
Towards Neural Controllable Text
Generation

LI, Jingjing

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
August 2023

Thesis Assessment Committee

Professor YOUNG Fung Yu (Chair)

Professor KING Kuo Chin Irwin (Thesis Supervisor)

Professor LYU Rung Tsong Michael (Thesis Co-supervisor)

Professor LAM Wai (Committee Member)

Professor LIN Shou-De (External Examiner)

Abstract of thesis entitled:
Towards Neural Controllable Text Generation

Submitted by LI, Jingjing
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in August 2023

Text generation is the task of generating textual contents which
are indistinguishable from natural language. With the advance
of deep learning techniques, neural network models achieve giant
success and become the dominating solution to the task of text
generation. Despite the remarkable success in writing fluent and
creative content, existing solutions pay little attention to the
controllability over the generation systems. While in practice,
there is a substantial need to steer a powerful neural generation
system to deliver output text that satisfies diverse attributes, such
as style, sentiment and topic.

In this thesis, we explore a novel stream of text generation
problem: controllable text generation. This task aims to gener-
ate textual contents that meet the target attribute requirements
predefined by human beings, allowing for greater controllability
over the output text. Notably, it is observed that the training
procedure of neural controllable text generation models is quite
data-intensive and thus often suffer from the data-scarcity issue.
On account of this observation, in this thesis, we further dive into
the problem of neural controllable text generation (NCTG) under
bipartite settings: training a NCTG model (i) with full supervision
and (ii) with no supervision from large parallel corpora.

First, we study the semantic fidelity control in neural text gen-

i

eration. Question generation (QG) is a fundamental task in the
field of text generation. The target is to generate a question from
a reference sentence and a specified answer within the sentence.
A sound QG system has a high demand of semantic fidelity over
its output. Existing sequence-to-sequence neural models achieve
this goal by proximity-based answer position encoding under the
intuition that neighboring words of answers are of high possibility
to be answer-relevant. However, such intuition may not apply to all
cases, especially for sentences with complex answer-relevant rela-
tions. Consequently, the performance of these models drops sharply
when the relative distance between the answer fragment and other
non-stop sentence words that also appear in the ground truth
question increases. To address this issue, we propose a method
to jointly model the unstructured sentence and the structured
answer-relevant relation (extracted from the sentence in advance)
for QG. Specifically, the structured answer-relevant relation acts
as the to the point context and it thus naturally helps keep the
generated question to the point, while the unstructured sentence
provides the full information. Extensive experiments show that
to the point context helps our QG model achieve significant im-
provements on several automatic evaluation metrics. Furthermore,
our model is capable of generating diverse questions for a sentence
which conveys multiple relations of its answer fragment.

Secondly, we investigate NCTG in an unsupervised setting. We
propose TGLS, a novel framework for unsupervised text generation
by learning from search. We start by applying a strong search
algorithm (in particular, simulated annealing) towards a heuristi-
cally defined objective that (roughly) estimates the quality and
satisfaction score of sentences. Then, a conditional generative
model learns from the search results, and meanwhile smooths out
the noise of search. The alternation between search and learning
can be repeated for performance bootstrapping. We demonstrate
the effectiveness of TGLS on two real-world text generation tasks,

ii

unsupervised paraphrasing and text formalization. Our model
significantly outperforms unsupervised baseline methods in both
tasks. Especially, it achieves comparable performance to strong
supervised methods for paraphrase generation.

Finally, we dive into the efficiency issue of current solutions
to unsupervised NCTG. In the field of text generation, there is
a family of revision tasks where the source and target sequences
share moderate resemblance in surface form but differentiate in
attributes, such as text formality and simplicity. Current state-
of-the-art methods formulate these tasks as sequence-to-sequence
learning problems, which rely on large-scale parallel training corpus.
In this project, we present an iterative in-place editing approach
for text revision, which requires no parallel data. We simply fine-
tune a pre-trained Transformer with masked language modeling
and attribute classification. During inference, the editing at each
iteration is realized by two-step span replacement. At the first
step, the distributed representation of the text optimizes on the
fly towards an attribute function. At the second step, a text
span is masked and another new one is proposed conditioned
on the optimized representation. The empirical experiments on
two typical and important text revision tasks, text formalization
and text simplification, show the effectiveness of our approach.
It achieves competitive and even better performance than state-
of-the-art supervised methods on text simplification, and gains
better performance than strong unsupervised methods on text
formalization.

iii

論文題目：基於神經網絡的可控性文本生成

作 者：李菁菁

學 校：香港中文大學

學 繫：計算機科學與工程學繫

修讀學位：哲學博士

摘 要：

文本生成是一項生成與自然語言貼近的文字的任務。隨著深度
學習技術的進步，神經網絡模型取得了巨大的成功，在文本生

成任務中成為了主導解決方案。儘管現有的解決方案在撰寫流

暢、有創意的內容上取得了顯著的成功，但在生成繫統的可控

性上缺乏深入研究。實際中，大量的應用場景需要引導文本生
成繫統產生滿足不同屬性要求的輸出文本，例如風格、情感和

主題。文本生成繫統的可控性是一個相當重要的功能。

在本論文中，我們探討了一種新的文本生成問題：可控文

本生成。這個任務的目標是生成滿足人類預先定義的目標屬性
要求的文本內容，從而實現對輸出文本的控製。值得註意的

是，目前基於神經網絡方法的可控文本生成模型的訓練程序非
常依賴大規模的數據，因此常常受到數據稀缺問題的影響。鑒

於這一觀察結果，在本論文中，我們從多個角度深入研究了
基於神經網絡的可控文本生成（NCTG）問題：（1）使用大
規模平行預料，以有監督的方式訓練可控的生成模型，以及
（2）使用無標註的非平行語料，以無監督方式搭建可控文本
生成繫統。

首先，我們研究神經文本生成中的語義準確度控製問題。
問題生成（QG）是文本生成領域的一項重要任務。其目標是
根據參考句子和指定答案生成相應問題。一個好的問題生成繫
統對其輸出的語義準確度要求很高。現有的序列到序列神經模

iv

型通過基於鄰近答案位置編碼的方式來實現此目標，因為答案
附近的詞語很可能是問題高度相關的。然而，對於具有複雜答
案相關關係的句子，此類假設可能不適用。因此，當答案詞與
其他非停用詞的上下文之間的相對距離增加時，這些模型的性
能會急劇下降。為了解決這個問題，我們提出了一種方法，將
非結構化的句子和事先從句子中提取的結構化答案詞相關上下
文聯合建模，用於輔助問題生成繫統生成和答案詞上下文高度
相關的問題。具體來講，將結構化的答案詞相關的語境信息作
為要點上下文輸入給生成繫統，自然可以幫助生成和要點信息

語義高度關聯的問題；同時非結構化的句子可以提供完整的上

下文信息。大量實驗錶明，要點上下文有助於我們的模型生成
和輸入信息高度關聯且語義準確的問題，在幾個自動評估指標

上的錶現都有顯著提高。此外，我們的模型能夠為包含多個答

案詞相關的語境信息的句子生成相應的多樣的問題。

其次，我們在無監督的場景下研究了可控文本生成問題。
我們提出了新的框架TGLS，一個在句子空間中進行蒐索併學
習的無監督文本生成方案。我們首先將一個強大的蒐索算法，

模擬退火算法，應用於一個啟發式定義的目標函數上。該目標

函數估計了蒐索中的得到的候選句的質量併提供滿意度打分。
然後，一個條件生成模型從蒐索的結果中進行學習，同時平滑

蒐索中的得到的噪聲。最終繫統的錶現可以通過交替進行句子

空間蒐索和生成模型學習來進一步提高。我們在兩個現實世界

的可控的文本生成生成任務上展示了TGLS的有效性，包括無
監督的復述生成和文本正式化。我們的模型在這兩個任務中都
明顯優於無監督基線方法。特別地，它在文本復述方麵實現了
與強監督方法相當的性能。
最後，我們深入探討了當前解決無監督場景下的可控文本

生成問題的效率問題。在文本生成領域中，有一類修訂任務，
其中源序列和目標序列在錶麵形式上具有相對較高的相似度，
但在屬性上卻有所不同，例如文本正式化和文本簡化。當前最

先進的方法是將這些任務定義為序列到序列學習問題，依賴於
大規模的平行訓練語料庫。在本項目中，我們提出了一種文本
修訂的疊代式原地編輯方法，它不需要依賴於標註好的平行數

v

據。我們隻需要使用遮蔽語言建模和屬性分類兩個訓練目標對
預訓練過的Transformer模型進行微調。在推理過程中，每一次
的編輯通過兩步實現。第一步，文本的分佈式錶示會即時優
化，隱藏層參數嚮目標屬性函數靠攏。第二步，基於優化後的
隱藏層參數，待修改的一段文本段會被遮蔽，併替換成另提出
的一段符合目標屬性的新文本。通過文本正式化和文本簡化這
兩個典型的文本修訂任務的實驗，我們提出的方法在屬性控製
上取得了良好的效果，甚至優於現有的強監督方法和無監督方
法。

vi

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Contributions 6
1.3 Thesis Outline . 9

2 Background Review 12
2.1 Deep Learning Fundamentals of NLP 13

2.1.1 Language Modeling and Recurrent Neural
Networks 14

2.1.2 Sequence-to-Sequence Paradigm 17
2.1.3 Transformer Architecture and Pretraining . 19

2.2 Representative Tasks Involving CTG 22
2.2.1 Question Generation 24
2.2.2 Paraphrase Generation 27
2.2.3 Text Style Transfer 30
2.2.4 Text Simplification 33

2.3 Evaluation Metrics 36
2.3.1 Automatic Evaluation 36
2.3.2 Human Evaluation 41

3 Semantic Fidelity in Neural Question Generation 44
3.1 Introduction . 45
3.2 Problem Definition 50

vii

3.3 Methodology . 50
3.3.1 Answer-relevant Relation Extraction 51
3.3.2 Proposed Framework 53

3.4 Experimental Setting 59
3.4.1 Dataset and Metrics 59
3.4.2 Baseline Methods 61
3.4.3 Implementation Details 62

3.5 Results and Analysis 63
3.5.1 Overall Performance 63
3.5.2 Case Study 65
3.5.3 Diverse Question Generation 67

3.6 Summary . 69

4 Unsupervised Generation by Learning from Search 70
4.1 Introduction . 71
4.2 Methodology . 74

4.2.1 Simulated Annealing Search 75
4.2.2 Word-Level Cross-Entropy (CE) Learning . 81
4.2.3 Sequence-Level Maximum-Margin (MM) Learn-

ing . 82
4.2.4 Discussion: tgls vs. Reinforcement Learn-

ing and Structured Prediction 87
4.3 Experimental Setting 89

4.3.1 Datasets and Metrics 89
4.3.2 Baseline Methods 91
4.3.3 Implementation Details 96

4.4 Results and Analysis 100
4.4.1 Overall Performance 100
4.4.2 Ablation Study 103
4.4.3 Case Study 105
4.4.4 Efficiency Analysis 106

4.5 Summary . 107

viii

5 Unsupervised Iterative Text Revision 109
5.1 Introduction . 110
5.2 Problem Formulation 113
5.3 Methodology . 114

5.3.1 Preliminary: Pre-trained TFM Models for
Natural Language 114

5.3.2 Training: Multi-task Fine-tuning 115
5.3.3 Inference: On-the-fly Representation Opti-

mization 117
5.4 Experimental Setting 123

5.4.1 Datasets and Metrics 123
5.4.2 Baseline Methods 126
5.4.3 Implementation Details 129

5.5 Results and Analysis 130
5.5.1 Overall Performance 130
5.5.2 Ablation Study 133
5.5.3 Case Study 134
5.5.4 Inference Efficiency 136

5.6 Summary . 138

6 Conclusion and Future Work 139
6.1 Conclusion . 139
6.2 Future Work . 141

6.2.1 Exploring Structured Control Codes 142
6.2.2 Continual Learning for Incremental Control

Codes . 142

Publications During Ph.D. Study 143

Bibliography 147

ix

List of Figures

2.1 The taxonomy of neural controllable text generation.
Per control codes, we broadly categorize the exist-
ing research on NCTG into three types: semantics,
format and style. The bold leaf nodes locate our
contributions. 13

2.2 The architecture of a RNN model. 15

3.1 An example SQuAD question with the baseline’s
prediction. The answer (“0.3 ◦C”) is highlighted. . 46

3.2 Examples for n-ary extractions from sentences using
OpenIE. Confidence scores are shown at the begin-
ning of each relation. Answers are highlighted in
sentences. Waved relations are selected according
to our criteria in Section 3.3.1. 51

3.3 The framework of our proposed model. (Best viewed
in color) . 54

3.4 Example questions (with answers highlighted) gen-
erated by crowd-workers (ground truth questions),
the baseline model and our model. 66

3.5 Example diverse questions (with answers highlighted)
generated by our model with different answer-relevant
relations. 68

x

4.1 Overview of tgls. (a) First-stage search by sim-
ulated annealing (SA). (b) First-stage learning by
cross-entropy (CE) loss. (c) Second-stage search by
SA. (d) Second-stage learning by max-margin (MM)
loss. The horizontal axis represents the sentence
space. 77

4.2 Two stages of search and learning in tgls. 86

5.1 A simplified illustration of two-step span revision
in oreo. In this example, the input is “Your work
so dope u should publish it! ”. The informal textual
span “so dope u” is selected to revise. To allow
for a potentially longer replacement, we append 2
[LM-MASK] tokens to the span and use this se-
quence for a two-step revision. Step 1: Represen-
tation Optimization. (a) The fine-tuned RoBERTa
model encodes an input sentence to calculate the
likelihood of target attribute Pθ(z

∗|X). (b) After
calculating and backpropagating the loss between
estimated and target attribute values, the hidden
states (in green) are optimized on the fly. Step 2:
Span replacement. The span to be edited is replaced
with [LM-MASK] tokens (we use [M] for short).
We fix the optimized hidden representations in Step
1 (in green) and let RoBERTa’s LM head propose
an alternative text span autoregressively. 112

xi

List of Tables

2.1 Examples of paraphrases from benchmark dataset
ParaNMT [1]. 28

3.1 Performance for the average relative distance be-
tween the answer fragment and other non-stop sen-
tence words that also appear in the ground truth
question. (Bn: BLEU-n, MET: METEOR, R-L:
ROUGE-L) . 47

3.2 Comparisons between sentences and answer-relevant
relations. Overlapped words are those non-stop
tokens co-occurring in the source (sentence/relation)
and the target question. Copy ratio means the
proportion of source tokens that are used in the
question. 53

3.3 Dataset statistics on Du Split [2] and Zhou Split [3]. 59
3.4 The main experimental results for our model and

several baselines in Du Split [2] version of SQuAD.
‘-’ means no results reported in their papers. (Bn:
BLEU-n, MET: METEOR, R-L: ROUGE-L) . . . 60

3.5 The main experimental results for our model and
several baselines in Zhou Split [3] version of SQuAD.
‘-’ means no results reported in their papers. (Bn:
BLEU-n, MET: METEOR, R-L: ROUGE-L) . . . 60

xii

3.6 Performance for the average relative distance be-
tween the answer fragment and other non-stop sen-
tence words that also appear in the ground truth
question (BLEU is the average over BLEU-1 to
BLEU-4). Values in parenthesis are the improve-
ment percentage of Our Model over Hybrid. (a) is
based on all sentences while (b) only considers long
sentences with more than 20 words. 63

4.1 Human evaluation on the Quora dataset. 96
4.2 Automatic evaluation results on paraphrasing. †

indicates that the results are directly comparable
to tgls on the same data split. 99

4.3 Automatic evaluation results on formality transfer.
↓The smaller, the better. † indicates that the results
are directly comparable to tgls on the same data
split. 100

4.4 Examples generated by SA (w/ PLM) and the full
tgls model. 103

4.5 Model analysis on paraphrase generation. All vari-
ants use pretrained language models. 105

5.1 Automatic evaluation results on Newsela-turk.
↓The smaller, the better. 125

5.2 Automatic evaluation results on text formalization. 125
5.3 Human evaluation on text formalization 132
5.4 Model ablation study on text formalization. 133
5.5 Examples of outputs from baseline methods and

oreo on text simplification and text formalization.
Both successful and erroneous cases are reported. . 135

5.6 Examples of human-in-the-loop. Input sentences
are edited in multiple iterations. The underlined
texts are selected span-to-edit. Orange indicates
proposed phrasal replacement. 137

xiii

Chapter 1

Introduction

The thesis expounds our research on neural controllable text gen-

eration. We first endeavor to provide a broad overview of this

problem in Section 1.1. Our contributions to this specific domain

are elucidated in Section 1.2. To conclude, the ensuing Section 1.3

presents a concrete outline of this thesis.

1.1 Motivation

Natural language processing (NLP) is an interdisciplinary field

of study within the realm of computer science and linguistics

that focuses on enabling machines to understand, interpret, and

generate natural language. It involves developing algorithms and

methodologies that enable computers to analyze, process, and

1

CHAPTER 1. INTRODUCTION 2

manipulate large volumes of unstructured human language data,

such as text and speech.

One of the most exciting subfield of NLP is text generation.

Text generation, or natural language generation (NLG), refers to

the technique of automatically generating fluent contents which is

coherent and contextually relevant to the input instructions. It is

the subfield of artificial intelligence and computational linguistics

that is concerned with the construction of computer systems that

can produce understandable texts in English or other human

languages from some underlying non-linguistic representation of

information [4]. In recent years, deep neural network techniques

have shown great promise in generating high-quality text, and has

been the go-to solution to text generation [5, 6, 7, 8].

Despite the significant progress made in this field, neural text

generation also suffers from several drawbacks. One of the major

issues with neural text generation is the lack of control over the

generated text. For instance, a text generator usually inherits

everything from training data, which might contain harmful or

biased contents [9, 10, 11]. Without appropriate controlling meth-

ods, this vanilla text generator might lead to the propagation of

CHAPTER 1. INTRODUCTION 3

toxic content. When scaled up in size, Large Language Models

(LLMs) [12, 13] demonstrate incredible abilities in text comple-

tion and result in the prevalence of text generation applications.

Ensuring the secure deployment of LLMs becomes more urgent.

Furthermore, neural text generation models tend to replicate the

patterns in the training data, which can result in a lack of versatil-

ity in the generated content. From the perspective of linguistics,

conveying appropriate messages that are adequate to the social con-

text highly depends on controlling the style of a text [14, 15, 16].

This gives rise to an emerging research area: controllable text

generation (CTG).

Controllable text generation (CTG) is to create a language gen-

eration system that can be directed towards generating texts with

desired properties, while still maintaining the overall coherence and

naturalness. Compared with text generation, CTG enables users

to specify certain constraints or preferences on the generated text.

Typically, the text generator component in CTG usually conditions

a user-specified control code. The predetermined textual attributes

or characteristics can range from style [17, 18], sentiment [19, 20],

formality [21, 22, 23], syntax [24, 25] to persona [26], topic [27],

CHAPTER 1. INTRODUCTION 4

and so on.

As discussed, making text generation more controllable is an

essential problem in NLP. CTG achieves controllability by allowing

for greater control over the content and style of the generated text.

With this technique, we are able to regulate the text generation

procedure to mitigate the generation of potentially harmful content.

Moreover, there is a substantial amount of attributes to choose

from. The flexibility of choices enables users to tailor the genera-

tion system according to their own needs like news digesting for

users with different knowledge backgrounds. Furthermore, despite

satisfying the user-specific attribute requirements, controllable text

generation models are also suitable for many task-specific applica-

tions, such as writing assistance tools, personalized conversation

agents, and stylized creative writing.

Leveraging the expressive capability of neural network mod-

els [28, 29, 30, 31], controllable text generation has exhibited

nonnegligible potential in various downstream applications. In

this thesis, we focus on the paradigm of neural controllable text

generation (NCTG). Aside from its wide applications, there are

some challenges hindering the rapid advance of NCTG. One vi-

CHAPTER 1. INTRODUCTION 5

tal problem of neural approaches is that the output text can be

unfaithful to the source input. Sometimes the model inclines to

generate incoherent or hallucinated or biased contents [9, 32, 33].

Such performance poses a risk to the reliability and factuality of

the generated content. Therefore, controlling the semantic fidelity

of a text generation system is of great importance.

Another drawback of existing neural approaches is that a suc-

cessful training practice highly depends on a large-scale high-quality

labeled dataset. Training a single-attribute NCTG model demands

such an amount of data, finding appropriate training data for a

multi-attribute NCTG model becomes even harder. And it is infea-

sible to address the problems in a low-resource setting. It inspires

our research in two dimensions: (1) how to generate high-quality

datasets? (2) how to directly achieve the attribute transfer without

using parallel corpus?

Additionally, developing an NCTG model also demands sub-

stantial computing resources. With the increasing size of language

models, pre-training a language model conditioned on multiple

attributes is quite computationally expensive. For example, to fine-

tune a GPT-3 summarization model with Reinforcement Learning

CHAPTER 1. INTRODUCTION 6

(RL), it takes thousands of labeler hours for learning a reliable

reward function and 320 GPU-days to train the policy and value

nets [34].

In this thesis, we are dedicated to addressing the above chal-

lenges of neural controllable text generation. Our research of

controllable text generation consists of bipartite machine learning

settings: fully supervised learning and unsupervised learning. In

the first part, we start with a core issue in neural text generation

and the classical setting in machine learning: to control the se-

mantic fidelity of neural text generation in a supervised manner.

In the second part, our research involved diverse attributes in

a more challenging setting, where we study the control lexical

diversity, formality, and simplicity in neural text generation in an

unsupervised manner.

1.2 Thesis Contributions

As presented above, the research focus of this thesis is to find

applicable solutions to neural controllable text generation under

bipartite machine learning settings. In the initial phase, our study

is to regulate the semantic fidelity of neural text generation. As

CHAPTER 1. INTRODUCTION 7

part of this endeavor, we adopt the task of question generation as

the experimental benchmark for our study. Subsequently, in the

second phase, our research investigates various attributes in a more

complex setting. In this context, we explore different sub-tasks

in neural text generation, including lexical diversity in the task

of paraphrase generation, formality control in text formalization,

and simplicity control in text simplification, employing an unsu-

pervised setting. Our study covers a wide range of controllable

text attributes and provides solutions to CTG in different settings.

• To study the control of semantic fidelity, we propose a novel

framework to capture the to-the-point context in the source

text and use it to guide the generation of target text in the task

of question generation (QG). We analyze the existing mod-

els and conclude that their proximity-based answer position

encoding is not globally applicable, especially for sentences

with free structures. To ensure that the generated question

is semantically relevant to the input answer and passage, we

extract the structured answer-relevant relation and design an

advanced multi-encoder to jointly model the unstructured sen-

tence and the structured answer-relevant relation for question

CHAPTER 1. INTRODUCTION 8

generation. Extensive experiments indicate that our method

can improve the semantic correctness of generated questions

by steering the generation system to attend to the extracted

context restriction.

• To explore the text attribute transfer in the unsupervised

setting, we introduce tgls, a principled framework for un-

supervised text generation. In general, tgls can be applied

to different tasks if the output resembles the input and can

be roughly estimated by a heuristically defined scoring func-

tion. Additionally, we successfully incorporate large-scale

pretrained language models into our tgls framework. We

conduct experiments on two different attributes: lexical di-

versity in paraphrasing and formality in text formalization.

In both experiments, tgls significantly outperforms unsuper-

vised baseline methods. Moreover, tgls achieves comparable

performance to recent supervised models in the paraphrasing

task. For text formalization (an example of text style trans-

fer), we are also the first to design a search-based method

and further extend it into the proposed tgls framework.

• To investigate the manipulation of text attributes via un-

CHAPTER 1. INTRODUCTION 9

supervised revision, we present an efficient mask-and-infill

method with on-the-fly optimized representation for text re-

vision. This framework is readily adaptable to other textual

attributes. To enable on-the-fly representation optimization,

we design simple fine-tuning methods that balance efficiency

and efficacy. The fine-tuning can be finished within 8 GPU-

hours at most in our experiments. Specifically, we address

the revision of two important attributes: text simplicity and

formality. Our proposed oreo has strong performance on

text formalization dataset GYAFC-fr, surpassing unsuper-

vised baseline methods, one of which also utilizes RoBERTa;

and achieves competitive performance with state-of-the-art

supervised methods on text simplification dataset Newsela-

turk.

1.3 Thesis Outline

In this thesis, we will present our investigation of neural controllable

text generation. The remaining part of this thesis is structured as

follows:

Chapter 2 presents a background review of NCTG. We start

CHAPTER 1. INTRODUCTION 10

with the introduction of preliminary knowledge of deep learning

techniques in NLP in Section 2.1. Then we provide the literature

review of some representative tasks under CTG in Section 2.2,

including question generation, paraphrase generation, text style

transfer, and text simplification. At last, we elaborate on the

evaluation paradigm of CTG tasks in Section 2.3.

Chapter 3 demonstrates our exploration of controlling the se-

mantic fidelity of neural text generation in the task of question

generation. We first provide an introduction to question generation

in Section 3.1 and the formalization of this problem in Section 3.2.

The technical details of our approach are covered in Section 3.3.

We perform exhaustive experiments in Section 3.4 and further

analysis is provided in Section 3.5. Finally, this work is concluded

in Section 3.6.

Chapter 4 delves into the task of CTG in the unsupervised

setting. We initiate with an overview of unsupervised text gen-

eration and CTG in Section 4.1. Section 4.2 encompasses the

technical aspects of our proposed approach, followed by compre-

hensive experiments in Section 4.3 on paraphrase generation and

text formalization. The empirical results and additional analysis

CHAPTER 1. INTRODUCTION 11

can be found in Section 4.4. Section 4.5 summarizes this work.

Chapter 5 highlights our examination of unsupervised NCTG in

the task of text revision. We begin with an introductory discussion

on text revision in Section 5.1 and then proceed with the problem’s

formalization in Section 5.2. The technical components of our

approach are discussed in Section 5.3, and Section 5.4 details

the thorough experiments in this work. An in-depth analysis is

provided in Section 5.5. This work is wrapped up in Section 5.6.

Chapter 6 concludes with a summary of the thesis in Section 6.1,

followed by a discussion of potential research directions, including

the exploration of structured control codes and the method to deal

with continuously increasing control codes in Section 6.2.

2 End of chapter.

Chapter 2

Background Review

In this chapter, we present the foundational knowledge and relevant

studies of neural controllable text generation. We first provide the

background knowledge of deep learning techniques in Section 2.1,

with a coverage of the network structure of popular neural networks

for modeling language, and the pretraining techniques. Section 2.2

introduces some representative tasks in the field of NCTG and

their related work. Each of the tasks focuses on a distinct control

factor of text, including question generation, paraphrase generation,

text style transfer, and text simplification. Section 2.3 presents a

summary of the evaluation metrics utilized in neural controllable

text generation.

Our contribution in this field is positioned within a taxonomy

12

CHAPTER 2. BACKGROUND REVIEW 13

Controllable Text
Generation

Semantics

Fidelity
Question Generation

(Chapter 3)

Counterfactuality

Format

Literary Format

Lexical Diversity
Paraphrase Generation

（Chapter 4）

Style

Formality
Text Formalization

（Chapter 4, 5）

Simplicity
Text Simplification

（Chapter 5）

Persona

Figure 2.1: The taxonomy of neural controllable text generation. Per control
codes, we broadly categorize the existing research on NCTG into three types:
semantics, format and style. The bold leaf nodes locate our contributions.

of NCTG, as shown in Figure 2.1. This taxonomy provides a

comprehensive overview of the research directions in NCTG and

highlights the unique characteristics of our work in comparison to

previous research.

2.1 Deep Learning Fundamentals of NLP

With the remarkable efficacy of a wide range of intricate tasks,

deep learning techniques have been the go-to solution in various

fields. In this section, we will introduce the background knowledge

of deep learning techniques applied in NLP applications. We first

CHAPTER 2. BACKGROUND REVIEW 14

introduce the approach to language modeling and the architecture

of Recurrent Neural Network (RNN) in the first part. Then we

move to the dominant solution to language generation, i.e., the

sequence-to-sequence paradigm. In the end, we will dive into the

basics of an emerging neural architecture, Transformer, and the

pretraining methods which elevate the development of NLP to a

more advanced level.

2.1.1 Language Modeling and Recurrent Neural Net-

works

Text, as one of the realization surfaces that human beings convey

and exchange information, consists of sequentially-structured data.

In order to model the dynamics of sequentially formatted data, a

language model is often used to estimate the joint probability of

occurrence of a number of words in a particular sequence. Given

a text sequence S with n words, S = {x1, x2, ..., xn}, we denote

the joint probability of this sequence as P(x1, ..., xn). Language

modeling plays a crucial role in NLP applications. One important

task is to compare the quality of texts generated by different

systems. We are able to resolve this problem by using the likelihood

CHAPTER 2. BACKGROUND REVIEW 15

𝑦!

𝑥!

𝑦"

𝑥"

𝑦#

𝑥#

𝑦#$!

𝑥#$!

ℎ#%!
ℎ&

ℎ# ℎ#$!⋯ ⋯

Figure 2.2: The architecture of a RNN model.

predicted by the language models.

Despite the capability to compare likelihood, a language model

can be used to sample textual sequences. In a textual sequence,

the selection of ith word often depends on the context of the

first (i− 1)th words. Therefore, the joint probability P(x1, ..., xn)

can be factorized into the product of all words, each of which is

conditioned on all previous contextual words:

P (x1, ..., xn) =
n∏

t=1

P (xt|x1, ..., xt−1). (2.1)

With this, a language model can generate natural text by sequen-

tially drawing word xt from P (xt|x1, ..., xt−1).

Recurrent Neural Network is proposed to efficiently model the

conditional probability P (xt|x1, ..., xt−1). The input text is rep-

CHAPTER 2. BACKGROUND REVIEW 16

resented as a sequence of fix-length vectors S = {x1,x2, ...,xn},

xt ∈ Rd. At each step, RNN takes in the output of the previous

layer ht−1 and the input distributed word representation xt. ht−1

represents the hidden states of timestep t − 1. To calculate the

hidden state of current timestep, it first performs linear transfor-

mation to both input and a non-linear transformation after that.

Specifically, both input elements are multiplied by two weight

matrices Whh, Whx respectively, followed by a sigmoid function

(Equation 2.2). Then the output feature ht is multiplied by a weight

matrix Wo and passes through a softmax to obtain the vocabulary

distribution for the prediction of word xt (Equation 2.3).

ht = σ(Whhht−1 +Whxxt), (2.2)

P (xt|x1, ..., xt−1) = softmax(Woht). (2.3)

An architecture of a RNN architecture is illustrated in 2.2. On

the basis of the original RNN model, there is a substantial amount

of follow-up innovations of more advanced RNN architectures. To

address the gradient vanishing issue in earlier recurrent networks,

the memory mechanism was introduced in Long Short-Term Mem-

CHAPTER 2. BACKGROUND REVIEW 17

ory (LSTM) [28] and its light-weight version, Gated Recurrent

Units (GRU) [30]. To improve long-term memory, Bidirectional

Recurrent Neural Networks (BiRNN) [29] was proposed to encode

sequential information from both the past and future. These works

have exhibited giant success in multiple applications.

2.1.2 Sequence-to-Sequence Paradigm

RNN is an effective tool for estimating the likelihood of text or

generating text. While in the field of text generation, many tasks

incline to learn the mapping function between two unaligned, se-

quentially structured text. For example, in paraphrase generation,

given an input sequence, the target is to generate a sequence that

has diverse syntax and lexicons with the input one. In general,

these problems are formalized as sequence-to-sequence (seq2seq)

problems [35].

The solution to the seq2seq problem is the seq2seq paradigm.

The seq2seq paradigm follows an encoder-decoder structure, where

the encoder encodes the information of a sequentially structured

text with variable length and the decoder receives the encoded

input information to predict the expected output as a conditional

CHAPTER 2. BACKGROUND REVIEW 18

language model. The encoder and decoder can be implemented as

RNNs or any other neural network architecture, depending on the

task formalization.

In text generation, the encoder RNN usually takes in a varying-

length input sequence and transforms it into a context vector.

Given input sentence S = {x1,x2, ...,xn}, RNN encoder trans-

forms each word xt to hidden state henc
t :

henc
t = fenc(h

enc
t−1,xt). (2.4)

Then we can obtain the context vector c through customized

function g:

c = g(henc
1 , ...,henc

n). (2.5)

The decoder is a separate RNN model taking charge of generating

the target sequence Y = {y1, y2, ..., ym} word by word. The

prediction of each word yt is conditioned on the input sequence

and the preceding decoded words. Different from encoder RNN,

decoder RNN computes the hidden states at time-step t by taking

in three components, the hidden states in last time-step hdec
t−1, word

CHAPTER 2. BACKGROUND REVIEW 19

prediction ŷt−1 and the context vector ct as follows:

hdec
t = fdec(h

dec
t−1, ŷt−1, ct). (2.6)

The hidden states at time-step t are passed through an output layer

and a softmax function to compute the vocabulary distribution

of target word yt. This process is similar to a common language

model.

2.1.3 Transformer Architecture and Pretraining

Despite the splendid breakthroughs of RNN in the past, recent

progress in natural language processing has been dominantly

boosted by the Transformer [36] architecture. The first proposal of

Transformer targets at sequence-to-sequence learning and outper-

forms the best previously reported approaches by a large margin

in machine translation. Now it has been widely applied to various

deep learning applications other than text transduction, such as

computer vision [37] and speech [38].

The basic element in Transformer architecture is the self-attention

mechanism. The attention mechanism was originally designed for

encoder-decoder RNN architecture in seq2seq problems[39, 40].

CHAPTER 2. BACKGROUND REVIEW 20

As for self-attention, the vanilla Transformer takes the scales

dot-product attention [36]. Consider a token xi in the sentence

S = {x1, x2, ..., xn}, its query, key and value are denoted as

qi ∈ Rd, ki ∈ Rd and vi ∈ Rd. The stacked query, key and

value matrix in the sentence are denoted as Q ∈ Rn×d, K ∈ Rn×d

and V ∈ Rn×d, respectively. Then the self-attention is computed

as:

Attention(Q,K,V) = softmax(
QK⊤√

d
)V. (2.7)

The vanilla Transformer consists of a transformer encoder and

a transformer decoder, each of which encompasses a stack of six

identical layers. Each layer is comprised of a multi-head attention

sub-layer and a point-wise feed-forward network. Inspired by [41],

a residual connection is employed at the top of both sub-layers,

followed by layer normalization. The decoder has an additional

multi-head attention sub-layer, which is to calculate the encoder-

decoder attention.

Despite the remarkable performance in many NLP tasks, the

self-attention mechanism endows Transformer with the capability

of parallelized computation, with a large reduce in the computation

complexity. In the practice of pretraining, Transformer also demon-

CHAPTER 2. BACKGROUND REVIEW 21

strates its scalability [42]. Therefore, many large-scale pretrained

models adopt the Transformer block as their base architecture.

Pretraining techniques and pretrained models have revolution-

ized NLP research by enabling transfer learning and significantly

improving the performance of various downstream tasks. The

pretraining techniques involve training large-scale language models

on vast amounts of unlabeled text data, allowing them to learn

rich representations of language that capture syntactic, semantic,

and contextual information.

In the era of pretraining, the large-scale Transformer-based

models are firstly optimized with pretraining objectives. Then the

pretrained models are fine-tuned with task-specific corpora when

applied to downstream tasks. Due to the reliance on a large volume

of training data, most pretraining tasks follow the paradigm of

self-supervised learning. The commonly used pretraining tasks

include language modeling [43, 44, 45], masked language model-

ing [46, 47, 48], permutated language modeling [49] and denoising

autoencoder [50].

According to the model structure, existing pretrained models

can be categorized into three types, (1) encoder-only: Bidirec-

CHAPTER 2. BACKGROUND REVIEW 22

tional Encoder Representations from Transformers (BERT) [46],

Generalized Autoregressive Pretrained Transformer (XLNET) [49],

Robustly Optimized BERT (RoBERTa) [47]; (2) encoder-decoder:

Denoising Sequence-to-Sequence Pre-trained Transformer (BART) [50],

Text-to-Text Transfer Transformer (T5) [48]; and (3) decoder-

only: Generative Pretrained Transformer (GPT) [44], GPT-2 [45],

GPT-3 [51].

The research on pretrained models has paved the way for transfer

learning and has become valuable resource for researchers and

practitioners in the field. They provide powerful and general-

purpose language representations that can be fine-tuned for specific

tasks, leading to improved performance and efficiency.

2.2 Representative Tasks Involving CTG

In this section, we introduce some representative tasks with distinct

control aspects in the field of CTG. As exhibited in Figure 2.1,

based on different control factors, research in controllable text

generation can be broadly classified into three categories: semantics,

format, and style.

• Semantics: The control factors in this area are related to the

CHAPTER 2. BACKGROUND REVIEW 23

semantic aspects of the input, such as fidelity and counter-

factuality. An example application that demands semantic

relevance between input reading materials and generated text

is question generation.

• Format: This category involves controlling the surface realiza-

tion of generated text, such as adhering to the structures of

specific literary (literacy format) or ensuring the output text

has different wordings compared to the input text (lexical

diversity). Paraphrase generation is a representative task of

the latter one.

• Style: This category focuses on controlling the expressive

style of the text, such as incorporating the personality of a

character (persona), maintaining a formal tone (formality)

and simplified usage of the overall language and vocabulary

used in the text (simplicity). The corresponding research tasks

for the last two are text formalization and text simplification,

respectively.

In this section, we will primarily introduce the task definitions

and provide an overview of relevant research regarding the tasks of

CHAPTER 2. BACKGROUND REVIEW 24

question generation, paraphrase generation, and text formalization

and text simplification, which will be discussed in Section 2.2.1,

Section 2.2.2, Section 2.2.3 and Section 2.2.4, respectively.

2.2.1 Question Generation

Question generation (QG) is an essential task in neural text gen-

eration. Given input text and answer words, neural question

generation aims to generate meaningful questions [2, 3]. Since the

generated questions are expected to be contextually relevant to

the input, controlling the generation system to focus on pertinent

contexts of the input text is of great importance. The question

generation task can be formally defined as follows:

Definition 1. Let X be the input text, represented as a sequence

of words, A be the answer span within the input, and Y be the

generated question. The goal of question generation is to learn

a mapping function f : X → Y, where f predicts coherent and

contextually relevant questions Y = {y1, y2, ..., yn} given an input

X = {x1, x2, ..., xm} and the answer span A = {a1, a2, ..., ai}. The

mapping function f is parameterized by a set of model parameters θ.

The generation process is formulated as maximizing the conditional

CHAPTER 2. BACKGROUND REVIEW 25

probability P (Y|X ,A; θ), which refers to obtaining Y conditioning

on input X and model parameters.

Initially motivated for educational purposes, the task of question

generation is tackled by designing many complex rules for specific

question types [52, 53]. Heilman and Smith [54] improve rule-

based question generation by introducing a statistical ranking

model. First, they remove extraneous information in the sentence

to transform it into a simpler one, which can be transformed easily

into a succinct question with predefined sets of general rules. Then

they adopt an overgenerate-and-rank approach to select the best

candidate considering several features.

With the rise of dominant neural sequence-to-sequence learning

models [35], Du et al. [2] frame question generation as a sequence-to-

sequence learning problem. Compared with rule-based approaches,

neural models [55] can generate more fluent and grammatical

questions. However, question generation is a one-to-many sequence

generation problem, i.e., several aspects can be asked given a

sentence, which confuses the model during train and prevents

concrete automatic evaluation. To tackle this issue, Zhou et al.

[3] propose the answer-aware question generation setting which

CHAPTER 2. BACKGROUND REVIEW 26

assumes the answer is already known and acts as a contiguous span

inside the input sentence. They adopt a BIO tagging scheme to

incorporate the answer position information as learned embedding

features in seq2seq learning. In the BIO tagging scheme, B denotes

the starting word of an answer span and I indicates the continuing

answer words. Through this scheme, Zhou et al. [3] encodes

the BIO tags in the position embeddings to inform the positional

information of the answer span to the RNN encoder. Song et al. [8]

explicitly model the information between answer and sentence with

a multi-perspective matching model. Kim et al. [56] also focus on

the answer information and proposed an answer-separated seq2seq

model by masking the answer with special tokens. Besides the

BIO tagging scheme, the binary indicator is also a well-adopted

approach to encode the answer position information. Yang et al.

[57] and Yuan et al. [55] incorporate the binary features to word

embeddings of tokens to differentiate the context words and answer

words in one paragraph or a document, respectively. All answer-

aware neural models treat question generation as a one-to-one

mapping problem, but existing models perform poorly for sentences

with a complex structure.

CHAPTER 2. BACKGROUND REVIEW 27

Heilman and Smith [54] and Cao et al. [58] address the problem

by removing the extraneous information. Heilman and Smith [54]

directly use the simplified sentence for generation, while Cao et al.

[58] consider aggregating two sources of information via gated

attention in summarization. Factoid question generation from

structured text is initially investigated by Serban et al. [59], but

our focus here is leveraging structured inputs to help question

generation over unstructured sentences. Our proposed model

in Chapter 3 can take advantage of unstructured sentences and

structured answer-relevant relations to maintain informativeness

and faithfulness of generated questions.

2.2.2 Paraphrase Generation

Paraphrase generation refers to rephrasing the input text with

different surface forms [60]. In essence, paraphrasing involves the

manipulation of lexicon during the generation process to create

text that conveys the same meaning while using different words

and structures. Table 2.1 provides some examples of sentence-level

paraphrasing. The formal definition for paraphrase generation is

as below:

CHAPTER 2. BACKGROUND REVIEW 28

Table 2.1: Examples of paraphrases from benchmark dataset ParaNMT [1].

Input text Paraphrases
it was good in spite of the taste. despite the flavor, it felt good.

you seem to be an excellent burglar when
the time comes. when the time comes, you’ll be a great thief.

Definition 2. Given an input sentence X = {x1, x2, ..., xm} with

m words, the target of paraphrase generation is to generate an

output sequence Y = {y1, y2, ..., yn} with n words. The goal of

paraphrase generation is to learn a mapping function f : X → Y,

where f convert input text X to output text Y that convey the same

meaning but with different expressions from input. The generation

process is formulated as maximizing likelihood of generating a

sequence of questions Y given the input X , i.e., P (Y|X ; θ).

Early approaches to paraphrase generation are based on rules,

leveraging manually crafted [61] or automatically acquired para-

phrase rules [62] as their foundation. However, the rule-based

approaches are not flexible to extend to various conditions for

natural language structure.

Recent progress in paraphrase generation is largely due to neu-

ral models, especially sequence-to-sequence models, trained with

large-scale parallel data. The first practice of adopting seq2seq

architecture to resolve the task of paraphrase generation is by [63].

CHAPTER 2. BACKGROUND REVIEW 29

They utilized the LSTM model to encode the sequential text. How-

ever, the standard seq2seq generation models often suffer from

exposure bias. Inspired by the early attempts, researchers have ap-

plied search-and-learning approaches for supervised paraphrasing,

such as reinforcement learning (RL) [64, 65, 66] and learning-to-

search (L2S) [67]. Rather than minimizing the loss function, the

RL-based approaches directly optimize the reward, such as the

desired evaluation metrics, perplexity score or sentence matching

scores.

Researchers have proposed roundtrip translation for paraphras-

ing, i.e., translating a source sentence into a pivot language, and

then translating it back into the original language [68, 69, 70].

Although no supervision of paraphrases is needed, the success of

this approach depends on high-quality machine translation (MT)

systems, hence requiring large-scale parallel MT datasets. This

can be thought of as distant supervision for paraphrasing.

In the unsupervised setting, paraphrases can be generated by

either a variational latent-space sampler [71] or a word-space

Metropolis–Hastings (MH) sampler [72]. Another line of research

is to cast the text generation into the framework of reinforcement

CHAPTER 2. BACKGROUND REVIEW 30

learning, using a pre-defined reward function to guide the training

of policy for paraphrase generation [73]. By decreasing the tem-

perature of the stationary distribution, Liu et al. [74] show that

search-based formulation outperforms sampling for unsupervised

text generation. Our work in Chapter 4 further extends it to

the learning-from-search framework, improving both accuracy and

inference efficiency.

2.2.3 Text Style Transfer

As a long-standing text generation problem, text style transfer is

to alter the style attributes of text while preserving the original

meaning [75], such as sentiment [17], politeness [76], formality [21],

prose style [77] and aesthetic styles of poetry [78]. For instance,

given an informal text like “Ask her about that thing dude. . . ”,

the goal of style transfer is to obtain its formalized version while

maintaining the original sentence’s meaning, such as “Please inquire

her opinion regarding that issue.” The formal definition of text

style transfer is as follows:

Definition 3. Given an input sentence X = {x1, x2, ..., xm} with

m words and a target style s, the problem of text style transfer

CHAPTER 2. BACKGROUND REVIEW 31

aims to generate an output sequence X s = {xs1, xs2, ..., xsn} with n

words that exhibit the desired target style s. The goal of text style

transfer is to obtain a mapping function f : X → X s, where f

converts the input text X to output text X s adhering to the desired

target style s, while preserving the original meaning of the input

text. The mapping function f is trained to capture the underlying

patterns and dependencies between the input text, the desired style,

and the corresponding output text, by optimizing the parameters

θ to maximize the likelihood of generating target-styled sentences

P (X s|X , s; θ)

Typically, existing solutions to text style transfer can be di-

vided into three categories: parallel supervised, non-parallel

supervised (with only style labels), and purely unsupervised.

With the parallel data, supervised style transfer trains a sequence-

to-sequence model [21] for style transformation, whereas purely un-

supervised style transfer replies on disentangling latent space [79].

However, the parallel data for test style transfer is often not easy

to collect. Most previous work on text style transfer is in the non-

parallel supervised setting, assuming only style labels are available.

Variational auto-encoder (VAE) [80] and adversarial learning are

CHAPTER 2. BACKGROUND REVIEW 32

well-adopted ideas for text style transfer, which aims to disentangle

the style and content of texts in latent space [17, 81, 82]. Due to

the issue of computational inefficiency and unstable training, some

simpler approaches propose editing partial texts of input.

Different from previous methods which assume the content

and style are implicitly combined, the prototype editing methods

believe the text consists of stylized words and non-stylized content

words. Li et al. [20] achieves text style transfer by identifying

and replacing the stylized n-grams in the source text with stylized

words with target style. The infilling of words with target style can

also be achieved by pretrained Transformer models. Malmi et al.

[83] fine-tunes the BERT model for different styles and conducts

in-place span replacement for target style through masked language

modeling. Some work directly integrates the AMR representation

as the intermediate style agnostic representation. [84] proposes

an AMR-to-text decoder to generate sentences with target style,

while [85], an editing-based approach, realize the style transfer by

editing stylistic nodes in the parsed AMR graph of source text.

Constructing pseudo-parallel training corpora can provide sub-

stantial supervision signals to facilitate the training of a seq2seq

CHAPTER 2. BACKGROUND REVIEW 33

text style transfer model. Some approaches endeavor to construct

pseudo-parallel training data with the label information and train

a style transduction model in a supervised way [86]. While Reid

and Zhong [87] adopt the pseudo parallel corpus to train a tagger

model and predict token-level edit operations to guide revision.

2.2.4 Text Simplification

The task of text simplification is to revise the original text with

simpler language while keeping the meaning unchanged [88]. The

simplification process involves modifying the complexity of the

input text by adjusting sentence structures, replacing complex

words or phrases with simpler alternatives, rephrasing convoluted

expressions, and adapting the overall linguistic style. Its target is

to improve the readability of text.

Definition 4. Let X denotes an input sentence length at

m, X = {x1, x2, ..., xm} , the problem of text simplification aims

to generate an output sequence Y = {y1, y2, ..., yn} with length

at n that is simpler and easier to comprehend compared to the

original sentence X . The goal of text simplification is to get a

mapping function f : X → Y, where f converts the input text X

CHAPTER 2. BACKGROUND REVIEW 34

to output text Y while preserving the core meaning and reducing its

complexity. The mapping function f , parameterized by θ, is trained

to capture the underlying patterns and dependencies between the

input text and the corresponding simplified output text to maximize

the likelihood of generating simplified sentences P (Y|X ; θ).

Early approaches to text simplification primarily relied on rule-

based methods. The first effort towards automated simplification

is a grammar and style checker developed for writers of simplified

English [89]. Lexical substitution techniques were employed to

replace complex words and phrases with simpler alternatives [90],

while sentence splitting and syntactic transformations were applied

to break down complex sentences into simpler ones [91, 92]. These

rule-based methods, though effective to some extent, often lacked

the ability to handle complex linguistic phenomena and adapt to

diverse contexts.

Recent approaches to automatic text simplification adopt neural

methods. Wang et al. [93] proposed using an RNN-based neural

machine translation model (NMT) for the task of text simplifica-

tion. Nevertheless, they highlighted the absence of aligned pairs

of complex and simple sentences for the development of such a

CHAPTER 2. BACKGROUND REVIEW 35

model and reported the efforts solely on applying NMT on lex-

ical simplification. Xu et al. [94] pioneeringly proposed a large

complex-to-simple parallel corpus, making it possible to address

text simplification at sentence level using neural networks. Zhang

and Lapata [6] cast simplification into the framework of reinforce-

ment learning with three types of reward: simplicity, relevance

and fluency. Dong et al. [95] suggests explicitly modeling the edit

operations. Previous studies explicitly define three simplification

components: sentence splitting, deletion and paraphrasing [96, 97].

Based on these components, Maddela et al. [98] proposes a pipeline,

where the first part focuses on syntactic simplification, while the

second part focuses on lexical and phrasal simplification.

There are also some efforts for unsupervised text simplification.

Some early attempts are built upon the heuristics of the task itself.

For instance, Narayan and Gardent [99] propose a task-specific

pipeline for sentence simplification. The first sequence-to-sequence

framework is proposed by [100], who employ a shared encoder and

multiple decoders which learns to control the simplicity of gener-

ated text via the adversarial loss. To improve the interpretability,

Kumar et al. [101] design an iterative, edit-based approach. Specif-

CHAPTER 2. BACKGROUND REVIEW 36

ically, they parse the sentence to a constituency tree, conditioned

on which they conduct syntactic simplification.

2.3 Evaluation Metrics

This section introduces the evaluation methods of text generation.

According to the assessing criteria, existing evaluation approaches

can be categorized into two types: automatic evaluation and

human evaluation. While automatic metrics provide objective

measures for evaluating the generated output, human evaluation

offers valuable insights into subjective aspects such as fluency,

coherence, and overall quality of the generated text. For each

category, we elaborate on the principles of the relevant evaluation

metrics and the corresponding natural language generation tasks.

2.3.1 Automatic Evaluation

With the increasing attention on the NLG research and rapid

growth of benchmark datasets, a fast, cross-platform and general-

ized automatic evaluation paradigm for text generation becomes

quite important. These standardized automatic evaluation metrics

serve as a judge to compare the performance between proposed

CHAPTER 2. BACKGROUND REVIEW 37

new solutions and the state-of-the-art approach, automatically

maintaining a fair competition system.

The major issue in NLG is to determine the accuracy of the

predicted text. To measure the accuracy of the generated text,

people usually compute the similarity between the prediction and

the human-written references. Specifically, the n-gram overlap

between predicted text and ground-truth text is computed. Ex-

isting well-adopted automatic metrics for calculating accuracy

include BLEU (Bilingual Evaluation Understudy) [102], ROUGE

(Recall-Oriented Understudy for Gisting Evaluation) [103] and

METEOR ((Metric for Evaluation of Translation with Explicit

ORdering) [104]. These metrics provide automated means to assess

the fluency, adequacy, grammaticality, and overall quality of the

generated text, enabling researchers and developers to evaluate

and compare different NLG systems objectively.

BLEU, the Bilingual Evaluation Understudy, computes a simi-

larity score between the machine-generated sentence and one or

more human-written references. The similarity score is based

on n-gram precision and a penalty term, where n ∈ {1, 2, 3, 4}.

Despite its simplicity, BLEU has been widely adopted in NLG

CHAPTER 2. BACKGROUND REVIEW 38

evaluations due to its ease of use and ability to provide a quick

assessment of the generated text’s similarity to the desired refer-

ence. Although it is originally proposed for automatic evaluation in

machine translation, it has been broadly applied in the evaluation

of text generation tasks.

ROUGE, the Recall-Oriented Understudy for Gisting Eval-

uation, computes the n-gram recall between the generated text

and a set of human references. It is originally proposed for the

evaluation of long text in text summarization. ROUGE offers a

comprehensive evaluation by considering multiple levels of textual

units and providing a quantitative measure of the similarity and

informativeness of the generated output.

METEOR, the Metric for Evaluation of Translation with Ex-

plicit ORdering, computes the harmonic mean of the unigram

precision and recall to compute a score that reflects the overall

semantic similarity and fluency. METEOR takes into account

variations in word choice, sentence structure, stemming, and syn-

onymy, allowing for a more nuanced evaluation. By considering

both exact and paraphrased matches, METEOR provides a com-

prehensive assessment that captures both lexical and semantic

CHAPTER 2. BACKGROUND REVIEW 39

aspects, making it a valuable tool for evaluating the effectiveness

and adequacy of NLG systems.

CIDEr [105], Consensus-based Image Description Evaluation,

focuses on capturing consensus in human judgments through mea-

suring n-gram co-occurrence. CIDEr goes beyond lexical similarity

and emphasizes capturing the consensus in human judgments. It

measures the co-occurrence of n-grams between the generated de-

scriptions and multiple human reference descriptions. CIDEr is

particularly valuable in NLG tasks related to image captioning,

where the generated descriptions should be not only accurate but

also diverse and capturing the essence of the visual content.

With the emergence of large-scale pretrained models [44, 46, 47,

50], there has been a large amount of research work focusing on

utilizing the expressive power of contextualized word embeddings

to improve the evaluation of NLG tasks.

BERTScore [106]. Different from the exact matching strategy

in previous metrics, BERTScore computes the cosine similarity

score for each word in the candidate sentence with each one in the

references sentence, using the contextual embeddings from BERT.

This metric is proven to possess a high correlation with human

CHAPTER 2. BACKGROUND REVIEW 40

judgments in both human-level and system-level evaluations.

BLEURT [107] is a regression-based evaluation metric, where

the authors fine-tune a BERT checkpoint to obtain an evaluation

model for various NLG tasks. This evaluation model is trained to

accurately predict scores similar to human judgments. BLEURT

has shown promising results in capturing the nuances of NLG

output, providing a more robust evaluation metric that aligns with

human judgments.

BARTScore [108] formulates the evaluation of generated text

as a sequence-to-sequence generation task with a pre-trained model,

BART. Concretely speaking, BARTScore calculates the weighted

log probability of one text given another. The weights are intro-

duced to distinguish the emphasis on different tokens. BARTScore

measures the generation quality from four dimensions: faithfulness

(from source document to hypothesis), precision (from reference

text to output text), recall (from output text to reference text)

and F-score (the arithmetic average of precistion and recall).

In addition to the generation quality, there are attribute-specific

evaluation metrics for the controllable text generation tasks. In

paraphrase generation, the control factor is the lexical dissimilarity

CHAPTER 2. BACKGROUND REVIEW 41

and semantic equivalence between input and output text. iBLEU

is proposed to evaluate the quality of paraphrased text by jointly

considering the semantic adequacy and textual dissimilarity [109].

In the context of text simplification, SARI is the first automatic

metric, which calculates the arithmetic average of n-gram precision

and recall of three simplification operations: delete, keep and

add [94]. In terms of text style transfer, a style classifier is employed

to compute the score to which the predicted text confronts the

expected style.

2.3.2 Human Evaluation

The ultimate goal of text generation is to generate text that is

indistinguishable from the human-written counterpart. Given that

automatic evaluation metrics cannot fully mimic human judgment

o fall short in capturing the nuanced aspects of language generation

that are vital for user satisfaction [110, 111], human evaluation

becomes a crucial component of experimental analysis in text gen-

eration tasks. By incorporating human judgment, NLG systems

can be refined to meet user expectations, ensuring that the gener-

ated text is not only linguistically accurate but also compelling,

CHAPTER 2. BACKGROUND REVIEW 42

engaging, and tailored to the intended audience.

Researchers define specific criteria and guidelines for assessing

the quality of the generated text. Generally, the quality assessment

primarily focuses on the following dimensions: coherence, correct-

ness and naturalness. Coherence refers to the consistency between

input and output text, while correctness assesses the absence of

hallucinated information and grammatical errors in the generated

content. Naturalness evaluates the extent to which the generated

text resembles human-written text. Apart from the textual quality,

other domain-specific criteria are relevant to the application.

A diverse group of human evaluators is chosen to represent the

target audience or desired expertise. Evaluators should have a

good understanding of the task and context, and they may be

experts in the subject matter or general users. Human evaluators

are presented with samples from different systems, including one

or more baseline models and the proposed approach. They are

asked to score the samples based on their quality.

Evaluators assess the generated text based on the predefined

criteria. They may rate the text on a numerical scale, provide

rankings, or offer qualitative feedback. Pairwise comparison or

CHAPTER 2. BACKGROUND REVIEW 43

ranking methods can also be employed to compare different gen-

erated outputs. Two commonly used scoring schemes include the

5-point Likert scale and direct rating within predefined rating

scales.

However, when multiple evaluators are involved, the validity of

the evaluations is contingent on their consistency in scoring the

samples. To determine the level of agreement between different

evaluators, inter-annotator agreement scores are computed, such as

Cohen’s kappa [112] or Fleiss’ kappa [113]. Higher agreement scores

among the evaluators indicate that the samples are distinguishable

and the evaluators are consistent in assessing the quality of the

generated text, leading to more reliable results.

2 End of chapter.

Chapter 3

Improving Semantic Fidelity with

To the Point Context

In this chapter, we investigate the method to improve semantic

fidelity in the context of question generation tasks and proposed

a novel pipeline to improve the semantic accuracy of generated

questions with to the point context. The introduction of this re-

search problem is presented in Section 3.1, followed by the problem

definition in Section 3.2. In Section 3.3, we describe the approach

for extracting answer-relevant relations and the structure of the

proposed end-to-end generation framework. Experimental setups

are presented in Section 3.4, with results reported in Section 3.5

In Section 3.6, we provide a summary of the main findings and

44

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION45

contributions of this chapter.

3.1 Introduction

Question Generation (QG) is the task of automatically creating

questions from a range of inputs, such as natural language text

[54], knowledge base [59] and image [114]. QG is an increasingly

important area in NLP with various application scenarios such

as intelligence tutor systems, open-domain chatbots and question

answering dataset construction. In this chapter, we focus on

question generation from reading comprehension materials like

SQuAD [115]. As shown in Figure 3.1, given a sentence in the

reading comprehension noindentand the text fragment (i.e., the

answer) that we want to ask about, we aim to generate a question

that is asked about the specified answer.

Question generation for reading comprehension is firstly for-

malized as a declarative-to-interrogative sentence transformation

problem with predefined rules or templates [52, 54]. With the

rise of neural models, Du et al. [2] propose to model this task

under the sequence-to-sequence (seq2seq) learning framework [35]

with attention mechanism [116]. However, question generation is

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION46

Sentence: The daily mean temperature in January, the area’s coldest
month, is 32.6 ◦F (0.3 ◦C); however, temperatures usually drop to 10 ◦F
(-12 ◦C) several times per winter and reach 50 ◦F (10 ◦C) several days
each winter month.
Reference Question: What is New York City ’s daily January mean
temperature in degrees celsius ?
Baseline Prediction: What is the coldest temperature in Celsius ?
Structured Answer-relevant Relation: (The daily mean temperature
in January; is; 32.6 ◦F (0.3 ◦C))

Figure 3.1: An example SQuAD question with the baseline’s prediction.
The answer (“0.3 ◦C”) is highlighted.

a one-to-many sequence generation problem, i.e., several aspects

can be asked given a sentence. Zhou et al. [3] propose the answer-

aware question generation setting which assumes the answer, a

contiguous span inside the input sentence, is already known before

question generation. To capture answer-relevant words in the sen-

tence, they adopt a BIO tagging scheme to incorporate the answer

position embedding in seq2seq learning. Furthermore, Sun et al.

[117] propose that tokens close to the answer fragments are more

likely to be answer-relevant. Therefore, they explicitly encode

the relative distance between sentence words and the answer via

position embedding and position-aware attention.

Although existing proximity-based answer-aware approaches

achieve reasonable performance, we argue that such intuition may

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION47

Table 3.1: Performance for the average relative distance between the answer
fragment and other non-stop sentence words that also appear in the ground
truth question. (Bn: BLEU-n, MET: METEOR, R-L: ROUGE-L)

Distance B1 B2 B3 B4 MET R-L
0∼10 (72.8% of #) 45.25 30.31 22.06 16.54 21.54 46.26
>10 (27.2% of #) 35.67 21.72 14.82 10.46 16.72 37.63

not apply to all cases especially for sentences with complex struc-

ture. For example, Figure 3.1 shows such an example where those

approaches fail. This sentence contains a few facts and due to the

parenthesis (i.e. “the area’s coldest month”), some facts intertwine:

“The daily mean temperature in January is 0.3◦C” and “January

is the area’s coldest month”. From the question generated by a

proximity-based answer-aware baseline, we find that it wrongly

uses the word “coldest” but misses the correct word “mean” because

“coldest” has a shorter distance to the answer “0.3◦C”.

In summary, their intuition that “the neighboring words of the

answer are more likely to be answer-relevant and have a higher

chance to be used in the question” is not reliable. To quantitatively

show this drawback of these models, we implement the approach

proposed by Sun et al. [117] and analyze its performance under

different relative distances between the answer and other non-stop

sentence words that also appear in the ground truth question. The

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION48

results are shown in Table 3.1. We find that the performance drops

at most 36% when the relative distance increases from “0 ∼ 10”

to “> 10”. In other words, when the useful context is located

far away from the answer, current proximity-based answer-aware

approaches will become less effective, since they overly emphasize

neighboring words of the answer.

To address this issue, we extract the structured answer-relevant

relations from sentences and propose a method to jointly model

such structured relation and the unstructured sentence for question

generation. The structured answer-relevant relation is likely to

be to the point context and thus can help keep the generated

question to the point. For example, Figure 3.1 shows our framework

can extract the right answer-relevant relation (“The daily mean

temperature in January”, “is”, “32.6◦F (0.3◦C)”) among multiple

facts. With the help of such structured information, our model is

less likely to be confused by sentences with a complex structure.

Specifically, we firstly extract multiple relations with an off-the-

shelf Open Information Extraction (OpenIE) toolbox [118], then

we select the relation that is most relevant to the answer with

carefully designed heuristic rules.

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION49

Nevertheless, it is challenging to train a model to effectively

utilize both the unstructured sentence and the structured answer-

relevant relation because both of them could be noisy: the unstruc-

tured sentence may contain multiple facts which are irrelevant to

the target question, while the limitation of the OpenIE tool may

produce less accurate extracted relations. To explore their advan-

tages simultaneously and avoid the drawbacks, we design a gated

attention mechanism and a dual copy mechanism based on the

encoder-decoder framework, where the former learns to control the

information flow between the unstructured and structured inputs,

while the latter learns to copy words from two sources to maintain

the informativeness and faithfulness of generated questions.

In the evaluations on the SQuAD dataset, our system achieves

significant and consistent improvement as compared to all baseline

methods. In particular, we demonstrate that the improvement

is more significant with a larger relative distance between the

answer and other non-stop sentence words that also appear in

the ground truth question. Furthermore, our model is capable of

generating diverse questions for a single sentence-answer pair where

the sentence conveys multiple relations of its answer fragment.

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION50

3.2 Problem Definition

We formalize our task as an answer-aware Question Generation

(QG) problem [119], which assumes answer phrases are given before

generating questions. Moreover, answer phrases are shown as text

fragments in passages. Formally, given the sentence S, the answer

A, and the answer-relevant relation M , the task of QG aims to

find the best question Q such that,

Q = argmax
Q

Prob(Q|S,A,M), (3.1)

where A is a contiguous span inside S.

3.3 Methodology

In this section, we first introduce the task definition and our

protocol to extract structured answer-relevant relations. Then

we formalize the task under the encoder-decoder framework with

gated attention and dual copy mechanism.

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION51

Sentence: Beyoncé received critical acclaim and commercial success,
selling one million digital copies worldwide in six days; The New York
Times noted the album’s unconventional, unexpected release as significant.
N-ary Relations:
0.85

::::::::::
(Beyoncé;

::::::::::
received

::::::::::::
commercial

:::::::::
success

::::::::
selling;

::::
one

:::::::::
million

:::::::
digital

::::::
copies

::::::::::::
worldwide;

:::
in

:::
six

:::::::
days)

0.92 (The New York Times; noted; the album’s unconventional, unex-
pected release as significant)
Sentence: The daily mean temperature in January, the area’s coldest
month, is 32.6 ◦F (0.3 ◦C); however, temperatures usually drop to 10 ◦F
(-12 ◦C) several times per winter and reach 50 ◦F (10 ◦C) several days
each winter month.
N-ary Relations:
0.95

:::::
(The

::::::
daily

::::::
mean

:::::::::::::
temperature

:::
in

::::::::::
January;

:::
is;

:::::
32.6

:::

◦F
:::::
(0.3

:::::

◦C))
0.94 (temperatures; drop; to 10 ◦F (12 ◦C); several times per winter;
usually)
0.90 (temperatures; reach; 50 ◦F)

Figure 3.2: Examples for n-ary extractions from sentences using OpenIE.
Confidence scores are shown at the beginning of each relation. Answers
are highlighted in sentences. Waved relations are selected according to
our criteria in Section 3.3.1.

3.3.1 Answer-relevant Relation Extraction

We utilize an off-the-shelf toolbox of OpenIE 1 to the derive struc-

tured answer-relevant relations from sentences as to the point

contexts. Relations extracted by OpenIE can be represented either

in a triple format or in an n-ary format with several secondary

arguments, and we employ the latter to keep the extractions as

informative as possible and avoid extracting too many similar
1http://openie.allenai.org/

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION52

relations in different granularities from one sentence. We join all

arguments in the extracted n-ary relation into a sequence as our to

the point context. Figure 3.3 shows n-ary relations extracted from

OpenIE. As we can see, OpenIE extracts multiple relations for

complex sentences. Here we select the most informative relation

according to three criteria in the order of descending importance:

(1) having the maximal number of overlapped tokens between the

answer and the relation; (2) being assigned the highest confidence

score by OpenIE; (3) containing maximum non-stop words. As

shown in Figure 3.3, our criteria can select answer-relevant rela-

tions (waved in Figure 3.3), which is especially useful for sentences

with extraneous information. In rare cases, OpenIE cannot extract

any relation, we treat the sentence itself as the to the point context.

Table 3.2 shows some statistics to verify the intuition that the

extracted relations can serve as more to the point context. We

find that the tokens in relations are 61% more likely to be used in

the target question than the tokens in sentences, and thus they are

more to the point. On the other hand, on average the sentences

contain one more question token than the relations (1.86 v.s. 2.87).

Therefore, it is still necessary to take the original sentence into

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION53

Table 3.2: Comparisons between sentences and answer-relevant relations.
Overlapped words are those non-stop tokens co-occurring in the source (sen-
tence/relation) and the target question. Copy ratio means the proportion of
source tokens that are used in the question.

Sentence Answer-relevant Relation
Avg. length 32.46 13.04
overlapped words 2.87 1.86
Copy ratio 8.85% 14.26%

account to generate a more accurate question.

3.3.2 Proposed Framework

Overview. As shown in Figure 3.3, our framework consists of

four components (1) Sentence Encoder and Relation Encoder,

(2) Decoder, (3) Gated Attention Mechanism and (4) Dual Copy

Mechanism. The sentence encoder and relation encoder encode the

unstructured sentence and the structured answer-relevant relation,

respectively. To select and combine the source information from

the two encoders, a gated attention mechanism is employed to

jointly attend to both contextualized information sources, and a

dual copy mechanism copies words from either the sentence or the

relation.

Answer-aware Encoder. We employ two encoders to integrate

information from the unstructured sentence S and the answer-

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION54

Sentence Encoder

!" !#…

$" $#

…%"& %#&
…

…

Word Emb
POS Emb

NER Emb
Ans. Emb

Relation Encoder

…

…

'()

Decoder with Gated Attention & Dual Copy

…

P+

!,

$,

%,&
%,# %"# %##

!" !-!,
$" $-$,

…

…

…

'(-

…

V
ocabulary

D
istribution

1 − 012
012013

012(1 − 013)

Se
nt

en
ce

A
tte

nt
io

n

C
on

cr
et

e
C

on
te

xt
A

tte
nt

io
n

61
71) 71-

71
891

P:

P;

012
013

Final Distribution

: Gate

Dual Copy Mechanism

Gated Attention

⟨ ⟩>?@ A,

B1

Figure 3.3: The framework of our proposed model. (Best viewed in color)

relevant relation M separately. Sentence encoder takes in feature-

enriched embeddings including word embeddings w, linguistic

embeddings l and answer position embeddings a. We follow [3]

to transform POS and NER tags into continuous representation

(lp and ln) and adopt a BIO labeling scheme to derive the answer

position embedding (B: the first token of the answer, I: tokens

within the answer fragment except the first one, O: tokens outside

of the answer fragment). For each word wi in the sentence S, we

simply concatenate all features as input: xs
i = [wi; l

p
i ; l

n
i ; ai]. Here

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION55

[a;b] denotes the concatenation of vectors a and b.

We use bidirectional LSTMs to encode the sentence (xs
1,x

s
2, ...,

xs
n) to get a contextualized representation for each token:

−→
h s

i =
−−−−→
LSTM(

−→
h s

i−1,x
s
i),
←−
h s

i =
←−−−−
LSTM(

←−
h s

i+1,x
s
i),

where
−→
h s

i and
←−
h s

i are the hidden states at the i-th time step of

the forward and the backward LSTMs. The output state of the

sentence encoder is the concatenation of forward and backward

hidden states: hs
i = [
−→
h s

i ;
←−
h s

i]. The contextualized representation

of the sentence is (hs
1,h

s
2, ...,h

s
n).

For the relation encoder, we firstly join all items in the n-ary

relation M into a sequence. Then we only take answer position

embedding as an extra feature for the sequence: xm
i = [wi;ai].

Similarly, we take another bidirectional LSTM to encode the

relation sequence and derive the corresponding contextualized

representation (hm
1 ,h

m
2 , ...,h

m
n).

Decoder. We use an LSTM as the decoder to generate the

question. The decoder predicts the word probability distribution

at each decoding timestep to generate the question. At the t-th

timestep, it reads the word embedding wt and the hidden state

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION56

ut−1 of the previous timestep to generate the current hidden state:

ut = LSTM(ut−1,wt). (3.2)

Gated Attention Mechanism. We design a gated attention

mechanism to jointly attend to the sentence representation and the

relation representation. For sentence representation (hs
1,h

s
2, ...,h

s
n),

we employ the Luong et al. [116]’s attention mechanism to obtain

the sentence context vector cst ,

ast,i =
exp(u⊤t Wah

s
i)∑

j exp(u⊤t Wahs
j)
, cst =

∑
i

ast,ih
s
i ,

where Wa is a trainable weight. Similarly, we obtain the vector cmt

from the relation representation (hm
1 ,h

m
2 , ...,h

m
n). To jointly model

the sentence and the relation, a gating mechanism is designed to

control the information flow from two sources:

gt = sigmoid(Wg[c
s
t ; c

m
t]), (3.3)

ct = gt ⊙ cst + (1− gt)⊙ cmt , (3.4)

h̃t = tanh(Wh[ut; ct]), (3.5)

where ⊙ represents element-wise dot production and Wg,Wh are

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION57

trainable weights. Finally, the predicted probability distribution

over the vocabulary V is computed as:

PV = softmax(WV h̃t + bV), (3.6)

where WV and bV are parameters.

Dual Copy Mechanism. To deal with the rare and unknown

words, the decoder applies the pointing method [120, 121, 122] to

allow copying a token from the input sentence at the t-th decoding

step. We reuse the attention score αs
t and αm

t to derive the copy

probability over two source inputs:

PS(w) =
∑

i:wi=w

αs
t,i,PM(w) =

∑
i:wi=w

αm
t,i.

Different from the standard pointing method, we design a dual

copy mechanism to copy from two sources with two gates. The

first gate is designed for determining copy tokens from two sources

of inputs or generating next word from PV , which is computed

as gvt = sigmoid(wv
gh̃t + bvg). The second gate takes charge of

selecting the source (sentence or relation) to copy from, which is

computed as gct = sigmoid(wc
g[c

s
t ; c

m
t] + bcg). Finally, we combine

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION58

all probabilities PV , PS and PM through two soft gates gvt and gct .

The probability of predicting w as the t-th token of the question

is:

P(w) = (1− gvt)PV (w) + gvt g
c
tPS(w) + gvt (1− gct)PM(w).

Training and Inference. Given the answer A, sentence S and

relation M , the training objective is to minimize the negative

log-likelihood with regard to all parameters:

L = −
∑

Q∈{Q}

log P(Q|A, S,M ; θ), (3.7)

where {Q} is the set of all training instances, θ denotes model pa-

rameters and logP (Q|A, S,M ; θ) is the conditional log-likelihood

of Q.

In testing, our model targets to generate a question Q by

maximizing:

Q = argmax
Q

log P(Q|A, S,M ; θ). (3.8)

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION59

Table 3.3: Dataset statistics on Du Split [2] and Zhou Split [3].

Du Split Zhou Split
pairs (Train) 74689 86635
pairs (Dev) 10427 8965
pairs (Test) 11609 8964
Sentence avg. tokens 32.56 32.72
Question avg. tokens 11.42 11.31

3.4 Experimental Setting

3.4.1 Dataset and Metrics

We conduct experiments on the SQuAD dataset [115]. It contains

536 Wikipedia articles and 100k crowd-sourced question-answer

pairs. The questions are written by crowd-workers and the answers

are spans of tokens in the articles. We employ two different

data splits by following Zhou et al. [3] 2 and Du et al. [2] 3. In

Zhou et al. [3], the original SQuAD development set is evenly

divided into dev and test sets, while Du et al. [2] treats SQuAD

development set as its development set and splits original SQuAD

training set into a training set and a test set. We also filter out

questions which do not have any overlapped non-stop words with

the corresponding sentences and perform some preprocessing steps,

such as tokenization and sentence splitting. The data statistics
2https://res.qyzhou.me/redistribute.zip
3https://github.com/xinyadu/nqg/tree/master/data/raw

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION60

Table 3.4: The main experimental results for our model and several baselines
in Du Split [2] version of SQuAD. ‘-’ means no results reported in their papers.
(Bn: BLEU-n, MET: METEOR, R-L: ROUGE-L)

Du Split [2]

B1 B2 B3 B4 MET R-L
s2s [2] 43.09 25.96 17.50 12.28 16.62 39.75
NQG++ [3] - - - - - -
M2S+cp [8] - - - 13.98 18.77 42.72
s2s+MP+GSA [119] 43.47 28.23 20.40 15.32 19.29 43.91
Hybrid model [117] - - - - - -
ASs2s [56] - - - 16.20 19.92 43.96
Our model 45.66 30.21 21.82 16.27 20.36 44.35

Table 3.5: The main experimental results for our model and several baselines
in Zhou Split [3] version of SQuAD. ‘-’ means no results reported in their
papers. (Bn: BLEU-n, MET: METEOR, R-L: ROUGE-L)

Zhou Split [3]

B1 B2 B3 B4 MET R-L
s2s [2] - - - - - -
NQG++ [3] - - - 13.29 - -
M2S+cp [8] - - - 13.91 - -
s2s+MP+GSA [119] 44.51 29.07 21.06 15.82 19.67 44.24
Hybrid model [117] 43.02 28.14 20.51 15.64 - -
ASs2s [56] - - - 16.17 - -
Our model 44.40 29.48 21.54 16.37 20.68 44.73

are given in Table 3.3.

We evaluate with all commonly-used metrics in question genera-

tion [2]: BLEU-1 (B1), BLEU-2 (B2), BLEU-3 (B3), BLEU-4 (B4)

[102], METEOR (MET) [123] and ROUGE-L (R-L) [103]. We use

the evaluation script released by Chen et al. [124].

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION61

3.4.2 Baseline Methods

We compare with the following models.

• s2s [2] proposes an attention-based sequence-to-sequence neural

network for question generation.

• NQG++ [3] takes the answer position feature and linguistic

features into consideration and equips the seq2seq model with

copy mechanism.

• M2S+cp [8] conducts multi-perspective matching between the

answer and the sentence to derive an answer-aware sentence

representation for question generation.

• s2s+MP+GSA [119] introduces a gated self-attention into the

encoder and a maxout pointer mechanism into the decoder. We

report their sentence-level results for a fair comparison.

• Hybrid [117] is a hybrid model which considers the answer em-

bedding for the question word generation and the position of

context words for modeling the relative distance between the

context words and the answer.

• ASs2s [56] replaces the answer in the sentence with a special

token to avoid its appearance in the generated questions.

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION62

3.4.3 Implementation Details

We take the most frequent 20k words as our vocabulary and use the

GloVe word embeddings [125] for initialization. The embedding

dimensions for POS, NER, answer position are set to 20. We use

two-layer LSTMs in both encoder and decoder, and the LSTMs

hidden unit size is set to 600.

We use dropout [126] with the probability p = 0.3. All trainable

parameters, except word embeddings, are randomly initialized with

the Xavier uniform in (−0.1, 0.1) [127]. For optimization in the

training, we use SGD as the optimizer with a minibatch size of

64 and an initial learning rate of 1.0. We train the model for 15

epochs and start halving the learning rate after the 8th epoch. We

set the gradient norm upper bound to 3 during the training.

We adopt the teacher-forcing for the training. In the testing, we

select the model with the lowest perplexity and beam search with

size 3 is employed for generating questions. All hyper-parameters

and models are selected on the validation dataset.

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION63

Table 3.6: Performance for the average relative distance between the answer
fragment and other non-stop sentence words that also appear in the ground
truth question (BLEU is the average over BLEU-1 to BLEU-4). Values in
parenthesis are the improvement percentage of Our Model over Hybrid. (a)
is based on all sentences while (b) only considers long sentences with more
than 20 words.

a Evaluation results on all sentences.

Hybrid Our Model
BLEU MET R-L BLEU MET R-L

0∼10 (72.8% of #) 28.54 21.54 46.26 29.73 (4.17%) 22.03 (2.27%) 46.85 (1.28%)
>10 (27.2% of #) 20.67 16.72 37.63 22.12 (7.01%) 17.46 (4.43%) 38.47 (2.23%)

b Evaluation results on sentences with more than 20 words.

Hybrid Our Model
BLEU MET R-L BLEU MET R-L

0∼10 (58.3% of #) 28.00 21.03 45.37 29.11 (3.96%) 21.50 (2.21%) 45.97 (1.31%)
>10 (26.6% of #) 20.58 16.66 37.53 22.04 (7.09%) 17.38 (4.30%) 38.37 (2.24%)

3.5 Results and Analysis

3.5.1 Overall Performance

Table 3.4 and 3.5 show automatic evaluation results for our model

and baselines (copied from their papers). Our proposed model

which combines structured answer-relevant relations and unstruc-

tured sentences achieves significant improvements over proximity-

based answer-aware models [3, 117] on both dataset splits. Pre-

sumably, our structured answer-relevant relation is a generalization

of the context explored by the proximity-based methods because

they can only capture short dependencies around answer fragments

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION64

while our extractions can capture both short and long dependencies

given the answer fragments. Moreover, our proposed framework

is a general one to jointly leverage structured relations and un-

structured sentences. All compared baseline models which only

consider unstructured sentences can be further enhanced under

our framework.

Recall that existing proximity-based answer-aware models per-

form poorly when the distance between the answer fragment and

other non-stop sentence words that also appear in the ground

truth question is large (Table 3.1). Here we investigate whether

our proposed model using the structured answer-relevant relations

can alleviate this issue or not, by conducting experiments for our

model under the same setting as in Table 3.1. The broken-down

performances by different relative distances are shown in Table

3.6a. We find that our proposed model outperforms Hybrid (our

re-implemented version for this experiment) on all ranges of rel-

ative distances, which shows that the structured answer-relevant

relations can capture both short and long term answer-relevant

dependencies of the answer in sentences. Furthermore, comparing

the performance difference between Hybrid and our model, we

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION65

find the improvements become more significant when the distance

increases from “0 ∼ 10” to “> 10”. One reason is that our model

can extract relations with distant dependencies to the answer,

which greatly helps our model ignore the extraneous information.

Proximity-based answer-aware models may overly emphasize the

neighboring words of answers and become less effective as the use-

ful context becomes further away from the answer in the complex

sentences. In fact, the breakdown intervals in Table 3.6a naturally

bound its sentence length, say for “> 10”, the sentences in this

group must be longer than 10. Thus, the length variances in these

two intervals could be significant. To further validate whether our

model can extract long term dependency words. We rerun the

analysis of Table 3.6b only for long sentences (length > 20) of each

interval. The improvement percentages over Hybrid are shown

in Table 3.6b, which become more significant when the distance

increases from “0 ∼ 10” to “> 10”.

3.5.2 Case Study

Figure 3.4 provides example questions generated by crowd-workers

(ground truth questions), the baseline Hybrid [117], and our model.

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION66

Sentence: Beyoncé received critical acclaim and commercial success, sell-
ing one million digital copies worldwide in six days; The New York Times
noted the album ’s unconventional, unexpected release as significant.
Reference Question: How many digital copies of her fifth album did
Beyoncé sell in six days?
Baseline Prediction: How many digital copies did the New York Times
sell in six days ?
Structured Answer-relevant Relation: (Beyoncé; received commercial
success selling; one million digital copies worldwide; in six days)
Our Model Prediction: How many digital copies did Beyoncé sell in
six days ?
Sentence: The daily mean temperature in January, the area’s coldest
month, is 32.6 ◦F (0.3 ◦C); however, temperatures usually drop to 10 ◦F
(-12 ◦C) several times per winter and reach 50 ◦F (10 ◦C) several days
each winter month.
Reference Question: What is New York City ’s daily January mean
temperature in degrees celsius ?
Baseline Prediction: What is the coldest temperature in Celsius ?
Structured Answer-relevant Relation: (The daily mean temperature
in January; is; 32.6 ◦F (0.3 ◦C))
Our Model Prediction: In degrees Celsius , what is the average
temperature in January ?

Figure 3.4: Example questions (with answers highlighted) generated by crowd-
workers (ground truth questions), the baseline model and our model.

In the first case, there are two subsequences in the input and the

answer has no relation with the second subsequence4. However,

we see that the baseline model prediction copies irrelevant words

“The New York Times” while our model can avoid using the ex-

traneous subsequence “The New York Times noted ...” with the

help of the structured answer-relevant relation. Compared with
4One might think that the two subsequences should be regarded as individual sentences,

however, several off-the-shelf tools do recognize them as one sentence.

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION67

the ground truth question, our model cannot capture the cross-

sentence information like “her fifth album”, where the techniques

in noindent-level QG models [119] may help. In the second case,

as discussed in Section 3.1, this sentence contains a few facts and

some facts intertwine. We find that our model can capture distant

answer-relevant dependencies such as “mean temperature” while

the proximity-based baseline model wrongly takes neighboring

words of the answer like “coldest” in the generated question.

3.5.3 Diverse Question Generation

Another interesting observation is that for the same answer-sentence

pair, our model can generate diverse questions by taking different

answer-relevant relations as input. Such capability improves the

interpretability of our model because the model is given not only

what to be asked (i.e., the answer) but also the related fact (i.e.,

the answer-relevant relation) to be covered in the question. In

contrast, proximity-based answer-aware models can only generate

one question given the sentence-answer pair regardless of how many

answer-relevant relations in the sentence. We think such capability

can also validate our motivation: questions should be generated ac-

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION68

Sentence: In July 1960, NASA Deputy Administrator Hugh L. Dryden
announced the Apollo program to industry representatives at a series of
Space Task Group conferences.
Relation 1: (Hugh L. Dryden; [is] Deputy Administrator [of]; NASA)
Question 1: Who was the NASA Deputy Administrator in 1960 ?
Relation 2: (NASA Deputy Administrator Hugh L. Dryden; announced;
the Apollo program to industry representatives at a series of Space Task
Group conferences; In July 1960)
Question 2: Who announced the Apollo program to industry represen-
tatives ?
Sentence: One of the network’s strike-replacement programs during that
time was the game show Duel, which premiered in December 2007.
Relation 1: (the game show Duel; premiered; in December 2007)
Question 1: What game premiered in December 2007 ?
Relation 2: (One of the network’s strike-replacement programs during
that time; was; the game show Duel)
Question 2: What was the name of an network ’s strike - replacement
programs ?

Figure 3.5: Example diverse questions (with answers highlighted) generated
by our model with different answer-relevant relations.

cording to the answer-aware relations instead of neighboring words

of answer fragments. Figure 3.5 show two examples of diverse

question generation. In the first case, the answer fragment ‘Hugh

L. Dryden’ is the appositive to ‘NASA Deputy Administrator’ but

the subject to the following tokens ‘announced the Apollo program

...’. Our framework can extract these two answer-relevant relations,

and by feeding them to our model separately, we can receive two

questions asking different relations with regard to the answer.

CHAPTER 3. SEMANTIC FIDELITY IN NEURAL QUESTION GENERATION69

3.6 Summary

In this chapter, we propose a question generation system which

combines unstructured sentences and structured answer-relevant

relations for generation. The unstructured sentences maintain the

informativeness of generated questions while structured answer-

relevant relations keep the faithfulness of questions. Extensive

experiments demonstrate that our proposed model achieves state-of-

the-art performance across several metrics. Furthermore, our model

can generate diverse questions with different structured answer-

relevant relations. For future work, there are some interesting

dimensions to explore, such as difficulty levels [128], noindent-level

information [119] and conversational question generation [129].

2 End of chapter.

Chapter 4

Unsupervised Text Generation by

Learning from Search

In this chapter, we present our study on unsupervised control-

lable text generation. In contrast to previous problem setting, we

consider the data-scarce setting where no parallel training cor-

pus is available. In Section 4.1, the background knowledge and

research progress of unsupervised text generation are provided.

Subsequently, we proposed an unsupervised solution by search

and learning. Details of our proposed framework are covered in

Section 4.2, including our search algorithm and the two learning

strategies. The configuration of experiments is presented in Sec-

tion 4.3. Given the empirical results, we further conduct detailed

70

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH71

analysis in Section 4.4. To conclude, the contents in this chapter

are summarized in Section 4.5.

4.1 Introduction

Text generation refers to a wide range of tasks involving generating

natural language, including machine translation [130, 131, 132],

sentence simplification [99, 133], and text summarization [134, 135].

Recent success of neural text generation relies heavily on large

parallel data for training, which may not be available in real-world

natural language processing (NLP) applications. In this work, we

consider unsupervised text generation, where no parallel data is

available. This setting is more challenging, and has significant

potential in both scientific research (e.g., low-resource language

processing) and industrial applications (e.g., cold start for a new

NLP application).

Early work tackles unsupervised text generation by rules or

templates [136, 137]. While such approaches do not require parallel

corpora, the generated sentences are highly subject to the rules,

and hence lack the flexibility of natural language. Other work

constructs pseudo-parallel data, which is only feasible for certain

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH72

tasks like unsupervised machine translation [130].

Recently, researchers have developed search-based techniques

for unsupervised text generation [72, 74, 101, 138], where a heuris-

tically defined scoring function evaluates the quality of a sentence,

involving language fluency, semantic compliance, and other task-

specific aspects. Then, the algorithm performs word-level edits

(such as word deletion, insertion, and replacement) to search to-

wards a (possibly local) optimum of the scoring function. With a

reasonably designed scoring function, such approaches are shown

to be effective in a variety of applications like paraphrase gener-

ation [72, 74], sentence summarization [138], and text simplifica-

tion [101].

However, the above search-based approach has two major draw-

backs: 1) The inference efficiency is low. To obtain an output

sentence, the search algorithm would perform a few hundred steps

of local edits and re-evaluations. This could be considerably slower

than an autoregressive decoder, which generates words sequentially.

2) The search could yield noisy results, since the scoring function

is defined heuristically and the search is conducted locally in a

discrete sentence space.

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH73

To this end, we propose a new framework for unsupervised

text generation by learning from search (tgls), which contains a

strong search module that explores the sentence space, as well as a

learning module that learns from the search results. For the search

module, we adopt the simulated annealing (SA) algorithm. At each

step, SA proposes a local edit by a neural network, and then either

accepts or rejects the proposal based on a heuristically defined

scoring function. For learning, we employ two methods to train

a conditional generative model, word-level cross-entropy loss and

the sequence-level max-margin loss. Within tgls, the search and

learning can be boosted by each other in an iterative fashion. That

is, the search results serve as the pseudo-reference for training the

conditional generator, which in turn benefits SA search by serving

as a more meaningful initial state. As for implementation, tgls

involves two pretrained language models: 1) the uni-directional

GPT2 [45], which is suitable for likelihood-based fluency evaluation

and conditional generation; and 2) the bi-directional RoBERTa [47],

which is better at semantic evaluation and contextual word-level

prediction.

The main contributions include: 1) We propose tgls, a prin-

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH74

cipled framework for unsupervised text generation; tgls can be

applied to different tasks if the output resembles the input and can

be roughly estimated by a heuristically defined scoring function. 2)

We successfully incorporate large-scale pretrained language models

into our tgls framework. 3) We conducted experiments on two

different tasks: paraphrasing and text formalization. In both ex-

periments, tgls significantly outperforms unsupervised baseline

methods. Moreover, tgls achieves comparable performance to

recent supervised models [67] in the paraphrasing task. 4) For text

formalization (an example of text style transfer), we are also the

first to design a search-based method, and further extend it into

the proposed tgls framework.

4.2 Methodology

Our tgls framework involves two stages of search and learning. In

the first stage, we perform simulated annealing (SA) search [74] and

treat the obtained output sentences as pseudo-references. Then,

we train an autoregressive GPT2 as the text generator [45] by

word-level cross-entropy (CE) supervised learning, which enables

our model to learn quickly. In the second stage, the GPT2 performs

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH75

beam search and the output is taken as the initial state of the SA

algorithm again for iterative performance improvement. Later, we

perform max-margin (MM) learning to better distinguish between

higher-scored sentences and other high-probability but sub-optimal

sentences. Figure 4.1 provides an overview of the two stages of

search and learning in tgls.

4.2.1 Simulated Annealing Search

The search-based text generation [72, 74] relies on a heuristic-based

objective function s(y|x) that (roughly) evaluates the quality of

an output sequence y given the input x (usually, one or a few

sentences). Typically, the objective involves language modeling

fluency slm(x), semantic compliance ssemantic(x, y), and other task-

specific scorers stask(y, ·). These individual scorers are combined

by the product of experts [139]:

s(y|x) = slm(y) · ssemantic(x, y) · stask(y, ·). (4.1)

We adopt simulated annealing (SA) [74, 140], which performs

local stochastic search to maximize the objective. Concretely, SA

starts from an initial candidate output sentence y(0), which is set

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH76

to the input x in our first-stage SA. For the second stage, it will

be the output of our GPT2 model.

At a search step t, SA iteratively proposes a new candidate y′ by

local edits of y(t), namely, word insertion, deletion, and replacement.

The proposal y′ is accepted with probability p(accept|y′, y(t), x, T) =

min
{
1, exp(s(y

′|x)−s(y(t)|x)
T)

}
. Then, y(t+1) = y′ if y′ is accepted, or

otherwise, y(t+1) = y(t). In SA, T is a temperature controlling

how greedy the search algorithm is. Usually, T is high at the

beginning of search so as to be more explorative, and then T is

cooled down to achieve a better (local) optimum. Although we

follow the generic SA framework of text generation as in [74], the

objective function and proposal are largely redesigned, detailed

below.

Fluency scorer (slm). The fluency of a sentence can often-

times be approximated by a language model’s predicted probabil-

ity. Previous search-based work uses recurrent neural networks

for fluency evaluation [72, 74]. In our work, we use the large-

scale pretrained GPT2 model [45]. For an output y = y1 · · · yn,

the language fluency scorer is the joint likelihood of y, given by

slm(y) = (
∏n

i=1 p(yi|y1, · · · , yi−1))α, where α is a hyperparameter

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH77

(a) SA (b) CE (c) SA (d) MM

𝑝(y|x; GPT2)

y("#) =y(%) x y(&'()) y(&'())y("# "))- y(&'() "))-

𝑠(y|x) 𝑝(y|x; GPT S2)-

Stage 1 Stage 2

Figure 4.1: Overview of tgls. (a) First-stage search by simulated annealing
(SA). (b) First-stage learning by cross-entropy (CE) loss. (c) Second-stage
search by SA. (d) Second-stage learning by max-margin (MM) loss. The
horizontal axis represents the sentence space.

balancing slm with other scorers in (4.1). In fact, we use the vo-

cabulary of GPT2 with byte-pair encoding (BPE), and yi here is

a token after BPE segmentation. Our GPT2 is fine-tuned with

non-parallel in-domain corpora to learn the specificity of a task.

Semantic scorer (ssemantic). In this part, we extend the semantic

scorers in [74] with a RoBERTa [47]. Fine-tuning details are

presented in Section 4.3.3. Compared with autoregressive GPT2

used for fluency evaluation, RoBERTa is pretrained by masked

language modeling, and is better at feature representation. Let x =

(x1, · · · , xm) be a sentence. RoBERTa computes a contextualized

representation of a word in the sentence as RoBERTa(xi, x).

A word-level semantic scorer evaluates how much keyword

information (detected by Rake [141]) is preserved, given by the

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH78

least matched keyword of x:

sword(y, x) = min
k∈keyword(x)

max
yi∈y

RoBERTa(k, x)⊤RoBERTa(yi, y).

(4.2)

A sentence-level semantic scorer evaluates the cosine similarity

of two sentence vectors ssent(y, x) = y⊤x
∥y∥∥x∥ , where the sentence

vector is given by the RoBERTa feature of the padded token [BOS]

at the beginning end of a sentence, i.e., x = RoBERTa([BOS], x)

and y is computed analogously.

Finally, the semantic scorer is the product of both word- and

sentence-level scores as

ssemantic(y, x) = sword(y, x)
β · ssent(y, x)

γ, (4.3)

where β and γ are weighting hyperparameters.

Task-specific scorers. We apply tgls to two tasks: paraphras-

ing and text formalization.

For paraphrasing, the goal is to generate a semantically similar

but lexically different sentence. Previous work [74] uses the BLEU

score to penalize the n-gram overlapping between the output and

input: sparaphrase(y, x) = (1−BLEU(y, x))δ, which is also adopted

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH79

in our work. Here, δ is a weighting hyperparameter for the task-

specific scorer.

For text formalization, the goal is to transform an informal

sentence to the formal style [21], which is an example of text

style transfer. We follow the setting of most text style-transfer

work [17], where we assume the style labels are available, but

no parallel supervision is given. We train a classifier that pre-

dicts the probability of the style, also based on the RoBERTa

features. Then, the task-specific scorer becomes sformality(y) =

p(formal |RoBERTa([BOS], y))δ, where δ is the weighting hypara-

parameter for this task.

Proposal of local edits. At a step t of SA search, a new

candidate y′ is proposed from y(t) by local editing. SA randomly

picks a position to edit, as well as one of the following operators:

Replace, Insert, and Delete.

For Replace, the model suggests a candidate word at xi based

on the posterior distribution induced by s(y|x). For efficiency

concerns, previous work [72, 74] evaluates top-K candidate words,

suggested by a forward and backward language model. In our

work, we adopt RoBERTa to evaluate the posterior probability of

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH80

a word, where the word embedding layer of RoBERTa at this slot

is randomly masked. The Insert edit also suggests a word from

the posterior, predicting a word given the newly added [MASK]

token and the context. This complies with RoBERTa’s pretraining

criteria of masked language modeling and is able to suggest high-

quality candidate words. The Delete operator simply removes

the word at a chosen position.

In text formalization, we also have rule-based local edits (e.g.,

“we are” substituting “we’re”) which are retrieved from PPDB [142].

Previous sequence-to-sequence approaches on this task adopt man-

ually designed rules as a preprocessing step [21] or as additional

input concatenated with the raw sentence [23]. Our unsupervised

tgls, on the other hand, can easily make use of the off-the-shelf

resources, and can easily filter out the noise by rejecting bad

candidates.

In short, the SA search component in our tgls mainly fol-

lows [74], but we re-design the scoring functions and the proposals.

The main focus is to couple search and learning, especially the

methods of training a machine learning model that learns from

the search results, as follows.

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH81

4.2.2 Word-Level Cross-Entropy (CE) Learning

As mentioned in Section 4.1, the local search algorithm is compu-

tationally inefficient during inference time, because it requires a

few hundred steps of edits and re-evaluations for each sample.

Our intuition is to train a conditional generative model, GPT2,

based on SA’s search results. Specifically, we concatenate an

input x and SA’s searched sequence y(SA) with a special separating

token [SEP] in between, and train GPT2 with losses on the y-part.

Therefore, the GPT2 would be able to generate an output sequence

directly from p(y|x) in an autoregressive way.

Given a source sequence x, the objective is the word-by-word

cross-entropy (CE) loss, given by

JCE = −
N∑
i=1

∑
v∈V

y
(SA)
i,v log p

(GPT2)
i,v , (4.4)

where y
(SA)
i,v is a binary value, indicating whether the ith word is v

or not in the SA’s output for this data sample, N is the length of

y, and p
(GPT2)
i,v = Pr

[
yi = v | y(SA)

<i , x
]
, which is predicted by the

GPT2.

The word-level CE learning in tgls adopts standard teacher-

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH82

forcing technique with SA’s output being the pseudo-reference, i.e.,

during training, the GPT2 model learns the probability p
(GPT2)
i,v at

step i, assuming all previous words are correctly predicted as y(SA)
<i .

Thus, word-by-word CE trains all predictions in the sequence

simultaneously, and is able to quickly adapt a generic pretrained

GPT2 to the text generation task at hand.

It is also noted that minimizing the cross-entropy loss (4.4) is

equivalent to minimizing KL(ŷ
(SA)
i ∥p(GPT2)

i), i.e., the KL-divergence

between ŷ
(SA)
i and p

(GPT2)
i , if viewed as distributions over the vo-

cabulary. Due to the asymmetry nature, minimizing the KL-term

makes the second slot p(GPT2)
i more wide-spreading than the first

slot ŷ
(SA)
i , illustrated in Figure 4.1(b). This provides an expla-

nation of why the CE-trained GPT2 could smooth out the noise

of the stochastic SA search. As will be shown in experiments,

training a GPT2 from SA’s output alone can outperform SA.

4.2.3 Sequence-Level Maximum-Margin (MM) Learning

Our next insight is to perform alternations between search and

learning to bootstrap performance of tgls. In the first stage, SA

starts local search with the initial candidate being the input (i.e.,

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH83

y(0) = x), because we have no other meaningful candidate output

yet. Starting with x takes advantage of the resemblance between

input and output. But if a higher-quality candidate is available,

SA may perform better than from x.

Therefore, we propose another stage of search and learning

alternations. SA starts from an initial candidate being GPT2’s

output, i.e., y(0) = y(GPT2), shown in Figure 4.1(c). Then, GPT2

is further fine-tuned to learn from the newly searched result. For

the learning method, we propose to employ sequence-level max-

margin (MM) training, instead of CE training, in this stage. Such

alternation can be performed for multiple epochs for performance

bootstrapping.

Concretely, the GPT2 trained with CE learning performs beam

search (beam size B) and obtain a set of output sequences Y (GPT2) =

{y(GPT2,1), · · · , y(GPT2,B)}. A randomly picked (for efficiency pur-

pose) output in Y (GPT2) is taken as initial candidate in SA search,

yielding a new sample y(SA-S2). We consider the set Ỹ = Y (GPT2)∪

{y(SA-S2)} as the positive and negative samples for MM learn-

ing. In fact, the positive sample y+ is the best sequence scored

by (4.1), i.e., y+ = argmaxy∈Ỹ s(y|x). In most cases, we have

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH84

y+ = y(SA-S2), but this is not necessarily true because SA is not

greedy. All other sentences in Ỹ are collected as negative samples.

We use the average of GPT2’s pre-softmax logit as the negative

energy.1 In other words, we have −E(y) = 1
N

∑N
i=1 zi,yi of a se-

quence y = (y1, · · · , yN), where zi,yi is the logit for the word yi at

the ith step. The max-margin loss for this data sample is

JMM =
∑

y−∈Ỹ , y− ̸=y+

max
{
0, E(y+)− E(y−) + ∆

}
, (4.5)

where ∆ (set to 1) is the margin hyperparameter.

In fact, the energy implicitly defines a globally normalized

distribution as p(y) = 1
Z exp{−E(y)}, where Z is the partition

function. The MM training increases the probability of the positive

sample, while decreasing the probability of negative ones. In our

MM training, the negative samples are given by beam search on

GPT2, highly resembling the positive one. This makes tgls more

sensitive to the sequence-level scorer (4.1) in its probable region of

the output space, illustrated in Figure 4.1(d).

By contrast, word-level CE increases the probability of the target

(analogous to the positive sample) step-by-step, while decreasing
1Energy is what MM learning would like to minimize for positive samples.

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH85

Algorithm 1: Training tgls
Input: A non-parallel corpus X
Output: A fine-tuned GPT2 model
� First-stage learning from search
for an input x ∈ X do

y(SA) = SA(x, x)
� SA is detailed in Algorithm 2. In the first stage, SA starts

with input x as the initial candidate
for all epochs do

for an input x with its SA output y(SA) do
Fine-tune GPT2 by cross-entropy loss (4.4) with
pseudo-reference y(SA), conditioned on x

� Second-stage learning from search
for all epochs do

for an input x do
Y (GPT2) = BeamSearch(GPT2(x)) � Y (GPT2) is a set of
output by beam search

y(SA-S2) = SA(x, y(GPT2)) for some y(GPT2) ∈ Y (GPT2)

� In the second stage, SA starts with GPT2’s output (any
output in the beam is fine)
Ỹ = Y (GPT2) ∪ {y(SA-S2)}
Fine-tune GPT2 with max-margin loss (4.5) with

positive sample: y+ = argmaxy∈Ỹ s(y|x), and
negative samples: Ỹ \{y+}

Return: Resulting GPT2 (denoted by GPT2-S2 after two stages of
search and learning)

the probability of other samples due to local normalization. Thus,

it cannot explicitly correct the prediction of a highly-probable but

low-scored sample, and performs worse than MM in the second

stage.

In summary, the training of tgls involves two stages of search

and learning, where CE and MM are used as the learning objective

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH86

Stage 2: Alternations of SA and MM

Stage 1: SA+CE

Gotta see both
sides of the story.

x

GPT2 Have to see both
sides of the story.

Simulated
Annealing

You have to see both
sides of the story.

MM Training

Got to see both
sides of the story.

…

+−

Beam
Search

Have to consider both
sides of the story.

You have to see both
sides of the story.

Insert Scorers

Fluency Semantics

…

Proposals:

Have to see both
sides of the story.

y′

Accept You have to see both
sides of the story.

y(𝑡+1)

Gotta see both
sides of the story.

x

GPT2

CE Training

Simulated

Annealing

You have to see both
sides of the story.

y(SA)

Simulated
Annealing

Simulated Annealing

y′

y(𝑡)

Target task

y(SA-S2)

Figure 4.2: Two stages of search and learning in tgls.

in different stages. Notice that, for the second stage, search and

learning are alternated within the epoch loop. Thus, another stage

of search and learning is unnecessary, because our second stage

already allows multiple epochs for performance bootstrapping.

For inference, we do not perform SA search, but directly use the

fine-tuned GPT2 for autoregressive prediction.

Figure 4.2 shows a detailed diagram of tgls. Algorithm 1

further presents the pseudo-code of SA search [74] for reference.

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH87

4.2.4 Discussion: tgls vs. Reinforcement Learning and

Structured Prediction

One of the most popular algorithms of reinforcement learning

(RL) in text generation is the REINFORCE, which maximizes the

expected reward (such as the BLEU score [143] or an adversarial

discriminator [144]) by sampling a sequence of actions from its

learned policy and reweighing the likelihood training of the sampled

sequence. REINFORCE is known to have high variance, and

previous REINFORCE-based text generation involves groundtruth

pretraining [144]. Without a warm start, the sampling-based

REINFORCE does not work with such a large action space as the

vocabulary. Our tgls would also optimize an external scoring

function (analogous to the reward in RL), but does not have

grountruth for pretraining. We instead perform SA search and

learn from SA’s (local) optima step-by-step.

Monte-Carlo Tree Search (MCTS) [145] is another paradigm

of search and learning, where a search tree is maintained with

each non-leaf node being a partial configuration (e.g., a partial

sentence in text generation). Again, it suffers from the large

branching factor, which is the vocabulary size in our applications.

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH88

Our tgls adopts local search, which maintains a full configuration

and evaluates the candidate at each search step. The resemblance

between input and output also largely eases the search task.

The Learning-to-Search (l2s) framework has been successfully

applied to various NLP applications, such as structured predic-

tion [146, 147] and text generation [148, 149]. l2s allows the model

to explore/search in the space, collects the score (cost) for possible

actions, and optimizes the model. Usually, l2s assumes that an ex-

pert demonstration (groundtruth sequence and/or dynamic oracle)

is available as a reference policy. For instance, a LaSO-like algo-

rithm forces the model to search towards the groundtruth sequence;

when the groundtruth is out of the search range, a learning update

is performed, where the search effort serves as the negative samples

and the groundtruth as positive examples for learning [146, 148].

By contrast, tgls does not have groundtruth, but uses a strong

search algorithm to find higher-scored sentences, which serve as

positive samples.

Our approach is also related to learning an inference network

for energy-based structured prediction [150, 151]. They perform

adversarial learning on the energy model (analogous to a discrimi-

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH89

nator) and the inference network (analogous to a generator), with

the access of groundtruth target. We instead face an unsupervised

setting, where we define the heuristic scorer for discrete search;

our conditional generator further learns from the search results.

4.3 Experimental Setting

4.3.1 Datasets and Metrics

Paraphrase Generation. Paraphrase generation is to rephrase

input text with different expressions, while keeping the semantics.

Following previous work [152, 153], we conducted experiments on

the Quora benchmark dataset.2 We followed the unsupervised

setting in [74] and used 500K sentences to fine-tune GPT2 and

RoBERTa for fluency and semantic scorers. For validation and

testing, we had 500 and 170K samples, respectively.

We adopt BLEU and iBLEU as evaluation metrics, which are

widely used for paraphrase generation. BLEU measures the length-

penalized n-gram overlap between an output and the reference.

In addition, paraphrasing requires that the output should be

different from input. Thus, iBLEU [109] penalizes BLEU by
2https://www.kaggle.com/c/quora-question-pairs

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH90

n-gram similarity between output and input. Following most work,

we consider iBLEU as the main metric for paraphrasing.

Text Formalization. This task concerns formality transfer of

text, and our goal is to rephrase a given informal text into the for-

mal style. We experimented with the Grammarly’s Yahoo Answers

Formality Corpus (GYAFC) [21] in the domain of Family & Rela-

tionships. It is noted that GYAFC contains 50K informal–formal

pairs, but our tgls follows the setting of most other style-transfer

work [17], which uses non-parallel corpora with style labels, but

does not have parallel supervision. Our pretrained language models

are additionally fine-tuned on automatically labeled non-parallel

corpus [154]. In GYAFC, there are 3K samples for validation and

1K for test.

The performance of formality transfer is measured in different

aspects. The language modeling perplexity evaluates the fluency of

the generated text, and a separately trained classifier predicts the

formality accuracy. Particularly, the formality evaluator achieves

an accuracy of 94%, being a good automatic evaluation measure.3

The BLEU score is also computed against the reference to evaluate
3We reuse the architecture of RoBERTa for formality evaluation and GPT2 for fluency

evaluation. However, they are separately trained, third-party models, and are NOT part of
our tgls.

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH91

Algorithm 2: SA for Text Generation [74]
Input: An input sentence x,

An initial candidate output y(0)

Output: An output sentence y
for t = 1, · · · ,MaxStep do

Set temperature T = max{Tinit − C · t, 0} � Tinit, C: annealing
hyperparameters

Randomly pick an edit operator Op ∈ { Delete, Insert,
Replace}

Randomly pick an edit position k
Propose a new candidate y′ = Op(y(t−1), k)
Compute acceptance rate
p(accept|y′, y(t−1), x, T) = min

{
1, exp(s(y

′|x)−s(y(t−1)|x)
T

)
}

y(t) =

{
y′, with probability p(accept|y′, y(t−1), x, T)

y(t−1), with probability 1− p(accept|y′, y(t−1), x, T)

Return: y(SA) = argmaxt s(y
(t)|x)

n-gram overlap. Finally, we consider the harmonic mean (H-mean)

and the geometric mean (G-mean) of the formality accuracy and

the BLEU score as our main metrics for this task.

4.3.2 Baseline Methods

We present more details on the competing methods in Tables 4.2

and 4.3. All metrics are computed based on word-level tokenization

(i.e., no BPE segmentation is used).

We adopt the following baseline methods in paraphrase genera-

tion:

(i) RL-NN. Qian et al. [65] propose to learn a reward function

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH92

by neural networks and perform REINFORCE training. The

results in Table 4.2 are from the original paper.

(ii) Dagger.† Du et al. [67] apply imitation learning to para-

phrase generation. It achieves the state-of-the-art perfor-

mance on the Quora dataset. We re-ran their implementation

based on our data split.

(iii) GPT2.† We train another GPT2 with the same hyperparam-

eters as our tgls, but in a supervised setting for a controlled

comparison.

(iv) Round-Trip MT (Transformer). Following [69], we uti-

lize a well-trained bi-directional neural machine translation

(NMT) system (Zh→En and En→Zh) with a Transformer

model [31]. The NMT system achieves BLEU scores of

43.2 (En→Zh) and 28.74 (Zh→En) on the Newstest 2017

dataset. In our work, we use the round-trip translated sen-

tence (En→Zh→En) as the paraphrase.

(v) Round-Trip MT (GPT2). Similarly, we adopt another

GPT2-based multilingual (En, Zh, Es, Ru) NMT system

in [70]. Suggested by Guo et al. [70], we take the Zh as the

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH93

pivot language.

(vi) VAE. The variational autoencoder [155] generates a para-

phrase by sampling from the encoded posterior distribution

in the latent space. Here, we quote the results of CGMH from

the implementation of [74].

(vii) CGMH. Miao et al. [72] propose a word-space Metropolis–

Hastings approach to paraphrase generation. Results are also

quoted from the implementation of [74].

(viii) UPSA. Liu et al. [74] extend CGMH by decreasing the

temperature and this becomes simulated annealing. Results

are quoted from the original paper.

(ix) SA w/ PLM.† One of our extensions to UPSA is to fine-tune

pretrained language models for the search objective and edit

proposals. This variant is essentially the intermediate results

of our tgls, after its first-stage SA search.

While widely used for paraphrasing, the Quora dataset does not

contain a standard split. The dataset is crawled from the Internet,

and thus it is noisy and sometimes contains duplicate samples

in training and test sets. This would not be a severe problem if

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH94

the duplication is between training input and reference output

during supervised learning; thus, most previous work does not

explicitly deduplicate these samples. However, this could affect

our tgls, because we perform learning from search results with the

non-parallel training set. Thus, we carefully handled this problem,

ensuring no overlap in training and test.

The competing models with † indicate that the data split is the

same as tgls, and the results are directly comparable. Others

can be compared in a statistical sense.

We consider the following approaches as our baseline in text

style transfer:

(i) LSTM-attn. Rao et al. [21] trained a Bi-LSTM encoder-

decoder model with attention to their parallel formality cor-

pus.

(ii) BackTrans. Prabhumoye et al [156] utilize back-translation

to get style-independent content representations and feed

them to a style-dependent decoder to control the style of

output.

(iii) StyleEmb. Fu et al. [82] propose two variants for style

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH95

transfer. In this variant, they accomplish style transfer by a

learned style embedding.

(iv) MultiDec. The other variant of [82] use multiple decoders

for style-specific generation.

(v) CrossAlign. Shen et al. [81] also use style embedding, but

they apply adversarial training based on style-transferred

hidden states to cross-align content.

(vi) DelRetrGen. Li et al. [20] propose a heuristic approach to

mark style-specific words and phrases, and obtain expressions

in a desired style by retrieval. Eventually, a neural model

generates a style-transferred sentence.

(vii) Template. This is a simpler variant in [20]. Then the

detected style-specific words of input sentences are replaced

by stylized words of the target domain within its retrieved

counterpart.

(viii) UnsupMT. Zhang et al. [157] apply unsupervised machine

translation techniques for style transfer. They firstly conduct

word-to-word transfer and construct pseudo sentence pairs for

system initialization, then conduct iterative back-translation

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH96

Table 4.1: Human evaluation on the Quora dataset.

Method Grammar, Coherency, AgreementFluency Consistency

UPSA [74] 4.05 3.28 35.0%
SA w/ PLM 4.79 4.48 70.0%
Our tgls 4.85 4.66 78.8%

training.

(ix) DualRL. Luo et al. [158] use a dual reinforcement learning

strategy to learn bi-directional style transfer without explicitly

separating the style and content.

The results in Table 4.3 involve learnable metrics. We used

separately trained GPT2 and RoBERT for fluency and formal-

ity evaluation, respectively. The GYAFC corpus has a standard

dataset split. For fairness, we re-evaluated all the outputs based

on our own evaluation models.

The outputs of LSTM-attn are released by [21], and the rest

outputs are published by [158].

4.3.3 Implementation Details

For SA, the initial temperature was set to 1e-2 in both tasks.

The total search steps and temperature cooling were 50, 2e-4

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH97

for paraphrasing; and 100 and 1e-4 for text simplification. The

scorers’ weights were tuned by grid search, set as (α, β, γ, δ) =

(0.8, 1, 0.6, 0.125) for paraphrasing, and (0.8, 2, 1.25, 0.26) for text

formalization. We keep the RoBERTa fixed and further tune the

GPT2 model by alternations of search and learning for another 6

epochs.

Additionally, we fine-tune a RoBERTa as the backbone model,

which is used for scoring semantic compliance and the proposal

of replacing words in simulated annealing (Section 4.2.1). In

particular, we consider two fine-tuning objectives, as follows.

Masked language modeling. This fine-tuning objective is

based on domain-specific unlabeled corpora, and its goal is to

adapt RoBERTa and make it more specific to the domain at hand.

For each experiment, we use its unlabeled training corpus for

fine-tuning.

Generally, we follow the mixed masking strategy [47], which

randomly masks out a few words in a sentence, and the fine-

tuning goal is to predict these masked words. The mixed masking

strategy randomly picks one of the three types of masking: (1)

with probability 80%, the input is substituted by a special token

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH98

[MASK]; (2) with probability 10%, the input is substituted by a

random word in the vocabulary; and (3) with probability 10%,

the input is substituted by the word itself (i.e., no masking is

performed).

We observe that the first mask type aligns with the Replace

and Insert proposals of local editing. Thus, we would high

weigh this mask type in our fine-tuning. Each time we process a

data sample, we perform one more masking with the special token

[MASK], in addition to the mixed strategy.

Formality classification. This objective is specific to the text

formalization experiment, where RoBERTa is also used for training

a formality classifier. The objective is cross-entropy loss between

p(formal |RoBERTa(BOS, x)) and the groundtruth formality label

(formal or informal), where RoBERTa(BOS, x) is the RoBERTa

feature of a sentence x in the unlabeled dataset. Still, no parallel

corpus is used. This fine-tuning objective works together with the

masked language modeling objective in a multi-task fashion.

Note that the formality classification objective does not apply

to the paraphrasing task.

Conditional generator. We fine-tune the GPT2 model with

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH99

Table 4.2: Automatic evaluation results on paraphrasing. † indicates that the
results are directly comparable to tgls on the same data split.

Methods iBLEU BLEU

Supervised

RL-NN [65] 14.83 20.98
Dagger† [67] 18.88 28.42
GPT2† [45] 19.19 26.92

Distant supervised

Round-Trip MT (GPT2)† [70] 11.24 16.33
Round-Trip MT (Transformer)† [69] 14.36 20.85

Unsupervised

VAE [155] 8.16 13.96
CGMH [72] 9.94 15.73
UPSA [74] 12.02 18.18
SA w/ PLM (Ours)† 14.52 21.08
tgls (Ours)† 17.48 25.00

task-specific data. For paraphrasing, we use all training sentences,

whereas for style transfer, we use the training set of the formal

style only.

For fine-tuning hyperparameters, we performed 3 epochs of

fine-tuning for text formalization and 9 epochs for paraphrasing.

The maximum length of input was set to 35. We use Adam with

β1 = 0.9 and β2 = 0.999 for optimization.

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH100

Table 4.3: Automatic evaluation results on formality transfer. ↓The smaller,
the better. † indicates that the results are directly comparable to tgls on
the same data split.

Methods† PPL↓ BLEU Formality H-mean G-mean

Supervised

LSTM-attn [21] 23.42 69.36 87.39 77.34 77.85

Unsupervised

BackTrans [156] 183.7 1.23 31.18 2.37 6.13
StyleEmb [82] 114.6 8.14 12.31 9.80 10.01
MultiDec [82] 187.2 13.29 8.18 10.13 10.42
CrossAlign [81] 44.78 3.34 67.34 6.36 14.99
DelRetrGen [20] 88.52 24.95 56.96 34.70 37.69
Template [20] 197.5 43.45 37.09 40.02 40.14
UnsupMT [157] 55.16 39.28 66.29 49.33 51.02
DualRL [158] 66.96 54.18 58.26 56.15 56.18
tgls (Ours) 30.26 60.25 75.15 66.88 67.29

4.4 Results and Analysis

4.4.1 Overall Performance

Table 4.2 presents the results of automatic evaluation for para-

phrase generation. Among the unsupervised approaches, the simu-

lated annealing model UPSA [74] achieves the previous state-of-the-

art performance, outperforming both variational sampling [155]

and discrete-space Metropolis–Hastings sampling [72]. We pro-

pose to use large-scale pretrained language models for fluency and

evaluation (denoted by SA w/ PLM), and improve iBLEU by 2.5

points from UPSA. Our tgls framework of search and learning fur-

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH101

ther improves iBLEU by 2.96 points, being a new state-of-the-art

unsupervised paraphrasing model.

The tgls also outperforms the paraphrasing systems based

on round-trip translation, which is widely used in real-world ap-

plications. Such methods generate a paraphrase by translating a

sentence to a foreign language and translating it back. It is catego-

rized as distant supervision, because it requires parallel corpora for

machine translation, but not for the paraphrasing task of interest.

Noticeably, our unsupervised tgls performs comparably to a

few recent paraphrasing models [65, 67]. Moreover, we train a

GPT2 in the supervised setting for a controlled experiment, where

the neural architecture is fixed. We see that the unsupervised

tgls is slightly worse than the supervised setting by only 1.71

iBLEU, largely closing the gap between supervised and unsuper-

vised paraphrasing.

Table 4.3 presents the results for formality transfer. Again,

we see consistent evidence on the effectiveness of tgls, as it

outperforms existing unsupervised approaches including heuristic

marking of style words and retrieval-based editing [20], unsuper-

vised machine translation approaches [157], and dual reinforcement

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH102

learning [158].

Admittedly, the unsupervised tgls is still worse than supervised

approaches on this task. This is probably because our heuristic

scorers are mostly designed for the paraphrasing task, and even for

large-scale pretrained models, their performance may drop with

informal text. More effort could be made here for future work.

Human Evaluation. We also conduct human evaluation for

the paraphrase generation experiment with selected baselines that

are most relevant to our work, due to the limit of budgets. We

randomly selected 120 paraphrase samples. Four annotators with

linguistic background were invited to assess each sentence pair on

a scale of 1–5 with regard to two criteria: relevance (coherence

& consistent) and naturalness (grammar & fluency) in a blind

manner. Each example was reviewed by two judges and average

scores are reported in Table 4.1. We also show the percentage of

agreement between human annotators. As seen, humans have a

higher agreement when the model performance is high; otherwise,

the agreement is lower, because different annotators have their

own scale among 1–5.

In terms of performance, our extension of UPSA—with pre-

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH103

Table 4.4: Examples generated by SA (w/ PLM) and the full tgls model.

Source SA w/ PLM tgls

1 how better is sony mdr-
xb950ap than sony mdr-
xb450?

how better is the new
sony mdr-xb or the sony
mdr-xb?

how good is the sony mdr-
xb950 vs the sony mdr-
xb450?

2 what is meant by british
political conservatism?

what is meant by the
british?

what is the british politi-
cal conservatism?

3 what are the problems oc-
cur when flow velocity in-
creases in a pipe?

what are the problems
that arise when the ve-
locity of an increase in a
cylinder increases?

what are some problems
when the flow velocity of
a pipe increases?

4 if a person gets out of a
vehicle can they still re-
ceive a citation?

can a person gets off of
a vehicle, do they still re-
ceive a citation?

can a person get out of a
car without a citation?

trained language models for fluency and semantic scorers—indeed

improves human satisfaction in terms of Grammar/Fluency and

Coherence/Consistency. Our tgls model further improves the

performance in both aspects. The results are also consistent with

the automatic metrics in Section 4.4.1.

4.4.2 Ablation Study

As tgls involves two stages of search and learning, we conduct

an ablation study, shown in Table 4.5. We start from a base

simulated annealing (SA) approach, where we have already adopted

pretrained language models. Thus, it sets up a fair comparison.

In the first stage of learning, our GPT2 model with word-level

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH104

cross-entropy (CE) training already outperforms SA alone. The

result is slightly surprising, but it actually makes sense because

cross-entropy loss can smooth out the noise in SA’s heuristically

defined search objective.

We also tried to train the GPT2 by max-margin (MM) loss

without CE learning, but it fails to escape from a random policy.

It is due to the difficulty of training an energy-based model in

comparison to a locally normalized model [159]. In our work, the

negative samples in the beam would be useless when the model is

not warm started.

We compare SA with the initial sentence being input and

GPT2’s prediction (SA vs. SA+CE+SA). We see the latter out-

performs both SA and SA+CE. This confirms that the learned

GPT2 helps SA find a better optimum.

The last two lines of Table 4.5 provide evidence of performance

bootstrap by alternating between search and learning, as they

outperform other ablated variants. In particular, MM is better

than CE by a significant margin in the second stage. Our intuition

is that MM with negative samples in the beam makes tgls more

sensitive in distinguishing sentence quality with its highly probable

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH105

Table 4.5: Model analysis on paraphrase generation. All variants use pre-
trained language models.

Methods iBLEU BLEU Inference Time
(sec/sample)

SA 14.52 21.08 5.46
SA+CE 14.97 23.25 0.06
SA+CE+SA 15.41 21.48 2.62
SA+CE+SA+CE 15.70 21.70 0.37
SA+CE+SA+MM (full) 17.48 25.00 0.43

output region.

4.4.3 Case Study

We show in Table 4.4 examples generated by SA (with pretrained

language models) and the full tgls. As seen, SA sometimes

does not generate fluent sentences. In Example 2, the phrase

“political conservative” is deleted but no synonyms are suggested as

a replacement. Our tgls is able to generate more fluent sentences.

Moreover, our tgls generates a paraphrase in an autoregressive

fashion, thus sometimes yielding a more different-appearing output,

e.g., “flow velocity increases in a pipe” being rephrased to “flow

velocity of a pipe increases” in Example 3.

In Example 4, we also see that tgls generates a seemingly

plausible paraphrase given the input. However, the output conveys

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH106

an opposite intention to the input. This shows that understanding

the logic and pragmatics of language is still difficult for large-scale

pretrained language models, and deeper semantic analysis shall be

addressed in future work.

4.4.4 Efficiency Analysis

We report inference time in Table 4.5. The experiments were con-

ducted on a cluster with Nvidia Telsa V100 GPUs. The inference

time could be noisy due to the multi-thread nature of clusters, but

it provides a conclusive enough comparison between search-based

and autoregressive generation. As seen, SA is inefficient because it

requires hundreds of steps of editing and reevaluation. SA+CE,

SA+CE+SA, SA+CE+SA+CE, and SA+CE+SA+MM are all

based on the GPT2 model during inference, and thus are much

more computationally efficient. Based on the validation, SA+CE

adopts greedy decoding, whereas the others adopt beam search

with a size of 5. We see all GPT2-based generators are at least

6–10× faster than the search-based methods.

The training efficiency of tgls is roughly twice as much as SA

plus GPT2 fine-tuning. We do not have quantitative comparison,

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH107

because training efficiency highly depends on hyperparameters and

early stop strategies. While our training is more complex than

SA or GPT2, we do not view it as a disadvantage. First, training

is usually done offline; when trained, our model is very efficient

for deployment compared with SA. Second, it is understandable

that we sacrifice some training efficiency compared with supervised

models, since we do not have parallel data. In fact, our approach

should be more efficient (and labor-saving) than data collection

plus human annotation in the supervised setting.

4.5 Summary

This work proposes a novel learning-from-search framework tgls

for unsupervised text generation. We show that the simulated

annealing search can provide high-quality examples for training

a conditional text generator. Further, the generative model can

give a better initial state to the search algorithm. Experiments

demonstrate that the alternation of search and learning can boost

the performance of tgls on two unsupervised text generation

tasks, paraphrase generation and text formalization. Moreover,

our model is considerably more computationally efficient, compared

CHAPTER 4. UNSUPERVISED GENERATION BY LEARNING FROM SEARCH108

with search-based generation methods. We note that tgls opens

a few future directions, such as more effective and efficient search

algorithms, more noise-robust learning methods, and a better

combination of search and learning. We would also like to apply

the learning-from-search framework to other sequential prediction

tasks in NLP.

2 End of chapter.

Chapter 5

Text Revision by On-the-Fly

Representation Optimization

In this chapter, we endeavour to explore an an efficient way to

resolve unsupervised controllable text generation. Specifically, we

focus on revision tasks, where we aim to revise the input text in

place, rather than generating it token by token from scratch" would

be clearer and more concise. The background review and motiva-

tion of this idea in Section 5.1, followed by problem formulation

in Section 5.2. The preliminary of base models and the proposed

framework are detailed in Section 5.3. And the experimental setup

is explained in Section 5.4. The results and analysis are detailed

in Section 5.5. To sum up, Section 5.6 reviews the contributions

109

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 110

of this chapter.

5.1 Introduction

Text revision refers to an important series of text generation

tasks, including but not limited to text style transfer [81], text

simplification [94], counterfactual debiasing [160], grammar error

correction [161], sentence fusion [162] and argument reframing [163],

which revises an input sentence into another one with the desired

attribute (e.g., formality or simplicity). As the most popular

solution, sequence-to-sequence (seq2seq) learning achieves state-

of-the-art results on many text revision tasks today. However, it

becomes less applicable when there is no large-scale annotated

parallel data for training.

On the other hand, recent breakthroughs in self-supervised

learning have enabled the pre-trained Transformer (TFM) models

[36], such as BERT [46], RoBERTa [47] and GPT [44], to learn

sufficient distributed representation of natural language, which is

universally transferable to a wide range of downstream tasks even

without labeled data [106, 164, 165]. In this chapter, we ask the

question, can we borrow the power of a pre-trained Transformer

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 111

for text revision without any parallel data?

There exist some efforts on developing unsupervised text gen-

eration methods with only non-parallel data, such as using rein-

forcement learning (RL) [166] and variational auto-encoders [17].

However, these methods suffer from issues of unstable [167] and

computationally expensive training. It is even more challenging to

apply them with large pre-trained models. For instance, to fine-

tune a GPT-3 summarization model with RL, it takes thousands

of labeler hours for learning a reliable reward function and 320

GPU-days to train the policy and value nets [34].

In this work, we propose oreo, a method of on-the-fly

representation optimization for text revision. Instead of gen-

erating an entire sequence of tokens from scratch, oreo first

detects partial text span to be edited, then conducts in-place span

revision, which is realized by iterative mask-and-infill editing on

the input sentence. As shown in Figure 5.1, at each iteration, a

fine-tuned RoBERTa encodes the input sentence into a distributed

representation, then optimizes it informed by an attribute head of

the same pretrained RoBERTa model. After that, oreo masks a

span and infills a new one conditioned on the updated representa-

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 112

is novel . You [PAD]

TFM TFM TFM

TFM TFM TFM

TFM TFM TFM

… … ……

…

…

…

LM Head

Your work [M] [M] [M] [M] [M] should publish it !

TFM TFM TFM

TFM TFM TFM

TFM TFM TFM

… … …

Your work so dope u [M] [M] should publish it !

…

…

…

…

Attribute Head

TFM TFM TFM

TFM TFM TFM

TFM TFM TFM

… … …

Your work so dope u [M] [M] should publish it !

…

…

…

…

Attribute Head 𝓛

Step 1(a) Step 2Step 1(b)

Figure 5.1: A simplified illustration of two-step span revision in oreo. In
this example, the input is “Your work so dope u should publish it! ”. The
informal textual span “so dope u” is selected to revise. To allow for a
potentially longer replacement, we append 2 [LM-MASK] tokens to the
span and use this sequence for a two-step revision. Step 1: Representation
Optimization. (a) The fine-tuned RoBERTa model encodes an input sentence
to calculate the likelihood of target attribute Pθ(z

∗|X). (b) After calculating
and backpropagating the loss between estimated and target attribute values,
the hidden states (in green) are optimized on the fly. Step 2: Span replacement.
The span to be edited is replaced with [LM-MASK] tokens (we use [M] for
short). We fix the optimized hidden representations in Step 1 (in green) and
let RoBERTa’s LM head propose an alternative text span autoregressively.

tion. As for the training, our model, oreo fine-tunes RoBERTa

with two simple tasks, masked language modeling and attribute

classification.

The contribution of this work is three-fold:

1. We propose an efficient mask-and-infill method with on-the-

fly optimized representation for text revision. In this work,

we tackle two important tasks: text simplification and text

formalization. Additionally, this framework can be directly

adapted to other text revision tasks.

2. To enable on-the-fly representation optimization, we design

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 113

simple fine-tuning methods that balance efficiency and efficacy.

The fine-tuning can be finished within 8 GPU-hours at most

in our experiments.

3. Our proposed oreo has strong performance on text for-

malization dataset GYAFC-fr [21], surpassing unsupervised

baseline methods, one of which also utilizes RoBERTa; and

achieves competitive performance with state-of-the-art su-

pervised methods on text simplification dataset Newsela-

turk [98].

5.2 Problem Formulation

Text revision aims to revise an input sentence X with attribute z to

another one X∗ with the target attribute z∗, while other features

are fixed as much as possible. In this work, we address text

simplification and text formalization, where the target attributes

are simplicity and formality respectively. The training data is a

non-parallel corpus with attribute labels.

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 114

5.3 Methodology

5.3.1 Preliminary: Pre-trained TFM Models for Natural

Language

Self-supervised learning with massive unlabeled text data makes

powerful pre-trained Transformers for natural language processing.

We adopt the RoBERTabase [47] model in this work.

RoBERTa is a stack of L Transformer layers trained with masked

language modeling with unlabeled text data. Given a sequence

of tokens [x1, ..., xT] with length T that is partially masked (e.g.

xt is replaced by a special [MASK] token), RoBERTa constructs

hidden states H l
t at l-th layer for a token xt. On top of the

Transformer layers of RoBERTa, there is a language model (LM)

head that takes as input the hidden states HL
t at the final layer

corresponding to the masked token, and recovers the masked token

xt by maximizing:

PWLM(xt|HL
t) = Softmax(W T

LMH
L
t), (5.1)

where WLM is the parameter of LM head and H\t is hidden states

at positions other than t. Ht has intensive interaction with H\t

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 115

through self-attention module. Therefore, RoBERTa is able to

infill context-aware tokens.

5.3.2 Training: Multi-task Fine-tuning

The hidden states produced by RoBERTa, or in general, pre-

trained Transformer models, have been proven to encode a wide

range of linguistic features, such as morphology [168], syntax [165],

semantics [106] and etc. Motivated by this, we fine-tune the

RoBERTa to model the task-specific attributes. Concretely, we

adopt two fine-tuning tasks, masked language modeling (MLM)

and attribute classification. The former one is to force RoBERTa to

infill a span consistent with the semantics and attributes encoded

in the hidden states, and the latter one is to help RoBERTa update

the hidden states towards a specific attribute.

Masked language modeling

The original MLM objective adopted by RoBERTa does not model

the length of tokens to be infilled. Inspired by Malmi et al. [83],

we let the model do variant-length span replacement. Specifically,

there are three modifications for the MLM objective: 1) We intro-

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 116

duce a new special token [LM-MASK] for span infilling; 2) Before

each iteration of span replacement, we append K additional masks

to pad the selected span to a fixed length; 3) RoBERTa can predict

[PAD], another new special token, as a placeholder to be removed

directly from the output text. As such, a selected span of length

N can be replaced by a new one, whose length is between 0 and

N+K.

We modify the strategy for MLM training data construction

accordingly. A continuous span is masked, and we randomly insert

[LM-MASK] and [PAD] tokens in the source and target spans,

respectively.

Meanwhile, we still follow the original masking strategy, where

tokens are masked independently and replaced by [MASK] token,

creating another set of MLM training data. We fine-tune RoBERTa

and its LM head with two sets of training data jointly.

Attribute classification

In addition, we create a new attribute head, parallel to the LM

head, on top of RoBERTa as an attribute classifier. The con-

ventional fine-tuning approach takes as input the outputs of the

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 117

final layer at position t = 0. In our preliminary experiment, we

find this approach sub-optimal. Inspired by the evidence found

in [164] that the different layers of pre-trained Transformer capture

different categories of features, we concatenate the hidden states

of the [CLS] token from all layers as the input of attribute head.

Specifically, given an input sentence X , RoBERTa with parameters

θ predicts the probability distribution over attribute candidates Z

as:

Pθ(Z|X) = Softmax(W T
Att[H

0
0 , H

1
0 , ..., H

L
0]) (5.2)

where WAtt denotes parameters of the attribute head, and [H0
0 , H

1
0 , ..., H

L
0]

is the concatenation of hidden states from all layers at the position

t = 0. Then the RoBERTa is tuned to maximize the likelihood of

ground-truth attribute labels.

5.3.3 Inference: On-the-fly Representation Optimization

Most of the existing work on unsupervised text generation incor-

porate task-specific constraints, such as reconstruction objective

and discriminator networks [100], on the generation model explic-

itly. In contrast, we steer the distributed representation of text

directly. The hypothesis is that the pre-training and fine-tuning

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 118

Algorithm 3: Text revision with oreo
Input: An input sentence X(0);

Set target attribute z∗, threshold δ, maximum iteration
number I;

A fine-tuned RoBERTa with parameters θ, including an
attribute head WAtt and a LM head WLM

Output: An output sentence X∗

Initialize: i = 0, ζ(0) = Pθ(z
∗|X(0))

while i < I and ζ(i) < δ do
▶ Span selection
Calculate ζ(i) = Pθ(z

∗|X(i)) and L (5.4)
Calculate a(i) (5.6) and select t, N = argmax

t,N
a
(i)
t:t+N

▶ Representation optimization
Insert K [LM-MASK]s after X

(i)
t:t+N , then we have X ′(i) as the

input of RoBERTa at the next step
Calculate H(i), PWAtt(z

∗|H(i)) and L′ (5.4)
Update H(i+1) with ∇H(i)L′ (5.3)
▶ Span replacement
Replace the selected span X

′(i)
t:t+N with [LM-MASK]s

X
(i+1)
\t:t+N+K = X

′(i)
\t:t+N+K

▶ The unselected part keep fixed
Infill a new spanX(i+1)

t:t+N+K=argmax
Xt:t+N+K

PWLM(Xt:t+N+K|H(i+1)
\t:t+N+K)

▶ Approximate by greedy decoding
Remove the [PAD] tokens in the new span, then we have X(i+1)

Return: X∗ = X(j), where j = argmax
j

ζ(j)

make RoBERTa an intrinsic multi-task model, which has already

learned sufficient features for text revision: the hidden states can

be used to recognize the attribute, and meanwhile inform the

LM head to select tokens consistent to a certain attribute and

context. All we need further is to keep other attributes, especially

the semantics, fixed as much as possible during modification.

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 119

To this end, oreo conducts text revision by iteratively replacing

spans on the input sequence. At each iteration, a span is selected

for editing; then the revision is done in two steps. At the first

step, RoBERTa encodes the input sentence into hidden states,

conditioned on which the attribute head measures the probability

of target attributes. Then RoBERTa adjusts the hidden states

towards increasing the target attribute probability. At the second

step, the selected span is masked out, after which RoBERTa

uses the LM head to fill in the blank, conditioned on updated

hidden states. These two steps repeatedly iterate until a maximum

iteration number I is reached, or the attribute value exceeds a

predefined threshold δ. The complete revision procedure of oreo

is formalized in Algorithm 3.

In the following sections, we detail two steps of text revision in

oreo respectively. An illustration is provided in Figure 5.1. Then

we introduce our method of span selection.

Step 1: Representation optimization

Given an input sentence X(i) at the i-th iteration, RoBERTa

parameterized by θ transforms it to a sequence of hidden states H(i),

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 120

conditioned on which the attribute head estimates the probability

of target attribute PWAtt(z
∗|H(i)). However, blindly finding a H∗

that optimizes PWAtt(z
∗|H∗) can corrupt or even eliminate other

useful features encoded in the original hidden states, and we may

not want those features to be greatly influenced. Thus, for each

revision, we find a small local perturbation on H(i) that maximally

increases the likelihood of target attribute. As such, the update

rule of hidden states is:

H(i+1) = H(i) − λ
∇H(i)L
∥∇H(i)L∥2

, (5.3)

where λ is a hyper-parameter that controls the norm of perturba-

tion, and

L = − logPWAtt(z
∗|H(i)). (5.4)

The perturbation, also known as the normalized gradient of L

with respect to hidden states, can be calculated with standard

backpropagation techniques. The parameters of RoBERTa is frozen

during this gradient computation. Therefore, the representation is

optimized on-the-fly.

Even though we apply a small perturbation, there are still risks

that other coupled attributes change accordingly. We address this

issue by only replacing one span at each iteration, and encoding

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 121

the complete sentence into hidden states before masking a span.

This issue can be further eliminated by other advanced techniques,

such as representation disentanglement [169] and neural adapter

modules [170]. We leave the exploration of more advanced solutions

for future work.

Step 2: Span replacement

Once the hidden states are updated, oreo conducts span re-

placement. The selected span X
(i)
t:t+N of length N is replaced by

[LM-MASK] tokens. And hence the span to be infilled is X(i)
t:t+N+K

(we append K [LM-MASK] tokens before updating hidden states).

RoBERTa takes as input the masked sequence, and predicts a new

span autoregressively with the previously updated hidden states:

PWLM(X
(i+1)
t:t+N+K |H

(i+1)
\t:t+N+K) =

N+K∏
n=1

PWLM(x
(i+1)
t+n |H

(i+1)
\t:t+N+K , X

(i+1)
t:t+n),

(5.5)

where x
(i+1)
t+n is the predicted token at step n, H(i+1)

\t:t+N+K is the op-

timized hidden states of unselected text. Informed by the updated

hidden states, the revised span is expected to meet target attribute

and meanwhile maintain other information, e.g. semantics, of the

original span.

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 122

Span selection strategy

The span selection in oreo is done before the text revision at

each iteration. It is motivated by three reasons: 1) The selection

strategy can be agnostic to the text revision algorithm, increasing

the flexibility of oreo; 2) It allows us to insert [LM-MASK]

tokens in the selected span in advance, so that RoBERTa can infill

a longer span. 3) It enables human-in-the-loop generation, where

the user can indicate which part should be revised.

In this work, we use the magnitude of the ∇H(i)L, where L is

calculated with (5.4), as a measurement of disagreement for span

selection. Specifically, at iteration i, we calculate a
(i)
t for each

token with respect to the attribute head as:

a
(i)
t = ∥∇

H0(i)
t
L∥2, (5.6)

where H0 is the hidden states at the word embedding layer. In-

tuitively, a token whose modification can maximally increase the

target attribute value should be revised.

Then we calculate an N-gram (n ≤ 4) score as:

a
(i)
t:t+N =

∑N
n=1 a

(i)
t+n

N + c
, (5.7)

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 123

where we add a smoothing constant c, otherwise only one token

is chosen. In practice, we set c as 1. To further prevent serious

corruption of the original sentence, we remove named entities from

the selected span. As mentioned above, we finally append K

[LM-MASK] tokens to the selected span for the two-step span

replacement.

5.4 Experimental Setting

We experiment with oreo in two real-world text revision tasks,

text simplification and text formalization.

5.4.1 Datasets and Metrics

Text Simplification. Text simplification is to revise the complex

text into simpler language with easy grammar and word choice

while keeping the meaning unchanged [171]. Based on the widely

used corpora Newsela [97], Jiang et al. [172] constructs a reliable

corpus consisting of 666K complex-simple sentence pairs1. As

our model does not rely on the complex-simple alignments, we

remove the duplicated sentences. The final dataset consists of 269K
1Dataset available at https://github.com/chaojiang06/wiki-auto. Newsela dataset can

be requested from https://newsela.com/data/

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 124

train, 28K development and 29K test sentences. As discussed in

[98, 172, 173], previous supervised methods tend to behave conser-

vatively by simply deleting words and lack the ability to conduct

effective phrasal simplification, we follow [98] and adopt Newsela-

turk for evaluation, a test set with high-quality human-written

references emphasizing lexical and phrasal simplification for each

complex sentence. Although it is challenging for oreo to conduct

structural simplification, there is an off-the-shelf resource [174]

focused on sentence splitting and deletion that we can utilize as a

pre-processing of complex sentences. To keep this work focused,

we leave structural transformation for future work.

We report SARI [94], Flesch-Kincaid grade level (FKGL) read-

ability [175] and average sentence length (SLen) as evaluation

metrics. SARI calculates the average of F1/precision of n-grams

added, kept and deleted between system output and reference

sentences (n ∈ {1, 2, 3, 4}). We report the F1 score of each edit

operation. FKGL measures the readability of sentences. We do

not report BLEU because it does not correlate well with human

judgement [94].

Text Formalization. The second task we experiment with is text

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 125

Table 5.1: Automatic evaluation results on Newsela-turk. ↓The smaller,
the better.

Methods SARI Add Keep Delete FKGL↓ SLen

Supervised

Complex (Input) 22.3 0.0 67.0 0.0 12.8 23.2

TFMBERT 36.0 3.3 54.9 49.8 8.9 16.1
EditNTS 37.4 1.6 61.0 49.6 9.5 16.9
Hybird-NG 38.2 2.8 57.0 54.8 10.7 21.6
CtrlSimp 41.0 3.4 63.1 56.6 11.5 22.2

Unsupervised

UNTS 39.9 1.5 60.5 57.7 11.2 22.0
oreo (ours) 45.2 2.3 69.4 64.0 11.4 23.5

Table 5.2: Automatic evaluation results on text formalization.

Methods† BLEU Formality H-mean G-mean

Reference 100.0 95.20 97.49 97.52

CrossAlign 4.77 75.9 8.98 19.03
StyleEmbded 8.71 28.3 13.32 15.70
MultiDec 14.04 21.32 16.93 17.30
UnsupMT 37.36 76.88 50.28 53.59
Masker 47.73 58.86 52.71 53.00

oreo (ours) 57.63 80.71 67.24 68.20

formalization. Since the informal sentence is much noisier than the

pre-training data of RoBERTa, this task can test the robustness

of our oreo. To compare with previous work, we experimented

with the domain of Family & Relationships in Grammarly’s Yahoo

Answers Formality Corpus (GYAFC-fr) [21]. There are 100K,

5K and 2.5K informal-formal2 pairs in GYAFC. Again, we only
2The informal text in GYAFC is collected from casual chats in web forums. It includes

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 126

use non-parallel sentences and their associated formality labels to

fine-tune RoBERTa. Considering the gap between informal text

and pre-training corpus, we augment the training data with 880K

automatically extracted sentences from the same domain by Xu

et al. [154].

The evaluation of formalization involves multiple aspects. Fol-

lowing previous literature [158, 176], we report BLEU [177] as the

measurement of content preservation and fluency. The formality

attribute is evaluated by a separately trained RoBERTa classifier

which obtains accuracy at 94% on the validation set. To obtain an

overall performance of the system, we calculate the harmonic mean

(H-mean) and geometric mean (G-mean) of BLEU and formality

accuracy and consider them as the main metric for this task.

5.4.2 Baseline Methods

For text simplification, we compare our oreo to both supervised

and unsupervised approaches. For unsupervised baselines, we

adopt UNTS [100], which is based on adversarial training and

variational auto-encoder. We also compare our model with the
few offensive statements, such as slang, vulgarity, harassment, etc. These statements may
cause discomfort or upset to the user of the dataset.

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 127

following state-of-the-art supervised methods:

(i) TFMBERT [178], a Transformer whose encoder is initialized

with the BERT model.

(ii) EditNTS [95], which models edit operations explicitly with

sequence-to-sequence learning.

(iii) Hybrid-NG [96], a hybrid system including a probabilistic

model for splitting and deletion, and a monolingual machine

translation model for phrase replacement and reordering.

(iv) CtrlSimp [98], the current state-of-the-art method composed

of structural simplification module and lexical/phrasal sim-

plification model.

We also report the performance of the strategy that blindly copies

the original complex sentence.

For text formalization, we compare oreo with the following

widely adopted unsupervised baseline methods:

(i) CrossAlign [81] disentangles the style of text and contents via

shared latent space for style revision.

(ii) StyleEmbedded [82] uses an adversarial network to obtain

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 128

the style-irrelevant content representation in the encoder and

merges it with a style embedding to control the style.

(iii) MultiDec [82] adopts the same method as [82] to remove the

style information from input text, but use decoders with dif-

ferent target styles to insert style information in the decoding

stage.

(iv) UnsupMT [157] adopts machine translation methods to deliver

pseudo training pairs for sequence-to-sequence transduction.

(v) Masker [83] employs a BERT which masks the span ac-

cording to the disagreement of language models conditioned

on different attributes and fills in a new span for the target

attribute.

As a recently proposed unsupervised method for text style trans-

fer, Masker is closest to oreo. For a fair comparison, we use

RoBERTa as their base model. In our preliminary experiment, we

find that RoBERTa leads to better performance on text formaliza-

tion.

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 129

5.4.3 Implementation Details

We implement RoBERTa based on Huggingface transformers [179].

For all experiments, we fine-tune the RoBERTa base [47] with a

task-specific corpus.

In the fine-tuning stage, for the standard MLM objective, we

replace 15% tokens as [MASK]. For the padded variant of MLM,

we replace one text span with 3 [LM-MASK]s for each training

instance. If the length of selected span is less than 3, we append

[PAD] tokens to it as the target of padded MLM. For example,

we mask the first two words in sentence “Good luck to you!” as

“[LM-MASK][LM-MASK][LM-MASK] to you!”, and the target

is “Good luck [PAD] ”. We primarily adopted the default hyper-

parameters with a fixed learning rate of 5e-5. The numbers of

fine-tuning epochs are 6 and 2 for text simplification and formal-

ization, respectively. It takes 8-GPU hours to fine-tune RoBERTa

on one Tesla V100 for both tasks.

In the inference stage, the maximum iteration I was set to

4 for efficiency purpose, although the final performance can

increase slightly with more iterations. λ was selected from

{0.8, 1.2, 1.6, 2.0} and set to 1.6. These parameters are validated

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 130

only on the text formalization. We do not perform further tuning

on text simplification. The attribute threshold δ is task-dependent.

It was selected from from {0.1, 0.2, . . . , 0.5} and set to 0.5 for text

simplification and 0.3 for text formalization. K = 1 for both tasks.

5.5 Results and Analysis

5.5.1 Overall Performance

Text simplification. Table 5.1 presents the automatic evaluation

results for text simplification on Newsela-turk. As for the

main metric of text simplification, our method achieves the highest

SARI score, surpassing the supervised and unsupervised baseline

by a large margin. According to [98], Add is an important metric

to indicate the model’s capability in paraphrasing. oreo gains a

higher Add score than the supervised edit-based method, EditNTS.

Although UNTS is on a par with oreo in FKGL scores, its Add

score is 0.8 points lower than oreo, indicating that our model has

a better trade-off between simplicity and meaning preservation as

well as fluency. Our method’s high score in Keep and Delete

operations demonstrates that gradient-guided span selection can

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 131

detect the complex span accurately.

Text formalization. Table 5.2 shows the evaluation results for

text formalization. Our approach outperforms all of the unsuper-

vised baseline models in both content preservation and accuracy

of style transfer. Notably, the significant margin of oreo and

Masker demonstrates the necessity of hidden states optimization.

Although both methods directly conduct span replacement, oreo

additionally performs on-the-fly update on hidden representations

of its context, which is steered by an attribute head. This leads to

a large improvement in formality. Additionally, Masker proposes

phrasal replacement based on an incomplete input, without ac-

cessing the semantics of the original span. This leads to semantic

loss. While our span infilling is conditioned on the representations

encoded the semantics of the original input, oreo has a large

improvement on BLEU score.

Human evaluation. To verify the improvement of oreo, we

conduct human evaluation on text formalization in Table 5.3.

We randomly sample 80 examples from each model’s output and

human-written reference. Due to the budget limits, we only com-

pare to the baseline that is closest to our work. We invited six

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 132

Table 5.3: Human evaluation on text formalization

Formality Coherency Fluency

Masker 2.74 2.94 3.31
oreo 3.42 3.33 3.41

Human 3.69 3.67 3.78

annotators with advanced linguistic backgrounds to evaluate for-

mality, semantic coherence and language fluency of each sentence

in a blind manner. Formality indicates to how much degree the

output satisfies the formal attribute. Semantic coherence means

whether the output preserves the original semantics of input text.

And language fluency measures the grammatical correctness of the

output text. Each annotator is asked to provide scores from 1 to 4

for all three criteria. Each sentence is rated by two annotators 3

and we report the averaged ratings. In Table 5.3, oreo is signifi-

cantly better than Masker in terms of formality and coherency

(p-value < 0.01), which is consistent with automatic evaluation

results. However, there is still improvement space for oreo when

compared to human reference. Two edit-based methods have the

same score of language fluency, mostly because both of them recruit

RoBERTa as the base model to propose new span.
3The annotators’ ratings are positively correlated with p-value < 0.1 across models and

metrics.

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 133

Table 5.4: Model ablation study on text formalization.

BLEU Formality H-mean G-mean

Full 57.63 80.71 67.24 68.20

(1) Infill w/o H(i) 55.50 69.67 61.78 62.18
(2) Update H(i) w/ noise 56.55 69.14 62.21 62.53
(3) Fix H(i) 56.47 67.94 61.68 61.94
(4) Random span selection 45.30 55.03 49.69 49.93

5.5.2 Ablation Study

We evaluate different variants of oreo in Table 5.4. To verify the

necessity of infilling conditioned on updated hidden states and the

gradient information for the update, we compare to variants as 1)

without fixing any hidden state when infilling span; 2) updating

the hidden states with Gaussian noise; 3) without updating the

hidden states. To evaluate the effect of our span selection strategy,

we also try (4) randomly selecting span.

With fixed or incorrectly updated hidden states, the formality

of revised text drops sharply. It indicates that optimizing hidden

states efficiently is crucial to infilling a span that satisfies the target

attribute.

When the hidden states are removed, there is a significant drop

in terms of the BLEU score due to the loss of semantic information.

Both BLEU score and formality drop drastically when the span

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 134

is replaced randomly. It indicates that our gradient-guided span

selection is helpful in detecting spans that are opposite to the

target attribute.

5.5.3 Case Study

Table 5.5 exhibits the examples generated by baseline methods

and oreo in both tasks. Compared to other baseline methods,

our oreo is able to produce accurate and fluent revision. More

surprisingly, it can even conduct knowledgeable revision. For

instance, “a think tank ” is simplified as “a group that studies

people”. oreo also has decent performance encountering noisy

text. In Example 3, Masker fails to correct the abbreviation and

typos, while oreo correctly revises “u” to “you”, and “kno” to

“know ”.

However, we also notice that oreo sometimes fails to hold

semantics. For instance, it revises “critics” to “supporters” in

Example 2. This is a common problem that language models are

not sensitive to negation. More efforts could be made in future

work.

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 135

Ta
bl

e
5.

5:
E

xa
m

pl
es

of
ou

tp
ut

s
fr

om
ba

se
lin

e
m

et
ho

ds
an

d
o
r
eo

on
te

xt
si

m
pl

ifi
ca

ti
on

an
d

te
xt

fo
rm

al
iz

at
io

n.
B

ot
h

su
cc

es
sf

ul
an

d
er

ro
ne

ou
s

ca
se

s
ar

e
re

po
rt

ed
.

#
C

om
p
le

x
In

p
u
t

U
N

T
S

o
r
eo

1
st

ill
,

re
ce

nt
tr

en
ds

su
gg

es
t

se
at

tl
e

is
do

in
g

a
be

tt
er

jo
b

of
ho

ld
in

g
on

to
th

os
e

ki
ds

,
ac

co
rd

in
g

to
si

gh
tl

in
e

in
st

i-
tu

te
,
a

th
in

k
ta

nk
ba

se
d

in
se

at
tl

e.

st
ill

,
re

ce
nt

tr
en

d
su

gg
es

t
se

at
tl

e
is

do
in

g
a

be
tt

er
jo

b
of

ho
ld

in
g

gu
ns

of
th

os
e

ki
ds

,
ac

co
rd

in
g

to
un

c,
a

th
in

k
ta

nk
in

se
at

tl
e.

st
ill

,
re

ce
nt

st
ud

ie
s

su
gg

es
t

se
at

-
tl

e
is

do
in

g
a

be
tt

er
jo

b
of

ho
ld

in
g

on
to

th
os

e
ki

ds
,a

cc
or

di
ng

to
si

gh
t-

lin
e

in
st

it
ut

e,
a

gr
ou

p
th

at
st

ud
ie

s
pe

op
le

in
se

at
tl

e.

2
cr

it
ic

s
of

th
e

pr
og

ra
m

sa
y

th
e

ei
se

nh
ow

er
de

po
rt

at
io

n
pr

og
ra

m
’s

co
nd

it
io

ns
w

er
e

an
yt

hi
ng

bu
t

hu
m

an
e.

cr
it

ic
s

of
th

e
pr

og
ra

m
sa

y
th

e
ns

a
op

er
at

io
n

pr
og

ra
m

’s
co

nd
iti

on
s’

s
co

nd
it

io
ns

w
er

e
an

yt
hi

ng
.

so
m

e
su

pp
or

te
rs

of
th

e
pr

og
ra

m
sa

y
th

e
ei

se
nh

ow
er

sc
ho

ol
pr

o-
gr

am
’s

ru
le

s
w

er
e

an
yt

hi
ng

bu
t

fo
r

ch
ild

re
n.

#
In

fo
rm

al
In

p
u
t

M
a
sk

er
o
r
eo

3
te

ll
hi

m
,

an
d

it
w

ou
ld

n’
t

se
em

ps
yc

ho
cu

z
u

ha
ve

kn
o

ea
ch

ot
he

r
fo

r
a

lo
ng

ti
m

e

It
w

ou
ld

n’
t

se
em

ps
yc

ho
cu

z
u

ha
ve

kn
o

ea
ch

ot
he

r
fo

r
a

lo
ng

ti
m

e

Te
ll

hi
m

,a
nd

it
w
ill

no
t

ev
en

se
em

aw
kw

ar
d

yo
u

tw
o

ha
ve

kn
ow

n
ea

ch
ot

he
r

fo
r

a
lo

ng
ti

m
e

4
In

te
lle

ct
-a

ch
ic

k
w

it
h

br
ai

ns
is

ju
st

se
xy

!
In

te
lle

ct
-

is
ju

st
se

xy
!

I
th

in
k

a
w
om

an
en

-
do

w
ed

w
it

h
br

ai
ns

is
ju

st
se

xy
!

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 136

Then we explore human-in-the-loop generation, where a user

selects a phrase to be replaced; based on which oreo conducts

the revision. We find that this interactive generation can help

oreo conduct better revision. The examples are demonstrated

in Table 5.6. When a user specifies an accurate span, oreo

can correctly revise the sentence to a former tone. For example,

oreo failed to automatically detect the unmatched parentheses

in Example 5, but it correctly edits the random punctuation after

the user points it out. Additionally, we also select some imperfect

outputs from oreo. Based on its own system outputs, we can

obtain better rewrites by explicitly providing spans to be edited.

5.5.4 Inference Efficiency

An obvious concern of oreo is the inference efficiency, given

that it updates the hidden states in a large Transformer on the

fly and conducts revision in multiple iterations. Therefore, we

report the inference speed here. For text formalization, it takes an

average of 0.12 second to revise a sentence in one iteration in oreo

and 4.18 seconds in Masker. We argue that this is acceptable

given training in oreo is simple and time-saving. Moreover,

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 137

Table 5.6: Examples of human-in-the-loop. Input sentences are edited in
multiple iterations. The underlined texts are selected span-to-edit. Orange
indicates proposed phrasal replacement.

informal: I’m just looking for the girl who wants that time with me
oreo: I am not just looking for the girl who wants that time with me
1st Edit: I am still looking for the girl who wants that time with me
2nd Edit: I am still looking for the girl who wants to spend time with me

informal: Then if he still doesn’t like you, then move on.
oreo: Then if he still does not not like you, then move on.
1st Edit: Then if he still does not not like you, then move on.
2nd Edit: Then if he still does not appear to like you, then move on.
3rd Edit: However, if he still does not appear to like you, then move on.
4th Edit: However, if he still does not appear to like you, you should move on.

informal: Maybe your young, I don’t know.
oreo: Maybe your young, I do not really know.
1st Edit: Maybe your young, I do not really know.
2nd Edit: Maybe you are young, I do not really know.
3rd Edit: Maybe you are young, I do not know your age.

informal: No matter what he says, Action speaks louder then words
oreo: No matter what he says, be patient!
1st Edit: No matter what he says, action speaks louder than verbal words

informal: (even if he is rich, dont sell ur self.
oreo: (even if he is rich, be your own self.
1st Edit: (even if he is rich, do not sell ur self.
2nd Edit: even if he is rich, do not sell ur self.
3rd Edit: even if he is rich, do not sell yourself to him.

informal: I haven’t tried it yet, but I am still trying to get up the nerve.
oreo: I have not even tried it yet, but I am still trying to get up the nerve.
1st Edit:I have not even tried it yet, but I am still trying to get up the nerve.
2nd Edit: I have not even tried it yet, but I am still trying to get up the courage.
3rd Edit: I have not even tried it yet, but I am still trying to find the strength courage.
4th Edit: I have not even tried it yet, but I am still trying to find the courage.

informal: Then see if shes open for a dinner & a movie.
oreo: Then see if she will accompany you for a dinner or perhaps a movie.
1st Edit: Inquire her if she will accompany you for a dinner or perhaps a movie.

informal: The same guy you wanna be in a relationship with?
oreo: The same guy you want to be in a relationship with?
1st Edit: The very same guy you want to be in a relationship with?
2nd Edit: Is this the same guy you want to be in a relationship with?
3rd Edit: Is this the same person that you want to be in a relationship with?

informal: if he really didn’t like her and did like you, then he would have already dumped her for you.
oreo: If he really did not like her and did like you, then he would have already dumped her for you.
1st Edit: if he really did not like her and did like you, then he would have already left her for you.

to further reduce the inference duration, we can employ oreo

to construct pseudo-parallel datasets, and learn a conventional

CHAPTER 5. UNSUPERVISED ITERATIVE TEXT REVISION 138

sequence generation model as in [83].

5.6 Summary

In this chapter, we propose a new method for text revision with

iterative in-place span replacement. With simple fine-tuning meth-

ods, the hidden states of RoBERTa can be optimized towards

the target attribute on the fly. Both the automatic evaluation

and the human evaluation demonstrate the effectiveness of the

proposed method in real-world applications, text simplification

and text formalization. In the future, we would like to apply this

method to more challenging attributes, e.g. modifying syntax for

paraphrasing [169] and question generation [180, 181].

2 End of chapter.

Chapter 6

Conclusion and Future Work

This chapter begins with a summary of the contributions of this

thesis, providing an overview of the principal findings. Then we

present a discussion of potential research directions in the field of

controllable text generation.

6.1 Conclusion

The recent advancement of deep learning methodologies [31] has

substantially elevated the capabilities of text generation tech-

niques [44, 45]. Consequently, the emergence of controllable text

generation presents itself as an innovative and noteworthy challenge

within the research community. The ability to manipulate the at-

tributes of generated text is crucial for many NLP applications and

139

CHAPTER 6. CONCLUSION AND FUTURE WORK 140

has the potential to impact various industries and domains. In this

thesis, we investigate the regulation diverse textual attributes in

neural controllable text generation, ranging from semantic control

to lexicon manipulation.

In Chapter 3, we focus on the semantic fidelity in neural text

generation in a supervised setting. We undertake the study of

semantic control within the scope of question generation, which

necessitates a high degree of semantic relevance between the input

and output text. In our study, by separately extracting and

encoding the answer-relevant structured text, we can steer the

generation system to focus on the answer-relevant context and

produce to the point question.

In Chapter 4 and Chapter 5, we explore the control of multi-

ple textual attributes in an unsupervised setting, which is more

challenging. In Chapter 4, we proposed a generalized search-

and-learning framework. The empirical study is conducted to

investigate the control of lexical diversity in the context of unsu-

pervised paraphrasing and the transduction of formality style in

text formalization. Attribute transduction is performed in token-

level in the initial search stage. Subsequently, in Chapter 5, we

CHAPTER 6. CONCLUSION AND FUTURE WORK 141

propose a novel unsupervised approach to CTG via phrasal-level

edition. Two major control factors, formality and simplicity, are

involved in this study. We conduct experiments in the tasks of

text formalization and text simplification. Within our study, the

proposed unsupervised solution achieves comparable results in

the tasks of paraphrase generation and text simplification, and

surpasses the baseline methods in text formalization. Notably, our

unsupervised solution significantly reduces the need for labeled

data, making it a resource-efficient option.

6.2 Future Work

The innovation of deep neural networks, from RNN-based language

model to pretrained large-scale language model, has continuously

boosted the advance of text generation. Nonetheless, due to the

intrinsic black-box nature of neural models, the investigation of

controlling the generation procedure to yield text with desired

attributes is still quite challenging yet important. In addition

to the contributions presented above, this section explores some

intriguing research directions related to NCTG.

CHAPTER 6. CONCLUSION AND FUTURE WORK 142

6.2.1 Exploring Structured Control Codes

In the the preceding chapters, the exploration of semantic fidelity,

formality and simplicity control is conducted in the context of

unstructured natural text. Nevertheless, in neural text generation,

there is large portion of tasks encountering the structured data as

input, i.e., data-to-text generation.

Data-to-text generation takes in structured data to generate text

that is the verbalization of the input [182], such as graph [183, 184]

and table [185, 186]. In addition to generating contents that

adequately describes the input, several other challenges arise due to

the structural organization of input data. The first challenge is the

content selection, which primarily involves filtering out redundant

information from the input. Another challenge is content planning,

where the generation system should be capable of organizing the

structure of predicted text [182]. It is worthwhile to explore the

task of text generation with structured control codes.

6.2.2 Continual Learning for Incremental Control Codes

The preliminary chapters investigate various different control codes

of text. To enforce the generation model to produce text that

CHAPTER 6. CONCLUSION AND FUTURE WORK 143

satisfies diverse control codes, most existing approaches propose

separate models for each text control factor [83, 187]. However, this

might result in inference latency and large memory consumption

during practical deployment. Although some efforts have been

made to develop a single generation model capable of manipulating

multiple styles simultaneously [188, 189], these approaches are

limited to the control factors that have been explicitly provided

before training. When new control factors are introduced, due to

the catastrophic forgetting [190] of neural models, the generation

model needs to undergo full parameter update. This often results in

large consumption of computational resources. In this situation, a

continual learning strategy that can support the control of emerging

attributes while circumventing the multiple revisiting of previous

training data is of great necessity.

2 End of chapter.

Publications During Ph.D. Study

1. Jingjing Li, Yifan Gao, Lidong Bing, Irwin King, Michael

R. Lyu, Improving Question Generation With to the Point

Context, in Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th Inter-

national Joint Conference on Natural Language Processing

(EMNLP 2019), pages 3216-3226, November 3-7, 2019.

2. Jingjing Li, Zichao Li, Lili Mou, Xin Jiang, Michael R. Lyu,

and Irwin King. Unsupervised Text Generation by Learning

from Search, in Advances in Neural Information Processing

Systems (NeurIPS 2020), volume 33, pages 10820–10831, 2020.

3. Yifan Gao, Chien-Sheng Wu, Jingjing Li, Shafiq Joty, Steven

C.H. Hoi, Caiming Xiong, Irwin King, Michael R. Lyu, Dis-

cern: Discourse-Aware Entailment Reasoning Network for

Conversational Machine Reading, in Proceedings of the 2020

144

CHAPTER 6. CONCLUSION AND FUTURE WORK 145

Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP 2020), pages 2439-2449, November 16-20,

2020.

4. Jingjing Li, Zichao Li, Tao Ge, Irwin King, and Michael R.

Lyu. Text Revision by on-the-fly Representation Optimization,

in Proceedings of the 36th AAAI Conference on Artificial

Intelligence (AAAI 2022), volume 36, pages 10956–10964,

June, 2022.

5. Xin Sun, Tao Ge, Shuming Ma, Jingjing Li, Furu Wei, and

Houfeng Wang. A Unified Strategy for Multilingual Gram-

matical Error Correction with Pre-trained Cross-lingual Lan-

guage Model, in Proceedings of the Thirty-First International

Joint Conference on Artificial Intelligence (IJCAI-22), pages

4367–4374, 2022.

6. Yueen Ma, Zixing Song, Xuming Hu, Jingjing Li, Yifei

Zhang, Irwin King. Graph Component Contrastive Learning

for Concept Relatedness Estimation, in Proceedings of the

37th AAAI Conference on Artificial Intelligence (AAAI 2023),

February 7-14, 2023.

CHAPTER 6. CONCLUSION AND FUTURE WORK 146

Note: This thesis presents the work of paper [1, 2, 4].

Bibliography

[1] John Wieting and Kevin Gimpel. Paranmt-50m: Pushing

the limits of paraphrastic sentence embeddings with millions

of machine translations. arXiv preprint arXiv:1711.05732,

2017.

[2] Xinya Du, Junru Shao, and Claire Cardie. Learning to ask:

Neural question generation for reading comprehension. In

Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers),

pages 1342–1352, Vancouver, Canada, July 2017. Association

for Computational Linguistics. doi: 10.18653/v1/P17-1123.

URL https://www.aclweb.org/anthology/P17-1123.

[3] Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo

Bao, and Ming Zhou. Neural question generation from text:

A preliminary study. In Proceedings of the 6th CCF Inter-

147

https://www.aclweb.org/anthology/P17-1123

BIBLIOGRAPHY 148

national Conference on Natural Language Processing and

Chinese Computing (NLPCC), pages 662–671, Dalian, China,

November 2017.

[4] Ehud Reiter and Robert Dale. Building applied natural

language generation systems. Natural Language Engineering,

3(1):57–87, 1997.

[5] Alexander M. Rush, Sumit Chopra, and Jason Weston. A

neural attention model for abstractive sentence summariza-

tion. In EMNLP, 2015.

[6] Xingxing Zhang and Mirella Lapata. Sentence simplification

with deep reinforcement learning. In Proceedings of the

2017 Conference on Empirical Methods in Natural Language

Processing, pages 584–594, 2017.

[7] Tong Niu and Mohit Bansal. Polite dialogue generation

without parallel data. TACL, 6:373–389, 2018.

[8] Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang, and

Daniel Gildea. Leveraging context information for natural

question generation. In Proceedings of the 2018 Conference of

the North American Chapter of the Association for Compu-

BIBLIOGRAPHY 149

tational Linguistics: Human Language Technologies, Volume

2 (Short Papers), pages 569–574, New Orleans, Louisiana,

June 2018. Association for Computational Linguistics. doi:

10.18653/v1/N18-2090.

[9] Emily Sheng, Kai-Wei Chang, P. Natarajan, and Nanyun

Peng. Societal biases in language generation: Progress and

challenges. In Annual Meeting of the Association for Com-

putational Linguistics, 2021.

[10] Ruibo Liu, Chenyan Jia, Jason Wei, Guangxuan Xu, Lili

Wang, and Soroush Vosoughi. Mitigating political bias in

language models through reinforced calibration. In AAAI

Conference on Artificial Intelligence, 2021.

[11] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin

Choi, and Noah A. Smith. Realtoxicityprompts: Evaluat-

ing neural toxic degeneration in language models. ArXiv,

abs/2009.11462, 2020.

[12] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Am-

jad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya

Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:

BIBLIOGRAPHY 150

Open foundation and fine-tuned chat models. arXiv preprint

arXiv:2307.09288, 2023.

[13] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois,

Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B

Hashimoto. Alpaca: A strong, replicable instruction-

following model. Stanford Center for Research on Founda-

tion Models. https://crfm. stanford. edu/2023/03/13/alpaca.

html, 3(6):7, 2023.

[14] Jessica Ficler and Yoav Goldberg. Controlling linguistic style

aspects in neural language generation. In Proceedings of the

Workshop on Stylistic Variation, pages 94–104, Copenhagen,

Denmark, September 2017. Association for Computational

Linguistics. doi: 10.18653/v1/W17-4912. URL https://

aclanthology.org/W17-4912.

[15] Douglas Biber and Susan Conrad. Register, genre, and style.

Cambridge University Press, 2019.

[16] Kate G Niederhoffer and James W Pennebaker. Linguistic

style matching in social interaction. Journal of Language

and Social Psychology, 21(4):337–360, 2002.

https://aclanthology.org/W17-4912
https://aclanthology.org/W17-4912

BIBLIOGRAPHY 151

[17] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdi-

nov, and Eric P Xing. Toward controlled generation of text.

In ICML, pages 1587–1596. PMLR, 2017.

[18] Hongyu Gong, Suma Bhat, Lingfei Wu, JinJun Xiong, and

Wen-Mei Hwu. Reinforcement learning based text style

transfer without parallel training corpus. In Proceedings of

the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), pages 3168–

3180, 2019.

[19] Rui Zhang, Zhenyu Wang, Kai Yin, and Zhenhua Huang.

Emotional text generation based on cross-domain sentiment

transfer. IEEE Access, 7:100081–100089, 2019.

[20] Juncen Li, Robin Jia, He He, and Percy Liang. Delete,

retrieve, generate: A simple approach to sentiment and style

transfer. In NAACL-HLT, pages 1865–1874, 2018.

[21] Sudha Rao and Joel R. Tetreault. Dear sir or madam, may i

introduce the gyafc dataset: Corpus, benchmarks and metrics

for formality style transfer. In NAACL-HLT, 2018.

BIBLIOGRAPHY 152

[22] Cicero dos Santos, Igor Melnyk, and Inkit Padhi. Fighting

offensive language on social media with unsupervised text

style transfer. In ACL, pages 189–194, 2018.

[23] Yunli Wang, Yu Wu, Lili Mou, Zhoujun Li, and Wen-Han

Chao. Harnessing pre-trained neural networks with rules for

formality style transfer. In EMNLP/IJCNLP, 2019.

[24] Xinyuan Zhang, Yi Yang, Siyang Yuan, Dinghan Shen, and

Lawrence Carin. Syntax-infused variational autoencoder for

text generation. In ACL, pages 2069–2078, 2019.

[25] Ashutosh Kumar, Kabir Ahuja, Raghuram Vadapalli, and

Partha Talukdar. Syntax-guided controlled generation of

paraphrases. arXiv preprint arXiv:2005.08417, 2020.

[26] Pierre-Emmanuel Mazaré, Samuel Humeau, Martin Raison,

and Antoine Bordes. Training millions of personalized dia-

logue agents. In Conference on Empirical Methods in Natural

Language Processing, 2018.

[27] Wenlin Wang, Zhe Gan, Hongteng Xu, Ruiyi Zhang, Guoyin

Wang, Dinghan Shen, Changyou Chen, and Lawrence Carin.

BIBLIOGRAPHY 153

Topic-guided variational auto-encoder for text generation. In

NAACL, pages 166–177, 2019.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural Computation, 9:1735–1780, 1997.

[29] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent

neural networks. IEEE transactions on Signal Processing,

45(11):2673–2681, 1997.

[30] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. Learning phrase representations using rnn

encoder–decoder for statistical machine translation. 2014.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-

eit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NIPS, pages 5998–

6008, 2017.

[32] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor

Darrell, and Kate Saenko. Object hallucination in image

captioning. arXiv preprint arXiv:1809.02156, 2018.

BIBLIOGRAPHY 154

[33] Oriol Vinyals and Quoc Le. A neural conversational model.

arXiv preprint arXiv:1506.05869, 2015.

[34] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M Ziegler,

Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei,

and Paul Christiano. Learning to summarize from human

feedback. arXiv e-prints, 2020.

[35] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence

to sequence learning with neural networks. In Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.

Weinberger, editors, Advances in Neural Information

Processing Systems 27, pages 3104–3112. Curran Asso-

ciates, Inc., 2014. URL http://papers.nips.cc/paper/

5346-sequence-to-sequence-learning-with-neural-networks.

pdf.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-

eit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NIPS, 2017.

[37] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk

Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

BIBLIOGRAPHY 155

Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,

et al. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiv:2010.11929,

2020.

[38] Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer:

a no-recurrence sequence-to-sequence model for speech recog-

nition. In 2018 IEEE international conference on acoustics,

speech and signal processing (ICASSP), pages 5884–5888.

IEEE, 2018.

[39] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473, 2014.

[40] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to se-

quence learning with neural networks. ArXiv, abs/1409.3215,

2014.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

BIBLIOGRAPHY 156

[42] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B

Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec

Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for

neural language models. arXiv preprint arXiv:2001.08361,

2020.

[43] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt

Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-

moyer. Deep contextualized word representations. CoRR,

abs/1802.05365, 2018. URL http://arxiv.org/abs/1802.

05365.

[44] Alec Radford, Karthik Narasimhan, Tim Salimans,

and Ilya Sutskever. Improving language understanding

by generative pre-training. URL https://s3-us-west-

2.amazonaws.com/openai-assets/research-covers/language-

unsupervised/language_understanding_paper.pdf, 2018.

[45] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario

Amodei, and Ilya Sutskever. Language models are unsuper-

vised multitask learners. 2019.

[46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365

BIBLIOGRAPHY 157

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[47] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar

Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-

moyer, and Veselin Stoyanov. Roberta: A robustly optimized

bert pretraining approach. arXiv preprint arXiv:1907.11692,

2019.

[48] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,

Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and

Peter J Liu. Exploring the limits of transfer learning with

a unified text-to-text transformer. The Journal of Machine

Learning Research, 21(1):5485–5551, 2020.

[49] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,

Russ R Salakhutdinov, and Quoc V Le. Xlnet: General-

ized autoregressive pretraining for language understanding.

Advances in neural information processing systems, 32, 2019.

[50] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-

jad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and

BIBLIOGRAPHY 158

Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-

training for natural language generation, translation, and

comprehension. arXiv preprint arXiv:1910.13461, 2019.

[51] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,

Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-

guage models are few-shot learners. Advances in neural

information processing systems, 33:1877–1901, 2020.

[52] Ruslan Mitkov and Le An Ha. Computer-aided generation

of multiple-choice tests. International Conference on Natu-

ral Language Processing and Knowledge Engineering, 2003.

Proceedings. 2003, pages 15–, 2003.

[53] Vasile Rus, Brendan Wyse, Paul Piwek, Mihai Lintean, Svet-

lana Stoyanchev, and Christian Moldovan. The first question

generation shared task evaluation challenge. In Proceed-

ings of the 6th International Natural Language Generation

Conference, 2010. URL https://www.aclweb.org/anthology/

W10-4234.

[54] Michael Heilman and Noah A. Smith. Good question! sta-

https://www.aclweb.org/anthology/W10-4234
https://www.aclweb.org/anthology/W10-4234

BIBLIOGRAPHY 159

tistical ranking for question generation. In Human Lan-

guage Technologies: The 2010 Annual Conference of the

North American Chapter of the Association for Computa-

tional Linguistics, pages 609–617, Los Angeles, California,

June 2010. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/N10-1086.

[55] Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessandro Sor-

doni, Philip Bachman, Saizheng Zhang, Sandeep Subrama-

nian, and Adam Trischler. Machine comprehension by text-

to-text neural question generation. In Proceedings of the

2nd Workshop on Representation Learning for NLP, pages

15–25, Vancouver, Canada, August 2017. Association for

Computational Linguistics. doi: 10.18653/v1/W17-2603.

URL https://www.aclweb.org/anthology/W17-2603.

[56] Yanghoon Kim, Hwanhee Lee, Joongbo Shin, and Kyomin

Jung. Improving neural question generation using answer

separation. In AAAI Conference on Artificial Intelligence,

2019.

[57] Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, and William

https://www.aclweb.org/anthology/N10-1086
https://www.aclweb.org/anthology/W17-2603

BIBLIOGRAPHY 160

Cohen. Semi-supervised QA with generative domain-adaptive

nets. In Proceedings of the 55th Annual Meeting of the As-

sociation for Computational Linguistics (Volume 1: Long

Papers), pages 1040–1050, Vancouver, Canada, July 2017.

Association for Computational Linguistics. doi: 10.18653/

v1/P17-1096. URL https://www.aclweb.org/anthology/

P17-1096.

[58] Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. Faith-

ful to the original: Fact aware neural abstractive summa-

rization. In AAAI Conference on Artificial Intelligence,

2018. URL https://aaai.org/ocs/index.php/AAAI/AAAI18/

paper/view/16121.

[59] Iulian Vlad Serban, Alberto García-Durán, Caglar Gulcehre,

Sungjin Ahn, Sarath Chandar, Aaron Courville, and Yoshua

Bengio. Generating factoid questions with recurrent neu-

ral networks: The 30M factoid question-answer corpus. In

Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers),

pages 588–598, Berlin, Germany, August 2016. Association

https://www.aclweb.org/anthology/P17-1096
https://www.aclweb.org/anthology/P17-1096
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16121
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16121

BIBLIOGRAPHY 161

for Computational Linguistics. doi: 10.18653/v1/P16-1056.

URL https://www.aclweb.org/anthology/P16-1056.

[60] Nitin Madnani and B. Dorr. Generating phrasal and senten-

tial paraphrases: A survey of data-driven methods. Compu-

tational Linguistics, 36:341–387, 2010.

[61] Kathleen R McKeown. Paraphrasing questions using given

and new information. Computational Linguistics, 9(1):1–10,

1983.

[62] Regina Barzilay and Lillian Lee. Learning to paraphrase: An

unsupervised approach using multiple-sequence alignment.

arXiv preprint cs/0304006, 2003.

[63] Aaditya Prakash, Sadid A. Hasan, Kathy Lee, Vivek Datla,

Ashequl Qadir, Joey Liu, and Oladimeji Farri. Neural para-

phrase generation with stacked residual LSTM networks. In

COLING, pages 2923–2934, 2016.

[64] Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li. Paraphrase

generation with deep reinforcement learning. In ACL, pages

3865–3878, 2017.

https://www.aclweb.org/anthology/P16-1056

BIBLIOGRAPHY 162

[65] Lihua Qian, Lin Qiu, Weinan Zhang, Xin Jiang, and Yong

Yu. Exploring diverse expressions for paraphrase generation.

In EMNLP-IJCNLP, pages 3164–3173, 2019.

[66] Qian Yang, Dinghan Shen, Yong Cheng, Wenlin Wang,

Guoyin Wang, Lawrence Carin, et al. An end-to-end gen-

erative architecture for paraphrase generation. In EMNLP-

IJCNLP, pages 3123–3133, 2019.

[67] Wanyu Du and Yangfeng Ji. An empirical comparison on

imitation learning and reinforcement learning for paraphrase

generation. In EMNLP-IJCNLP, pages 6014–6020, 2019.

[68] Shiqi Zhao, Haifeng Wang, Xiang Lan, and Ting Liu. Lever-

aging multiple MT engines for paraphrase generation. In

COLING, pages 1326–1334, 2010.

[69] Jonathan Mallinson, Rico Sennrich, and Mirella Lapata.

Paraphrasing revisited with neural machine translation. In

ACL, pages 881–893, 2017.

[70] Yinpeng Guo, Yi Liao, Xin Jiang, Qing Zhang, Yibo Zhang,

and Qun Liu. Zero-shot paraphrase generation with multi-

BIBLIOGRAPHY 163

lingual language models. arXiv preprint arXiv:1911.03597,

2019.

[71] Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou, Olga

Vechtomova, Xinyu Dai, and Jiajun Chen. Generating sen-

tences from disentangled syntactic and semantic spaces. In

ACL, pages 6008–6019, 2019.

[72] Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei Li. Cgmh:

Constrained sentence generation by metropolis-hastings sam-

pling. In AAAI, volume 33, pages 6834–6842, 2019.

[73] AB Siddique, Samet Oymak, and Vagelis Hristidis. Unsu-

pervised paraphrasing via deep reinforcement learning. In

SIGKDD, pages 1800–1809, 2020.

[74] Xianggen Liu, Lili Mou, Fandong Meng, Hao Zhou, Jie Zhou,

and Sen Song. Unsupervised paraphrasing by simulated

annealing. ArXiv, abs/1909.03588, 2019.

[75] Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and Rada

Mihalcea. Deep Learning for Text Style Transfer: A Survey.

Computational Linguistics, 48(1):155–205, 04 2022.

BIBLIOGRAPHY 164

[76] Aman Madaan, Amrith Rajagopal Setlur, Tanmay Parekh,

Barnabás Póczos, Graham Neubig, Yiming Yang, Ruslan

Salakhutdinov, Alan W. Black, and Shrimai Prabhumoye.

Politeness transfer: A tag and generate approach. In Annual

Meeting of the Association for Computational Linguistics,

2020.

[77] Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, and Colin

Cherry. Paraphrasing for style. In COLING, pages 2899–2914,

2012.

[78] Jonas Belouadi and Steffen Eger. Bygpt5: End-to-end style-

conditioned poetry generation with token-free language mod-

els. arXiv preprint arXiv:2212.10474, 2022.

[79] Peng Xu, Jackie Chi Kit Cheung, and Yanshuai Cao. On

variational learning of controllable representations for text

without supervision. In ICML, 2020.

[80] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional Bayes. arXiv preprint arXiv:1312.6114, 2013.

[81] Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi

BIBLIOGRAPHY 165

Jaakkola. Style transfer from non-parallel text by cross-

alignment. In NIPS, pages 6830–6841, 2017.

[82] Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and

Rui Yan. Style transfer in text: Exploration and evaluation.

In Thirty-Second AAAI Conference on Artificial Intelligence,

2018.

[83] Eric Malmi, Aliaksei Severyn, and Sascha Rothe. Unsuper-

vised text style transfer with masked language models. In

EMNLP, pages 8671–8680, 2020.

[84] Anubhav Jangra, Preksha Nema, and Aravindan Raghu-

veer. T-star: Truthful style transfer using amr graph as

intermediate representation, 2022.

[85] Kaize Shi, Xueyao Sun, Li He, Dingxian Wang, Qing Li, and

Guandong Xu. Amr-tst: Abstract meaning representation-

based text style transfer. In Findings of the Association

for Computational Linguistics: ACL 2023, pages 4231–4243,

2023.

[86] Zhijing Jin, Di Jin, Jonas Mueller, Nicholas Matthews, and

Enrico Santus. Imat: Unsupervised text attribute transfer

BIBLIOGRAPHY 166

via iterative matching and translation. In EMNLP-IJCNLP,

pages 3088–3100, 2019.

[87] Machel Reid and Victor Zhong. Lewis: Levenshtein edit-

ing for unsupervised text style transfer. arXiv preprint

arXiv:2105.08206, 2021.

[88] cationR. Chandrasekar. Automatic induction of rules for

text simpli. 1997.

[89] James E Hoard, Richard Wojcik, and Katherina Holzhauser.

An automated grammar and style checker for writers of

simplified english. In Computers and Writing: State of the

Art, pages 278–296. Springer, 1992.

[90] S Rebecca Thomas and Sven Anderson. Wordnet-based

lexical simplification of a document. In KONVENS, pages

80–88, 2012.

[91] Advaith Siddharthan. Syntactic simplification and text co-

hesion. Research on Language and Computation, 4:77–109,

2006.

[92] Dan Feblowitz and David Kauchak. Sentence simplification

as tree transduction. In Proceedings of the second workshop

BIBLIOGRAPHY 167

on predicting and improving text readability for target reader

populations, pages 1–10, 2013.

[93] Tong Wang, Ping Chen, John Rochford, and Jipeng Qiang.

Text simplification using neural machine translation. In

Proceedings of the AAAI Conference on Artificial Intelligence,

volume 30, 2016.

[94] Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,

and Chris Callison-Burch. Optimizing statistical machine

translation for text simplification. TACL, 4:401–415, 2016.

[95] Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and Jackie

Chi Kit Cheung. Editnts: An neural programmer-interpreter

model for sentence simplification through explicit editing. In

ACL, pages 3393–3402, 2019.

[96] Shashi Narayan and Claire Gardent. Hybrid simplification

using deep semantics and machine translation. In ACL, pages

435–445, 2014.

[97] Wei Xu, Chris Callison-Burch, and Courtney Napoles. Prob-

lems in current text simplification research: New data can

help. TACL, 3:283–297, 2015.

BIBLIOGRAPHY 168

[98] Mounica Maddela, Fernando Alva-Manchego, and Wei Xu.

Controllable text simplification with explicit paraphrasing.

arXiv preprint arXiv:2010.11004, 2020.

[99] Shashi Narayan and Claire Gardent. Unsupervised sentence

simplification using deep semantics. In INLG, pages 111–120,

2015.

[100] Sai Surya, Abhijit Mishra, Anirban Laha, Parag Jain, and

Karthik Sankaranarayanan. Unsupervised neural text sim-

plification. arXiv preprint arXiv:1810.07931, 2018.

[101] Dhruv Kumar, Lili Mou, Lukasz Golab, and Olga Vechto-

mova. Iterative edit-based unsupervised sentence simplifi-

cation. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 7918–7928.

Association for Computational Linguistics, 2020.

[102] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing

Zhu. Bleu: a method for automatic evaluation of machine

translation. In Proceedings of 40th Annual Meeting of the

Association for Computational Linguistics, pages 311–318,

Philadelphia, Pennsylvania, USA, July 2002. Association for

BIBLIOGRAPHY 169

Computational Linguistics. doi: 10.3115/1073083.1073135.

URL https://www.aclweb.org/anthology/P02-1040.

[103] Chin-Yew Lin. ROUGE: A package for automatic evaluation

of summaries. In Text Summarization Branches Out: Pro-

ceedings of the ACL-04 Workshop, pages 74–81, Barcelona,

Spain, July 2004. Association for Computational Linguistics.

URL https://www.aclweb.org/anthology/W04-1013.

[104] Alon Lavie and Abhaya Agarwal. Meteor: An automatic

metric for mt evaluation with high levels of correlation with

human judgments. In Proceedings of the second workshop on

statistical machine translation, pages 228–231, 2007.

[105] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi

Parikh. Cider: Consensus-based image description evalu-

ation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4566–4575, 2015.

[106] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Wein-

berger, and Yoav Artzi. Bertscore: Evaluating text genera-

tion with bert. ArXiv, abs/1904.09675, 2019.

[107] Thibault Sellam, Dipanjan Das, and Ankur Parikh. BLEURT:

https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/W04-1013

BIBLIOGRAPHY 170

Learning robust metrics for text generation. In Pro-

ceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, pages 7881–7892, Online,

July 2020. Association for Computational Linguistics. doi:

10.18653/v1/2020.acl-main.704. URL https://aclanthology.

org/2020.acl-main.704.

[108] Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore:

Evaluating generated text as text generation. CoRR,

abs/2106.11520, 2021. URL https://arxiv.org/abs/2106.

11520.

[109] Hong Sun and Ming Zhou. Joint learning of a dual SMT

system for paraphrase generation. In ACL, volume 2, pages

38–42, 2012.

[110] Ehud Reiter and Anja Belz. An investigation into the validity

of some metrics for automatically evaluating natural language

generation systems. Computational Linguistics, 35(4):529–

558, 2009.

[111] Ehud Reiter. A structured review of the validity of bleu.

Computational Linguistics, 44(3):393–401, 2018.

https://aclanthology.org/2020.acl-main.704
https://aclanthology.org/2020.acl-main.704
https://arxiv.org/abs/2106.11520
https://arxiv.org/abs/2106.11520

BIBLIOGRAPHY 171

[112] Jacob Cohen. A coefficient of agreement for nominal scales.

Educational and psychological measurement, 20(1):37–46,

1960.

[113] Joseph L Fleiss. Measuring nominal scale agreement among

many raters. Psychological bulletin, 76(5):378, 1971.

[114] Nasrin Mostafazadeh, Ishan Misra, Jacob Devlin, Margaret

Mitchell, Xiaodong He, and Lucy Vanderwende. Generat-

ing natural questions about an image. In Proceedings of

the 54th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers), pages 1802–

1813, Berlin, Germany, August 2016. Association for Com-

putational Linguistics. doi: 10.18653/v1/P16-1170. URL

https://www.aclweb.org/anthology/P16-1170.

[115] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and

Percy Liang. SQuAD: 100,000+ questions for machine com-

prehension of text. In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing, pages

2383–2392, Austin, Texas, November 2016. Association for

https://www.aclweb.org/anthology/P16-1170

BIBLIOGRAPHY 172

Computational Linguistics. doi: 10.18653/v1/D16-1264.

URL https://www.aclweb.org/anthology/D16-1264.

[116] Thang Luong, Hieu Pham, and Christopher D. Manning.

Effective approaches to attention-based neural machine trans-

lation. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pages 1412–1421,

Lisbon, Portugal, September 2015. Association for Com-

putational Linguistics. doi: 10.18653/v1/D15-1166. URL

https://www.aclweb.org/anthology/D15-1166.

[117] Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun Ma,

and Shi Wang. Answer-focused and position-aware neural

question generation. In Proceedings of the 2018 Confer-

ence on Empirical Methods in Natural Language Process-

ing, pages 3930–3939, Brussels, Belgium, October-November

2018. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/D18-1427.

[118] Swarnadeep Saha and Mausam. Open information extrac-

tion from conjunctive sentences. In Proceedings of the

27th International Conference on Computational Linguis-

https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D15-1166
https://www.aclweb.org/anthology/D18-1427

BIBLIOGRAPHY 173

tics, pages 2288–2299, Santa Fe, New Mexico, USA, Au-

gust 2018. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/C18-1194.

[119] Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa Ke.

Paragraph-level neural question generation with maxout

pointer and gated self-attention networks. In Proceedings

of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 3901–3910, Brussels, Belgium,

October-November 2018. Association for Computational Lin-

guistics. URL https://www.aclweb.org/anthology/D18-1424.

[120] Abigail See, Peter J. Liu, and Christopher D. Manning. Get

to the point: Summarization with pointer-generator networks.

In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers),

pages 1073–1083, Vancouver, Canada, July 2017. Association

for Computational Linguistics. doi: 10.18653/v1/P17-1099.

URL https://www.aclweb.org/anthology/P17-1099.

[121] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. Incor-

porating copying mechanism in sequence-to-sequence learn-

https://www.aclweb.org/anthology/C18-1194
https://www.aclweb.org/anthology/D18-1424
https://www.aclweb.org/anthology/P17-1099

BIBLIOGRAPHY 174

ing. In Proceedings of the 54th Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1: Long Papers),

pages 1631–1640, Berlin, Germany, August 2016. Association

for Computational Linguistics. doi: 10.18653/v1/P16-1154.

URL https://www.aclweb.org/anthology/P16-1154.

[122] Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen

Zhou, and Yoshua Bengio. Pointing the unknown words. In

Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers),

pages 140–149, Berlin, Germany, August 2016. Association

for Computational Linguistics. doi: 10.18653/v1/P16-1014.

URL https://www.aclweb.org/anthology/P16-1014.

[123] Michael Denkowski and Alon Lavie. Meteor universal: Lan-

guage specific translation evaluation for any target language.

In Proceedings of the Ninth Workshop on Statistical Ma-

chine Translation, pages 376–380, Baltimore, Maryland,

USA, June 2014. Association for Computational Linguis-

tics. doi: 10.3115/v1/W14-3348. URL https://www.aclweb.

org/anthology/W14-3348.

https://www.aclweb.org/anthology/P16-1154
https://www.aclweb.org/anthology/P16-1014
https://www.aclweb.org/anthology/W14-3348
https://www.aclweb.org/anthology/W14-3348

BIBLIOGRAPHY 175

[124] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-

tam, Saurabh Gupta, Piotr Dollár, and C. Lawrence Zitnick.

Microsoft coco captions: Data collection and evaluation

server. CoRR, abs/1504.00325, 2015.

[125] Jeffrey Pennington, Richard Socher, and Christopher Man-

ning. Glove: Global vectors for word representation. In

Proceedings of the 2014 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP), pages 1532–

1543, Doha, Qatar, October 2014. Association for Com-

putational Linguistics. doi: 10.3115/v1/D14-1162. URL

https://www.aclweb.org/anthology/D14-1162.

[126] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal

of Machine Learning Research, 15:1929–1958, 2014. URL

http://jmlr.org/papers/v15/srivastava14a.html.

[127] Xavier Glorot and Yoshua Bengio. Understanding the dif-

ficulty of training deep feedforward neural networks. In

Yee Whye Teh and Mike Titterington, editors, Proceed-

https://www.aclweb.org/anthology/D14-1162
http://jmlr.org/papers/v15/srivastava14a.html

BIBLIOGRAPHY 176

ings of the Thirteenth International Conference on Arti-

ficial Intelligence and Statistics, volume 9 of Proceedings

of Machine Learning Research, pages 249–256, Chia La-

guna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL

http://proceedings.mlr.press/v9/glorot10a.html.

[128] Yifan Gao, Lidong Bing, Wang Chen, Michael R. Lyu, and

Irwin King. Difficulty controllable generation of reading

comprehension questions. In Proceedings of the Twenty-

Eightth International Joint Conference on Artificial Intelli-

gence, IJCAI-19. International Joint Conferences on Artificial

Intelligence Organization, 8 2019.

[129] Yifan Gao, Piji Li, Irwin King, and Michael R. Lyu. In-

terconnected question generation with coreference align-

ment and conversation flow modeling. In Proceedings of

the 57th Annual Meeting of the Association for Computa-

tional Linguistics, pages 4853–4862, Florence, Italy, July

2019. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/P19-1480.

[130] Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and

http://proceedings.mlr.press/v9/glorot10a.html
https://www.aclweb.org/anthology/P19-1480

BIBLIOGRAPHY 177

Marc’Aurelio Ranzato. Unsupervised machine translation

using monolingual corpora only. In ICLR, 2018.

[131] Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic De-

noyer, and Marc’Aurelio Ranzato. Phrase-based & neural

unsupervised machine translation. In EMNLP, pages 5039–

5049, 2018.

[132] Guillaume Lample and Alexis Conneau. Cross-lingual lan-

guage model pretraining. In NeurIPS, pages 7057–7067,

2019.

[133] Sai Surya, Abhijit Mishra, Anirban Laha, Parag Jain, and

Karthik Sankaranarayanan. Unsupervised neural text sim-

plification. In ACL, pages 2058–2068, 2019.

[134] Eric Chu and Peter J Liu. MeanSum: A neural model for

unsupervised multi-document abstractive summarization. In

ICML, pages 1223–1232, 2018.

[135] Reinald Kim Amplayo and Mirella Lapata. Unsupervised

opinion summarization with noising and denoising. In ACL,

pages 1934–1945, 2020.

BIBLIOGRAPHY 178

[136] Joseph Weizenbaum. Eliza—a computer program for the

study of natural language communication between man and

machine. Communications of the ACM, 9(1):36–45, 1966.

[137] Susan W McRoy, Songsak Channarukul, and Syed S Ali.

An augmented template-based approach to text realization.

Natural Language Engineering, 9(4):381–420, 2003.

[138] Raphael Schumann, Lili Mou, Yao Lu, Olga Vechtomova,

and Katja Markert. Discrete optimization for unsupervised

sentence summarization with word-level extraction. In ACL,

2020.

[139] Geoffrey E Hinton. Training products of experts by mini-

mizing contrastive divergence. Neural Computation, 14(8):

1771–1800, 2002.

[140] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi.

Optimization by simulated annealing. Science, 220(4598):

671–680, 1983.

[141] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley.

Automatic keyword extraction from individual documents.

Text Mining: Applications and Theory, 1:1–20, 2010.

BIBLIOGRAPHY 179

[142] Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch, Ben-

jamin Van Durme, and Chris Callison-Burch. Ppdb 2.0:

Better paraphrase ranking, fine-grained entailment relations,

word embeddings, and style classification. In ACL, pages

425–430, 2015.

[143] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and

Wojciech Zaremba. Sequence level training with recurrent

neural networks. In ICLR, 2017.

[144] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Se-

qGAN: Sequence generative adversarial nets with policy

gradient. In AAAI, pages 2852–2858, 2017.

[145] David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-

nis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot,

Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.

A general reinforcement learning algorithm that masters

chess, shogi, and Go through self-play. Science, 362(6419):

1140–1144, 2018.

[146] Hal Daumé III and Daniel Marcu. Learning as search opti-

BIBLIOGRAPHY 180

mization: Approximate large margin methods for structured

prediction. In ICML, pages 169–176, 2005.

[147] Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal

Daumé III, and John Langford. Learning to search better

than your teacher. In ICML, 2015.

[148] Sam Wiseman and Alexander M. Rush. Sequence-to-sequence

learning as beam-search optimization. In EMNLP, pages

1296–1306, 2016.

[149] Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun

Liu. Bridging the gap between training and inference for

neural machine translation. In ACL, pages 4334–4343, 2019.

[150] Lifu Tu and Kevin Gimpel. Learning approximate infer-

ence networks for structured prediction. arXiv preprint

arXiv:1803.03376, 2018.

[151] Lifu Tu and Kevin Gimpel. Benchmarking approximate

inference methods for neural structured prediction. arXiv

preprint arXiv:1904.01138, 2019.

[152] Yao Fu, Yansong Feng, and John P Cunningham. Paraphrase

BIBLIOGRAPHY 181

generation with latent bag of words. In NeurIPS, pages

13623–13634, 2019.

[153] Ankush Gupta, Arvind Agarwal, Prawaan Singh, and Piyush

Rai. A deep generative framework for paraphrase generation.

In AAAI Conference on Artificial Intelligence, 2017.

[154] Ruochen Xu, Tao Ge, and Furu Wei. Formality style transfer

with hybrid textual annotations. ArXiv, abs/1903.06353,

2019.

[155] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M

Dai, Rafal Jozefowicz, and Samy Bengio. Generating sen-

tences from a continuous space. In CoNLL, pages 10–21,

2015.

[156] Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhutdinov,

and Alan W Black. Style transfer through back-translation.

arXiv preprint arXiv:1804.09000, 2018.

[157] Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang, Peng

Chen, Mu Li, Ming Zhou, and Enhong Chen. Style trans-

fer as unsupervised machine translation. arXiv preprint

arXiv:1808.07894, 2018.

BIBLIOGRAPHY 182

[158] Fuli Luo, Peng Li, Jie Zhou, Pengcheng Yang, Baobao Chang,

Zhifang Sui, and Xu Sun. A dual reinforcement learning

framework for unsupervised text style transfer. In IJCAI,

pages 5116–5122, 2019.

[159] Kartik Goyal, Chris Dyer, and Taylor Berg-Kirkpatrick. An

empirical investigation of global and local normalization

for recurrent neural sequence models using a continuous

relaxation to beam search. In NAACL-HLT, pages 1724–

1733, 2019.

[160] Ran Zmigrod, Sabrina J. Mielke, Hanna Wallach, and Ryan

Cotterell. Counterfactual data augmentation for mitigating

gender stereotypes in languages with rich morphology. In

ACL, pages 1651–1661, 2019.

[161] Xin Sun, Tao Ge, Shuming Ma, Jingjing Li, Furu Wei, and

Houfeng Wang. A unified strategy for multilingual grammat-

ical error correction with pre-trained cross-lingual language

model. In Proceedings of the Thirty-First International Joint

Conference on Artificial Intelligence, IJCAI-22, pages 4367–

4374. International Joint Conferences on Artificial Intelli-

BIBLIOGRAPHY 183

gence Organization, 7 2022. doi: 10.24963/ijcai.2022/606.

URL https://doi.org/10.24963/ijcai.2022/606. Main Track.

[162] Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil

Mirylenka, and Aliaksei Severyn. Encode, tag, realize: High-

precision text editing. In Proceedings of the 2019 Conference

on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 5057–5068, 2019.

[163] Tuhin Chakrabarty, Christopher Hidey, and Smaranda Mure-

san. Entrust: Argument reframing with language models

and entailment. arXiv preprint arXiv:2103.06758, 2021.

[164] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers

the classical nlp pipeline. In ACL, pages 4593–4601, 2019.

[165] Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed

masking: Parameter-free probing for analyzing and interpret-

ing bert. In ACL, pages 4166–4176, 2020.

[166] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan:

Sequence generative adversarial nets with policy gradient. In

AAAI, volume 31, 2017.

https://doi.org/10.24963/ijcai.2022/606

BIBLIOGRAPHY 184

[167] Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai,

Rafal Jozefowicz, and Samy Bengio. Generating sentences

from a continuous space. In SIGNLL, pages 10–21, 2016.

[168] Xiang Lisa Li and Jason Eisner. Specializing word embed-

dings (for parsing) by information bottleneck. In Proceedings

of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Con-

ference on Natural Language Processing (EMNLP-IJCNLP),

pages 2744–2754, 2019.

[169] Mingda Chen, Qingming Tang, Sam Wiseman, and Kevin

Gimpel. A multi-task approach for disentangling syntax and

semantics in sentence representations. In NAACL, pages

2453–2464, 2019.

[170] Andrea Madotto, Zhaojiang Lin, Yejin Bang, and Pascale

Fung. The adapter-bot: All-in-one controllable conversa-

tional model. arXiv preprint arXiv:2008.12579, 2020.

[171] Horacio Saggion. Automatic text simplification. Synthe-

sis Lectures on Human Language Technologies, 10(1):1–137,

2017.

BIBLIOGRAPHY 185

[172] Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong,

and Wei Xu. Neural crf model for sentence alignment in text

simplification. arXiv preprint arXiv:2005.02324, 2020.

[173] Fernando Alva-Manchego, Joachim Bingel, Gustavo Paetzold,

Carolina Scarton, and Lucia Specia. Learning how to simplify

from explicit labeling of complex-simplified text pairs. In

Proceedings of the Eighth International Joint Conference

on Natural Language Processing (Volume 1: Long Papers),

pages 295–305, 2017.

[174] Christina Niklaus, Matthias Cetto, André Freitas, and

Siegfried Handschuh. Transforming complex sentences into

a semantic hierarchy. In ACL, pages 3415–3427, 2019.

[175] J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers,

and Brad S Chissom. Derivation of new readability formulas

(automated readability index, fog count and flesch reading

ease formula) for navy enlisted personnel. Technical report,

Naval Technical Training Command Millington TN Research

Branch, 1975.

[176] Jingjing Xu, Xu Sun, Qi Zeng, Xuancheng Ren, Xiaodong

BIBLIOGRAPHY 186

Zhang, Houfeng Wang, and Wenjie Li. Unpaired sentiment-

to-sentiment translation: A cycled reinforcement learning

approach. arXiv preprint arXiv:1805.05181, 2018.

[177] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing

Zhu. Bleu: a method for automatic evaluation of machine

translation. In Proceedings of the 40th annual meeting on

association for computational linguistics, pages 311–318. As-

sociation for Computational Linguistics, 2002.

[178] Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. Lever-

aging pre-trained checkpoints for sequence generation tasks.

volume 8, pages 264–280. MIT Press, 2020.

[179] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-

mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim

Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam

Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien

Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama

Drame, Quentin Lhoest, and Alexander M. Rush. Trans-

formers: State-of-the-art natural language processing. In

EMNLP: System Demonstrations, pages 38–45, Online, Oc-

BIBLIOGRAPHY 187

tober 2020. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/2020.emnlp-demos.6.

[180] Jingjing Li, Yifan Gao, Lidong Bing, Irwin King, and

Michael R. Lyu. Improving question generation with to

the point context. In Conference on Empirical Methods in

Natural Language Processing, 2019.

[181] Yifan Gao, Chien-Sheng Wu, Jingjing Li, Shafiq Joty,

Steven CH Hoi, Caiming Xiong, Irwin King, and Michael R

Lyu. Discern: Discourse-aware entailment reasoning net-

work for conversational machine reading. arXiv preprint

arXiv:2010.01838, 2020.

[182] Ratish Puduppully, Li Dong, and Mirella Lapata. Data-

to-text generation with content selection and planning. In

AAAI Conference on Artificial Intelligence, 2018.

[183] Emilie Colin, Claire Gardent, Yassine Mrabet, Shashi

Narayan, and Laura Perez-Beltrachini. The webnlg chal-

lenge: Generating text from dbpedia data. In International

Conference on Natural Language Generation, 2016.

[184] Zhuoer Wang, Marcus Collins, Nikhita Vedula, Simone Filice,

https://www.aclweb.org/anthology/2020.emnlp-demos.6

BIBLIOGRAPHY 188

Shervin Malmasi, and Oleg Rokhlenko. Faithful low-resource

data-to-text generation through cycle training. arXiv preprint

arXiv:2305.14793, 2023.

[185] Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and

Zhifang Sui. Table-to-text generation by structure-aware

seq2seq learning. 2018.

[186] Dragomir R. Radev, Rui Zhang, Amrit Rau, Abhinand

Sivaprasad, Chia-Hsuan Hsieh, Nazneen Rajani, Xiangru

Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangx-

iaokang Liu, Nadia Irwanto, Jessica Pan, Faiaz Rahman,

Ahmad Zairi Zaidi, Murori Mutuma, Yasin Tarabar, Ankit

Gupta, Tao Yu, Yi Chern Tan, Xi Victoria Lin, Caiming

Xiong, and Richard Socher. Dart: Open-domain structured

data record to text generation. ArXiv, abs/2007.02871, 2020.

[187] Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta,

Chandra Bhagavatula, Noah A. Smith, and Yejin Choi. Dex-

perts: Decoding-time controlled text generation with experts

and anti-experts. In Annual Meeting of the Association for

Computational Linguistics, 2021.

BIBLIOGRAPHY 189

[188] Guillaume Lample, Sandeep Subramanian, Eric Smith, Lu-

dovic Denoyer, Marc’Aurelio Ranzato, and Y-Lan Boureau.

Multiple-attribute text rewriting. 2018.

[189] Lei Sha and Thomas Lukasiewicz. Multi-type disentangle-

ment without adversarial training. ArXiv, abs/2012.08883,

2020.

[190] Robert M. French. Catastrophic forgetting in connectionist

networks. Trends in Cognitive Sciences, 3:128–135, 1999.

	Abstract
	Introduction
	Motivation
	Thesis Contributions
	Thesis Outline

	Background Review
	Deep Learning Fundamentals of NLP
	Language Modeling and Recurrent Neural Networks
	Sequence-to-Sequence Paradigm
	Transformer Architecture and Pretraining

	Representative Tasks Involving CTG
	Question Generation
	Paraphrase Generation
	Text Style Transfer
	Text Simplification

	Evaluation Metrics
	Automatic Evaluation
	Human Evaluation

	Semantic Fidelity in Neural Question Generation
	Introduction
	Problem Definition
	Methodology
	Answer-relevant Relation Extraction
	Proposed Framework

	Experimental Setting
	Dataset and Metrics
	Baseline Methods
	Implementation Details

	Results and Analysis
	Overall Performance
	Case Study
	Diverse Question Generation

	Summary

	Unsupervised Generation by Learning from Search
	Introduction
	Methodology
	Simulated Annealing Search
	Word-Level Cross-Entropy (CE) Learning
	Sequence-Level Maximum-Margin (MM) Learning
	Discussion: tgls vs. Reinforcement Learning and Structured Prediction

	Experimental Setting
	Datasets and Metrics
	Baseline Methods
	Implementation Details

	Results and Analysis
	Overall Performance
	Ablation Study
	Case Study
	Efficiency Analysis

	Summary

	Unsupervised Iterative Text Revision
	Introduction
	Problem Formulation
	Methodology
	Preliminary: Pre-trained TFM Models for Natural Language
	Training: Multi-task Fine-tuning
	Inference: On-the-fly Representation Optimization

	Experimental Setting
	Datasets and Metrics
	Baseline Methods
	Implementation Details

	Results and Analysis
	Overall Performance
	Ablation Study
	Case Study
	Inference Efficiency

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Exploring Structured Control Codes
	Continual Learning for Incremental Control Codes

	Publications During Ph.D. Study
	Bibliography

