

83

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

exp{—5,zllz — g(x, W)|*}
(27 (07)]4=/2

Gz, g(x, W;),0714.) = (5.2)

wherex € R, z ¢ R, 0 consists ofs and{W;, o2} . The vectorg(x, W;) is theith

expert network output. The(x, v) is scalar soft-max function given by

eﬁ,‘(x,u)
EA eﬁ](x,u)

J

gi(Xv V) = (53)

In the above equatiod3;(x,)}, are the outputs of the gating network.
In the alternative model of ME (called AME in the remaining text) [98], the soft-max

function and mixture density are

) = caPxlv)
HV) = SR Py
P(x[v;) = a;(v;)7"bi(x) exp{e;i(v)T;(x)} (5.4)

where P(x|v;)’'s are density functions from the exponential family. The AME soft-
max function represents a more general case of the gating network.
When we assume that training data set= {x;,z;}¥, , the log likelihood function

for ME is,

LO,K) =) Inp(zlx,0)

x,z€D
N K
= D D gixvplzixi, 0} (5.5)

The parametef is estimated by the Maximum Likelihood(ML) learning method,
where the ML estimation of parametecan be found using EM algorithm[57].

The idea of using a mixture model to address the ensemble nets problem can be traced
back early in [94]. At that time, the ensemble nets is called Combining Multiple Clas-

sifiers (CMC). Later in [98], as a special case of the ME, CMC was further discussed.

84

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

Recently, some new results are presented in the ensemble nets study [99]. In the follow-

ing we will show that the obtained result in [99] is still a special case of the ME.

5.2.2 Ensemble Networks

When we simply assume that gating network outpiits,), : = 1,2,--- , K, are con-

stants in the ME, Eq. (5.5) become,

N K
LK) =) In{} gi(xi,v)p(zifxi,05)}
2§1 I]{
- Zlﬂ{Z%P(ZAXia@j)} (5.6)

whereo,'s are combining coefficientsy, > 0, 3.5 a; = 1.

This equation represents the log likelihood for a distributionsomixture density
functions, or the so-called ensemble networks. Here we can see that the mixture model
naturally includes the ensemble nets, and the weighting parameter is a special case of the
soft-max network assumed to be constant. When the soft-max network is independent
of input variables, each network in the ensemble networks is effective in the whole input
region. The difference of each model in the ensemble networks may be caused by network
structures, initial conditionst al. Especially, when the weighting coefficient equals
to 1/ K, it becomes a simple average ensemble network.

We can rewrite Eq. (5.6) as

N K
L0, K) = > In{}_ a;Gi(zi, g(xi, W), 7)) (5.7)

As a special case of the ME, the EM-like algorithm can be used to find the maximum
likelihood solution for these specific parameters. This is shown as follows:

E-step: fix ¢, W and ¢2)°'Y, and computé (i, j) by

85

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

oGz, g(x;, W;), 07)

h(lhj) = K — (58)
I OélOldG(Zjvg(vam/l)vo-lz)
M-step: find new estimations of parametet<*, W/« and ¢2)"“ with :
1 N
a?ew _= ﬁ Z h(@7])
7=1
Wrew = max L(W;, (02)°, K)

(o)™ = max LW, o2 K) (5.9)

For example, moving one step along the gradient descent direction, we get

new o] aL
I/I/i = I/I/Z ld —I— ")/am |Wi:W,‘Old (510)
2\old aL

C

= (o)

TGy =

wherey is a learning constant.

In this way, we can find network paramet&t and variances?, as well as weighting
parametery; by adaptive learning. This is global optimizing ensemble networks instead
of separate steps by using the ML estimation. Here we can see that ME is a more general
and powerful model than the ensemble networks. Even in a simple case of ME-based
model,(i.e, when network parameters are known or obtained by some other optimizing
algorithm, and onlyy; is learned [98]), we can also obtain the optimal weighting-average
parameter. Following we will discuss some approximation cases for the weighting param-
eter.

One of the approximation for the weighting parametgrs a simple calculation with
obtained parameter values instead of an adaptive computation. Suppose we have obtained
every network parameters with the above EM-like algorithm or some other optimizing

algorithms, therr,;? can be obtained with the maximum likelihood estimation,

86

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

N
o} Z g(x;, Wi)J? (5.11)

and leta?'? = 1/K. From Egs. (5.8) and (5.9) we can obtain

) XhW) 0-2)

zZ;,9 s U4
NZEBGZM (X17W)7 2)
o?)~ %% exp 202||Zl g1l *}

- NZ fé —d./2
]

o) exp{— 202 21 — g;.11*}

(5.12)

This is another form of weighting combination parameter in the maximum likelihood
sense for the ensemble networks.
If network output is binary, for example, a two-class situation, we spe€ifik, ;) =

g (1 —g)'=*, 2 = {0,1}. In this case, withu¢' = 1/K, a; becomes

1 N
o = ﬁZh(i,l)
=1
1 Z1

N Z IX Zl — g)l—zl (513)

From this equation we can see that the dynamically weighted ensemble neural network
[99] is ME’s hard-cut approximation.

Now let us consider a special approximation for Eq. (5.7).

Suppose we have obtained the network parameters by using the above EM-like algo-
rithm or some other optimizations procedure. We substitute averaged network function
fx, W) = °F ,g(x, W;) into Eq.(5.7) and regard variance the same in each model,

The Eq. (5.7) becomes

87

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

N K
L(ﬁ) = Z IH{Z aiG(Zlv g(le I/Vl)v 022)
l;l Ii
Zln{Z iz, [(x1, W), %) (5.14)

%

%

1 d.
> 5oz = f(x, W) + - In o]

=1

When omitting some constants irrelevanttove have

DO | —

N K
=5 [z =) Biglxi, W)l (5.15)
=1 7

This form represents the traditional ensemble networks with weighting coeffigient
Minimizing F(/3) can obtain the corresponding optimal weighting paramétéor aver-

aging in functional space which was directly obtained by [85]:

> i(oioy)™!
> (o)t

Here we can see that the traditional ensemble network is just a special case of the

5 =

(5.16)

mixture model. However, the optimizing parameter algorithm is also presented in our
model. The algorithm provides us not only every network function parameter, but also
the ensemble weighting parameter.

The advantage of using the mixture-density-based model for ensemble networks is that
it gives a global consideration, which results the optimal combining networks. Since the

model includes the ordinary committee network, it also provides a better generalization

88

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

than single network. In fact, the expectation output for this mixture model is:
zZ = /Zp(z|x, 0)dz
K
= /zZaiG(z,g(X, W;),0?)dz

K
= > aiglx W) (5.17)

This is the averaging ensemble networks. From the statistical point of view, it is
obvious that Gaussian mixtures can provide a more accurate model for estimating gener-

alization error than a single Gaussian.

Table 5.1: The ensemble network weighting parametes; and individual network? .

| Network: [2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
02»2 (x107?) || 5.5437| 5.5721| 5.4374| 5.7276| 5.1445| 5.5665| 5.6398| 5.3832
o; 0.0561| 0.1926| 0.2156| 0.0484| 0.3866| 0.0249| 0.0219| 0.0534

i 0.1245| 0.1242| 0.1257| 0.1225| 0.1291| 0.1242| 0.1234| 0.1263

5.2.3 Experiments for Averaging in the Functional Space

In the experiments, we use the three-layer neural network architecture. T¢iat i8/) =
S WS (5° Whay)), whereS(-) is sigmoid activation function, and” = {W;, W/}

stands for network hidden and output connecting weights. The target sample can be

viewed as being generated according to the signal-plus-noise model,

In our experiments, we construetz) = sin(x) cos(3z) 4+ /3 nonlinear function as
the underlying function. 30 training samples are uniformly chosen from this function,
and input region is restricted ih < = < 7, then scale this region o < = < 1. With

Gaussian noise added to the output, the target functigixis= sin(z) cos(3z)+x/3+e,

89

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

wheree is the noise with meam. = 0 and variancer =0.1. In addition, another 30 data
pairs are randomly generated with noise and used as test data.

We train the neural network with 1@Hhidden neurons, = 0, 1, ..., K, and the initial
weight values are randomly initialized in the rangé-ef .5, 1.5]. Namely, the architecture
of each network is different from each other, and the connecting weight parameter is
different from each other also. In practice, in order to speed up the convergence, only
re-estimating values af; periodically in the M-step of the adaptive algorithm is needed.

The weighting parameters are shown in Table 5.1. In Table 5.1, all parameters are
obtained based on the training data sketalue is computed according to Eq. (5.16).

When errors are uncorrelategls; ~ 0 if : # j. 5; will then become simple GEM

form[85],i.e.,

;72

K3
E]‘ o;7?

We can use maximum likelihood estimation tof, regard={z" — g(x", W;)}* near

Bi (5.19)

a constant, and consider the cas€.0f 2 in Eq. (5.12). Under this rough approximation,

we have

;72

_ K3
E]‘ o;7?

Which reduces into the form of a simple GEM.

(5.20)

QY

Figure 5.1 displays the total test error vs. the network nunibdn Figure 5.1, the
sum-of-square errors are computed by using the test data set, which can be regarded as
an estimated generalization error. It is seen that the ensemble networks total test error
is small when using weighting parameterthan usings; for most cases. This implies
that «; iIs somewhat optimal comparing with. Similar results are obtained for several

different data sets and for different network architectures.

90

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

The experimental results demonstrate that with an adaptive learning, better ensemble
averaging parameters can also be obtained. The generalization error is less than using the

least-square error based on an averaging parameter.

0.8 | | |
* |
0.6 /
\ \“
0.4 |
0.2
-
.)
0 5 4 6 8

Figure 5.1: The scaled test errors vs. network nuniber

The lines are for ensemble nets weighteddhyand j3;, respectively. The
line with diamond is foky;, and the line with star is fgs,

5.3 Averaging Connecting Weights

In the above experiments, we use different network structure to average ensemble net-
works. This can only be combined in the functional space. If we hope to make an ef-
ficient finite data usage, we can adopt some statistical resampling techniques, such as
jackknifing, bootstraps and cross-validation[26]. That is, using resample techniques, we
getm group data setsp,, D,, ..., D,,, to train network, with corresponding param-
eters@)l, @2, v 0,.. Among these parameters if only one is chosen and the others are
discarded, the chosen network should have the best performance on the validation data
set. However, it may not be the one with the best approaéh tand it may not get the
best performance on new test data.

In real applications, if we fix the network architecture, the parameters in a feedforward

neural network take the form of connecting weights, which usually have many different

91

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

local minima. Therefore, the simply averaging the weig/lﬁs /WQ, ...,Wm cannot ex-
pect to improve the network performance. Thus, the method of combining the networks
usually lies in network functional space instead of in parameter space. For Generalized

Ensemble Method network function[8%);..(x, W) is

Gran(x, W) ZﬁgZ (x, W) Zﬁig(x,ﬁ/\i) (5.21)

This expression is for averaging in functional space, applying a linear combination of
trained networks. The advantage of the functional average is that networks with different
architectures can then be combined together. But the combined network requires storing
all trained network functions for ensemble purpose. While for averaging in parameter

space, we have,

Z Wi gpau(x, W) = g(x, W) (5.22)

Apparently the last network architecturg, (x, W) is simpler thary ., (x, W). When
we make prediction using new data by.,(x, W), we need to input new data to every
single network, and average all output data of these networks. Whjlg,itx, V), be-
cause the obtained network is still in the original model space, we only need to store the
averaged weight parameter, and do not need to average all output of networks. From this
point of view g,,,(x, W) is superior tog..(x, W) both in memory requirement and in

recall speed.

5.3.1 Problems of Weights Average

There are two problems we should be dealt with weight average. One is how to get the
proper weights, and the other is how to combine these weights.

Let us first consider the proper weights problem. Because the Back Propagation as
well as other gradient decent algorithms sometimes fall into local minima, the value of
W not only depends on training data, but also depends on initial starting value. Even

for the same data set, different starting values might result in diffé/wém;ometimes

92

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

far away fromlV. If we use the gradient decent algorithm to find the connecting weight
parameters, averaging the parameter cannot improve network performance. Figure 5.2 is
an example to illustrate the network connecting weight tracking in a training processing.
To our knowledge, so far ensemble network just averages in the functional space, and
no one has investigated and implement parameter average to get a good generalization
performance.

As for combining the weights, wheW = Y7, 3;W, is used, we have an error

function for finite data set
1 N
7 = gy 2l e

N
1 m ———
= g 2= gl Y AW (5.23)
=1

In principle, we can determine the optimal ensemble coeffigiehy

f; = arg min J(x, Zm . ﬁjﬁ/\j), with Zﬁz =1
= =1

Because(z;, >, ﬁjﬁ/\j) usual takes a nonlinear form, itis impossible to get explicit
expression fop;, and we must seek some approximate solutiorsfor

One special case is using linear approximation. When assuming square error of each
network is uncorrelated and zero mean, we can obtain Eq. (5.19),

-2
.

Bi= == (5.24)

i%
To focus the problem in the parameter space, in the following we use this average

weighting coefficients; instead of;

5.3.2 Solutions for Weights Average

As illustrated in Figure 5.2, there are many local minima in the parameter space. The

difficulty of making parameter average becomes practically notable in that the weight for

93

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

1.4

Weight Space

(@) (b)
Figure 5.2: Weight space with local minima.

(a) The relation of weight average with generalizatioti* stands for the
network trained with large scale data. With* the network has good gener-
alization ability. With finite data set trained network, the weight approaches
to W;. While regularizer forces weight approachﬁ\b With resample tech-
niques such as bootstrapping to train the network, we can get a set of weights
Wi, W, ..., W,,,. Averaging these weights we get the average welgjhio
approachi/*. In this way we improve network generalization ability. (b)
The tracks of the weight vector when training network with BP algorithm.
Horizontal axis stand fo{W,,|, the length of hidden layer weight vector,
while the vertical axis igWV,|, the length of output layer weight vector.
Three lines represent the three times of training network using the same
data set, respectively. Each line represents that weight vector starting at
small values and ending at different point with others in the weight space.

each network is not around the same local minima. How to guarantee the weight in the
newly trained network is not far away from the other local minima? In our view, the
possible solution is to develop a special methodology so that as long as the data set does
not change a lot, the weights also does not change a lot. That is, to lock it at one minima.
Based on this idea, we developed a novel method called PIL to train the feedforward
neural network [100, 101]. This algorithm can find the global miniiawhich only
depend on the training data set. That is, as long as the training data is the same, the
weight will be the same. By using PIL, every time we take one group partitioned data

set to train the network, and get oHé. The algorithm adopts in a batch way to train the

94

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

1.5

0.5

-0.5

0.2 0.4 0.6 0.8 1

(@) (b)

Figure 5.3: The individual networks output and the ensemble network output with aver-
aged weight parameter.

(a) The individual networks output. Because in each CV training data set
there is only one data point different from others, the weight changes a little,
and output also changes a little. This illustrates that our method indeed locks
weights near one local minimum; (b) Dots represent training data, and the
solid line is the ensemble network output with averaged weight parameter.

network, and calculate the pseudoinverse of the hidden output matrix. The details of the
PIL algorithm will be presented in the next chapter. In the following section we would
explain our method through an example and show the experimental results of the weights

averaging ensemble network.

5.4 Experimental lllustration

One necessary condition to get good generalization is that the underlying function should

be, in some sense, smooth. In the experiments, we adogitithe cos(3z) + = /3 nonlin-

ear function as used in the last section, and one exponential function as training patterns.
Different from averaging in the above functional space experiments, leave-one-out

cross-validation method is now used to partition 30 training samples, and 30 group-

replicated training data sets, called CV samples, can be obtained. Each CV sample set

has one validation data pair and 29 training data pairs. Therefore 30 networks are ob-

95

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

Figure 5.4: The output layer weights distribution of 30 networks.

(o))

H

w

N

=

o

tained with the CV training set.

We train the neural network with 29 hidden neuron numbers, which is equal to the
training sample number used in training the expected network. After input matrix is mul-
tiplied with hidden weight matrix, nonlinear sigmoid transformation is applied to produce
hidden output. The output layer weight is the multiplication of pseudoinverse of the hid-
den output and the desired output data.

In order to reduce the fluctuation of the connecting weight, we use fixed hidden
weights, This will not only reduce the complexity of the network, but also get good gen-
eralization. The hidden weight values are randomly initialized only once in the range of
[—0.5,0.5].

We define the generalized error as the training error plus the test error. That is, for

leave-one-out cross-validation, the single network generalized error is mean square error;

1 N 2 2
GE = ﬁ[éﬁj (Zi - g(Xi7 W)) + (Z] - g(va W))]
1 ZN)

For computingP AV, errors for averaging ensemble networks in parameter space,
g(x, W) uses Eq. (5.22) instead. For computifigtV/, errors for averaging ensemble
networks in functional space(x, W) uses Eq. (5.21) instead.

The comparison of generalized errors are shown in Table 5.2. These results indicate

96

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

(@) (b)
Figure 5.5: Experiment for exponential function mapping
(a) The 100 individual networks output. (b) Dots are training data, the light
gray line is the underlying function, and the dash line is the ensemble net-

work output with averaged weight parameter. The ensemble net output is
close to the underlying function.

Table 5.2: The networks Errors

| | Min | Max | Mean | PAV | FAV |
[GE |[0.00384] 0.00494] 0.00391] 0.00392] 0.00389)

that the performance of our model is near the same as functional averaging. The reason is
that we use partial linear approximation in our approach.

The individually trained network as well as the weight average ensemble networks
output are shown in Figure 5.3a and 5.3b. We can see that the generalization indeed
improves. Figure 5.4 is the distribution of output weights, in which we can easily see that
our method indeed locks at one local minimum. In considering only 30 training samples,
this is the best obtainable results based on a small training set.

Another example, using an exponential function, is shown in Figure 5.5.

The results demonstrate that our method not only can keep nonlinear mapping prop-
erties of neural networks, but also can realize the parameter space average. It is obvious

that the results are dependent on training data and validation data. For this training data

97

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

set one may find a single network with minimal test error, but this is only for a particular

data set, while the ensemble networks approach is more general and robust.

5.5 Summary

In this chapter, we discuss the relationship between mixture of experts and the ensemble
networks. In a special case that soft-max function is independent of input variables, the
ME reduces to ensemble neural networks. With this approximation, it is a global opti-
mization of ensemble nets instead of individual members. Simultaneously, the weighting
average coefficient for ensemble nets can be obtained through the EM algorithm. Exper-
iments show that the ME is a more general and powerful model than ensemble networks
in parameter estimation with maximum likelihood learning.

In the average parameter space experiments, we use the cross-validation-based parti-
tion training data set to train neural networks. By using a learning methodology to avoid
networks problems falling into different local minima, we overcome the difficulty of av-
eraging ensemble networks in the parameter space. Experimental results show that the
adopted strategy is efficient in improving networks performance with finite training sam-
ples, and the ensemble network architecture is much simple than that in the functional

space.

98

Chapter 6

Pseudoinverse Learning Algorithm

6.1 Introduction

Multilayer feedforward neural networks have already been found to be successful for var-
ious supervised learning tasks. Both theoretical and empirical studies have shown that
the networks are of powerful capabilities for pattern classification and universal approx-
imation [21, 102, 103]. Several adaptive learning algorithms for multilayer feedforward
neural networks have recently been proposed [104, 45, 105, 106]. Most of these algo-
rithms are based on variations of the gradient descent algorithm, for example, Back Prop-
agation (BP) algorithm [104]. These algorithms usually have a poor convergence rate
and sometimes fall into local minima instead of global minima [107]. Convergence to
local minima can result from the insufficient number of hidden neurons as well as im-
proper initial weight settings. However, slow convergence rate is a common problem of
the gradient descent methods, including the BP algorithm. Various attempts have been
made to speed up learning, such as proper initialization of weights to avoid local minima,
and an adaptive least-square algorithm using the second order terms of error for weight
updating [108]. There is another drawback for most gradient descent algorithms, namely,
“learning factors problems”, such as learning rate and momentum constant. The values
of these parameters are often crucial for the success of the algorithm. Most gradient de-

scent methods depend on these parameters which have to be specified by the user, as no

99

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

theoretical basis for choosing them exists. Furthermore, for applications which require
high precision output, such as the prediction of chaotic time series, the known algorithms
are often too slow and inefficient. In some cases, for examplesideked generalization
[109] which requires training a lot of networks to get level-1 training samples, it is very
computation-time consuming when applying BP algorithm to perform the required task.
Therefore, it is worthwhile to seek new algorithms which are suitable for the applications
that require high precision output, whereas the network structure is less important.

In order to reduce training time and investigate the generalization properties of learned
neural networks, this chapter presenBsgudoinverse Learning algorith(RIL), which
is a feedforward-only algorithm. Learning errors are transferred forward and the network
architecture is established. The previously trained weights in the network are not changed.
Hence, the learning errors are minimized separately on each layer instead of globally for
the network as a whole. The learning accuracy is determined by the number of layer. By
adding layers to eliminate errors, all examples of a training set can be exactly learned.
From a mathematical computational point of view, the algorithm is based on generalized

linear algebraic method and employs matrix inner products and pseudoinverse operations.

6.2 The Network Structure and Learning Algorithm

6.2.1 The network Structure

Let us consider a multilayer feedforward neural network. The network has one input
layer, one output layer and several hidden layers. The first layernwmitaurons is the
input layer including last neuron being a bias neuron of constant output. The last layer
with m neurons is the output layer. The number of hidden layers depends on the desired
learning accuracy and the used data set.

The weight matrixW' connects layet and layer/ + 1 with elementswjﬁj. Element
w} ; connects neuronsof layer/ with neurons; of layer/ + 1. Note that théW® matrix

connects the input layer and the first hidden layer, whereaSMhenatrix connects the

100

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

last hidden layer and the output layer. We assume only the input layer has the bias neu-
ron, while the hidden layer(s) and the output layer have no bias neuron. The nonlinear
activation function is denoted ag-). For example, we can use the so-called sigmoidal

function,

o(x) = (6.2)

whose output is in the range of (0,1), or a hyperbolic function

o(x) = tank(z) = — 6.2)

er 4 e "

whose output is in the range of (-1,1) as an activation function.

Given a training data sé? = {x;,0;}¥,, let (x;, 0;) be thesth input-output training
pair, wherex; = (xy, 22,... ,x,) € R"istheinput signal vector and = (01, 02,... ,0n) €
R™ is the corresponding target output vector. For giversets of input—output vector
pairs as examples to be learned, we can summarize all given input vectors into a matrix
X° with N rows and + 1 columns. Here the last column &P is a bias neuron of con-
stant valug. Each row ofX° contains the signals of one input vector. N&&& = [X|4],
where matrixX consists of all signak; as row vectors. All desired target output vectors
are summarized into a matr® with N rows andn columns. Each row of the matri@
contains the signals of one output veabor

The described networks are of multilayer perception type: They first compute an inner
product of the incoming signals matrix with their respective weight matrix. Afterwards,
an activation function is applied, producing the output of the neuron which is sent to all
neurons of the following layer. In this designed network structure, the activation function
is not applied to the output layer, so the last layer is linear.

Basically, the task of training the network means trying to find the weight matrix

101

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

which minimizes the sum-square-error function,

N m
1
B=omd) lleixi 0)—oill. (6.3)

=1 j=1

whereg(x, ©) is a network mapping function an@ is the network parameter se®

includes connection weighv and a bias parameter. In a three-layer structure case,

N n
g]‘(X7 @) = Z wi’jai(z w;] + (92) (64)
=1 =1
whered; is a bias value for the network input.

For simplifying, we can write the system error function in the matrix form,

E= %Traoe[G - 0)"(G-0). (6.5)

Propagating the given examples through the network, multiplying the output of/layer
with the weights between layefrand/ + 1, and applying the nonlinear activation function

to all matrix elements, we get:
Y = o(Y'WY), (6.6)
and the network output should be
G =YW~ (6.7)

where we use superscriptto donate the last layer.
By examining the above equations and reformulating the task of training, the problem

becomes
minimize||[YW — O|. (6.8)

This becomes a linear least-square problem. If we can find the network weight parameter
such that| YW — OJ|* = 0, we will have trained the neural network to learn all given
examples exactly, that is, a perfect learning.

We focus our discussion on the last hidden layer now. For the sake of convenience, in

the remaining of the chapter we drop superscript infléx Eq. (6.7).

102

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

6.2.2 Existence of the Solution

Now let us discuss the equation
YW =0, WeRr*", YecRY* 0OeRV"™ (6.9)

When p < N, the system is annderdeterminedystem. Notice that such a system either
has no solution or has an infinitive number of solutions.

If Y ¢ RV*V isinvertible and has been learnedin- 1 layer, then the system of Eq.
(6.9) is, in principle, easy to solve. The unique solution for the last layer weight matrix is
W = Y~!O. If Y is an arbitrary matrix inzV*?, then it becomes more difficult to solve
Eq. (6.9). There may be none, one or an infinite number of solutions depending on where
O € R(Y) space and whethéY— rank(Y) > 0.

One would like to be able to find a matrix (or some matrigg@syuch that solution of
Eg. (6.9) are of the forr©O. Butif O ¢ R(Y), then Eq. (6.9) has no solution.

In order to make our approach self-contained, we rewrite the relative linear algebra
theorem in the following. The corresponding proof is from the reference book [110].

Theorem 1: The systemY W = O has a solution if and only if

rank[Y,O]) = rankY). (6.10)

Proof: Let S denote the column space &f, and letS* denote the column space of
[Y, O], thenYW = O has a solution if and only ® is in S. ButO isin S if and only if
S andS* have the same dimension, i.&.,and [Y, O] have the same rank. (The rank of

a matrix is equals to the maximal number of independent rows or columns.)

6.2.3 Pseudoinverse Solution is the Best Approximation

We intend to use the pseudoinverse solution for finding weight matrices, as the theorem

from linear algebra states that pseudoinverse solution is the best approximation solution

103

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

for Eg. (6.9). It achieves a global minimum in the weight parameter space if the exact
solution is reached.

Theorem 2: Suppose thaK ¢ RrP*™, A ¢ RN*». B € RN*™ then the best
approximate solution of the equatianiX = B is X, = ATB (we use superscriptf” to
denote the pseudoinverse form of a matrix).

Theorem 2 can be similarly derived from [110]). From the theorem 2 we get:

Corollary 1: The best approximate solution AfX =TisX = A*.

Based on the above analysis, we try to find the output layer weight in the following
way. LetW = Y*O, the learning problem becomg¥ Y*O — O||? = 0, whereY* is
the pseudoinverse &f . This is equal to finding the matri¥ so thatY’ Y™ —I = 0, where
I is the identity matrix. Now the task of training the network becomes that of managing
to raise the rank of matri¥ up to a full rank. As soon a¥ becomes a full rank matrix,
YY ™ will be equal to the identity matriX. Note that since we multipl¥ on the right
side byY*, it only requires the right inverse & to exist, andY ™ is not necessary to
be a two-sided inverse df. This means tha¥ needs not be a square matrix, but its
number of columns should not be less than its number of rows. This condition requires
that hidden neuron numbers be greater than or equél tbthe condition is satisfied, we
can find an exact solution for the weight matrix. In our network architecture design, we
set the hidden neuron number to be equaktowith this network structure, we can find

the weight matrix which can exactly map to the training set.

6.2.4 The Pseudoinverse Learning Algorithm

According to the above discussion, we first let the weight ma¥ikbe equal tq'Y°)*

which is an(n + 1) x N matrix. Then we apply a nonlinear activation function, that is,

to computeY' = o(Y°W?), then computeY')*, the pseudoinverse &f!, and so on.
Because the algorithm is feedforward only, no error will propagate back to the preceding

layer of the neural network, and we cannot use a standard errorfoem’-Trace[G —

104

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0)"(G — 0)] to judge whether the trained network has reached the desired accuracy
during the training procedure. Instead, we use the critetigh- (Y))* — I||> < E.

At each layer, we computgY'Y't — I||2. If it is less than the desired error, we set
WZE = (Y!)*O and stop the training procedure. Otherwise, Wt = (Y')*, add
another layer, and feed forward previous layer output to the next layer again, until we
reach the required learning accuracy.

To use any nonlinear activation function in the hidden nodes is to utilize the nonlin-
earity of the function, and to increase the linear independency among the column (row)
vectors or, equivalently, the rank of the matrix. It is proven that sigmoid functions of a
hidden layer of the network can raise the dimension of the input space up to the number
of the hidden neurons [111]. So through a nonlinear activating action, the rank of the
transformed matrix will be raised layer by layer.

In this way, we get a feedforward-only algorithm which reduces learning error on
every layer. First we establish a two-layer neural network. If the given precision cannot
be reached, a third layer is added to eliminate the remaining error. If the third added
layer still cannot satisfy the desired accuracy, then another hidden layer is added again
to reduce the learning errors, so on and so forth until the required accuracy is achieved.
Mathematically, we can summarize the algorithm to the following steps:

Step 1. Set hidden neuron numberdsand letY? = X°.

Step 2. ComputeY”)" =Pseudoinversa(®).

Step 3. ComputdY' - (Y))* —I||. Ifitis less than the given errat, go to step 6.

If not, go on to the next step.

Step 4. LetW'! = (Y')*. Feed forward the result to the next layer, and compute
Yt = o(Y'WY).

Step 5. ComputeY'*!)+ =Pseudoinversa{'*!), set/ +- [+ 1, and go to step 3.

Step 6. LeftW’ = (Y©)*O.

Step 7. Stop training. The network mapping functioGis= o(...o(c(YOWOWH) .. YW

105

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

6.3 Adding and Deleting Samples

The proposed algorithm is a batch-way learning algorithm, in which we assume that all
the input signals are available at the time of training. However, in real-time applications,
as a new input vector is given to the network, the weight matrix must be updated. Or,
we need to delete a sample from the learned weight matrix. It is not efficient at all if we
recompute the pseudoinverse function of a new weight matrix in the PIL algorithm. When
we assign the hidden neuron number to be equal to the number of training samples, adding
or deleting samples is equivalent to adding or deleting hidden neuron number. Here we use
neuron addition or deletion algorithms to efficiently compute the pseudoinverse matrix.
According to Griville’s theorem [112], the firét columns ofY matrix consist of a
submatrix, and the pseudoinverse function of this submatrix can be calculated from the

previous(k — 1)th pseudoinverse submatrix. That is,

Y+ (I—yb?
Yi = i =yib) (6.11)
bT

where the vectay,, is thek—th column vector of the matri¥’, while

(I- Yk—lYl—:—1)yk7 if [|T— Yk—lYl—:—1yk|| #0

(Y:—l)TY:—lyk

LY yell? 7

b= (6.12)

otherwise.

It needs at mostV times iterative cycles to obtain the pseudoinverse function of a
matrix if there areV columns in this matrix. With this theorem, we can add the hidden
neurons relatively easy to calculate the pseudoinverse matrix.

When a hidden neuron is deleted, the matrix needs to be updated. It is not efficient
at all if we compute the pseudoinverse matrix from the beginning. Here we consider

using bordering algorithm[113] to compute the inverse of the matMhe formula for

For some cases if the matrix is singular, we can add the same dimension gaussian noise matrix to
perturb the matrix. Because the noise is identical and independent distribution, the perturbed matrix will
have the inverse function with probability one.

106

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

the pseudoinverse matrix can be obtained also from a partitioned matrix multiplication.
Given the inverse of & x £ matrix, the method shows how to find the inverse of a
(k+1) x (k + 1) matrix, which is the samé x k& matrix with an additional row and an
additional column at its borders.

If the column vectors; in Y is linearly independent to each other, then by definition,

Yt =(Y'Y)'YT, (6.13)

Let V. = Y'Y, and we can calculat¥;, from the prior V! without inverting a

matrix. The algorithm is

Vil + éva —év
Vil = (6.14)
N 1
wherev = V' Yly.1, anda = vi Yy,
When deleting a vector from the matrix, consider the original matrix containing
vector pairs. The key step is to compig ' from V,[,. When the(k + 1)th pair is

deleted from the matrix, we rewrité; |, as four partitions:

. A b
vin=| (6.15)
C

whereA isk x k, bisk x 1, andc is a scalar. By comparing with Eq. (6.14), itis apparent
thatA = V;' + 2vv’ b = (1/a)v, andc = 1/a. From these expressions, we find that

the desired result is

V!l = A—LlpbT. (6.16)

C
The inverse of thé x k£ matrix can now be calculated from thie{ 1) x (£ +1) matrix.
This is equivalent to deleting the last hidden neuron and updating the weight matrix.
This algorithm is very effective in the case of leave-one-out cross-validation partition

training samples (CVPS). Because in each CVPS data set only one sample is different

107

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0.5¢ f %00%

Output
e
No)
S
o*

-0.5/ % &

“1t, ‘ ‘ ‘ Oy e ‘
0 1 2 3 4 5 6
Input

Figure 6.1: The trained network output o= sin(x) function mapping problem.

Where the %” stands for training data output, while “0” stands for test data.

from the total sample set. We can first compute the inverse of the matrix which is obtained
based on the full sample set, then at each time, move only one sample to the last column
position, and use the above algorithm to delete this sample. In this way we can obtain the

desired weight matrices on CVPS data sets efficiently.

6.4 Numerical Examples

6.4.1 Function Mapping Examples

The algorithm is tested with the following function mapping examples. The total learning

error is defined as in Eq. (6.3), while average learning error is:

N m
11
RMSE = —— J > (gii —0ii)? (6.17)
J 7

whereo;; andg;; are the desired network output and the actual output, respectively.
Example 1. Consider a nonlinear mapping problemf.e function by neural net-

works. For the training set, 50 input-output signéls, y;) pairs are generated with

108

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

1.5[| | | Wy,
F ¥
& 0o .
1 0 b%
$ e
20.5— 0
o) «
% 8
ano * ()
&
% ;
-0.5¢ | A | | | |
0 0.5 1 1.5 2 2.5 3
Input

Figure 6.2: The trained network output fer= sin(x)cos(x) + x/3 function mapping
problem.

Where the %” stands for training data, while “0” stands for test data.

1.5F 9%,

Output
o
*
o

0 1 2 3
Input

Figure 6.3: The trained network output for function defined in Eq. (6.19).

% o
-1.5¢:, ‘ ‘ ‘ %%Sf ‘
4 5 6

With 20 learning examples trained network output. Thestands for train-
ing data, while “0” stands for test data.

109

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

1.5¢ @O@m%@

?

0 1 2 3 4 5 6
Input
Figure 6.4: The trained network output for function defined in Eq. (6.19).

With only 5 learning examples trained network output. Théstands for
training data, while “0” stands for test data.

z; = 27 *x1/49, for« = 0,1,2,--- ,49, and the corresponding’s are computed us-
ing y; = sin(x;). The given learning error i8 = 10~". If the learning error id’ < 1077,
we regard that perfect learning has been reached. For this problem, input neuron number
isn + 1 = 2 including the bias one, output neuronris= 1, and hidden layer neuron
number isN = 50. After using the pseudoinverse learning algorithm proposed above,
we reach the perfect learning when two hidden layers are added. The trained network
altogether has four layers including input and output layers. The actual learning error is
FE =7.533 x 10718,

Example 2. This is the nonlinear mapping of eight input quantitiegto three output

quantitiesy; problem, defined by Biegler-#tiig and Birmann in [114]:

Y1 = (w1 % a2+ x3% x4 + 5% 26 + 7 * 25)/4.0
y2 = (21 + 2+ a3+ 24+ 25 + 26 + 27 + 28) /8.0 (6.18)

Ys = (1—y1)0'5

110

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Table 6.1: Generallzatlon ability test results. Given training erroois.

Input range

Test SetNy

Generalized?

GeneralizedR M S E

Max deviation

Example 1

02w

20

100

0.00049

0.00031

0.0121

Example 2

0-1

20

100

0.23481

0.00228

0.1838

Example 3

O-m

20

100

0.00452

0.00095

0.0899

Table 6.2: Generalization ability comparison of two examples.

Input range

N

Test SetVy

Generalized®

GeneralizedRM S E

Max deviation

Example 1

02

5
50

100
100

0.47846
2.439 x 10~°

0.00971
0.9843 x 1077

0.16118
2.5148 x 1075

Example 4

0-27m

5
50

100
100

5.00536
0.41345

0.03164
0.00455

0.56247
0.21708

All three functions are defined for values between 0 and 1 and they produce values in
this range. For the training set, 50 sets of input signakre randomly generated in the
range of O to 1, and the correspondin@ are computed using the above equation. The
desired learning error we requirefis= 1.0 x 10~7. When training is finished, only one
hidden layer is added, and the actual learning erréris 3.573 x 1072° for this problem.

Example 3. Another functional mapping problemds= sin(z)cos(3z) 4+ /3. Sim-
ilar to Example 1, we use 50 examples withn the region of O tor to train the network.
Perfect learning is reached after two hidden layers are added. Actual learning error is

E =4.734 x 1077,

6.4.2 Generalization

We also tested the generalization ability of trained networks to forecast function values
of examples not belonging to the training set. For.e functional mapping, we train

the network using 20 examples with = 27 x /19, for: = 0,1,2,--- ,19, and the
correspondingy; computed using;, = sin(x;). After the network is trained)N; =

100 input signalsz;’'s are randomly generated within the range of (2tofor testing

the network, and the correspondings are computed using the trained network. Figure

6.1 shows the result, which is reasonably good. We have also tested Examples 2 and 3
with 20 examples training network and using 100 randomly generated input signals for

testing. The results are shown in the Table 6.1 and Figure 6.2. In the tables of this chapter,

111

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Max deviation is defined as the maximum value of the difference between real network
output values and the desired values. Namely, Max deviatio@a &z mum|g;; — o0;,|, for
1 =1,2,---mandy =1,2,---, Ny.

From Table 6.1, we see thatne function mapping problem has the least generalized
errors. For further investigating the proposed network architecture and learning algo-
rithm’s response to unlearned data, we present the following example.

Example 4. A Sine-like piecewise linear function is defined by:

x, if0<az<m/2,

y=9 m—uz, ifr/2<z<37/2, (6.19)

x—2m, if37/2 <2< 27

First, 20 examples with; = 27 x:/19, for: = 0,1,2,--- , 19, and the corresponding
y;’'s computed based on the above equation are used to train the network. Then 100 input
signals randomly generated in the range of @#taare used to test the trained network.
The result is shown in Figure 6.3.

When using five set exampl¢g), 0), (7/2, 1), (7,0), (37/2,—1), (27,0)} to train the
network, we get a network structure which has one hidden layer with five hidden neurons.
The learning errorig’ = 3.314 x 1072°. Afterward, 100 sets of input signatsrandomly
generated within the range of 02a are applied to test the network. The result is shown
in Figure 6.4. From Figure 6.4, it can be seen that the network acts kkeafunction.

It should be reminded that the architecture and weight matrices are the same for Example
1 and Example 4 when using the above five examples. This result shows that the network
forecast ability is better for smooth function when the data are in the range of training
input space. When 50 examples with = 27 x ¢/49, for: = 0,1,2,---,49, and the
corresponding;; computed with corresponding equation are used to train the network,
100 randomly-generated input signals in the range of2atare applied to test the trained

network, and the results are shown in Table 6.2. In Example 1 and Example 4}dénly

112

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

matrix is different, and the other matrices are the same whereas 50 set examples are used to
train the network. But the network’s response to the same input matrix is totally different.
One point that needs to be mentioned is that the computation accuracy is machine-
dependent due to recision of internal data representation. Furthermore, randomly-generated
test data may vary when re-computed. Therefore, only the order of magnitude of the

learning error is of practical interest.

6.5 Stacked Generalization

As we know, one of the important purpose to train a neural network is for generalization.
When training samples set is small and deteriorates by random noise, the network is
sometimes overtrained and becomes fitted to the noise, while overfitting the noisy data
will degrade the prediction accuracy of the network.

The method oktacked generalizatiof109] provides a way of combining trained net-
works together, engaging partitioning of the data set to find an overall system with im-
proved generalization performance. The idea is to train the level-0 networks first and then
examine their behavior when generalizing. This provides a new training set for training
the level-1 network.

The specific procedure for setting up the stacked generalization system is as follows.
Let the complete set of available data be denote@dbyVe first leave aside a single data
point from D as a validation point, and treat the remainderofs a training set. All
level-0 networks are then trained by the training partition and their outputs are measured
using the validation data point. This generates a single pattern for a new data set which
will be used to train the level-1 network. The inputs of this pattern consist of the outputs
of all the level-0 networks, and the target value is the corresponding target value from
the original full data set. This process is repeated with a different choice for the data
point which is kept aside. After cycling through the full data sef\opoints we haveV

patterns in the new data set, which is now used to train the level-1 network. Finally, all

113

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

of the level-0 networks are re-trainesing the full data sef). Predictions on new data
can now be made by presenting new input vector to the level-0 networks and taking their
outputs as the inputs to the level-1 network, whose output constitutes the predicted output.
Mathematical expression is as the following for CVPS of stacked generalization.
Given a training data seb = {x;, 0;}%Y,, we randomly partition the data inlg almost-
equal subsebs,, Ds,, - -- , Dsg. DefineDs; andDs_;) = D — Ds; to be the validation
and training sets for thgth fold of a A'-fold cross-validation. These are called level-0
models. Especially, i = N, the validation set only has one sample, while training set
containsN — 1 samples. This is called leave-one-out cross-validation.
Let z, denote the validation output of the mod#l, on x;. At the end of the entire

cross-validation process, the data set assembled from the outputs of the models is

Dcv = {Ziaoi}f\;y (620)

This is the level-1 data set used to train level-1 model. To complete the training process,
the final level-0 model is derived using all the datdin

The experiments show that with smooth function or piecewise smooth function, the
trained network generalization performance is good with stacked generalization. The
examples also illustrate that generalization can be expected when the underlying function
is sufficiently smooth. However, for noisy data, if the network is overtrained (overfitting
to noise), the generalization will be poor. Using stacked generalization can not improve
the network performance when overtrained networks are engaged. The reason is that the
overtrained network is biased to particular training samples; therefore, forecasting the
values which are not in the training set will be far away from the expected values.

In order to investigate the properties of the stacked generalization technique in noisy
data case, we adopt real world data sets in further experiments. The data sets are Sys1 and

Sys3 software failure data applied for software reliability growth modelling in [47].

114

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Number of failures

0 0.2 0.4 0.6 0.8 1
Execution Time

Figure 6.5: The neural network model trained with software reliability Sys1 data set (nor-
malized).

Solid line is original data, #” stands for training data samples, while “0”
stands for test data samples. Because of overfitting the training samples, the
network generalization is poor.

Sys1 data set contains 54 data pairs. In the experiment, we partition the data into two
parts: training set and test set. The training set consists of 37 samples which are randomly
drawn from the original data set. The remaining 17 samples consist the test set. The
data set are normalized to the range of [0,1]. Normalizing is a standard procedure for
data preprocessing. In this problem, the network input is normalized successive failure
occurrence times, and the network output is the accumulated failure number. During
training, each input sample at timet is associated with the corresponding output value
o; at the same time This kind of training is called generalization training [115].

Figure 6.5 shows the experimental result for software reliability growth modelling
trained by using data set Sysl, which is one of the level-0 network output. Figure 6.6
shows the stacked generalization output for Sysl data set. Because of overfitting the

training samples, the level-0 output strays away. These samples are not in level-1 training

115

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

1H: % | T

+

Number of failures

0ol@ T++ + | 0]
0 0.2 0.4 0.6 0.8 1
Execution Time

Figure 6.6: The stacked generalization output for Sys1 data set (normalized).

Solid line is the original data, “0” stands for test data output of level-0 neural
network, while “+” stands for test data output of level-1 network output. The
results are also poor.

data either, and the level-1 network outputs are further away from the desired values. The
generalization ability is not improved by stacked generalization because of overfitting to
the noise. Here we can see that when overfitting to the noise occurs, stacked generaliza-
tion is not a suitable technique for improving network generalization performance. Poor
generalization ability is not what we expected, so we should seek for the methods that can
avoid the overfitting in noisy data cases.

As we have mentioned early in this chapter, PIL algorithm is eliminating learning
errors layer by layer. For the generalization problem, we do not expect to realize the
perfect learning. Therefore, we may adopt the strategy like early stopping to employ a
three-layer neural network structure.

Figure 6.7 shows the experimental result by adopting three-layer structure trained with

data set Sys1, which is one of the level-0 network output. To avoid overfitting, the training

116

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Number of failures

o 02 04 06 08 1
Execution Time

Figure 6.7: The three-layer network trained with software reliability Sys1 data set (nor-
malized).

Solid line is the original data ané* stands for training data samples. Train-
ing accuracy is not very high and overfitting is avoided.

error is not small, and the network outputs for training samples are not completely fitting
the target values. Compared with perfect leaning error whiéBis< 10~?, the training
error is now0.0034. This introduces the bias to the training samples, and the output tend
to be a smooth curve.

Figure 6.8 shows the stacked generalization output for Sys1 data set. In this case, with
stacked generalization, the total sum-of-square test erdaris2. While without stacked
generalization, the total sum-of-square test erroris34. Therefore, generalization abil-
ity is improved by stacked generalization.

Another data set is Sys3. In this data set, altogether there are 278 data pairs. In the
experiment, we partition the data into a training set and a test set. The number of training
data is about/3 of the total data number, consisting of randomly drawn 186 samples

from the original data set. The remaining 92 samples form the test set.

117

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

o o o
D O 0

o
N

Number of failures

0 0.2 0.4 0.6 0.8 1
Execution Time
Figure 6.8: The stacked generalization output for Sys1 data set (normalized).

Solid line is the original data, “0” stands for test data output of level-0 neural
network, while “+” stands for test data output of level-1 network output.
Generalization is improved at the cost of introducing training bias.

If we assign the training error d$~7, after two hidden layers are added, the final
training error reaches the order of~!*. But with this trained network, the test error
(20.329) is large. Figure 6.9 shows the results.

Now we still use leave-one-out CVPS to train level-O neural networks for stacked
generalization. At this time, the three-layer network structure is adopted. For individual
network, the training error is about 0.0442, while the test error is 0.0221. Figure 6.10
shows the individual network training output, while Figure 6.11 is for stacked generaliza-
tion results.

From these real-world experimental results, we can see that it is at the cost of in-
troducing the bias (training error) to reduce the variance (generalization error) [8]. For
most generalization problems the stacked generalization can be expected to reduce the

generalization error rate. For example, in the Sysl experiment, the test error is 0.0434

118

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Table 6.3: Training error and generalization error for software reliability growth model
data set

Data Set Sysl Sys3
Training number 37 186
Test number 17 92

Individual net (4-layers) Training error| 3.49x<10~* | 1.47x 1074
Test error 58.003 20.329
Individual net (3-layers) Training error| 0.0181 0.0442
Test error 0.0434 0.0215
Stacked (level-1) Test error 0.0152 0.0221

without stacked generalization, while the test error reduces to 0.0152 with stacked gener-
alization. However, for some particular data set such as Sys3, stacked generalization dose
not show significant improvement (test error is reduced from 0.0221 to 0.0215), but the
computation time is dramatically increased. The results are summarized in Table 6.3.

For a large-scale data set, one of the well-known techniqudwide-and-conquer
method. That is, partition the data set into subsets, so as to reduce the individual network
size. We can also use other methods such as ensemble networks [85] to improve the
network performance and then apply weight parameter average to reduce the network size
[116]. For example, we can empléyfold CVPS to train neural networks. As presented
in the previous chapter, the ensemble neural network size is reduced by averaging in

parameter space.

6.6 Discussions on PIL Features

In this section, we discuss the characteristics of the proposed Pseudoinverse learning al-
gorithm.

On examining the algorithm, it can be seen that we do not need to consider the question
of how the weight matrix should be initialized to avoid local minima. We just feed forward
examples to get a weight matrix and its solution. The algorithm will not converge to a local

minima because the pseudoinverse solution achieves a global minima. This is different

119

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Number of failures

0.2 0.4 0.6 0.8 1
Execution Time
Figure 6.9: The network output for Sys3 data set (normalized).

Solid line is the original data and “o” stands for test data output. Because of
overfitting the training samples, the network generalization is poor.

from the BP algorithm.

Furthermore, in PIL, the output layer is a linear layer. The resulting advantages are
two-fold. First advantage is that the output values are not restricted to the region between
-1 and +1. They can be any finite values. Second, we do not need to calculate the inverse
of the activation function. It does not need to be a invertible activation function. In
this aspect, the PIL is different from either the BP algorithm or other gradient descent
algorithms.

As a comparison, the BP algorithm requires user-selected parameters, such as step size
or momentum constant. These parameters have an effect on the learning speed. There is
no theoretical basis which guides us how to select these parameters to speed up learning.
In PIL, on the other hand, such a problem does not exist.

Another important feature of the algorithm is that desired output mdtisx embed-

ded in the weight matrid® % which connects last hidden layer and output layer. This

120

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Number of failures

0 0.2 0.4 0.6 0.8 1
Execution Time

Figure 6.10: The three layer network model trained with software reliability Sys3 data
set(normalized).

Solid line is the original data ané* stands for training data samples. Train-
ing accuracy is not very high and overfitting is avoided.

gives us a very easy and fast way to get the weight matrix for different target output, as
long as input matrix is the same. For example, after we have trained the network to learn-
ing Sine function mapping in the region from O for, we only need recalculate th&~,

in order to getC osine function mapping problem in the same region wiimefunction.

On the other hand, for BP algorithm, itis necessary to train whole network again to get all
weight matrices fot’ osine function mapping though input matrix is the same with e
function.

It can also be seen that the training procedure is in fact the processing of raising the
rank of the weight matrix. When a matrix of some hidden layer output becomes full rank,
the right inverse of the matrix can be obtained, thus completing the training procedure.
From this learning procedure, it is obvious that no differentiable activation function is

needed. We only require that the activation function can perform nonlinear transform to

121

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Number of failures

0 0.2 0.4 0.6 0.8 1
Execution Time
Figure 6.11: The stacked generalization output for Sys3 data set (normalized).

Solid line is the original data, and “0” stands for test data output of level-
0 neural network, while “+” stands for test data output of level-1 network
output. Generalization is improved at the cost of introducing training bias.

raise the rank of the weight matrix. Nevertheless, a sigmoidal-like nonlinear function is
used in this chapter since its transformation has been proven to be capable of raising the
rank of a matrix [111].

Because the PIL algorithm is based on the nonlinear function transformation to raise
the matrix rank, it will fail if there two or more input vectors are identical in the input
matrix. But this case can be eliminated through preprocessing input patterns. The previ-
ously proposed algorithm [100] can perform perfect learning with the fast learning speed
for some problems. When the rankof the input matrix is approximately equal to the
number of input training patterns, it is easy to reach perfect learning without further
training. Whenr < N, it can give good estimated initial weight matrix, but it is still
necessary to adopt some training algorithm in order to reach high learning accuracy. The

PIL algorithm developed in this chapter improves this drawback.

122

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Another characteristics is that if the input matrix has rahkhen a right inverse ex-
ists, and we will get a linear network with only two layers. If we give learning error
FE =1.0 x 1077 to Example 1, and whel is greater than 2 and less than 10, it is neces-
sary to add one hidden layer in order to reach the learning accuragyisiigreater than
10, it is necessary to add two hidden layers. In Example 2, whes less than 10, we
will get a linear network with input and output layer only. The situation of Example 3 is
the same as in Example 1 because the input matrices have the same rank. For most prob-
lems, with two hidden layers, the network can reach the required high learning accuracy.
From the above examples, we see that the network layer number is not only dependent
on learning accuracy, but also on the data to be learned. One thing we should address is
that after the nonlinear transformation, the degree of rank change is data dependent. It
is a more difficult problem to formulate a universal theory to determine how many layers
are needed for the perfect learning. To reduce the network complexity, if we add a same
dimension gaussian noise matrix to perturb the transformed matrix in step 4 of the PIL
algorithm, the perturbed matrix will have the inverse with probability one because the
noise is an identical and independent distribution. In such a strategy, we can constrain the
hidden layers to at most two to reach the perfect learning. However, the trained network
generalization will be degraded with noisy data set. In fact, high learning accuracy is not
needed for some real-world tasks.

We have not compared the overall performance of this algorithm with other gradient
descent algorithms. Obviously, the number of iterations is not a valid metric considering
the fact that the calculation complexity per iteration is not the same for any of the algo-
rithms. However, if we consider the CPU time cost on training network to reach the same
high learning accuracy using the same machine, the PIL algorithm is much faster than
other gradient descent algorithms in its learning speed. For example, we use the same
machine (Sun Ultra 5/270 workstation) and the same software environment (Mathematica

software) to train one neural network with the data Sys3 to reach the learning accuracy as

123

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

high as10~!*, it takes less than 7.8 seconds (including display time) when using the PIL
algorithm. As a contrast, it requires more than 10 hours of computation time when using

the BP algorithm to reach the same results.

6.7 Summary

The pseudoinverse learning algorithm was introduced in this chapter. The algorithm is
more effective than the standard BP and other gradient descent algorithms for most prob-
lems. The algorithm does not contain any user-dependent parameters whose values are
crucial for the success of the algorithm. This algorithm is especially suitable for func-
tional mapping and pattern recognition problems. When considering its learning speed
and accuracy, the PIL algorithm is most competitive to other gradient descent algorithms
in real-time or near real-time applications for practical use. The algorithm is tested on
case studies with the stacked generalization applications to software reliability growth
modelling data. The fast learning property of the PIL algorithm makes it possible for us

to investigate the computation-intensive generalization techniques more efficiently.

124

Chapter 7

Application: Automatic Image
Segmentation

7.1 Introduction

Image segmentation is an important aspect of computer vision. The goal of it is to parti-
tion a given image into some regions corresponding to different objects or the background.
Also, it is a basic step for high-level image understanding and interpretation. There are
a wide variety of image segmentation techniques [117], among which feature space clus-
tering is one of the most popular methods. Pixels of the same segment can usually be
characterized by certain features. These features are quantified into feature variables so
that pixels of the same segment essentially have similar values of the feature variables,
and pixels of different segments have dissimilar values. Then image segmentation can
be performed by clustering the feature space and mapping each point back to the spatial
pixel.

Among various clustering techniques like the well knoimean algorithm, com-
petitive learning, etc, the finite mixture of densities, in particular mixture of Gaussian
model, has been widely used in many practical situations. The maximum likelihood ap-
proach has been utilized extensively to the fitting of finite mixture models [62, 58]. This
approach has attracted considerable interest in the image segmentation field in recent

years [118, 119, 120].

125

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

In paper [118, 119, 120], the authors use color or grey level feature space, or Gauss-
Markov random field in image domain. And by assuming data points are generated from
a finite mixture distribution, they estimate the probability density using EM algorithm
or Generalized EM algorithm with pre-assigned cluster number in feature space. With
the learned probability density function, Bayesian pixel classification method was used to
produce the image segmentation in paper [120].

In fact, in the feature space clustering method to image segmentation, the number of
segment to be yield can be considered as the number of clisitethe feature space. In
the clustering methods mentioned abdveas to be specified in advanceklis correctly
selected, good clustering result can be yielded, otherwise, data points cannot be grouped
into appropriate clusters and image segmentation cannot be performed appropriately. To
determine a reasonable region number is one of difficult things in machine learning. This
problem affects the ability to automatically interpret images by a machine, which has
been one of the major challenges in computer vision. In the past, most of the work use
pre-assigned number of regions or heuristics to determine the number of regions.

In this chapter, we report that apply BYY model selection criterion to determine region
number to perform automatic image segmentation. The algorithm we used in clustering
is the EM algorithm on finite mixture model.

Apparently, the distribution of clusters depend on the color space selection, there-
fore determined region number is variable for different color space. The influence of the
color space selection on region number determination also experimentally explored in this

chapter.

7.2 Background

The application of finite mixture model to image segmentation is based on the assumption
that the value of each data point in feature space for given image, e.g., grey-level or color,

can be considered as a sample arising from a finite mixture density distribution.

126

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

7.2.1 Clustering using Finite Mixture Model

When an image was given, supposing the imageMagsxels, we usex; to denote the
observation at théth pixel. The total samples in the image form a data/zet {x;}% |,
and assuming that; is a sample from a finite mixture distribution.

The most used finite mixture distribution is Gaussian, in this work we will adopt Gaus-
sian finite mixture model with EM algorithm without loss generality. The mathematical
expression of equations that describes the mixture model joint probability density of sys-

tem is shown in Chapter 3 Eq.(3.1)-(3.2).

7.2.2 Model Selection Criterion

There exist some information theoretical criteria which can be used to select the number
of models, such as AIC [81], AICB [82], CAIC [83], SIC [84]. In this work, we adopt
BYY model selection criterion.
The BYY model selection criteria are shown as Egs. (4.7) and (4.9) in Chapter 4.
With the model selection functiof(%, ©), we can select the region numbérsimply
by £* = arg ming J(k, ©*) with MLE obtained®*. In practice, we usually start with
k = 1, estimating parameté&*, computing/(k = 1,0*). Thenk — k£ + 1, computing
J(k = 2,0*) and so on. After getting a series #tk, ©*), we choose the minimal one
and get corresponding. This k* is assumed as the region number an image should be

segmented.

7.2.3 Bayesian Probabilistic Classification

When an image withV pixels was given, we use; to represent random feature vector
in feature space for pixél For example, in RGB color space, = { R;, G;, B; } is three
dimensional vector, the componentgfstands for Red, Green, Blue color value of pixel
¢ of an image respectively, wheie= 1,2, --- | N. These vectors can be regarded as iden-

tical independent distribution. After we gbt with BY'Y criterion and the mixture model

127

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

paramete©®* with EM algorithm, we can calculat@ posteriorprobability of samplex;
belong to regiory. From Bayesian rule, The posterior probability is expressed as Eq.
(3.3).

For givenx;, we can obtairk probability P(y = 1|x;), P(y = 2|x;), ---, P(y =
k|x;), now use the Bayesian decision to classify pixieito regiony by the solution of:

if y* = argmaxP(y|x;), fory = 1,2,--- k, pixel i will be classified to region*.
Therefore, the finite mixture model image segmentation is actually a pixel classification

procedure.

7.3 Application to Image Segmentation

In practice, we have nprior knowledge about how many regions should be segmented
when an image is presented. If we use a machine to perform automatic image segmenta-
tion, this is the first problem we should attack. As mentioned before, at here we assume
that the region number in image domain is equal to cluster number in feature space. With
this assumption, we can use BYY model selection criterion to determine the region num-
ber, it can be considered as how to comprehend the structure for the given image by BYY
machine.

Roughly speaking, It takes two mainly steps to perform the automatic image segmen-
tation. First we need to decide how many region there should be, this step is done by
searching/,(k, ©) function, find its minima and correspondig. The second step is
using Bayesian decision to classify the image pixels iitoon-overlapped regions.

We can summarize the processing into following steps:

Step (1) Selecting feature space of animage. In the beginning, we choose 3-dimensional
RGB color vector of the pixels as feature variables. (If a grey-level image was given, the
intensity space will be feature space.) Features on spatial relations of the pixels should
be added in further work. Fora x n pixel image, theV = m x n RGB vectors of the

pixels are input as data points in the feature space for clustering.

128

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

©)) (h)
Figure 7.1: “House” image.

(a) original image, 128128 pixels; (b) feature space data distribution; (c)

Jo — k curve; (d) 2-region segmented image. (e) 3-region segmented im-

age. (f) 5-region segmented image. (g) 9-region segmented image. (h)
12-region segmented image. Each region is represented by its mean vec-

tor color. 3-region and 9-region segmentation are the possible selections by
BYY criterion.

129

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

Step (2) Estimating the mixture model parameters with EM algorithm based on fea-
ture space data set. Then the parameter learning for/eadd the determination &f*
according to the model selection criterion mentioned in Chapter 4 is run.

Step (3) Search the most probable region nunitydsased on BYY model selection
criterion for Gaussian mixture case.

Step (4) With this obtainel*, we segment the given image intoregions by classify-
ing pixelz; into one of non-overlapping regions in feature space by Bayesian probabilistic
Decision with obtained posterior probability.

Step (5) Mapping the feature space back to the image domain and labeling the seg-
mented region. In this way, image segmentation with auto-determination of segment num-
ber is performed.

In our experiments, we tried two commonly used images - the “house” image and
“sailboat” image. Both images are of 128128 pixels. The image segmentation results
are shown in Figure 7.1 and 7.2, respectively, though only grey-scaled rather color pictures
are printed out.

From theJ; - k curve in Figure 7.1c, we can see that there are two local minima.
One is att = 3 and the other is @& = 9. Intuitively speaking, this illustrates that 3 is
an appropriate number of segments for rough segmentation and 9 is another appropriate
number of segments which gives more refined segments. Sub-figure (7.1 d to h) show the
resulting segmentation with= 2,3,5,9, 12 for comparison. For the 2-region segmenta-
tion, we can see that the roof is mixed with the wall. 3-region segmentation can represent
the main structure of the house image. While segmentation with more regions increases
more details of the image, there is hardly significant increase in quality of segmentation
when increasing: from 9 to 12, and 9 can more or less be regarded as an appropriate
segment number.

In Figure (7.2), results of 5, 8 and 11-region segmented images are shownm. is

determined to be an appropriate segment number by the model selection criterion. The

130

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

8-region segmentation can reconstruct the original “sailboat” image well, while the sky
and cloud are mixed in the 5-region segmentation and the 11-region segmentation does

not show significant increase in segmentation quality.

(d) (e) ®
Figure 7.2: “Sailboat” image.

(a) original image, 128128 pixels; (b) feature space data distribution; (c)

Jo — k curve; (d) 5-region segmented image; (e) 8-region segmented image;
(f) 11-region segmented image. Each region is represented by its mean
vector color. BYY criterion selected region number is 8.

7.3.1 Color Space

When we segment a color image, apparently the distribution of clusters depend on the
color space selection, therefore determined region number is variable for different color
space. In this section, we investigate the effect of color space selection on the region
number determination problem.

A digital color image is represented by three components, such as RGB, XYZ, YIQ,

131

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

(a) Synthetic image (b) X, X2X35 color (c) RGB color space
space

0.8 22 0.8 22

(d) J2 — k curve for (e) Scaled HSI color f) Jo — k curve

RGB spacef = 8 space for HSI space, it

is correct selected. over estimates re-
gion number.

(g) Scaled YIQ (h) J2 — k curve for

color space YIQ space, it un-
der estimates region
number.

Figure 7.3: Synthetic image with 8 classes

In some color spaces, — k curve for determining segment region num-
ber. J, — k curves for XX,X3, XYZ and | 1,15 color system are similar to
RGB's.

132

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

HSI and so on[121]. Which color space is suitable for clustering and how it affects the
proper region number determination? There is no theoretical guide for this quite new
problem, we believe that the probable answer should be based on experimental testing
only.

In this chapter, we concentrate on the following color spaces.

(1) RGB: (Original tristimuli Red, Green, and Blue), this color space is used for dis-
play.

(2) YIQ: for color system of TV signal.

(3) XYZ: for C.1.E X-Y-Z color system.

(4) X;X,X3: this color feature is obtained by Karhunenewe’ transformation, also
called PCA. X, X», X5 are uncorrelated each other.

(5) l11;15 : for uncorrelated features.

(6) HSI: (Hue, Saturation and Intensity) for human perception.

Relations of above color system with RGB are as following, the transformation matri-

ces are not the standard ones[121].

(@) YIQ

Y = 0.299R + 0.587G + 0.114B

[= 05R—023G—0278

Q = 0.202R — 0.5G + 0.2988 (7.1)
(b) XYZ

X = 0.618R+0.177G +0.205B
Y = 2299R 4 0.587G' 4+ 0.114B

7 = 0.056G + 0.944B (7.2)

133

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

(c) i1yl

L = (R+G+B)/3
L, = (G-B)/2
I; = 2G—-R-B)/4 (7.3)

(d) HSI
H = arctan (M>
2R—G—B
min(R, G, B)
R+G+B
I = R+G+ B (7.4)

S = 1-

(e) Xi X2X5

X1 = wpBR+weG+wpB
Xy, = wpeR+ weG + wpeB
X3 == U)RgR + U)G3G + U)BgB (75)

whereW, = (wgr,wq,wp), 1 = 1,2,3 are three eigenvectors &f, YW, = \;W;, A, is

eigenvalue, and

1

N : Xi(RvaB)

=)
] =

> i

1
Y = L Z(X —m)(x; —m)”
N 221 (3 (3
With these relation equations, other color spaces are transformation of RGB color

space.

7.4 Experiments for Color Space Selection

In the experiments, we use one synthetic image and some standard images such as “house”

and “sailboat” to test the effect of color space selection on BYY model selection criterion.

134

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

Each image is 24 bit color with size of 12828 pixels.

Choosing different color space will result different shape and distribution of clusters,
which leads to estimated parameter variable, though the EM algorithm and classification
rule is same for all color spaces. In the experiments, with selected color space, we run
EM algorithm to estimate mixture parameters and compuyie ©*) curves. In order to
eliminate the influence of EM algorithm converge to different local minima, we repeat
experiment with same condition but with different initial parameter values several times,
then using most probable results.

Several experiments have been done, here only parts of experimental results for the
synthetic image are shown in Figure 7.3. Similar results are observed for “house” and
“sailboat” images. In the synthetic image, there are 8 colors, each color represents one
cluster in color space. If colors are similar for some regions, clusters will overlap in color
space, e.g. in HSI or YIQ color space. Overlap has an negative influence on properly
clustering, it results in poor region number selection.

In experiments, it is found that using RGB, XYZ;X;X3 and kl,l; color spaces
yield same reasonable region number. §XXX; or I;1,l5 color space, it is easily clus-
tering with EM algorithm and computation time is also less than using HSI color space.
When using HSI color space, Hue value is unstable when Saturation value is near zero, in
this case, it would be very difficult for correctly determining region number and segmen-
tation. On the other side, based on experimental testing, the final choice of color space
is X; X2 X5 or ly1:15 system. This is that XX;X3 or l;1,15 color coordinates are almost
uncorrelated, they are effective for region number determination based on BYY model
selection criterion.

From experiments, we know that by using BYY model selection criterion, as long as
the proper color space was used, in most cases we can select the reasonable region number,

and make it possible in automatic segmenting given image witnpubri knowledge.

135

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

7.5 Summary

While most previous works on feature space clustering forimage segmentation need man-
ually specifying the number of segmentsipriori, we apply the model selection criterion

to this approach and obtain a method for automatic determination of an appropriate num-
ber of segmentation. In other words, it is possible that the BYY model selection criterion
give reasonable insight on the structure of the presented image.

In this chapter, we have investigated the effect of color space selection on determining
image segmentation region number based on BYY model selection criterion also, six
color spaces have been tested and compared experimentally. EM algorithm was used to
estimate mixture model parameters and Bayesian decision rule was used to classify pixels
into proper regions. Form the experimental results, we can conclude that RGB space is
the basic selection while X,X; or I;1;15 color space is more appropriate for clustering

and BYY criterion application.

136

Chapter 8

Application: Software Quality
Prediction

8.1 Introduction

Software reliability engineering is one of the most important aspect of software quality
[47]. The interest of the software community in program testing continues to grow —
as does the demand for complex, and predictively reliable programs. It is no longer ac-
ceptable to postpone the assurance of software quality until prior to a product’s release.
Delaying corrections until testing and operational phases may lead to higher costs [122],
and it may be too late to improve the system significantly. Recent research in the field
of computer program reliability has been directed towards the identification of software
modules that are likely to be fault—prone, based on product and/or process—related met-
rics, prior to the testing phase, so that early identification of fault—prone modules in the
life—cycle can help in channeling program testing and verification efforts in the productive
direction.

Software metrics represent quantitative description of program attributes and the crit-
ical role they play in predicting the quality of the software has been emphasized by Perlis
et al [123]. That is, there is a direct relationship between some complexity metrics and

the number of changes attributed to faults later found in test and validation [124]. Many

1This chapter is identical to the paper with the title “Software Quality Prediction using Mixture Model
with EM algorithm”, Proceedings of APAQ300Q Hong Kong, pp69-78, 2000.

137

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

researchers have sought to develop a predictive relationship between complexity metrics
and faults. Crawforebt al [125] suggest that multiple variable models are necessary to
find metrics that are important in addition to program size. Consequently, investigating
the relationship between the number of faults in programs and the software complexity
metrics attracts researchers’ interesting.

Several different techniques have been proposed to develop predictive software met-
rics for the classification of software program modules into fault—prone and non fault—
prone categories. These techniques include discriminant analysis [126, 127], factor anal-
ysis [128], classification trees [129, 130, 131], pattern recognition (Optimal Set Reduction
(OSR)) [126, 132], feedforward neural networks [133], and some other techniques [134].
Most of these techniques are classification models and they partition the modules into
two categories, namely, fault—prone and not fault—prone. With these predictive models,
the troublesome modules can be identified earlier in the life—cycle of a software product.
The advantage of these fault prediction models are multi-fold; however, when building
the models, they require to know the number of changes (faults) at the same time. That s,
the model parameters need to be estimated with a supervised learning procedure [21]. As
we know, to obtain the dependent criterion variable, we will need to a long time for the
feedback of test and validation results. For example, for the software of Medical Imaging
System (MIS) presented later in this paper, the actual number of changes (faults) in that
program is collected during three-year observation period. As software complexity met-
rics can be obtained relatively early in the software life-cycle, it is worthy to explore new
techniques for early prediction of software quality based on software complexity metrics.

In this chapter we present one such new approach — using a finite mixture model with
Expectation-Maximum (EM) algorithm [57, 58] to investigate the predictive relationship
between software metrics and the classification of the program module. With the mixture
model analysis, we can develop a prediction model without the need to know the number

of changes (faults) in advance. Namely, it is only based on software complexity metrics

138

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

to build the model. The model parameters are estimated by using EM algorithm, which
is a procedure of unsupervised learning since the class membership of those metrics is
unknown and the metrics are treated as un-labeled vectors.

The mixture model analysis is mainly a probabilistic classification procedure. It is
used to assign program modules to classes of modules of similar characteristics without
the knowledge of fault rate in advance. By this statistical technique, we can identify
a program or a program module as a class of low or high fault rate in the early stage of
program development. In addition, we also show that the discriminant analysis is a special

case of the mixture model analysis.

8.2 Modeling Methodology

We propose to use the finite mixture model analysis with EM algorithm technique in
software quality prediction to classify fault-prone and non fault-prone modules. In the
following we will briefly review the mixture model with EM algorithm, and Akaike In-
formation Criterion (AlIC) model selection criterion.

The mixture distribution, particular in Gaussian (normal) analysis method, has been
used widely in a variety of important practical situations, where the likelihood approach
to the fitting of mixture models has been utilized extensively [49, 50, 51, 52]. The applica-
tion of the finite mixture model to software quality prediction is based on the assumption
that the software complexity metrics in a vector space can be considered as a sample

arising from two or more models mixed in varying proportions.

8.2.1 Finite Gaussian Mixture Model With EM Algorithm

A mixture model can be of any mixed distribution function, but the mostly-used model is
the Gaussian distribution model. Hence, in this paper we only investigate the Gaussian
density case. In the software complexity metrics vector space, one module can be consid-

ered as one point, and altogethépoints consistent oV modules can form a given data

139

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

setD. The data seb = {x;}¥, ready for classification is assumed to be samples from a

mixture of k. Gaussian densities with joint probability density
k
p(Xv 6) = Z Oé]‘G(X, my, Z])v
7=1
k
with a; > 0, and » a; =1 (8.1)
7=1

where

exp[—4(x — m;)TE7 (x — my)]

(2m)?2[552

G(Xv my, Z]) = (82)

is multivariate Gaussian density function,denotes random vector (which integrates a
variety of software metrics}j is the dimension ok, and parametep = {o;, m;, ¥; }*_,

is a set of finite mixture model parameter vectors. Herés the mixing weightsm; is

the mean vector, and; is the covariance matrix of theth component. In fact, as these
parameters are unknown, using how many Gaussian density components can best describe
the probability density of the system is also unknown. Usually with a pre-assumed number
k, the mixture model parameters are estimated by the maximum likelihood learning (ML)
with EM algorithm [57, 58].

The log likelihood function of the system to be explored is

N k
[(©]z) =1n L(O|z) = Zln(z a;G(x;,m;, X)) (8.3)

Maximizing this function will re-derive the EM algorithm, which we show in two
steps.

1. E-step:(Expectation step)

Calculate theoosteriorprobability P(j|x;) according to

Oé]‘G(X, my, i])
p(z,©)

P(j|x) = with j = 1,2, , k, (8.4)

140

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

2. M-step:(Maximum step)

oldG X m] N
a™v — 19 5 XZ 85
Y TN Z oldG(X“m”Z z:: (| (8.5)

E]'Vﬂ P(j]x:)%; 1 N .
m, = &= : = - Px)x; (8.6)

oYk PUx) N Zzzl
S 1 N Pl . .
T aN 22'21 (71x)[(x: — my)(x; — my)" . (8.7)
J

The two steps are iterated until convergence to one local minima is obtained.

Unlike supervised learning, the ML with EM algorithm can be used for a totally un-
labeled data set; that is, the case of sample class membership is unknown.

In practical implementation, the problem to be handled first is the mixture parameter
initialization. It is a common practice that the parameter values are random initialized
since noa priori information is available. In this paper, we use the following methods to

initialize mixture model parameters:

1
m} = [min (i) 45 > { max (x;) — min (xi)}/(k +1) (8.9)
~ max(x;) — min(x;

wherel, represents thé x d dimension identity matrix. This initialization method can
guarantee that the mean vectors are within the range of the data Jéte alternative

method used is an addition of a small random value on the above equations.

141

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

8.2.2 Model Selection Criterion

When the software complexity metric data are to be classified into several classes, each
class contain the data samples with similar characteristics. With prior knowledge, we
usually divide the modules into two classes: one is fault-prone and the other is non fault-
prone. However, by the mixture model approach, how many classes the metric data should
be divided is not known. Consequently, the number of Gaussian density components can
best describe the probability density of the system is unknown. Nevertheless, we can use
some model selection criterion to determine a proper number of model components.
Following Akaike’s pioneering work [81] in selecting the number of components in
the mixture model analysis, a lot of researchers have developed some modified and newly
proposed criteria such as AICB [82], CAIC [83], SIC [84]. These criteria combine the
maximum value of the likelihood function with the number of parameters used in achiev-
ing that value. Here we list the corresponding AIC formula for a convenient use af-
terwards, in whichZ(k) means likelihood function of the numbérmodel with other

parameters liké& has been estimated by using the Eqg. (8.3):
AIC (k)= —2In[max L(k)] 4+ 2my, (8.11)

where then;, = kd+ (k — 1) + kd(d + 1)/2 is a penalty term. The other criteria such as
AICB, CAIC and SIC are similar to AIC, with the difference at the penalty term.

From the abovel/C(k), we can select the model number simply by the solution
of & = arg min; AIC(k) with ML obtained paramete®*. In practice, we start with
k =1, estimate parameté&~, and computel/C(k = 1). Then by iteratingc — & + 1,
we computed/C'(k = 2), and so on. After getting a series a4 C'(k), we choose the
minimal one and get the corresponditig Thisk* is assumed as the number of classes

of the program modules should be partitioned.

142

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

8.2.3 Bayesian Probabilistic Classification

In the mixture model case a Bayesian decision rule is used to classify the xecior
class; with the largesposteriorprobability. Theposteriorprobability P(j|x) represents
the probability that sample belongs to clasg. The probabilities ofP(j|x) are usu-
ally unknown and have to be estimated from the training samples. With the maximum
likelihood estimation, th@osteriorprobability can be written in the form of Eq. (8.4).

For a givenx;, we can obtairk probabilitiesP(; = 1|x;), P(j = 2|x;), -+, P(y =
k|x;). Now we use the Bayesian decision rule to classjfynto one of the non-overlapping

class;* by the solution of
J* =argmax P(j|x;), forj=1,2,--- k. (8.12)
J

If 5= is corresponding to maximurR(j|x;), the ith program module will be classified
into classy* with probability P(;*|x;).
When we take the logarithm to Eq. (8.4) and omit the common factors of the classes,

such asn p(x, ©), d/21n 27, the classification rule becomes

J* = argmind;(x), forj=1,2,--- k (8.13)
J
with

d]‘(X) = (X— mj)TEfl(X—mj) —|—1H|Z]| —21H Oé]‘ (814)

J

This equation is often called the discriminant score for jtieclass in the literature
[135]. Furthermore, if thgrior density«; is the same for all classes (an equal sample
number in each class), it becomes discriminant function when omitting theteray. If
a pooled covariance matrix is used, it is called linear discriminant analysis (LDA), which
was used by Munson and Khoshgoftaar for detection of fault-prone programs [127].

If the class membership relation of the sample as well as the nuWjl#reach class is

known, which is assumed in the discriminant analysis application [127], the mean vector

143

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

m; and the covariance matrkx; can be evaluated based on given samples with maximum

likelihood estimation. They take the following forms:

1 N;
m; = & Zizl X; (8.15)
~ 1 N;
Zj = N 1 Zi—l(Xi — m]‘)(Xi — m]‘)T. (816)
j =

They are called sample mean and sample covariance matrix, respectively [35]. Here
we can see they are different with EM estimate. In a supervised learning case, each sample
has determined class membership, while in EM estimate, each sample can belong to every

class at the same time with a certain probability value.

8.3 Data Description and Analysis Procedure

In this section, we present a real project to which we apply the finite mixture model with
EM algorithm for quality prediction and data analysis. The data used for the application
of the mixture model represents the results of an investigation of software for a Medical
Imaging System (MIS). The total system consisted of about 4500 modules amounting
to about 400,000 lines of code written in Pascal, FORTRAN, assembler and PL/M. A
random sample of 390 modules, from the ones written in Pascal and FORTRAN were
selected for analysis. These 390 modules consists of approximately 40,000 lines of code.
The software was developed over a period of five years, and was in commercial use at
several hundred sites for a period of three years[133].

The number of changes made to a module, documented as Change Reports (CRs), was
used as an indicator of the number of faults introduced during development[136]. The
changes made to the routines were analyzed, and only those that affected the executable

code were counted as faults (aesthetic changes such as comments were not counted)[137].

144

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

In addition to the change data, the following 11 software complexity metrics were

developed for each of the modules:

¢ Total lines of code (TC) — Total number of lines in the routine including comments,

declarations and the main body of the code.

e Number of code lines (CL) — Number of lines of executable code in the routine

excluding the declaration and comment lines.
e Number of characters (Cr) — All characters in the routines.

¢ Number of comments (Cm) — For the Pascal routines, a comment is either a line be-
ginning with test %%, or text in comment brackets, either of the formcomment
> } or (* < comment>*). For FORTRAN routines, a comment consists of the text

on a line after eithef, C or *.

e Number of comment characters (CC) — The amount of text found in the routines

comments.

e Number of code characters (Co)— The amount of text which makes up the exe-

cutable code in the routine.

¢ Halstead’s Program LengthV(), whereN’ = N| + N} and V| represents a total

operator count and/; represents a total operand count [138]

e Halstead’s Estimate of Program Length Metri¢d), whereN e=n, log, 1141, log, 12,

and; andn, represent the unique operator and operand counts, respectively[138].

¢ Jensen’s Estimate of Program Length Metric (JE), wheks=log, ;! + log, 1!
[139].

e McCabe’s Cyclomatic Complexity MetricM{), whereM = e¢ —n + 2, ande

represents the number of edges in a control flow graphraddes [140].

145

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

¢ Belady’s bandwidth metric (BW), where:

B =L > il (8.17)

n

K3

and L; represents the number of nodes at leviel a nested control flow graph of
n nodes [139]. This metric indicates the average level of nesting or width of the

control flow graph representation of the program.

By using these independent metrics as integrated complexity metrics, the random vec-
tor x is a 11-dimension vector with each metric as one component. Each wectpre-
sents one sample point in the metric space, and we can apply the mixture model analysis in
this high-dimension vector space to partition data samples into proper classes. When es-
timating mixture model parameters, we do not need to know the change requests (faults).

Principal Components Analysis(PCA) In a software development application, the
independent variables (complexity metrics) may be strongly interrelated as they demon-
strate a high degree of multicollinearity. We first examine the relationship of metric TC
with other metrics, as shown in Figure 8.1.

It is clearly seen in Figure 8.1 that the metric TC has nearly linear relationship with
some metrics such as LOC, Cr and Co. Several independent variables demonstrating a
high degree of multicollinearity will have a negative effect on the regression model. One
distinct result of multicollinearity in the independent variables is that the statistical mod-
els developed from them have highly unstable regression coefficients [127]. To reduce the
interrelated effect, we adopt PCA (also calkedrhunen-L@ve transformationto trans-
form the original complexity metrics space into an orthogonal vector space. The principle
of PCA is simple. Let us assume the data set has a covariance matwxich is a real

symmetric matrix and can be decomposed as follows:

¥ = UAUT (8.18)

146

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

700 10000
20000
600)
L. 8000
500) o 15000
200 6000

10000
300 4000]

200 o
ade
:, 5000

2000}
100)

200 400 600 800 - 200 400 600 800 600 800

(8 LOCvs. TC (b) Crvs. TC (c)Cmyvs. TC (d)CCvs. TC

10000 N 2000 : 1750

1500

5000 x .

1500 . 1250

6000 et N 1000
X : 1000 -

4000

000f % 50

200 400 600 800

(e) Covs. TC () N vs. TC (g) Nevs. TC (h) JEvs. TC

200 400 600 800

600 800

(()Mvs. TC () BWvs. TC
Figure 8.1: The relationship of metric TC with other metrics.

From (@) to (j): horizontal axis is metric TC , vertical axes are metric LOC,
Cr, Cm, CC, Co,N’, Ne, JE, M and BW respectively. There are several
metrics that exhibit multicollinearity.

whereU is a matrix whose columnis the eigenvecton;, and A is a diagonal matrix
of eigenvalues. Note that each of the eigenvectors is called a principal component. The
vectorsx are projected onto the eigenvectors to give the components of the transformed

vectorsx’. That is,

x'=UTx. (8.19)
PCA can be used to reduce the dimension of the data space by teking! eigen-

147

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

Table 8.1: The eigenvalues for the MIS data set

Component 1 2 3 4 5 6
Eigenvalue | 1.28<107 | 6.05<10° | 1.71x10* | 1.34x10* | 4.77x10° | 2.41x10?
Component 7 8 9 10 11

Eigenvalue | 1.78x10* | 47.2 315 13.5 0.98

vectors corresponding to the firkt largest eigenvalues to construct the transform matrix.

The error introduced by a dimensionality reduction using PCA can be evaluated using

d
1
By =5 > A (8.20)

i=M+1
where the smallest — M eigenvalues\; and their corresponding eigenvectors are dis-
carded.

The eigenvalues for the MIS data set are shown in Table 8.1.

When using PCA to reduce the dimension of data space, we know from Table 8.1 that
the first 7 components can represent main feature of the data set with a relatively small
error (Fy; =46.6338). However, some patterns are separable in high dimension space,
but they become inseparable when projected into low dimension space. Therefore, we
just apply PCA to transform data into an orthogonal set, using all 11-dimension in the
data analysis. The results presented in this paper are based on PCA transformed data
space, which is a 11-dimensional vector space. Figure 8.2 shows data distribution when
projected onto first two principal components space and third-fourth principal components
space.

For such a data space, each point represents one program module, which is charac-
terized by its complexity metrics. These points can be assumed as samples arising from
two or more models mixed in varying proportions. When the mixture model analysis
with EM algorithm was applied to the 390 program modules in the PCA de-correlated

11-dimensional vector space, the most probable results are shown in Figure 8.3 for log

148

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

1000}

800 400 !
oo
00 . ' 200 REERAR
.) B A B
400 . ', .."Eﬁl.}.'."
o e A ; ¢ o'._' _-"l."'. .
200 : B O« WL
: SRR ¢ PRI
0 fon ' P EM -200
RS '
-200 :
“ . -400f .) .
05000 20000 15000 -10000 -5000 -400 -200 0 200 400 600 800 1000
(@) (b)

Figure 8.2: Data distribution in vector space

(a) first two principal components and (b) third-fourth principal compo-
nents.

likelihood function vs. model component numldeas well as AIC vsk.

In Figure 8.3a, we can see that the log likelihood function of the system increases
as the model number increases. Increasing model number makes finer classification for
given software modules, and each model represents a subset of the data in which samples
have similar characteristics. The AIC model selection criterion in Figure 8.3b shows
that with PCA de-correlated data set, classifying the modules into two groups is a proper
selection. This gives us an insight into some intrinsic properties of the PCA de-correlated
complexity metrics data set.

With two-class classification, the experimental results as obtained from Eq. (8.12)
show that the module number in each groupVis= 264 and N, = 126, respectively.

Note there are unequal sample numbers for the two-group classification.

The estimated mixture model parameters with EM algorithm for the/case are as

the following:

Mixture weights: oy & 0.673, anda; ~ 0.327. Recall thaty; = &+ > P(j|x;), then

1=

—_

149

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

-10000 / 0.8

10500, | 0.6
11000} | 04
0.2
11500} |
‘ ‘
2 4 6 8 10 1 0
(@) (b)

Figure 8.3: The log likelihood function as well as AIC Vs.

(a) The log likelihood function vs. model number. With the increase of the
model numbet¥;, the function tends to increase too. (b) Typical results for
AIC’s vs. model numbe¥ for PCA de-correlated data set. The minima
occurs atc* = 2.

N; = ﬁ P(j|x;) = a;N. This should be the possible module number in clasthe
obtain:a:d1 results ar&; ~ 0.673 x 390 = 262 and N, ~ 0.327 x 390 = 128, respectively,
which is agreeable with the experimental results obtained by using Eq. (8.12). As the
mixture weights are a rough indication of module number distribution, this implies a high
confidence in our results.

Mean vector. With two-class partition, the mean vector for each group is shown in
Table 8.2 for the original complexity metrics. The maximum and minimum values are
also listed in Table 8.2 for reference. Notice that for the sake of readability, the values
listed in Table 8.2 are transformed back from the PCA de-correlated space to the original
data space.

The positions of the mean for each metric (ir@;, andm,) show the information to

partition modules using single metric. Note that for all the 11 metfigS,> m;. This

means class two consistently has a higher value than class one for all the metrics.

150

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

Table 8.2: Mean vector component as well as maximum and minimum value for each
metric, and the diagonal values of covariance matrices obtained by ML with EM algo-

rithm.

min | max | my my ¥, (diag,) | ¥, (diag)
TC |3 944 68.04 | 260.01| 1565.7 | 26771
LOC | 2 692 52.28 | 210.23| 1125.9 18132
Cr 59 | 21266 | 1458 | 5620 | 766272 | 1.284x10°
Cm |0 194 12.02 | 48.54 | 62.429 1258.87
cC |0 9946 | 561.52| 1825 | 222703 | 2.703x10°
Co |30 |10394 |761.37| 3469 |225432 |4.573x10°
Nr |3 2083 |137 629 7392.55 | 158213
Ne |2 1777.3| 183.7 | 669.6 | 10534 135308
JE 0.8 | 1437.2| 132.8 | 521.7 | 6143.7 | 89333
M 1 80 5.76 | 24.56 | 12.507 | 249.496
BW |1 1256 | 2.1 3.13 0.78547 | 3.774

Covariance matrix: The covariance matrix is a symmetric matrix. Its diagonal el-
ement is the variance of each metric, while off-diagonal elements reflect the correlation
between the metrics. (Refer to Eq.(8.7).) Here Table 8.2 only shows diagonal elements
of the covariance matrices in the last two columns. Some metrics show high variance
with two classes partition, implying that two-class partition is not the best choice from
the point of view of minimal variance reduction.

The total module number is 390 in the given data set. With the two mixture models
approach, the first group has 264 modules, while the second group has 126 modules, and
the ratio is about 2/3 and 1/3 respectively. By the mixture model analysis, we now know
that there are two classes for the given program modules: class one has more modules
than class two for this data set. Furthermore, class two has higher complexity metrics
values than class one.

Although at this stage we do not have failure data, we can pretty much determine
that class one is non fault-prone while class two is fault-prone. The reason is two-fold.

The first reason is that class two has consistently higher values of the complexity metrics,

151

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

Table 8.3: The classification for MIS data set by mixture model analysis.

CRs 01 23 |45 |6,7 |89 |10,11|12,13| 14,15| 16,17 | 18-98
Number of group 1 104 (66 |33 |25 |11 |9 6 1 4 5
Total modules 114 |78 (49 |36 |24 |19 12 10 9 39
Percentofgroup 1| 91.2| 84.6 | 67.3| 69.4| 458 | 47.4 | 50 10 44 12.8

indicating its fault-prone nature. The second reason is that most (80%) of faults are found
in a small portion (20%) of the software code, so we can label that the class with larger
number of modules as non fault-prone class, and the class with less number modules as
fault-prone class. Here we can see that very little prior knowledge about the number of
faults is needed to develop this predictive model using mixture model with EM algorithm.
This is the major advantage of our approach compared with previous model classification

techniques published in the literature.

8.4 Quality Prediction Results and Discussion
8.4.1 Misclassification errors

The above analysis of program metrics with a mixture model can be obtained in early
software develop stage. When the change of requests (CRs) become available later, we
can use the CRs to assess the merit of the mixture model. The data analysis results are
shown in Table 8.3.

There are two types of errors that can be made in the partition. A Type | error is
the case where we conclude that a program module is fault-prone when in fact it is not.
A Type Il error is the case where we believe that a program module is non fault-prone
when in fact it is fault-prone. Of the two types of errors, Type Il error has more serious
implications, since a product would be seem better than it actually is, and testing effort
would not be directed where it would be needed the most.

When we consider module with 0 or 1 CRs to be non fault-prone, those with CRs from

152

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

Table 8.4: Misclassification rate for randomly drawing 30 samples out of 89 modules
without replacement. The mean and standard deviation are computed based on 50 times
repeated experiments.

min. | max.| mean| std.
misclass. rate 0.133| 0.40| 0.271| 0.064

18 to 98 to be fault-prone, then Type | error is 8.8% and Type Il error is 12.8%. When
modules with CRs from 10 to 98 are considered as fault-prone, then Type Il error will
rise to 28.1%. It is noted that in supervised learning, the data set is partitioned into two
parts: training samples and validation samples. The method of partition data set can have
an effect on the prediction accuracy, as shown in the following experiment.

For MIS data set, there are 89 modules with CRs from 10 to 98, which are considered
as fault-prone modules. Now let us randomly draw 30 modules (i.e., one third) from this
subset of MIS data set. From mixture model analysis results, we can know the Type Il
error computed from these 30 modules. The Table 8.4 shows the experimental results of
randomly drawing 30 samples from 89 modules without replacement, where the exper-
iments are repeated 50 times. It can be known that the best result for Type Il error is
about 13%, which is the same as that of discriminant analysis method [127]. The statis-
tical mean for Type Il error is 27.1%, which is nearly the same as 28.1% obtained by the

mixture model analysis based on all 89 modules.

8.4.2 Classification Probability

As stated in Section 8.2.3, assigning a module as either fault-prone or non fault-prone is
based on Bayesian classification rule.

In two-model mixed case, the joint density of the system can be written in the form,

p(X7 @) = OélG(X, my, 21) + (1 — Oél)G(X, mo, 22) (821)

153

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

0.00025|

0.0002

0.00015|

0.0001

0. 00005|

(@)

~

o —
-25000- 20000 15000- 10000 -5000 0 5000

0.008|

0.006

0.004

0.002]

—
_

—

—

0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001 ~

~

2000 4000 6000

0.003]

0.0025

0.002]

0.0015

0.001

0.0005

0.005]

0.004

0.003]

0.002]

0.001

-400 -200 0 200 400 600 800 1000

(©

0.0175
0.015]
0.0125
0.01
0.0075
0.005]
0.0025

0.035|
0.03
0.025
0.02
0.015]
0.01
0.005]

0|
-300 -200 -100 0O

(€)

100 200

(i)

0

(k)

Figure 8.4: The plot for two components of the joint density projected at principal axis.

The figures from (a) to (k) is corresponding to the 11 principal component
axes in order.

The posterior probabilities become

B alG(X,ml,il)
P(1]x) o
P(2kx) = (1_0‘1;5((7’8;“2’22):1—P(1|x).

(8.22)

Figure 8.4 shows the two-component probability distribution of the joint density pro-

jected at each principal component axis. The solid line depicts the comperteft, m;, ¥),

while the dashed line depicts the compon@nt- o4)G(x, ms, ¥5). At each point, the

value of each probability component is proportional to the value of the posterior prob-

ability. When we use Bayesian decision to classify program modui& classj, the

154

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

misclassification risk can be obtained with Figure 8.4. If the position of a module is at or
near the position at which the values of the two components are nearly equal, (i.e., where
the solid line and the dashed line intersect in each figure) the misclassification risk will be
high.

Each principal component metric is a linear combination of the original complexity
metrics. When we predict that one program module is possible of either fault-prone or
non fault-prone, the decision is made by combining all principal components together, not
just a single metric. Combining all metrics to predict the software quality is one of the

way to reduce the risk of misclassification.

8.4.3 Advantages of Mixture Model Analysis

Building model to support the prediction of software quality based on software complexity
metrics can be quite challenging due to various inherent constraints. Sometimes the values
of complexity metrics are not complete because it needs a long time collecting them, and
building models requires the use of complete data types of variables. The EM algorithm
was originally developed for incomplete data set, therefore the approach described above
can handle the types of variables with partial missing values. Other methods such as
regression tree modeling [131] needs to assign a threshold to split the data set, and requires
to know fault number in advance. On the other hand, in the mixture model analysis with
EM algorithm, only little prior knowledge is needed to predict the module characteristics
based on the complexity metrics.

The mixture model analysis method also does not require an equal class number, so it
is a more general model and classification rule used than that discriminant analysis [127].
In the linear discriminant analysis, the covariance matrices are assumed the same for all
classes, which is seldom the case in the real world.

Furthermore, if we suppose that the mixture model classification result is correct, from

the results shown in Table 8.3, we know that the most non fault-prone modules should

155

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

have no more than 3 CRs, which has the percentage greater than 88%. Furthermore, the
modules with CRs from 4 to 17 should be mediately fault-prone modules, and the modules
with CRs 18 to 98 is the fault-prone group. This shows that the mixture model can help
us gain an insight in the relationships between the software complexity metrics and the

number of faults in the module.

8.5 Summary

Software metrics can reveal a lot of information about the code at several stages of de-
velopment. They can identify the routines which need to be redesigned due to higher
complexity, routines which may require thorough testing, and features which may require
more support. The mixture model with EM algorithm is a novel way to analyze software
metrics, to understand the involved relationships among them, to identify the fault-prone
modules, and thus to take remedial actions before it is too late. Based on the experimental
results, this modeling approach provides an effective way to predict software quality in a

very early stage of program development.

156

Chapter 9

Conclusions

This thesis covers both theoretical and experimental studies on model selection and regu-
larization for generalization in neural networks. One of our main focus is the regulariza-
tion. Under a general framework, we have shown that one particular case of the system
entropy with Gaussian probability density reduces into the first order Tikhonov regular-
izer for feedforward neural networks in the maximum likelihood learning case, where the
regularization parameter is the smoothing parameten the kernel density function.

We derive the formula for approximately estimating the regularization parameter. Ex-
periments show that the estimated regularization parameter is in the same order as that
obtained by the validation method.

Under the same framework, we consider the Gaussian mixture model for classifica-
tion, and the KLIM covariance matrix estimation is derived and investigated. An efficient
smoothing parameter approximation formula was provided, and the approximation was
found to be accurate for most cases in our experiments.

For model selection in clustering, we perform experiments with bootstrap and data
smoothing, and the results indicate that the model selection criterion performance is im-
proved in the small sample number set case.

To select all models in forming ensemble neural networks, we propose an approach
to overcome the difficulty in averaging ensemble networks in the parameter space. Ex-

perimental results show that the adopted strategy is efficient in improving network per-

157

CHAPTER 9. CONCLUSIONS

formance with finite training samples and the ensemble network architecture is a simple
one.

Stacked generalization can be considered as nonlinear combination of trained net-
works to form ensemble neural networks, which use data set partition to find an overall
system with improved generalization performance. In order to efficiently investigate the
performance of the stacked generalization, the PIL algorithm is developed for feedfor-
ward neural networks. This algorithm is more effective than the standard BP and other
gradient descent algorithms for most problems. The fast learning property of the PIL al-
gorithm makes it possible for us to investigate the computation-intensive generalization
techniques, such as stacked generalization, more efficiently.

In the application areas, we employ the model selection criterion to image segmen-
tation and obtain a method for automatic determination of the appropriate number of
segmentation. We also apply the AIC model selection criterion and the mixture model to
analyze software reliability metrics. This approach provides an effective way to predict
software quality in an early stage of program development.

The work described in the thesis can be improved or extended in a number of ways,
and several interesting problems are worthy of investigation. Our feeling is that some
details for generalization in neural networks are still unexplored. In some aspects the
Kullback-Leibler distance function may be more general and useful, but one of the open
problems in applications is to design reasonable system probability functions for specific
problems. Furthermore, the differences in various designed models should be investi-
gated.

On the other hand, the results gained in our techniques should be compared with the
results obtained using other techniques with real-world data sets. Different approxima-
tions should be analyzed and tested as well. It is considered an important direction to
establish an efficient method to estimate the error bound for approximations. Comparing

the traditional statistical techniques, such as cross-validation and bootstrap approaches,

158

CHAPTER 9. CONCLUSIONS

to neural network models in their generalization capabilities will also extend the research

work broadly.
Applying neural network models to software reliability engineering will be a new and

interesting research field, and it may foster significant impact to the software industry.

159

Appendix A

Formula of Estimating Smoothing
Parameter

Here we derive the formula for estimating smoothing parameter in Gaussian mixture
model case.

In multi-dimension case,

Jo(Z/ X, X;, hI) X—X)TVVg(D(x — x;)dx
while VVg(x;) is
Vg = VYA Pary () = [V Par, (e[V P, ()]

(Pary (xi))?
= Z P(y|X¢){Z;1 — Z;l(xi —m,)(x; — my)Tszl}

HZP (ylx:)(xi —m,)" 37 1}{213 (ylxo)[(xi —m,) 25"}

y=1

When integrated out,

506,0) = 5 Vgt

N k
1 _
o I Pyl — my) T

=1 y=1

%

160

APPENDIX A. FORMULA OF ESTIMATING SMOOTHING PARAMETER

From equation (4.26) and (4.30), we have

d

hd, — §h/phm(x) In py, (x)dx —|— — Z/lﬂphm G(x, %, bI)||x — x;|[?dx = 0
(A.1)

For the last term of above equation, we use mean center approximation, that is, let

Inpp, (x) ~ In p, (x;)

N
1
3y 2 [1 GG x D) x = i Fax

h N
—N Z In Pha (XZ) (AZ)

%

Combine above equations and with mean field approximation, we can obtain follow-

ing equation

§h = J b7 — N > Ipn.(x;) = 1] Inpy, (x;) (A.3)

161

Appendix B

Publication List

Here is the list of my research works which have been published or finished since May

1997, | entered the Chinese University of Hong Kong to begin my Ph.D study.

1. Z.B. Lai,P. Guo, T. J. Wang and L. Xu. “Comparison on Bayesian YING-YANG
theory based clustering number selection criterion with information theoretical cri-
teria”. InProceedings of IEEE International Joint Conference on Neural Networks

(IJCNN’98), volume I, pp725-729, Anchorage, USA, 1998.

2. Ping Guo, “Averaging ensemble neural networks in parameter spacePrdoeed-
ings of fifth international conference on neural information procesdi@@NIP’98),

pp486-489, Kitakyushu, Japan, 1998.

3. Ping Guo, et. al “Region number determination in automatic image segmen-
tation based on BKYY model selection criterion”. Rioceedings of 199%HEE-
EURASIP Workshop on Nonlinear Signal and Image ProcegdisgP’99), pp743-
746, Antalya, Turkey, 1999.

4. Ping Guoand Lei Xu. “On the study of BKYY cluster number selection criterion
for small sample data set with bootstrap technique”Pioceedings of 1999 Inter-
national Joint Conference on Neural Netwoik3CNN’99), volume I, pp965-968,
Washington, DC, USA, 1999.

162

APPENDIX B. PUBLICATION LIST

10.

11.

. Ping Guo and Lei Xu. “Relationship between mixture of experts and ensemble

neural networks”. [IRroceedings of the 6th International Conference on Neural

Information Processingl CONIP’99), pp.246-250, Perth, Australia, 1999.

Ping Guo, et. al “Dynamics of a coupled double-cavity optical interference filter,”

Journal of Modern Opticsvol. 46, no. 1, pp. 167-174, 1999.

. Ping Guo and C.L.Philip Chen, “Regularization parameter estimation based on

BKYY data smoothing theory for feedforward nets,” Rtoceedings of Artificial
Neural Network in EngineerinANNIE 2000), pp. 51-56, Missouri, USA, 2000,

(AwardedSecond Runner-Up

Ping Guo and C.L.Philip Chen, *A new approach to smoothing parameter esti-
mation in small sample set case,” toceedings of Artificial Neural Network in

Engineering(ANNIE 2000), pp. 147-152, Missouri, USA, 2000 .

. Ping Guoand Michael R. Lyu, “A study on color space selection for determining

image segmentation region number,” Pnoceedings of The 2000 International
Conference on Artificial Intelligen¢eC-AI'00), H. R. Arabnia, Ed., vol.lll, pp.
1127-1132, CSREA Press, Las Vegas, Nevada, USA, June 26-29, 2000.

Ping Guo and Michael R. Lyu, “Classification for high-dimension small-sample
data sets based on kullback-leibler information measure Prateedings of The
2000 International Conference on Atrtificial Intelligen@€-AI'00), H. R. Arabnia,

Ed., vol.lll, pp. 1187-1193, CSREA Press, Las Vegas, Nevada, USA, June 26-29,
2000.

Ping Guo and Michael R. Lyu, “Software quality prediction using mixure model
with em algorithm,” inProceedings of The First Asia-Pacific Conference on Quality
Software(APAQS 2000), Hong Kong, vol. | 02, pp. 725-729, IEEE Computer
Society Press, October 30-31,2000.

163

APPENDIX B. PUBLICATION LIST

12. Ping Guoand Michael R. Lyu, “Pseudoinverse learning algorithm for feedforward
neural networks,” irAdvances in Neural Networks and Applicatigh§NAO1), N.

E. Mastorakis Eds., WSES Press (Athens), pp.321-326, 2001.

13. Ping Guo, et. al “Pattern Recognition for the Classification of Raman Spec-
troscopy Signals,” Accepted kjpournal of Electron and Informatiqr2001, (Chi-

nese).

14. Ping Guoand Michael R. Lyu, “ A New Approach to Optical Multilayer Learning
Neural Network”, in thé’roceedings of 2001 International Conference on Atrtificial
Intelligence(IC-AlI'01). vol.l, pp. 426-432, CSREA Press, Las Vegas, Nevada,
USA, June 26-29, 2001.

15. Ping Guo, et al. “Cluster Number Selection for Small Set of Samples Using the
Bayesian Ying-Yang Model”. Accepted conditionally by thieEE trans. Neural
Network 2001.

16. Ping Guo and Michael R. Lyu, “ A Case Study on Stacked Generalization with
Software Reliability Growth Modeling Data”, accepted the 8th International

Conference on Neural Information ProcessiitfGONIP’01), 2001.

Pending Paper

Has submitted the following papers to some proper journals

1. Ping Guo, et. al, “Study on the Effect of Color Space Selection for Determining

Image Segmentation Region Number,” Submittted to a journal, 2001, (In Chinese).

2. Ping Guo, et al. “Regularization Parameter Estimation for Feedforward Neural

Networks”. Submitted to a journal, 2001.

3. Ping Guoand Michael R. Lyu. “A New Approach to Regularized Gaussian Classi-

fication for High-Dimension Small Sample Set”. Submitted to a journal, 2001.

164

APPENDIX B. PUBLICATION LIST

4. Ping Guoand Michael R. Lyu. “A Pseudoinverse Learning Algorithm for Feedfor-
ward Neural Networks with Stacked Generalization Application to Software Relia-

bility Growth Data”. Submitted to a journal, 2001.

5. Ping Guo and Michael R. Lyu. “Software Metrics Classification for Early De-
tection of Fault-Prone Modules Using an Unsupervised Learning Algorithm”. In

resubmission, 2001.

165

Bibliography

[1] V. Vemuri, Ed., Artifical Neural Networks: Theotetical ConceptSomputer Soci-

ety Press of the IEEE, Washington, D1988.
[2] Jacek M. Zuradalntroduction to Artificial Neural System§Vest, St. Paul, 1992.

[3] J. Hertz, A. Krogh and R.G. Palmemntroduction to the Theory of Neural Compu-
tation, Addison Wesley, Redwood City, CA, 1991.

[4] Vwani Roychowdhury, Kai-Yeung Siu, Alon Orlitsky, EdTheoretical Advances

in Neural Computation and Learnindlluwer Academic, Boston, 1994.

[5] Philip D. Wasserman,Neural Computing: Theory and Practicevan Nostrand

Reinhold, New York, 1989.

[6] M. Vidyasagar, A Theory of Learning and Generalization: with Applications to

Neural Networks and Control Systen®pringer, London; New York, 1997.

[7] M. Smith, Neural Networks for Statistical Modelingnternational Thomson Com-

puter Press, Boston, MA, 1996.

[8] S. Geman, E. Bienenstock, and R. Doursat, “Neural Networks and the

Bias/Variance Dilemma,Neural Computatioywvol. 4, pp. 1-58, 1992.

[9] J. E. Moody, “The Effective Number of Parameters: An Analysis of Generalization

and Regularization in Nonlinear Learning Systems,Advanced in Neural Infor-

166

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

mation Processing System&E. Moody, S.J. Hanson, and R.P. Lippmann, Ed.,
Cambridge, MA, 1992, vol. 4, pp. 847-854, MIT Press.

A. Weigend, “On Overfitting and the Effective Number of Hidden Units,” in
Proceedings of the 1993 Connectionist Models Summer Sd¥io@l. Mozer, Ed.,
Boulder, CO, 1994, pp. 335-342, LEA/Lawrence Earlbaum Association.

Warren S. Sarle, “Stopped Training and Other Remedies for OverfittindgZtan
ceedings of the 27th Symposium on the Interface of Computing Science and Statis-
tics, Convention Center and Vista Hotel, Pittsburgh, PA, 1995, vol. 27, pp. 352—
360.

Amanda J.C. Sharkey, EdCombining Artificial Neural Nets: Ensemble and Mod-
ular Multi-net Systems Springer, London; New York, 1999.

P. L. Bartlett, “For Valid Generalization, the Size of the Weights is more Important
than the Size of the Network,” iAdvanced in Neural Information Processing
SystemsM.C. Mozer, M.I. Jordan, and T. Petsche, Ed., Cambridge, MA, 1997,
vol. 9, pp. 134-140, MIT Press.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth, “Learnability and
the Vapnik-Chervonenkis DimensionJournal of the Association for Computing

Machinery vol. 36, no. 4, pp. 929-965, 1989.

Y. S. Abu-Mostafa, “The Vapnik-Chervonenkis Dimension: Information versus

Complexity in Learning,’"Neural Computationvol. 1, no. 3, pp. 312-317, 1989.

Y. Le Cun, J.S. Denker and S.A. Solla, “Optimal Brain Damage,”Advanced
in Neural Information Processing Systenis S. Touretzky, Ed., San mateo, CA,

1990, vol. 2, pp. 598-605, Morgan Kaufmann Publisher.

167

BIBLIOGRAPHY

[17] Lars K. Hansen and Carl E. Rasmussen, “Pruning from Adaptive Regularization,”

Neural Computatiopvol. 6, no. 6, pp. 1222-1231, 1994.

[18] F. Girosi, M. Jones and T. Poggio, “Regularization Theory and Neural Networks

Architectures,’Neural Computationwvol. 7, pp. 219-269, 1995.

[19] Lizhong Wu and John Moody, “A Smoothing Regularizer for Feedforward and
Recurrent Neural Networks, Neural Computationvol. 8, no. 3, pp. 463-491,

1996.

[20] G. E. Hinton, “Learning Translation Invariant Recognition in Massively Parallel
Networks,” inProceedings PARLE Conference on Parallel Architectures and Lan-
guages EuropeA. J. Nijman J.W. de Bakker and P. C. Treleaven, Eds., Berlin,
1987, pp. 1-13, Springer-Verlag.

[21] C. M. Bishop,Neural Networks for Pattern Recognitio®xford University Press,
Oxford, 1995.

[22] Yves Grandvalet and Stephane Canu, “Noise Injection: Theoretical Prospects,”’

Neural Computationwvol. 9, no. 5, pp. 1093-1108, 1997.

[23] Alan M. Thompson, John C. Brown, Jim W. Kay and D. Michael Titterington, “A
Study of Methods of Choosing the Smoothing Paprameter in Image Restoration by
Regularization,”IEEE Transaction on Pattern Analysis and Machine Intelligence

vol. 13, no. 4, pp. 326—339, 1991.

[24] Peter R. Jonston and Ramesh M. Gulrajani, “A New Method for Regularization
Parameter Determination in the Inverse Problem of ElectrocardiograpB§E

Trans. on Biomedical Engineeringol. 44, no. 1, pp. 19-39, January 1997.

168

BIBLIOGRAPHY

[25] G. Wahba,Spline Models for Observational Dateol. 59 of CBMS-NSF regional
conference series in applied mathematigsciety for Industria and Applied math-

ematics, Philadelphia, PA, 1990.

[26] B. Efron and R. TibshiraniAn Introduction to the BootstrgpChaoman and Hall,
London, 1993.

[27] D. J. C. MacKay, “Bayesian Interpolatiomeural Computatioywvol. 4, no. 3, pp.
415-447,1992.

[28] J. Larsen, L.K. Hansen, C. Svarer and M. Ohlsson, “Design and Regularization
of Neural Networks: the Optimal Use of a Validation Set,”Rroceedings of the
1996 IEEE Signal Processing Society Workshop on Neural Networks for Signal
ProcessingS. Usui, Y. Tohkura, S. Katagiri and E. Wilson, Ed., 1996, vol. VI, pp.
62-71.

[29] L. Nonboe Andersen, J. Larsen, L.K. Hansen and M. Hintz-Madsen, “Adaptive
Regularization of Neural Classifiers,” Proceedings of the 1997 IEEE Workshop
on Neural Networks for Signal Processjngd. Principe, L. Gile, N. Morgan and E.

Wilson, Ed., 1997, vol. VII, pp. 24-33.

[30] Dingding Chen and M. T. Hagan, “Optimal Use of Regularization and Cross-
validation in Neural Network Modeling,” iProceedings of the 1999 International

Joint Conference on Neural Networki999, vol. 2, pp. 1275-1280, (IJCNN’'99).

[31] Katsuyuki hagiwara and Kazuhiro Kuno, “Regularization Learning and Early Stop-
ing in Linear Networks,” inProceedings of the IEEE-INNS-ENNS Interoaal
Joint Conference on Neural Networks-1, Amari, C.L. Giles, M. Gori and V. Pi-

uri, Ed., 2000, vol. 4, pp. 511-516, (IJCNN 2000).

[32] Isabelle Rivals and Leon Personnaz, “On Cross Validation for Model Selection,”

Neural Computationwvol. 11, pp. 863—870, 1999.

169

BIBLIOGRAPHY

[33] S. Kullback, Information Theory and Statistic$Viley, New York, 1959.
[34] L. Devroye,A Course in Density EstimatiomBirhhauser Publisher, Boston, 1987.

[35] K. Fukunaga, Introduction to Statistical Pattern RecognitionPAcademic Press,

Boston, second edition, 1990.

[36] D. Bosq, Nonparametric Statistics for Stochastic Processes: Estimation and Pre-

diction, Springer-Verlag Inc., New York, 1996.

[37] J. Rissanen, “Modeling by Shortest Data DescriptioAfitomatica vol. 14, pp.
465-471, 1978.

[38] Andrew Barron, Jorma Rissanen and Bin Yu, “The Minimum Description Length
Prnciple in Coding and Modeling,TJEEE Trans. on Information Theaoryol. 44,
no. 6, pp. 2743-2760, October 1998.

[39] George S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications
Springer-Verlag, New York, 1996.

[40] James E. Gentle, Random Number Generation and Monte Carlo Methods

Springer, New York, 1998.

[41] C. M. Bishop, “Training with Noise is Equivalent to Tikhonov Regularization,”

Neural Computationwvol. 7, no. 1, pp. 108-116, 1995.

[42] A. N. Tikhonov and V. Y. ArseninSolutions of lll-posed Problem¥. H. Winston
and sons, Washington D.C., 1977.

[43] Russell Reed, Robert J. Marks Il, and Seho Oh, “Simiarities of Error Regulariza-
tion, Sigmoid Gain Scaling, Target Smoothing, and Training with JittdEEE
Trans. Neural Networksvol. 7, no. 3, pp. 529-538, 1995.

170

BIBLIOGRAPHY

[44] C. M. Bishop, “Regularization and Complexity Control in Feed-forward Net-
works,” Technical Report NCRG/95/022, Aston University, Birmingham, UK,
1995.

[45] R. A.Jacobs, “Increased Rates of Convergence through Learning Rate Adaptation,”

Neural Networksvol. 1, pp. 295-307, 1988.

[46] Lei Xu, “Bayesian Ying-Yang System and Theory as A Unified Statistical Learn-
ing Approach (VII): Data Smoothing,” iProceedings of Intentional Confer-
ence on Neural Information Processirigitakyushu, Japan, 1998, 1, pp. 243-248,
(ICONIP’98).

[47] Michael R. Lyu, Handbook of Software Reliability EngineerintEEE Computer
Society Press, McGraw Hill, 1996.

[48] D. J. C. MacKay, “A Practical Bayesian Framework for Backpropagation Net-

works,” Neural Computationwvol. 4, no. 3, pp. 448-472, 1992.

[49] G. J. McLachlan and K. E. BasfordJlixture Models: Inference and Applications
to Clustering Dekker, New York, 1988.

[50] B. S. Everitt and D. HandFinite Mixture Distributions Chapman and Hall, Lon-
don, 1981.

[51] N. E. Day, “Estimating the Component of a Mixture of Normal Distributions,”

Biometrikg vol. 56, pp. 463—-474, 1969.

[52] H. H. Bock, “Probability Models and Hypotheses Testing in Partitioning Cluster
Analysis,” inClustering and ClassificatiqrRiverside, California, 1996, pp. 377—
453, World Scientific Press.

171

BIBLIOGRAPHY

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Stefan Aeberhard, Danny Coomans and Olivier de Vel, “Comparative Analysis
of Statistical Pattern Recognition Methods in High Dimensional Settingaft.
Recog. vol. 27, no. 8, pp. 1065-1077, 1994.

J. H. Friedman, “Regularized Discriminant Analysid,”Amer. Statist. Assqaol.

84, pp. 165-175, 1989.

J.P. Hoffbeck and D.A. Landgrebe, “Covariance Matrix Estimation and Classifi-
cation With Limited Training Data,”|EEE Transaction on Pattern Analysis and

Machine Intelligencevol. 18, no. 7, pp. 763-767, 1996.

Ping Guo and Michael R. Lyu, “Classification for High-Dimension Small-Sample
Data Sets Based on Kullback-Leibler Information MeasurePrceedings of The
2000 International Conference on Artificial Intelligent¢é R. Arabnia, Ed., Monte
Carlo Resort, Las Vegas, Nevada, USA, 2000, vol. Ill, pp. 1187-1193, CSREA
Press, (IC-AI'00).

A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum-likelihood from Incom-
plete Data via the EM Algorithm,"”J. Royal Statist. Societyol. B39, pp. 1-38,
1977.

R. A. Redner and H. F. Walker, “Mixture Densities, Maximum Likelihood and the

EM Algorithm,” SIAM Reviewvol. 26, pp. 195-239, 1984.

Andrew R. Webb,Statistical Pattern RecognitionOxford University Press, Lon-

don, 1999.

A. Mkhadri, G. Celeux, A. Nasroallah, “Regularization in Discriminant Analysis:
An Overview,” Computational Statistics & Data Analysigol. 23, pp. 403-423,
1997.

I. T. Jolliffe, Principal Component AnalysisSpringer-Verlag, New York, 1986.

172

BIBLIOGRAPHY

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

E. W. Forgy, “Cluster Analysis of Multivariate Data: Efficiency Versus Inter-
pretability of Classifications,” iBiometric Soc, MeetingRiverside, California,

1965, (Abstract in Biometrics 21, No.3, p768).

J. A. Hartigen, “Distribution Problems in Clustering,” @lassification and Clus-

tering, J.van Ryzin, Ed., New York, 1977, pp. 45-72, Academic Press.

L. Xu, A. Krzyzak and E. Oja, “Rival Penalized Competitive Learning for Clus-
tering Analysis, RBF net and Curve Detectioi£EE Trans. on Neural Networks

vol. 4, no. 4, pp. 636-649, 1993.

K. Matusita and N. Ohsumi, “A Criterion for Choosing the Number of Clusters
in Cluster Analysis,” inRecent Development in Statistical Inference and Data

Analysis Amsterdam, North Holland, 1980, pp. 203-213.

H. Bozdagan, “Mixture-Model Cluster Analysis using Model Selection Criteria
and a New Informational measure of Complexity,”Rroceeding of the First US/
Japan Conference on the Frontiers of Statistical Modeling: An Informational Ap-

proach 1994, vol. 2, pp. 69-113.

E. P. Rosenblum, “A Simulation Study of Information Theoretic Techniques and
Classical Hypothesis Tests in One Factor ANOVA,” Rmoceeding of the First
US/ Japan Conference on the Frontiers of Statistical Modeling: An Informational

Approach 1994, vol. 2, pp. 319-346.

R. B. Calinski and J. A. Harabasz, “A Dendrite Method for Cluster Analysis,”

Communications in Statisticgol. 3, pp. 1-27, 1974.

D. M. Titterington, “Some Recent Research in the Analysis of Mixture Distribu-

tions,” Statisticsvol. 21, pp. 619-641, 1990.

173

BIBLIOGRAPHY

[70] J. H. Wolfe, “Pattern Clustering by Multivariate Mixture Analysigylultivariate
Behavioural Researglvol. 5, pp. 329-350, 1970.

[71] F. H. C. Marriott, “Separating Mixtures of Normal Distributiong&iometrics vol.
31, pp. 767769, 1975.

[72] M. P. Windham and A. Culter, “Information Ratios for Validating Mixture Anal-
yses,” Journal of the American Statistical Associatjorol. 87, pp. 1188-1192,
1992.

[73] J. Geweke and R. Meese, “Estimating Regression Models of Finite but Unknown

Order,” International Economic Reviewol. 22, pp. 55-70, 1981.

[74] T. Terasvirta and I. Mellin, “Model Selection Criteria and Model Selection Tests

in Regression Models Stand. J. Statistvol. 13, pp. 159-171, 1986.

[75] Lei Xu, “How Many Clusters?: A YING-YANG Machine Based Theory for A
Classical Open Problem in Pattern Recognition,Pmeceeding of IEEE Interna-

tional Conference on Neural Networks996, vol. 3, pp. 1546-1551.

[76] Lei Xu, “Bayesian Ying-Yang Machine, Clustering and Number of Clustd?af*
tern Recognition Lettervol. 18, no. 11-13, pp. 1167-1178, 1997.

[77] Z.B. Lai, P. Guo, T. J. Wang and L. Xu, “Comparison on Bayesian YING-YANG
Theory based Clustering Number Selection Criterion with Information Theoreti-
cal Criteria,” inProceedings of IEEE International Joint Conference on Neural

Networks Anchorage, USA, 1998, vol. I, pp. 725-729, IEEE Press, (IJCNN’98).

[78] Ping Guo and Lei Xu, “On the Study of BKYY Cluster Number Selection Criterion
for Small Sample Data Set with Bootstrap Technique,”Pmceedings of 1999
International Joint Conference on Neural Network&ashington, DC, USA, 1999,
vol. I, pp. 965-968, IEEE Press, (IJCNN’'99).

174

BIBLIOGRAPHY

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Lei Xu, “Bayesian YING-YANG System and Theory as A Unified Statistical
Learning Approach(l): for Unsupervised and Semi-Unsupervised Learning,” in
Brain-like Computing and Intelligent Information Systef@sAmari and N. Kass-

abov, Eds. 1997, pp. 241-247, Springer-Verlag.

Lei Xu, “Bayesian YING-YANG System and Theory as A Unified Statistical
Learning Approach (I1): From Unsupervised Learning to Supervised Learning and
Temporal Modeling,” inTheoretical Aspects of Neural Computation: A Multidis-
ciplinary Perspectivel. King K.W.Wong and D.Y.Yeung, Eds. 1997, pp. 25-42,
Springer-Verlag, (TANC97).

H. Akaike, “A New Look at the Statistical Model IdentificationlEEE Transac-
tions on Automatic Controlol. AC-19, pp. 716-723, 1974.

H. BozdoganMultiple Sample Cluster Analysis and Approaches to Validity Studies
in Clustering Individuals Doctoral dissertation, University of lllinois ar Chicago

Circle, Chicago,IL, 1981.

H. Bozdogan, “Modle Selection and Akaike’s Information Criterion: The General
Theory and its Analytical Extensiong?sychometrikavol. 52, no. 3, pp. 345-370,
1987.

G. Schwarz, “Estimating the Dimension of a ModeThe Annals of Statisticals

vol. 6, no. 2, pp. 461-464, 1978.

M. P. Perrone and L. N. Cooper, “When Networks Disagree: Ensemble Methods
for Hybrid Neural Networks,” imArtificial Neural Networks for Speech and Visjon

R. J. Mammone, Ed., London, 1993, pp. 126-142, Chapman & Hall.

A. J. C. Sharkey, “On Combining Artificial Neural NetsZonnection Scien¢&ol.
8, pp. 299-313, 1996.

175

BIBLIOGRAPHY

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

L. Xu, A. Krzyzak, and C.Y. Suen, “Methods of Combining Multiple Classifiers
and Their Application to Handwriting RecognitiodEEE Trans. on Systems, Man,

and Cyberneticsvol. 22, no. 3, pp. 418-435, 1992.

L. Breiman, “Bagging Predictors,” Tech. Rep. 421, Department of Statistics, Uni-

versity of California at Berkely, 1994.

A. Krogh and J. Vedelsby, “Neual Network Ensemble, Cross Validation, and Active
Learning,” inAdvanced in Neural Information Processing SystdnS.Touretzky

G. Tesauro and T.K.Leen, Eds., Cambridge, 1995, vol. 7, pp. 231-238, MIT Press.

K. Tumer and J. Ghosh, “Error Correlation and Error Reduction in Ensemble Clasi-

fiers,” Connection Scien¢®ol. 8, no. 3-4, pp. 385-404, 1996.

J. Ghosh, L. Deuser, and S. Beck, “A Neural Network based Hybrid System for
Detection, Characterization and Classification of Short-duration Oceanic Signals,”

IEEE Journal of Ocean Engineeringol. 17, no. 4, pp. 351-363, October 1992.

T.K.Ho, J.J. Hull, and S.N.Srihari, “Decision Combination in Multiple Classifier
System,” IEEE Transactions on Pattern Analysis and Machine Intelligenoé

16, no. 1, pp. 6676, 1994.

Jianchang Mao, “A Case Study on Bagging, Boosting, and Basic Ensembles of
Neural Networks for OCR,” ifProceedings of IEEE International Joint Conference

on Neural NetworksAnchorage, USA, 1998, vol. Ill, pp. 1828-1833, (IJCNN’'98).

L. Xu and M.I. Jordan, “EM Learning on a Generalized Finite Mixture Model
for Combining Multiple Classifiers,” ifProceedings of World Congress on Neural

Networks Portland, OR, 1993, vol. IV, pp. 227-230.

U. Naftaly, N. Intrator and D. Horn, “Optimal Ensemble Averaging of Neural

Networks,” Network: Comput. Neural Sysvol. 8, pp. 283-296, 1997.

176

BIBLIOGRAPHY

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

M. Taniguchi and V. Tresp, “Averaging Regularized Estimatofééural Compu-

tation, vol. 9, pp. 1163-1178, 1997.

R.A. Jacobs, M.l.Jordan, S.J. Nowlan and G.E. Hinton, “Adaptive Mixtures of

Local Experts,"Neural Computatiopvol. 3, pp. 79-97, 1991.

L. Xu, M. I. Jordan and G. E. Hinton, “An Alternative Model for Mixtures of
Experts,” inAdvances in Neural Information Processing Syste@®s Tesauro
J.D. Cowan and J. Alspector, Eds., Cambridge,MA, 1995, vol. 7, pp. 633—-640,
MIT Press.

Daniel Jinenez and Nicolas Walsh, “Dynamically Weighted Ensemble Neural Net-
works for Classification,” irProceedings of IEEE International Joint Conference

on Neural NetworksAnchorage, USA, 1998, vol. I, pp. 753-756, (IJCNN’98).

P. Guo, C.L.P. Chen and Y.G.Sun, “An Exact Supervised Learning for a Three-
Layer Supervised Neural Network,” iRroceedings of International Confer-
ence on Neural Information ProcessinBeijing, China, 1998, pp. 1041-1044,
(ICONIP95).

Ping Guo and Michael R. Lyu, “Pseudoinverse Learning Algorithm for Feed-
forward Neural Networks,” imAdvances in Neural Networks and Applicatipns

N. E. Mastorakis, Ed., Puerto De La Cruz, Tenerife, Canary Islands, Spain, Febru-
ary 2001, World Scientific and Engineering Society, pp. 321-326, WSES Press,
(NNAO1).

S. Haykin and C. Deng, “Classification of Radar Clutter Using Neural Networks,”
IEEE Transactions on Neural Networksl. 2, pp. 589-600, 1991.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard and W. Hubbard,

“Handwritten Digit Recognition with a Back-propagation Network,”Advanced

177

BIBLIOGRAPHY

in Neural Information Processing Systenis S. Touretsky, Ed., San Mateo, CA,
1990, pp. 396—404.

[104] D. E. Rumelhurt, G. E. Hinton and R. J. Williams, “Learning Internal Represen-
tations by Error Propagating,” iRarallel Distributed ProcessingD.E.Rumelhart
and J.L.McClelland, Eds., Cambridge, MA, 1986, vol. 1, pp. 318-362, MIT Press.

[105] P. Patrick and Van Der Smagt, “Minimization Methods for Training Feedforward
Neural Networks,"Neural Networksvol. 7, pp. 1-11, 1994.

[106] E. Barnard, “Optimization for Training Neural Net$ZEE Transactions on Neural

Networks vol. 3, no. 2, pp. 232-240, 1992.

[107] F. A. Zodewyk, Wesswls and B. Etienne, “Avoid False Local Minima by proper
Initializations of Connections,JEEE Transaction on Neural Networkgol. 3, no.

6, pp. 899-905, 1992.

[108] S. Kollias and D. Anastassiou, “An Adaptive Least Squares Algorithm for the
Efficient Training of Artificial Neural Networks,” IEEE Transaction on Circuit

and Systermvol. CAS-36, pp. 1092-1101, 1989.

[109] D. H. Wolpert, “Stacked GeneralizationNeural Networksvol. 5, pp. 241-259,
1992.

[110] Thomas L. Boullion and Patrick L. OdellGeneralized Inverse MatricesJohn

Wiley and Sons, Inc., New York, 1971.

[111] S. Tamura, “Capabilities of a Tree Layer Feedforward Neural NetworkPram
ceedings of International Joint Conference on Neural NetwoS8esattle, USA,

1991, pp. 2757-2762, (IJCNN'91).

[112] C. R. Rao and S. K. MitraGGeneralized Inverse of Matrices and Its Applications
Wiley, New York, 1971.

178

BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Jon F. ClaerboutFundamentals of Geophysical Dada Processing with Applica-

tions to Petroleum Prospecting/cGraw-Hill Inc, USA, 1976, (TN 271, P4C6).

F. Biegler-Konig and F. Birmann, “A Learning Algorithm for Multilayered Neural
Networks Based on Linear Least Squares Probleidsyiral Networksvol. 6, pp.

127-131, 1993.

N. Karunanithi, D. Whitley and Y. K. Malaiya, “Prediction of Software Reliability
Uisng Connectionist Models[EEE Transaction on Software Engineerjngl. 18,

pp. 563-574, 1992.

Ping Guo, “Averaging Ensemble Neural Networks in Parameter Space,” in
Proceedings of fifth International Conference on Neural Information Processing
Takashi Omori Shiro Usui, Ed., Kitakyushu, Japan, 1998, pp. 486—489, 10S Press,
(ICONIP’98).

K. S. Fu and J. K. Mui, “A Survey on Image Segmentatidpgttern Recognition
vol. 13, pp. 3-16, 1981.

H. S. Choi, D. R. Haynor and Kam, “Partial Volume Tissue Classification of Mul-
tichannel Magnetic Resonance Images—Amixel Mod&lIEE Trans. Med. Image.

vol. 10, pp. 395-407, 1991.

P. Santago and H. D. Gage, “Statistical Models of Partial Volume EfféEEE

Trans. Image Processingol. 4, no. 11, pp. 1531-1540, 1995.

S. Sanjay-Gopal and Thomas J. Hebert, “Bayesian Pixel Classification Using Spa-
tially Variant Finite Mixtures and the Generalized EM AlgorithniZEE Transac-

tion on Image Processingol. 7, no. 7, pp. 1014-1028, 1998.

Yu-TCHi, Takeo Kanade, and Toshiyuki Sakai, “Color Information for Region

Segmentation,Computer Graphics and Processingl. 13, pp. 222-241, 1980.

179

BIBLIOGRAPHY

[122] B. W. Boehm and P. N. Papaccio, “Understanding and Controlling Software Costs,”
IEEE Trans. on Software Engineeringol. 14, no. 10, pp. 1462-1477, October
1988.

[123] A. J. Perlis, F. G. Sayward and M. Shavoftware Metrics: An Analysis and
Evaluation MIT Press, Cambridge, MA, 1981.

[124] V. Y. Shen, T. Yu, S. M. Thebaut, and L. R. Paulsen, *“ldentifying Error-prone
Software — An Empirical Study,” IEEE Trans. on Software Engineeringol.
SE-11, pp. 317-323, April 1985.

[125] S. G. Crawford, A. A. Mcintosh, and D. Pregibon, “An Analysis of Static Metrics
and Faults in C Software,). Syst. Sofywayevol. 5, pp. 27-48, 1985.

[126] L. C. Briand, V. R. Basili, and C. Hetmanski, “Developing Interpretable Models for
Optimized Set Reduction for Identifying High-Risk Software ComponenEZE
Trans. on Software Engineeringol. SE-19, no. 11, pp. 1028-1034, November
1993.

[127] J. Munson and T. Khoshgoftaar, “The Detection of Fault-prone ProgrdEBisE

Trans. on Software Engineeringol. SE-18, no. 5, pp. 423-433, May 1992.

[128] T. Khoshgoftaar and J. Munson, “Predicting Software Development Error Using
Software Complexity metrics,IEEE Trans. on Software Engineeringpl. 8, no.

2, pp. 253-261, February 1990.

[129] A. A. Porter and R. W. Selby, “Empirically Guided Software Development Using
Metric-based Classification Tree$EEE Softwarevol. 7, no. 2, pp. 46-54, March
1990.

180

BIBLIOGRAPHY

[130] R. W. Selby and A. A. Porter, “Learning from Examples: Generation and Evolu-
tion of Decision Trees for Software Resource Analysi§EE Trans. on Software

Engineering vol. 14, no. 12, pp. 1743-1756, December 1988.

[131] S.S. Gokhale and M. R. Lyu, “Regression Tree Modeling for the Prediction of Soft-
ware Quality,” inProceedings of Third ISSAT International Conference:Reliability

& Quiality in Design Hoang Pham, Ed., Anaheim, CA, 1997, pp. 31-36.

[132] L. C. Briand, V. R. Basili, and W. M. Thomas, “A Pattern Recognition Approach
for Software Engineering Data Analysis|/EEE Transaction on Software Engi-

neering vol. SE-18, no. 11, pp. 931-942, November 1992.

[133] T. Khoshgoftaar, D. L. lanning and A. S. Pandya, “A Comparative Study of Pattern
Recognition Techniques for Quality Evaluation of Telecommunications Software,”
IEEE J. Selected Areas in Communicatiool. 12, no. 2, pp. 279-291, February
1994.

[134] L. M. Ottenstein, “Quantitative Estimates of Debugging RequiremeniSEE
Trans. on Software Engineeringol. SE-5, no. 2, pp. 504-514, September 1979.

[135] W. R. Dillon and M. GoldsteinMultivariate Analysis Wiley, New York, 1984.

[136] V. R. Basili and D. H. Hutchens, “An Empirical Study of a Syntactic Complexity
Family,” IEEE Trans. on Software Engineeringol. SE-9, no. 6, pp. 664—672,
November 1983.

[137] R. K. Lind, “An Experimental Study of Software Metrics and their Relationship
to Software Error,” M.S. thesis, University of Wisconsin-Milwaukee, Milwaukee,

December 1986, Master’s thesis.

[138] M. Halstead,Elements of Software SciencBlew York Elsevier, North-Holland,

1977.

181

BIBLIOGRAPHY

[139] H. Jensen and K. Vairavan, “An Experimental Study of Software Metrics for Real-
Time Software,” IEEE Trans. on Software Engineeringol. SE-11, no. 2, pp.

231-234, February 1994.

[140] T. J. McCabe, “A Complexity MeasureJEEE Trans. on Software Engineering
vol. SE-2, no. 4, pp. 308-320, 1976.

182

