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Abstract of thesis entitled:
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for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in January 2011

Regularization is a dominant theme in machine learning and
statistics due to its prominent ability in providing an intuitive
and principled tool for learning from high-dimensional data. As
large-scale learning applications become popular, developing ef-
ficient algorithms and parsimonious models become promising
and necessary for these applications. Aiming at solving large-
scale learning problems, this thesis tackles the key research prob-
lems ranging from feature selection to learning with unlabeled
data and learning data similarity representation. More specifi-
cally, we focus on the problems in three areas: online learning,
semi-supervised learning, and multiple kernel learning.

The first part of this thesis develops a novel online learning
framework to solve group lasso and multi-task feature selection.
To the best our knowledge, the proposed online learning frame-
work is the first framework for the corresponding models. The
main advantages of the online learning algorithms are that 1)
they can work on the applications where training data appear
sequentially; consequently, the training procedure can be started
at any time; 2) they can handle data up to any size with any
number of features. The efficiency of the algorithms is attained
because we derive closed-form solutions to update the weights of
the corresponding models. At each iteration, the online learning
algorithms just need O(d) time complexity and memory cost for
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group lasso, while they need O(d × Q) for multi-task feature
selection, where d is the number of dimensions and Q is the
number of tasks. Moreover, we provide theoretical analysis for
the average regret of the online learning algorithms, which also
guarantees the convergence rate of the algorithms. In addition,
we extend the online learning framework to solve several related
models which yield more sparse solutions.

The second part of this thesis addresses a general scenario of
semi-supervised learning for the binary classification problem,
where the unlabeled data may be a mixture of relevant and
irrelevant data to the target binary classification task. Without
specifying the relatedness in the unlabeled data, we develop a
novel maximum margin classifier, named the tri-class support
vector machine (3C-SVM), to seek an inductive rule that can
separate these data into three categories: −1, +1, or 0. This
is achieved by adopting a novel min loss function and following
the maximum entropy principle. For the implementation, we
approximate the problem and solve it by a standard concave-
convex procedure (CCCP). The approach is very efficient and it
is possible to solve large-scale datasets.

The third part of this thesis focuses on multiple kernel learn-
ing (MKL) to solve the insufficiency of the L1-MKL and the Lp-
MKL models. Hence, we propose a generalized MKL (GMKL)
model by introducing an elastic net-type constraint on the kernel
weights. More specifically, it is an MKL model with a constraint
on a linear combination of the L1-norm and the square of the
L2-norm on the kernel weights to seek the optimal kernel com-
bination weights. Therefore, previous MKL problems based on
the L1-norm or the L2-norm constraints can be regarded as its
special cases. Moreover, our GMKL enjoys the favorable spar-
sity property on the solution and also facilitates the grouping
effect. In addition, the optimization of our GMKL is a convex
optimization problem, where a local solution is the globally op-
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timal solution. We further derive the level method to efficiently
solve the optimization problem.
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正則化學習(regularization)由于具有能够给高维数据學習提

供直觀和准則性工具的顯著能力，因此它成為了机器学习和统计

學的研究主轴。目前大规模數據学习的应用广泛存在，为这些应

用量身度造而提出的有效算法和儉约的學習模型将很有前景，亦

十分必要。为了解决大规模數據學習的問題，本論文着重解決幾

個關鍵問題，范圍包括特征選擇，未標記數據學習和數據相似表

示的學習。具體而言，我們重點考慮三個研究方向的問題，即在

線學習(online learning)，半監督學習(semi-supervised learning)

和多核學習(multiple kernel learning，簡稱 MKL)。 

本論文的第一部分提出了一個新穎的在線學習框架。在該框

架下，我們解決了在線的組套索(group lasso)和多任務特征選擇

(multi-task feature selection)兩個問題。據我們所知，該在線學

習框架是第一個用于解決這兩個問題的在線學習框架。這里提出

的在線學習算法最大的優勢包括：1）他們可以應用于訓練數據

順序獲得的情形。在這種情況下，訓練過程都可以在任何時刻執

行；2）他們可以處理任何數目和任何維數的數據。由于我們推

導出更新相應模型權值的解析解，因此相應模型的訓練十分高
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效。對于在線組套索模型，在每次迭代中，該算法最差時間複雜

度和最差存儲成本是 )(dO 。相應的，對于在線多任務特征選擇模

型，其每次迭代的最差時間複雜度和最差存儲成本是 )( QdO × 。

其中d是數據的維數，Q是任務的個數。此外，我們亦提供了在

線學習算法的平均后悔度(regret)的理論分析。這保證在線學習算

法的收斂速度。同時，我們還對該在線學習框架進行擴展，解決

幾個相關的模型，并得到更稀疏的解。 

本論文第二部分解決了一般情況下二元分類的半監督學習

的問題。這里“一般情況”是指未標記的數據可能是由跟期望分

類的兩類數據相關或者不相關的數據組成。這里我們提出了一個

新穎的最大間隔分類器，叫三類支持向量機(tri-class support

vector machine,簡稱 3C-SVM)。該分類器在不需要指定未標記數

據跟目標分類數據是否具有關聯性的情況下，可以找到一條歸納

法則把給定數據分成-1,+1,或者 0三類。該模型是基于最大熵原

則和我們提出的一個新穎的最小損失函數實現其目的的。在算法

實現上，我們通過對該模型進行近似并用標準的凹凸過程

(concave-convex procedure，簡稱 CCCP)求解。因此，該模型的

實現十分有效，并使之可能應用于大規模數據集上。 

本論文第三部分重點在于解決目前已提出的典型的多核學

習模型的不足，即一階多核學習模型( MKL
1
−L )和 p階多核學習

模型( MKL−
p

L )的不足。因此，我們通過對核權值引入彈性網絡

型的限制，提出了一個廣義的多核學習模型(generalized MKL，
簡稱 GMKL)。具體而言，該多核學習模型在尋求最佳核權值組

合時加入對核權值的一階范式和二階范式的平方的線性加權的
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它的特殊情況。此外，我們提出的廣義多核學習模型具有喜人的

性質，即其解具有稀疏性和組效應。而且該模型的優化是一個凸

優化問題，即局部最優解即是全局最優解。我們通過用水平(level)
方法有效地解決其優化問題。 
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Chapter 1

Introduction

Machine learning is a research area that focuses on designing and
developing algorithms for computers to evolve behaviors based
on empirical data [114]. A center problem in machine learning is
to automatically learn to recognize complex patterns and make
intelligent decisions based on data. Due to their effectiveness
and good performance in practice, many machine learning algo-
rithms [67, 132, 160] have been developed and largely employed
to solving problems in applications of computer vision [70, 123],
pattern recognition [53, 144], search engines [85, 128], medical
diagnosis [75, 76], bioinformatics [67, 87, 93], etc.

Recently, as large-scale datasets become popular, building
parsimonious models and developing efficient algorithms are es-
sentially important to machine learning applications. Hence, in
this thesis, we develop several models to solve the large-scale
learning problems. The work ranges from feature selection to
learning from unlabeled data and learning data similarity repre-
sentation. More specially, we focus on the key research problems
in three areas:

Online learning: In some applications, e.g., web applications,
training data are large in volume and may appear sequen-
tially. Developing efficient algorithms to learn these kinds
of data becomes essentially important. Online learning is a
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CHAPTER 1. INTRODUCTION 2

very suitable learning paradigm for these applications due
to its well-scaling capability and good general performance.
The center problem of online learning algorithms is to make
decisions about the present based only on the knowledge of
the past when samples sequentially become available, or to
update the function weights as samples come sequentially.
How to design online learning algorithms for parsimonious
models is very critical for large-scale learning.

Semi-supervised learning: Another problem in learning large-
scale datasets lies in the deficiency of labeled data and the
abundance of unlabeled data. This is a common occurrence
in many real-world applications since labeling data is costly
and needs experts’ efforts. Meanwhile, unlabeled data are
easily collected and they are usually embedded with useful
information, e.g., data distribution or structure informa-
tion. How to utilize the unlabeled data and the precious
labeled data to seek effective rules is very important.

Multiple kernel learning: A center problem in machine learn-
ing is to design a suitable measurement to represent the
data similarity, so as to perform the tasks of classification,
regression, etc. This is especially essential in kernel ma-
chines, e.g., SVMs [144]. To achieve this goal, learning a
good kernel representation provides an effective tool. A
successful paradigm of learning kernels is to seek a combi-
nation of base kernel functions/matrices that maximizes a
generalized performance measure [137]. As the real-world
applications become more and more complicated, how to
design more accurate kernel representation for the applica-
tions is crucial.
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1.1 Contributions

This thesis aims at developing efficient and effective machine
learning algorithms for solving large-scale learning applications.
To this purpose, we focus on the challenging problems in the
above-mentioned three areas and develop several novel algo-
rithms. The main contributions of this thesis include:

∙ Proposing online learning algorithms

– In this part, we have proposed the first online learning
framework for two kinds of feature selection models.
The first one is the online learning framework to solve
the group lasso model, which can fit the data while se-
lecting the explanatory factors in a group manner [184].
The second one is the online learning framework to
solve the multi-task feature selection problem. Both
algorithms update the weights of the models as data
come sequentially.

– A main advantage of the proposed algorithms is its
efficiency due to our derived closed-form solutions in
updating the corresponding model weights. At each it-
eration, the online learning algorithms just need O(d)
time complexity and memory cost for group lasso and
need O(d×Q) complexity for multi-task feature selec-
tion, where d is the number of dimensions and Q is the
number of tasks.

– We also provide the regret bounds for the algorithms
to reveal the property of the online learning algorithms
from the theoretical perspective.

∙ Proposing a general semi-supervised learning frame-
work
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– We propose a maximum margin semi-supervised learn-
ing framework to seek an inductive rule from both la-
beled and unlabeled data. In our framework, the unla-
beled data may be a mixture of relevant and irrelevant
data. The relevant data are drawn from the same dis-
tribution as the labeled data, while the irrelevant data
are drawn from distribution(s) different from that of
the labeled data. In this setting, we develop a tri-class
support vector machine (3C-SVM) to distinguish the
irrelevant data while classifying the relevant data. By
adopting a novel min-loss function and following the
maximum entropy principle, we can achieve this goal.

– The proposed 3C-SVM generalizes several popular max-
imum margin classifiers, including standard SVMs, Semi-
supervised SVMs (S3VMs) [15, 84], and SVMs learned
from universum (U -SVMs) [161, 165]. The theoretical
analysis on the 3C-SVM has been provided to indicate
how the irrelevant data play the role of seeking a good
subspace and to explain why the 3C-SVM works.

– An efficient algorithm is proposed to solve the 3C-
SVM by the concave-convex procedure (CCCP) [185].
Hence, the 3C-SVM just needs to solve several quadratic
programming (QP) problems, which has the same worst
case time complexity as that of S3VMs [36].

∙ Proposing a sparse generalized multiple kernel learn-
ing (GMKL) model

– We propose a generalized MKL model which includes
the L1-MKL [96] and the Lp-MKL [89, 90] as its special
cases and conquers the insufficiency of these previously
proposed MKL models.

– We provide theoretical analysis of the GMKL on why
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it contains sparse solutions with the grouping effect.
This guarantees the favorite properties of the GMKL.

– Since the GMKL can be transformed into a convex-
concave optimization problem, which the global opti-
mal solution is guaranteed. We propose a very efficient
method, the level method, to solve it and analyze its
convergence rate. Consequently, the GMKL is enabled
with its potential to solve large scale datasets.

MCPM

Regularization

MTOC

MPM

LSVR

Lasso

Group
Lasso

...

OLMTFS

Sparse in sample

OLGL

Sparse in feature

SVMs

SVC SVR ...

3C-SVM GMKL

Figure 1.1: Illustration of the sparse models and our derived models.

In summary, Figure 1.1 gives an overview of the sparse models
and seven models that we have developed in recent years. In the
thesis, we only present four of them, which are especially promis-
ing for solving large-scale learning applications. They are on-
line learning for group lasso (OLGL), online learning for multi-
task feature selection (OLMTFS), the 3C-SVM, and GMKL.
For other three models, they are multi-task for one-class classi-
fication (MTOC) [179], Minimax clustering probability machine
(MCPM) [175], Localized support vector regression (LSVR) [176].
We do not include them in the thesis because they are not
sparse models or not efficient for solving large-scale applica-
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tions. The thesis also omits parts of our work in web applica-
tions [177, 178], and some other collaborated work on multiple
kernel learning [171, 172].

1.2 Notation

In order to make the notations in the whole thesis consistent,
we define the mathematical symbols in the following table.

Table 1.1: Symbols used in the thesis.

Symbol Description

K, W Bold capital letters indicate matrices.

w, � Bold small letters indicate vectors.

1m (0m) An m-dimensional vector with each element being 1 (0)

X , ℝ Calligraphic or blackboard bold fonts Letters indicate sets.

ℝn An n-dimensional real space

z ∈ ℝn
+ An n-dimensional vector with zi ≥ 0, for i = 1, . . . , n.

⊤ Transpose operator

⟨x,y⟩ℋ The inner product of x and y in the space ℋ.

d(ℋ) The dimension of the space ℋ.

X ર 0 A positive semi-definite matrix

∘ The Hadamard product or elementwise product

W⊤
i∙ ∈ ℝQ The i-th row of W consists of Q elements.

W∙j ∈ ℝd The j-th column of W consists of d elements.

∥W∥F The Frobenius norm on W, ∥W∥F =
√∑d

i=1

∑Q
j=1W

2
ij

[a]+ max{0, a}
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1.3 Scope

This thesis states and refers to the learning first as statistical
learning. Especially, the center is sparse learning under the reg-
ularization framework, which appears to be the current main
trend of learning approaches. The corresponding discussions
on our work include online learning for feature selection, semi-
supervised learning in a general unlabeled data assumption, and
multiple kernel learning for data similarity measurement.

1.4 Organization

The rest of this thesis is organized as follows.

∙ Chapter 2

We review the background of supervised learning. Espe-
cially, we focus on elaborating two families of well-known
sparse learning models under the regularization framework
and three hot topics in current machine learning area.

∙ Chapter 3

We propose the first online learning framework for group
lasso, which can fit the data and select the important ex-
planatory in a group manner. We present the algorith-
mic framework, the closed-form solutions for variant group
lasso models, and the average regret bound. Experiments
on both synthetic and real-world datasets are performed to
demonstrate the merits of the proposed learning framework.

∙ Chapter 4

We propose the first online learning framework for multi-
task feature selection models, which can select the impor-
tant features across related tasks and important tasks that
dominate the selected features. We present the algorithm
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framework, the closed-form solutions for variant group lasso
models, and the average regret bound. A series of detailed
experiments is conducted to show the merits of the pro-
posed online learning algorithms.

∙ Chapter 5

We develop a novel maximum margin classifier, named the
tri-class support vector machine (3C-SVM), to learn the
inductive rule from both labeled and unlabeled data. We
present the insight of the model in theoretical perspective,
the properties of the model, and a series of experiments to
demonstrate the advantages of the proposed 3C-SVM.

∙ Chapter 6

We propose a generalized MKL (GMKL) model by intro-
ducing an elastic net-type constraint on the kernel weights.
We provide the theoretical analysis on the properties of
GMKL and the convergence rate of the proposing level
method to solve it. Results on a series of experiments on
both synthetic and real-world datasets are reported to show
the effectiveness and efficiency of the proposed GMKL.

∙ Chapter 7

We summarize this thesis and discuss some future work.

We try to make each of these chapters self-contained. There-
fore, in several chapters, some critical contents, e.g., model def-
initions, algorithm framework, or illustrative figures, having ap-
peared in previous chapters, may be briefly reiterated.

□ End of chapter.



Chapter 2

Background

In this chapter, we first review supervised learning and the reg-
ularization framework in Sec. 2.1. After that, in Sec. 2.2, we
review two families of well-known sparse models, Lasso [155]
and Support Vector Machines (SVMs) [160], under this reg-
ularization framework. Finally, we review three key learning
paradigms, online learning, semi-supervised learning, and mul-
tiple kernel learning in Sec. 2.3, Sec. 2.4, and Sec. 2.5, respec-
tively.

2.1 Supervised Learning Under Regulariza-

tion

In supervised learning, we are given a set of N independent and
identically distributed (i.i.d.) paired data sampled from a fixed
but unknown distribution P over X × Y as

D = {(xi, yi)}Ni=1, xi ∈ X , yi ∈ Y . (2.1)

The input space X is an arbitrary set, usually X = ℝd, while
the output space Y is a small number of discrete classes for
classification problems and Y ∈ ℝ for regression problem. This
is very common in many real-world applications. For example,
in handwritten character recognition [69, 137], X is the set of

9
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images of letters and Y is the alphabet; in predicting housing
values [66], X is a set of features about the region and Y is the
median value of the house.

               

                              

               
            
                

Hypotheses 

Training Dataset 

Learning  Prediction  

Figure 2.1: Demonstration of supervised learning procedure.

The objective of supervised learning is to seek a function
f : X 7→ Y that maps inputs x ∈ X to outputs y ∈ Y while f(x)
approximates y on new samples from the distribution (x, y) ∼ P .
The diagram in Fig. 2.1 summarizes the flow of the supervised
learning setting.

The problem of supervised learning has a long history and
highly developed theory and practice; see for example [53, 67,
114, 160]. The two most important factors of variation of su-
pervised learning algorithms are the hypothesis class ℋ and the
criterion for selection of f from ℋ given the training data. A
standard criterion is to quantify what it means for f(x) to ap-
proximate y, which is measured by the expected error of the
approximation by the risk functional ℛℓ

P [f ] defined as

ℛℓ
P [f ] = E(x,y)∼P [ℓ(x, y, f(x))], (2.2)

where the loss function ℓ : X × Y × Y → ℝ+ measures the
penalty for predicting f(x) on the sample (x, y). In general,
ℓ(x, y, ŷ) = 0 if y = ŷ. Many different loss functions can be
adopted for the supervised learning. We will elaborate them in
Section 2.1.2.

Since the distribution P is generally unknown, one estimates
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the risk of f using its empirical risk ℛℓ
D, computed on the train-

ing set D by

ℛℓ
D[f ] =

1

N

N∑
i=1

ℓ(xi, yi, f(xi)), (2.3)

ℛℓ
D[f ] is called the training error or training loss.
A criterion to find f may be simply selecting a hypothesis

with the lowest risk

f ∗ = arg min
f∈ℋ

ℛℓ
D[f ].

However, this is generally not a good idea. For example, if
X = ℝ,Y = ℝ and ℋ includes all polynomials of degree N − 1,
we can always find a polynomial f that passes through all the
sample points (xi, yi), i = 1 . . . , N , assuming that all the xi are
unique. This polynomial is very likely to overfit the training
data. That is, it has zero empirical risk, but high actual risk.

The key to selecting a good hypothesis is to trade-off com-
plexity of class ℋ (e.g. the degree of the polynomial) with the
error on the training data as measured by empirical risk ℛℓ

D[f ].
For a vast majority of supervised learning algorithms, this fun-
damental balance is achieved by minimizing the weighted com-
bination of the two criteria:

f ∗ = arg min
f∈ℋ

(
R[f ] + Cℛℓ

D[f ]
)
, (2.4)

whereR[f ], is often called regularization, measuring the inherent
dimension or complexity of f , and C ≥ 0 is a trade-off param-
eter. The setting of complexity measure R[f ] can be referred
to [67, 160], and we will discuss it in the following section.

2.1.1 Regularization

The regularization framework is common in machine learning,
including Support Vector Machines [160], Logistic Regression [67],
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and Lasso [155], etc. In (2.4), the first term is the regularization
term, which measures the inherent dimension or complexity of
f . Usually, one chooses the (generalized) linear model as the
function class by taking consideration of accuracy, efficiency,
and extensibility. Typically, the decision function is defined as

f#(x) = w⊤x + b, (2.5)

where the parameter # = (w, b) consists of the function weight
w ∈ ℝd and the bias term b. They have to be learned from the
training data in (2.1).

For the linear model, a typical regularization ofR[f ] is 1
2∥w∥

2,
the square of the L2-norm on the weights. This can be traced
back to the Tikhonov regularization, or ridge regression, which
introduces the regularization on the function weight to solve
ill-posed problems in the 1940’s [159]. The standard ridge re-
gression seeks the function weights by minimizing the square
loss and the square regularization

min
w

C

N∑
i=1

(w⊤xi + b− yi)
2 +

1

2
∥w∥2 (2.6)

Many statistical learning models follow the above framework,
but with variants. For example, SVMs [160] take the same reg-
ularization as ridge regression, but adopt a different loss func-
tion, which can introduce sparse solutions in the sample level.
Lasso [67] adopts the same loss function as ridge regression, but
applies the L1-norm regularization on the weights, which can in-
troduce sparse solutions in the feature level. We will introduce
them with more details in Sec. 2.2.

2.1.2 Loss Functions

The second term in (2.4) defines the loss, which measures the
empirical risk of the model. For different problems, usually,
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different loss functions are adopted. In the following, we will
explain several famous loss functions in the literature.

The most common loss for classification is the 0/1-loss. It is
defined as

ℓ0/1(x, y, f(x)) ≡ I(yf(x) < 0), (2.7)

where I(⋅) denotes the indicator function as I(true) = 1 and
I(false) = 0. That is, when the loss in (2.3) is the 0/1-loss, it
simply defines the proportion of training samples that f mis-
classifies.

However, minimizing the 0/1-risk is generally a very difficult
problem with multiple maxima for any large class ℋ since this
loss function is discrete [53]. The standard solution is minimiz-
ing an upper bound on the 0/1-loss, ℓ̄(x, y, f(x)) ≥ ℓ(x, y, f(x)).
In addition to computational advantages of this approach, there
are statistical benefits of minimizing a convex upper bound. Lo-
gistic regression and support vector machine are two of the pri-
mary classification methods which adopt this idea, but differ
primarily in their choice of the upper bound on the training
0/1-loss. For example, in logistic regression, the loss function is
defined as a logit loss [71]

ℓlogit(x, y, f(x)) = log2 (1 + exp(−yf(x))) , (2.8)

and in support vector machine, the hinge loss is adopted [160]

ℓhinge(x, y, f(x)) = max{1− yf(x), 0}. (2.9)

Here, it should be noted that y is selected from {−1, 1}. Fig-
ure 2.2(a) illustrates the difference among these three loss func-
tions.

In regression, various loss functions can be adopted. Actu-
ally, different loss functions correspond to the noise with differ-
ent distributions [160]. For example, the standard square loss
corresponds to the Gaussian noise and it is defined as

ℓsquare(x, y, f(x)) = (y − f(x))2. (2.10)
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(a) Loss for classification
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Figure 2.2: Demonstration of loss functions. Fig. 2.2(a) illustrates the differ-
ence among the 0/1-loss, hinge loss, and the logit loss for classification. It is
noted that the logit loss is a smoothed version of the hinge loss. Fig. 2.2(b)
illustrate the difference between the square loss and the "-insensitive loss for
regression. Note that, the square loss is smoothed while the "-insensitive loss
is non-smoothed.

In support vector regression [160], the "-insensitive loss function
is adopted

ℓ"(x, y, f(x)) = max{∣y − f(x)∣ − ", 0}. (2.11)

The "-insensitive loss function does not penalize those data points
with deviation from the target value y being smaller than ", a
small constant. This loss function enjoys similar property of
the hinge loss and introduces sparse solutions. Figure 2.2(b)
illustrates the difference between the hinge loss and the square
loss.

2.2 Sparse Models

As large-scale datasets become popular, developing parsimo-
nious models contains several advantages. First, the succinct
models are easier for interpretation and more helpful for reveal-
ing the characteristics of the data. Second, they may help for
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saving the storage cost and reducing the cost in testing. Third,
they may achieve good performance due to discarding the noisy
information in the large-scale datasets.

As indicated in [58, 200], in the Lp penalty family, the es-
timates have a parsimonious property (with some components
being exactly zero) when p ≤ 1, while the optimization prob-
lem is convex only for p ≥ 1. Hence, only the lasso penalty
(p = 1) yields sparse solutions while maintaining the convex
property. Adopting L1 form is a way to yield sparse solutions
and is promising for solving large-scale datasets.

Referring back to (2.4), since it contains two terms, by adopt-
ing different L1 forms, the previously proposed sparse models
can be categorized into two families. One is the lasso model,
imposing L1-norm regularization on the function weights to in-
troduce the sparsity in the feature level. The other is support
vector machine, adopting the hinge loss to introduce the spar-
sity in the sample level. We will introduce them in the following
section.

2.2.1 Lasso and its Extensions

Lasso is a shrinkage and selection method for linear regression.
It minimizes the usual sum of squared errors, with a regularizer
on the sum of the absolute values of the function weights [155].
The definition of the lasso model corresponds to

min
w,b

N∑
i=1

(
yi − b−

d∑
j=1

wjxij

)2

+ �
d∑
j=1

∣wj∣, (2.12)

where � plays the trade-off term similar to C in SVMs. Ob-
viously, a larger � will make all function weights become zero,
while a small � can keep all function weights. As shown in
Fig. 2.3(a), the optimal solution of the lasso model is usually
hit on the corner of the contour. This parsimonious property
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helps lasso to select important features while solving the regres-
sion problem. Hence, we classify the lasso model as those sparse
models achieving sparsity in the feature level. Figure 2.3 illus-
trates the difference of the lasso solution and the ridge regression
solution in a two dimensional space. The lasso solution corre-
sponds to the first place that the contours touch the square, and
this sometimes occurs at the corner, yielding a zero weight. On
the contrary, for ridge regression, there are no corners for the
contours to hit and thus resulting in no zero solutions [155].

ŵ

(a) Lasso

ŵ

(b) Ridge regression

Figure 2.3: Illustration of solutions on the lasso and ridge regression.

Due to its parsimonious property, lasso has been successfully
applied in those applications with data in large dimensions and
small training samples, e.g., species’ prediction [200], microar-
ray data analysis [60], coeliac data analysis [168], etc. There
are also many extensions on lasso. We can categorize them into
two directions. One direction is to extend the model to improve
its learning and interpretable abilities. The other direction is to
speed up the training procedure of the lasso model. Here, we
first review those models extending the lasso idea to yield par-
simonious solutions. Typical ones include the following models:

Elastic Net: This model extends the lasso model by introduc-
ing a new regularization, a linear combination of lasso regu-
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larizer and ridge regularizer [200]. Hence, the elastic net not
only yields sparse solutions as the lasso, but also encour-
ages a grouping effect, where strongly correlated predictors
tend to be in or out of the model altogether [200].

Group Lasso: This model extends the lasso model by intro-
ducing the L1-norm on the L2-norm of the function weights
to select the explanatory factors in a group manner [184].
The original model is to solve the regression problem. Due
to its favorite properties, group lasso has been intensively
studied in statistics and machine learning in recent years [8,
131, 184]. Various discussions and work include the group
lasso for logistic regression [112], the group lasso for gen-
eralized linear models [134], the group lasso with overlap
between groups [80], and the sparse group lasso [59], etc.

Other models with similar ideas of group lasso are also pro-
posed, e.g., the Component Selection and Smoothing Op-
erator (COSSO) [103], the Composite Absolute Penalites
(CAP) approach [191], etc. The COSSO selects groups
of predictors corresponding to sets of basis functions for
smoothing splines by imposing the regularization as the
square-root of the integrated squared second derivative of
a spline function (a linear combination of the basis func-
tions) [103]. The CAP approach generalizes the group lasso
by introducing a generalized group penalty instead of L2-
norm on the function weights [191].

The original lasso model can be solved by a Quadratic Pro-
gramming (QP) problem, which can be solved by a standard
optimization toolbox. It can also be solved by the coordinate
descent method proposed in [155]. Now, we review part of the
proposed methods in speeding up the lasso model. These meth-
ods include the following:

LARs: Least Angle Regression (LAR) is a promising technique



CHAPTER 2. BACKGROUND 18

for variable selection applications, offering a nice alterna-
tive to stepwise regression. It provides an explanation for
the similar behavior of lasso and forward stagewise regres-
sion. More importantly, it provides a fast implementation
of both [54]. The algorithm exploits the fact that the lasso
contains piecewise linear solution paths, which leads to an
algorithm with the same computational cost as the full
least-square fit on the data.

Glmnet: It is a very efficient algorithm for estimation of gener-
alized linear models with convex penalties by cyclical coor-
dinate descent to compute along a regularization path [60].
This method can handle large datasets and can deal with
sparse features efficiently.

The idea of L1-regularization in statistics is the well-known
“least absolute shrinkage and selection operator”, Lasso algo-
rithm [155]. This idea also comes up in signal processing in
basis pursuit [34, 49], signal recovery from incomplete measure-
ments [24, 25, 48, 50], portfolio optimization [108], sparse prin-
ciple component analysis [23, 45, 186], computer vision [110],
and neural computation [101, 129].

2.2.2 Support Vector Machines

Support vector machines (SVMs) contain solid theoretical foun-
dations and have demonstrated outstanding performance in many
applications [160]. Here, SVMs include all models based on the
concept of the maximum margin, while SVM only indicate the
classification model.

By adopting the hinge loss (2.9) and based on the “margin”
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of confidence of f#, one can define the objective of the SVM as

min
w,b,�≥0

C
N∑
i=1

�i +
1

2
∥w∥2 (2.13)

s.t. yi(w
⊤�(xi)− b) ≥ 1− �,

�i ≥ 0, i = 1, . . . , N,

where C is a constant trading off the error and the regularization
term. Different from common linear models, the SVM adopts a
generalized linear model, which is fulfilled by a mapping func-
tion, � : Rd 7→ ℝf . Here the labels yi are either +1 or −1 for
a binary classification problem. The above convex optimization
is usually solved by the Lagrange multiplier method [22, 160].
This leads to solving its dual form as a Quadratic Programming
(QP) problem as follows:

max
�

1⊤N�−
1

2
(� ∘ y)⊤K(� ∘ y) (2.14)

s.t. y⊤� = 0

0N ≤ � ≤ C1N ,

where K defines the kernel matrix as Kij = �(xi)
⊤�(xj). Many

kernel functions can be adopted for calculating K and usually
they can be learned from the data [137].

The above QP problem can be solved efficiently by a stan-
dard QP package or by other methods, e.g., the Sequential Min-
imal Optimization (SMO) methods [124], a general active set
method [135]. The decision function of SVMs is represented as

f(x) =
N∑
i=1

yi�
★
iK(xi,x) + b★, (2.15)

where �★ is the optimal solution obtained by solving (2.14),
while b★ is obtained from the equality constraints.

There are many extensions based on the framework in (2.13).
They include
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Support Vector Regression (SVR): The SVM have been ex-
tended to solve the regression problem by adopting the
"-insensitive loss function [147]. An illustration of the "-
insensitive loss function is shown in Fig. 2.2(b). By adopt-
ing this L1 loss, SVR can also yield sparse solutions. Due
to its solid theoretical background and effectiveness, SVR
has been applied in various applications, e.g., control in
chaotic systems [111], time series prediction [116], and fi-
nancial market prediction [174, 176], etc.

�-SVM: The �-SVM has been derived so that the soft margin
has to lie in the range of zero and one [33]. The parameter
� is not controlling the trade-off between the training error
and the generalization error as that of C. Instead, it plays
two roles: It is an upper bound on the fraction of margin
errors and is the lower bound on the fraction of support
vectors [40, 138]. Hence, � is selected from the range of 0
and 1. Choosing the parameter � is easy and intuitive.

One-class SVM: There are two kinds of SVM derivatives to
solve the one-class classification problem. One idea is the
Support Vector Domain Description (SVDD): It maps the
data into a feature space and seeks a sphere with minimum
volume containing all or most of the samples in the tar-
get class [154]. When a future point falls in the ball, it is
deemed to be a “target” object; otherwise, it is an outlier
object. Another idea is the �-SVM: This model maps the
data into a feature space and aims to separate the given
data from the origin with a maximum margin. The algo-
rithm returns a decision function f taking the value +1 in
a “small” region capturing most of the data points in the
target class, and −1 elsewhere [139]. The latter approach
introduces a favorable parameter � ∈ (0, 1], which can con-
trol the fraction of outliers and the fraction of support vec-
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tors [136]. This model is termed as one-class �-SVM. The
above two approaches can be transformed and represented
in a kernel form and the SVDD also can be introduced by
the � parameter [136].

SVM for semi-supervised learning: There are two models
to extend SVM for solving the semi-supervised learning
task, transductive SVMs (TSVM) and semi-supervised sup-
port vector machine (S3VM) [36, 84]. They seek the largest
separation between labeled and unlabeled data through reg-
ularization. Differently, TSVM utilizes the labeled data and
test data to improve the prediction on the test data; while
S3VM seeks an inductive rule from the labeled and unla-
beled data with the aim of improving the performance on
unseen coming data.

Other than the introduction in the above, there are many
theoretical results with various applications in SVMs. Interested
readers can refer to the books [28, 41, 137, 144, 160, 161] and
the references therein.

It is noted that SVM and the corresponding extensions usu-
ally achieve sparsity in the sample level. That is the decision
function in (2.15) is represented by several important samples,
called support vectors, corresponding to �i ∕= 0. This helps in
reducing the cost in the test procedure. Here, we give an il-
lustration example of SVMs for classification and regression in
Fig. 2.4.

2.3 Online Learning

As large-scale and dynamic datasets become popular, online
learning algorithms become a very promising direction in ma-
chine learning. The problem of online learning algorithms is to
make decisions about the present based only on the knowledge of
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Figure 2.4: Illustration of SVM and SVR with sparsity in the sample level.

the past when samples sequentially become available. More spe-
cially, a sequence of i.i.d. samples (x1, y1), (x2, y2), . . . are drawn
to calculate a sequence of the weights #1,#2, . . .. At time t,
given the most up-to-date weight vector #t, as (xt, yt) is avail-
able, we can evaluate the loss ℓ(xt, yt,#t), and its subgradient
ut ∈ ∂ℓ(xt, yt,#t), where ∂ℓ(x, y,#) denotes the subgradient of
ℓ(x, y,#) with respect to #. The weight #t+1 is updated based
on these information, and even the information of second-order
derivatives if the loss functions are smooth.

The most widely used online algorithm is the stochastic gra-
dient descent (SGD) method [18]. The online gradient descent
algorithm updates the parameter by

#t+1 = #t − �tut, (2.16)

where �t is an appropriate stepsize. As the regularization is
included, the objective in (2.4) for an online learning algorithm
becomes

R̃(#) = R(#) + E#ℓ(x, y,#). (2.17)

When a general regularization is considered, e.g., R(#) = IC(#)+
 (#) (IC(#) is a “hard” set constraint and  (#) is a “soft” reg-
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ularization), the updating rule of SGD becomes

#t+1 = ΠC (#t − �t(ut + �t)) , (2.18)

where �t is a subgradient of  at #t, and ΠC(⋅) denotes Eu-
clidean projection onto the set C. The SGD method belongs to
the family of Stochastic approximation, which was first devel-
oped in [88, 133].

The objective of online learning algorithms is to generate a
sequence {#t}∞t=1 such that

lim
t→∞

ER̃(#t) = R̃(#★),

with reasonable convergence rate. In the above, an optimal
solution #★ to the problem (2.17) is assumed existing.

There are several directions in developing online learning al-
gorithms. One direction is to develop promising algorithms with
improving convergence rate, e.g., [68, 140, 199]. The other di-
rection is to exploit the problem structure, especially for prob-
lems with explicit regularization, to gain advantages of the mod-
els [52, 72, 97, 169]. Due to their capability of scaling well for
very large datasets and their good generalization performances
observed in practice [20, 188], online learning algorithms have
been actively developed, forming an attractive and promising
area in machine learning.

2.4 Semi-supervised Learning

Semi-supervised learning is an active research topic in recent
years. It considers the problem of learning from both labeled and
unlabeled data. There are two types of semi-supervised learning
paradigms; inductive and transductive semi-supervised learning.
Inductive semi-supervised learning works like an in-class exam,
where the questions are not known in advance, and a student
needs to prepare all possible questions [197]. Its goal is to derive
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the inductive rule for predicting future test data. On the other-
hand, transductive semi-supervised learning works like a take-
home exam, where the student knows the exam questions and
needs not prepare beyond those [197]. Its goal is to improve the
performance of the test data by training on the labeled data and
the test (unlabeled) data. Recently, many methods have been
proposed for solving semi-supervised learning problems, such
as EM with generative mixture models [120], co-training [119],
Transductive Support Vector Machines [36, 84], and graph-based
methods [6, 44, 193, 196], etc. Interested readers are referred to
the books and the survey in [28, 195, 197] and the references
therein.

2.5 Multiple Kernel Learning

Multiple kernel learning (MKL) has been an attractive topic
in machine learning recently [96, 122]. It has been regarded
as a promising technique for identifying the characteristics of
multiple data sources or feature subsets and has been applied in
a number of applications, such as genome fusion [95], splice site
detection [151], image annotation [64], etc.

The problem of multiple kernel learning is to seek a combina-
tion of base kernel functions/matrices that maximizes a gen-
eralized performance measure. Typical measures studied for
multiple kernel learning include maximum margin classification
errors [9, 96, 198], kernel target alignment [42], Fisher discrimi-
native analysis [182], etc.

There are two active research directions in multiple kernel
learning. One is to improve the efficiency of MKL algorithms.
Following the Semi-Definite Programming (SDP) algorithm pro-
posed in the seminal work of [96], in [9], a block-norm regulariza-
tion method based on Second Order Cone Programming (SOCP)
was proposed in order to solve medium-scale problems. Due to
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the high computation cost of SDP and SOCP, these methods
cannot process large-scale datasets with large number of kernels
and large number of training data. Recent studies suggest that
wrapping-based approaches [130, 151, 170] are more efficient due
to the efficiency of SVM solvers and the possible speeding-up
techniques in seeking the kernel weights. In the wrapping-based
methods, they first solve a classical SVM given the current so-
lution of kernel weights, then a specific procedure is used to
update the kernel weights. Many recent research efforts have
been focused on updating the kernel weights [151, 170, 171].

The second direction is to improve the effectiveness of MKL
models by exploring possible combinations of base kernels. The
L1-norm on the kernel weights, also known as the simplex con-
straint, is the first and mostly used constraint in MKL methods
to seek the kernel weights. The advantage of the simplex con-
straint is that it yields a sparse solution, i.e., only a few base
kernels carry significant weights. However, as argued in [89],
the simplex constraint may discard complementary information
when base kernels encode orthogonal information, and lead to
suboptimal performance. To improve the accuracy, an L2-norm
constraint on the kernel weights, known as a ball constraint, is
introduced in [89]. The L2-norm constraint can be easily ex-
tended to the Lp-norm constraint on the kernel weights. The
formulation is approximated by the second order Taylor expan-
sion and is transformed into a convex optimization problem [90].
Another possible extension is to explore the grouping property
or the mixed-norm combination, which is helpful when there are
principal components among the base kernels [81, 153]. Other
researchers also study the possibility of non-linear combination
of kernels [38, 162]. Developing MKL models with clear inter-
pretation continues to be a promising research direction.

□ End of chapter.



Chapter 3

Online Learning for Group
Lasso

3.1 Introduction

Group lasso [184], a technique of selecting key explanatory fac-
tors in a grouped manner, is an important extension of lasso [155].
It has been successfully employed in a number of applications,
such as birthweight prediction and gene finding [112, 184]. In
these applications, data may either be dominated by k-th or-
der polynomial expansions of some inputs or contain categorical
features which are usually represented as groups of dummy vari-
ables [80, 112, 134]. Due to its advantages, group lasso has been
intensively studied in statistics and machine learning [8, 184].
Extensions include the group lasso for logistic regression [112],
the group lasso for generalized linear models [134], the group
lasso with overlap between groups [80], etc.

Despite its success in the above applications, the original
group lasso model and most of its extensions have several limita-
tions which need to be addressed: (i) The models are learned by
a batch-mode training. In the training process, data are given
in advance, and then they are fed into a convex optimization
problem which minimizes the empirical loss with a regulariza-
tion that introduces the group sparsity. However, in real-world

26
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applications, the training data may appear sequentially. (ii) Ex-
isting group lasso algorithms can only handle data up to several
thousands of instances or features [112, 134, 184]. While in real-
world applications, data can be in large volume, over millions in
both of the sample size and the feature space. Previous group
lasso algorithms will fail in this situation due to their inefficiency
or poor scalability. (iii) The original group lasso can only yield
solutions with sparsity in the group level. It usually lacks the
ability in further finding the key factors in an important group.
This is a non-trivial drawback for some real-world applications,
where data may be explained by the key features within the im-
portant groups. Only seeking sparsity in the group level may
lose some useful information that is important to accurately in-
terpret the data.

To address the above problems caused by the batch-mode
training and poor data scalability, we develop a novel and very
efficient online learning algorithm for the group lasso, which
updates the learning weight vector at each iteration by a closed-
form solution based on the average of the previous subgradients.
To the best of our knowledge, our algorithm is the first online al-
gorithm for the group lasso. Our algorithm enjoys several good
properties in terms of efficiency and effectiveness. First, the
efficiency of the algorithm can be guaranteed by its low com-
plexity in both memory space and time cost: At each iteration,
the proposed algorithm only needs O(d) memory to store the
required information and the updating process has a worst-case
time complexity of O(d) in computation, where d is the number
of features. Hence, our proposed algorithm has the potential
to solve large-scale problems. Second, as the accuracy guaran-
tee, we provide the convergence rate for both the regret bound
and the bound of the learning weight vector for the proposed
algorithm.

In order to seek the group lasso with more sparsity in both
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the group level and the individual feature level, we successfully
extend the algorithm to solve the sparse group lasso problem [59]
and propose the enhanced sparse group lasso model. We further
derive closed-form solutions to update the weight vectors in both
models. Our algorithmic framework can also be easily extended
to solve the group lasso with overlap and the graph lasso prob-
lems [80]. Therefore, this suggests the good applicability of our
proposed algorithm in that it can be employed to solve a large
family of group lasso algorithms. Finally, experiments on both
synthetic and real-world datasets demonstrate the advantages
of the proposed online algorithm.

3.2 Related Work

In the following, we mainly review the related work on online
learning algorithms.

Online learning has been extensively studied in machine learn-
ing area in recent years [2, 19, 20, 39, 51, 57, 72, 141, 190, 199].
These methods can be cast into different categories. One family
of online learning algorithms is based on the criterion of maxi-
mum margin [51, 141], which repeatedly chooses the hyperplane
that correctly classifies the training samples with the maximum
margin or updates the decision boundary when a new sample
is misclassified or when its classification score does not exceed
some predefined margin. Another family of online learning al-
gorithms is solved by the stochastic gradient method [20, 199],
where the weight vector is updated based on the subgradient of
the coming sample and projected back to the constraint space
if needed. An attractive feature of stochastic gradient decent
methods is that their runtime may not depend at all on the
number of examples [19, 142]. Although various online learn-
ing algorithms have been proposed, there is no online learning
algorithm developed for the group lasso yet.
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More recently, online learning algorithms on minimizing the
summation of data fitting and L1-regularization have been pro-
posed to yield sparse solutions [12, 52, 97, 169]. These algo-
rithms are very promising in real-world applications, especially
for training large-scale datasets. In [97], a truncated gradient
method is proposed to truncate the elements of the learning
weight vector to 0 when they cross 0 after the stochastic gradient
step. Experiments on data with over 107 samples and 109 fea-
tures using about 1011 bytes are evaluated for that method [97].
In [52], a forward-backward splitting method (FOBOS) is stud-
ied for solving the regularized convex optimization problem, es-
pecially the lasso problem. The algorithm of FOBOS consists of
two steps: performing an unconstrained gradient descent step
first and then minimizing a regularization term while keeping
the solution close to the result of the first phase. In [169], the
regularized dual averaging method is proposed to solve the lasso
problem, where the learning weight is updated based on the av-
erage of all calculated subgradients of the loss functions. The
efficiency of the above methods motivates us to propose an on-
line learning algorithm for the group lasso.

3.3 Group Lasso

Given a training dataset consisting of N independent and identi-
cally distributed observations, {zi = (xi, yi)}Ni=1, where xi ∈ ℝd

is a d-dimensional vector and yi ∈ {−1, 1} for the binary classi-
fication problem or yi ∈ ℝ for the regression problem. Suppose
that these d features are divided into G groups with dg, the num-
ber in g-th group. Hence, we can rewrite xi = (x1⊤

i , . . . ,xG⊤i )⊤

with the group of variables xgi ∈ ℝdg , g = 1, . . . , G. When dg = 1
for all groups, the data do not form a group in the feature space.

The lasso algorithm [155] is a linear regression model that
selects the variables individually and it cannot find the key fac-
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tors in the grouped mode. Correspondingly, the group lasso al-
gorithm [184] is proposed to select a subset of important factors
for producing accurate prediction. Concretely, it is to seek the
weight w and the bias b in f(x) =

∑G
g=1 wg⊤xg + b, by solving

the following optimization problem:

min
w

N∑
i=1

l(w, zi) + Ω�(w), (3.1)

where w = (w1⊤, . . . ,wG⊤)⊤. In (3.1), since the bias usually
can be absorbed by the weight without penalty, we only consider
the optimization on the weight vector w.

Various loss functions can be adopted for l(⋅) and they are
usually assumed convex. They are

Squared loss: l(w, z) = 1
2(y − w⊤x)2. This loss is a stan-

dard loss which has been used in the original group lasso
algorithm [184].

Logit loss: l(w, z) = log(1+exp(−y(w⊤x))). This loss is used
for binary classification problems [112].

In (3.1), Ω�(⋅) defines the regularization on the weight. In
the group lasso, the “groupwise” L2-norm is adopted as the reg-
ularizer, i.e.,

Ω�(w) = �
G∑
g=1

√
dg∥wg∥2, (3.2)

where the trade-off constant � ≥ 0 is to balance between the
loss and the regularization term. The value

√
dg accounts for

the varying group sizes and ∥ ⋅ ∥2 is the Euclidean norm.

Remark 1. The regularizer in (3.2) makes the model act as
the lasso at the group level: a large � may make a whole group
of predictors drop out of the model. As dg = 1 for all the groups,
the group lasso is equivalent to the lasso.
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Remark 2. To introduce group sparsity, it is also possible to
impose other joint regularization on the weight, e.g., the L1,∞-
norm [127].

Remark 3. The group lasso regularizer has also been extended
to use in Multiple Kernel Learning (MKL) [8]. The consistency
analysis on the connection between the group lasso and MKL
can be referred to [8].

Here, we can further introduce sparse group lasso as that
in [59]

Ω�,r(w) = �
G∑
g=1

(√
dg∥wg∥2 + rg∥wg∥1

)
, (3.3)

where rg > 0, for g = 1, . . . , G, is a constant balancing the L2-
norm against the L1-norm in each group. By imposing L1-norm
in each group, the sparse group lasso can further yield sparse
solutions in the selected group.

To solve the optimization with the group lasso, various meth-
ods, e.g., Group LARs [184], block co-ordinate descent [112],
active set algorithm [134], have been proposed. Some batch-
mode training methods for group lasso penalties also have been
proposed, e.g., [94, 107]. Interested readers can read the above
papers and references therein.

3.4 Online Learning for Group Lasso

Inspired by recently developed first-order methods for optimiz-
ing composite functions [118] and the efficiency of the dual aver-
aging method for minimizing the L1-regularization in [169], we
propose an online learning algorithm by adopting the dual av-
eraging method to solve the group lasso, namely DA-GL. The
algorithm is outlined in Algorithm 1. In this case, data come



CHAPTER 3. ONLINE LEARNING FOR GROUP LASSO 32

Algorithm 1 Online learning algorithm for group lasso
Input:
∙ w0 ∈ ℝd, and a strongly convex function ℎ(w) with modulus 1 such

that
w0 = arg min

w
ℎ(w) ∈ arg min

w
Ω(w) . (3.4)

∙ Given const � > 0 for the regularizer.
∙ Given const 
 > 0 for the function ℎ(w).

Initialization: w1 = w0, ū0 = 0.
for t = 1, 2, 3, . . . do

1. Given the function lt, compute the subgradient on wt, ut ∈ ∂ lt.
2. Update the average subgradient ūt:

ūt =
t− 1

t
ūt−1 +

1

t
ut.

3. Calculate the next iteration wt+1:

wt+1 = arg min
w

Υ(w), (3.5)

where Υ(w) =
{
ū⊤t w+Ω�(w)+ 
√

t
ℎ(w)

}
.

end for
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in sequence. At each time, we have to make the decision of wT

based on the coming data. By defining the objective up to the
T -th step as

ST (wT ) :=
1

T

T∑
t=1

(Ω�(wT ) + lt(wT )), (3.6)

the objective of online learning for group lasso is to find wT

in the T -th step such that the objective up to the T -th step,
ST (wT ), is not much larger than minw,b ST (w), the smallest ob-
jective of any fixed decision w from hindsight. Note that in
(3.6), we have used lt(⋅) to simplify the expression of the loss
induced by the t-th coming instance.

The difference between the objective value up to the T -th step
and the smallest objective value from hindsight is the regret of
the online algorithm for group lasso. We can define the average
regret as

R̄T (w) :=
1

T

T∑
t=1

(Ω�(wt) + lt(wt))− ST (w). (3.7)

Analysis of the regret bound and convergence rate is a key prob-
lem to guarantee the online learning algorithms. We will delay
the analysis until Section 3.5.

Remark 4. The above proposed online learning for the group
lasso is derived from the regularized dual averaging method
in [169]. We can also use the FOBOS [52] to solve the online
learning for the group lasso. In this case, at each iteration, the
FOBOS method is to solve the following minimization problem:

wt+1 =arg min
w

{
1

2
∥w−(wt−�tut)∥2+�tΩ(w)

}
, (3.8)

where Ω(w) is defined as (3.2) for the group lasso or as (3.3) for
the sparse group lasso. �t is a constant term which can be set
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to O(1/
√
t). It is easy to see the difference between FOBOS for

the group lasso and our DA-GL algorithm: The FOBOS method
scales the regularization term by a diminishing stepsize �t while
our method keeps it the same.

Remark 5. In the standard group lasso, the features are as-
sumed belonging to one and only one group, i.e., the groups are
non-overlapped. If data contain overlapped groups, we can sim-
ply replicate the overlapped features as that in [80] to obtain an
enlarged dataset, then feed the data into Algorithm 1 to get the
solution of the group lasso with overlap. The procedure can be
performed similarly as that for the graph lasso.

The key to make Algorithm 1 efficiently solve the group lasso
is that the update of the weight in (3.5) should be simple. Here,
we first consider the calculation of the bias. In the batch-mode
learning for the group lasso, data are given in advance. One can
center the data to make the bias vanish. However, for online
learning algorithms, the data are not preprocessed. Hence we
have to calculate the bias. Here, since the bias is not regularized,
it can be calculated by

bt+1 = arg min
b

{
b̄tb+




2
√
t
b2

}
= −
√
t



b̄t . (3.9)

Next, let [v]+ denote max{0, v}. We can calculate the optimal
solution of wt+1 in (3.5) in a closed-form for the following three
group lasso models:

Theorem 1. Given ūt at each iteration, the optimal solution
of (3.5) is updated correspondingly as follows:

a) Group lasso: Ω�(w) is defined in (3.2) for some � > 0,
and ℎ(w) = 1

2∥w∥
2. Then, for g = 1, . . . , G, we have

wg
t+1 = −

√
t




[
1−

�
√
dg

∥ūgt∥2

]
+

⋅ ūgt . (3.10)
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b) Sparse group lasso: Ω�,r(w) is defined in (3.3) for some
� > 0 and r ≥ 0, and ℎ(w) = 1

2∥w∥
2. Then we have

wg
t+1 = −

√
t




[
1−

�
√
dg

∥cgt∥2

]
+

⋅ cgt , (3.11)

where the j-th element of cgt is calculating by

cg,jt =
[
∣ūg,jt ∣ − �rg

]
+
⋅ sign (ūg,jt ), j = 1, . . . , dg. (3.12)

c) Enhanced sparse group lasso: Ω�,r(w) is defined in (3.3)
for some � > 0 and r ≥ 0, and ℎ(w) = 1

2∥w∥
2 + �∥w∥1 with

� ≥ 0 being a sparsity-enhancing parameter. Then

wg
t+1 = −

√
t




[
1−

�
√
dg

∥c̃gt∥2

]
+

⋅ c̃gt , (3.13)

where the j-th element of c̃gt is calculating by

c̃g,jt =

[
∣ūg,jt ∣ − �rg −


�√
t

]
+

⋅ sign (ūg,jt ), j = 1, . . . , dg. (3.14)

Remark 6. Equation (3.10) indicates that the solution for the
group lasso achieves sparsity in the group level. Equation (3.11)
implies that the solution for the sparse group lasso achieves spar-
sity in both the group level and the individual feature level.
Since ∥cgt∥2 ≤ ∥ūgt∥2, the solution for the sparse group lasso can
achieve more sparsity in the group level than that in the group
lasso. Similarly, the solution of the enhanced sparse group lasso
achieves more sparsity in both the group level and the individual
feature level due to the introduced sparsity-enhancing parame-
ter.

Remark 7. Theorem 1 indicates the simplicity of updating
the weight in (3.5). It is noted that the algorithm only needs
O(d) space to store the average subgradient, the weight at each
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iteration. In addition, it is possible to adopt the efficient im-
plementation of lazy update in [52] to avoid updating the whole
weight at each time for high dimensional data.

3.5 Convergence and Regret Analysis

We have the following theorem providing the bound of the av-
erage regret and the weight:

Theorem 2. Suppose there exists an optimal solution w★
T for the

problem of (3.1) which satisfies ℎ(w★) ≤ D2 for some D > 0,
and there exists a constant L such that ∥ūT∥2

∗ ≤ L2 for all T ≥ 1.
Then we have the following properties for Algorithm 1:

a) For each T ≥ 1, the average regret is bounded by

R̄T ≤

(


√
TD2 +

L2

2


T∑
t=1

1√
t

)
/T (3.15)

b) The sequence of primal variables are bounded by

1

2
∥wT+1 −w★∥2 ≤ D2 +

L2


2
−
√
T



R̄T (3.16)

The proof of Theorem 2 can follow the framework developed
in [118]. A detailed proof can be found in [169]. The bound
in (3.15) can further be simplified as

Bound of (3.15) ≤


√
TD2 + L2

2
2
√
T

T
=

D2 + L2


√
T

.

This also indicates that the best 
 for the above bound is
attained when 
★ = L/D, which leads to the average regret
bound as R̄T ≤ 2LD/

√
T .

Hence, Algorithm 1 can achieve the optimal convergence rate
O(1/

√
T ). It would be interesting to investigate that by intro-

ducing additional assumption, whether the average regret bound
can be improve to O(log(T )/T ) as that in [68].
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The second result of Theorem 2 gives a bound for the dif-
ference between the learned weight and the optimal weight. If
R̄T > 0, then the bound can be tighter. However, the term of
R̄T in the bound cannot be simply discarded since the average
regret R̄T may be negative although this is unlikely in practical
situation.

3.6 Experiments

In the following, we present experimental results to demonstrate
the advantages of the online learning algorithms for the group
lasso models on both synthetic and real-world datasets.

We compare the following five algorithms: the batch-mode
learning algorithms for the lasso and the group lasso (GL); the
online learning algorithm by the dual averaging method on the
L1 regularization (L1-RDA) in [169]; the online learning algo-
rithm by the dual averaging method for the group lasso (DA-
GL) in (3.10) and for the sparse group lasso (DA-SGL) in (3.11).
We use the implementation of the R-package, grplasso [112] for
the batch-mode learning algorithms. The online learning algo-
rithms are implemented in Matlab. All algorithms run on a PC
with 2.13 GHz dual-core CPU.

3.6.1 Synthetic data

We test the algorithms on various synthetic data similar to those
generated in [59, 112, 184], including data with sparsity in the
group level and the individual feature level. Our proposed on-
line learning algorithms for the group lasso models consistently
reveal merits. Here, we only report the results on the data with
sparsity both in group level and individual feature level. The
goal of this experiment is to test the efficiency and effectiveness
of the proposed algorithms.
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Before generating the data, we first generate a true model.
A weight vector is in 100 dimensions consisting of ten blocks of
ten, i.e., w ∈ ℝ100, and dg = 10, for g = 1, . . . , 10. The numbers
of non-zero weights in the first six blocks of 10 are 10, 8, 6, 4, 2,
and 1, respectively, with wi = ±1, the sign chosen at random.
The weights for the rest forty features are all zero. The bias is
set to 0.

We then generate Ntr data points by letting xi = Lvi, i =
1, . . . , Ntr, where vi ∼ N (0, Id) and L is the Cholesky decom-
position of the correlation matrix, Σ. The (i, j)-th entry in the
g-th group of the correlation matrix is Σg

i,j = 0.2∣i−j∣ and zero
for entries within different groups. The target value is set by
yi = sign (w⊤xi + �), where � is a Gaussian noise with stan-
dard deviation 4.0. We randomly generate data with the size in
{25, 50, 100, 500, 1000, 5000, 104, 105}. The model is evaluated
on an additional test set of size Ntr. We repeat the experiments
50 times and average the results.

For the group lasso models, the regularization parameter � is
tested from �max ∗ {0.5, 0.2, 0.1, 0.05}, where �max is the maxi-
mum � that makes the weight in the group lasso vanish. For the
online learning algorithms, since we know the true model, we
can obtain the corresponding L and D as defined in Theorem 2
and set 
 = L/D. For the DA-SGL model, rg is set to 1 for all
groups.

Table 3.1 reports the average results on the synthetic data in
terms of accuracy and the average F1 score on the true weight.
The average F1 score is to verify whether the learned weight has
the same sign of the true model. We calculate the F1 scores of
the weight on the tasks of +1 vs. {−1, 0}, −1 vs. {+1, 0}, and
0 vs. {−1,+1} and average these three F1 scores. The larger
the F1 score, the more accurate it is in predicting the sign of
the weight.

Several observations can be drawn from the results. First,
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the accuracy values of all algorithms increase with the number
of training instrances. Among them, the DA-SGL achieves the
best accuracy, especially when the number is small. The DA-
GL achieves slightly worse results than the DA-SGL and slightly
worse results than the GL when the number is large. The two
batch-mode algorithms achieve nearly the same accuracy when
the number of training instances is large. Second, results about
the average F1 score clearly show that the DA-SGL outperforms
all the other four algorithms. With respect to F1-scores, the DA-
SGL behaves similarly as the GL when the number of training
instances is small and as the lasso when the number is large. The
DA-SGL combines both the advantages of the lasso and the GL
and is more accurate in predicting the sign of the weight. The
average F1 scores on the GL and on the DA-GL are similar.
Both models cannot achieve sparsity in the individual feature
level and therefore, the scores are lower than those of the DA-
SGL.

To see the efficiency of the online learning algorithms, we
show the running time in Figure 3.1. Since the online learning
algorithms and the batch-mode algorithms run in different pro-
gramming platforms, the time comparison is not fair and a little
bias to the R-package. However, the time cost by the online
learning algorithms is clearly less than that cost by the batch-
mode algorithms. These three online algorithms cost nearly the
same time and the L1-RDA costs less since the DA-GL and the
DA-SGL need some calculation within each group. The batch-
train algorithms cost much time in loading the data into memory
when the size of the data is large.

3.6.2 Splice Site Detection

In order to evaluate performance of the online learning algo-
rithms on real-world applications, we apply our algorithms in
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Figure 3.1: Log-log plot of computation time on training the synthetic
dataset. The batch-model algorithms suffer from much time cost in load-
ing large-scale datasets.

the task of splice site detection, which plays an important role
in gene finding. Splice sites are the regions between coding (ex-
ons) and non-coding (introns) DNA segments. The 5’ splice site
(5’ss) end of an intron is called a donor splice site and the 3’ss
ends an acceptor splice site.

We adopt the MEMset Donar dataset for the evaluation,
which is available from http://genes.mit.edu/burgelab/maxent/

ssdata/. This dataset is widely used to demonstrate the advan-
tages of the group lasso models [112, 134]. It contains a training
set of 8,415 true and 179,438 false human donor sites. An ad-
ditional test set consists of 4,208 true and 89,717 false donor
site. A sequence of a real splice site is modeled within a win-
dow over positions [−3, 5] that consists of the last three bases of
the exon and the first six bases of the intron. False splice sites

http://genes.mit.edu/burgelab/maxent/ssdata/
http://genes.mit.edu/burgelab/maxent/ssdata/
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are sequences on the DNA which match the consensus sequence
at positions 0 and 1. Removing the consensus “GT” results in
a sequence length of 7 with 4 level {A,C,G, T}; see [183] for
detailed description.

We follow the experimental setup in [112] and measure the
performance by the maximum correlation coefficient [183]. The
original training dataset is used to construct a balanced training
dataset with 5,610 true and 5,610 false donar sites and an un-
balanced validation set with 2,805 true and 59,804 false donor
sites, which exhibits the same true/false ratio as the test set. All
sites are chosen randomly without replacement such that the two
sets are disjoint. The test set remains unchanged to evaluate the
performance. The group lasso on the data with up to 2nd order
interactions and up to 4tℎ order interactions has been analyzed
in [112] and [134], respectively. As reported in [134], there is
no much improvement using higher order interaction. Hence we
construct a model consisting of all three-way and lower order
interactions, which involves 64 terms or d = 2604-dimensional
feature space.

In the algorithms, the parameter � is varied from [0.01, 10]
to produce different levels of sparsity. The parameter 
 for the
online learning algorithms is tuned on the validation set. The
element level sparsity parameter of the DA-SGL is set to

√
dg

for simplicity. Table 3.2 shows the results of the online learning
algorithms in terms of correlation coefficient vs. sparsity. We
can see that the online learning algorithms attain satisfactory
results and they are competitive with the results in [112, 183].
It is noted that the DA-SGL can achieve better performance in
all given levels of structural sparsity. In terms of computation
time, the online learning algorithms cost about 103 seconds for
each epoch and the DA-GL costs the lest time, while the batch-
train group lasso algorithm costs about quadruple of the online
learning algorithms.
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Table 3.2: Maximum correlation coefficients vs. sparsity on the MEMset
Donar dataset.

% Non-zero L1-RDA DA-GL DA-SGL

10 0.5632 0.5656 0.5656

40 0.6056 0.6071 0.6082

60 0.6481 0.6496 0.6501

80 0.6494 0.6520 0.6520

3.7 Summary

In this work, we propose a novel online learning algorithm frame-
work for the group lasso. We apply this framework for different
group lasso extensions, including the sparse group lasso and our
proposed enhanced sparse group lasso. We provide closed-form
solutions for all the group lasso models and give the convergence
rate of the average regret. We also conduct empirical evaluation
on the proposed algorithms in comparison to a recently proposed
online learning algorithm for L1-regularization minimization and
the batch-mode learning algorithms for the lasso and the group
lasso. The results clearly demonstrate the advantages of the
proposed algorithms in both efficiency and effectiveness.

There are still some remaining work: 1) to further evaluate
on the FOBOS method for the group lasso in (3.8); 2) to further
study the lazy update scheme in the FOBOS method for han-
dling high-dimensional data; 3) to derive a faster convergence
rate for the online learning algorithm by including additional
assumptions, e.g., the strongly convexity assumption; and 4) to
extend the online learning algorithm to solve other problems in
the group lasso style.

□ End of chapter.



Chapter 4

Online Learning for Multi-Task
Feature Selection

4.1 Introduction

Learning multiple related tasks simultaneously by exploiting
shared information across tasks has demonstrated advantages
over those models learned within individual tasks [3, 4, 26, 55,
63, 126, 179, 189]. The multiple tasks learning framework has
been successfully applied in various applications [10, 26, 31, 55,
56, 121, 173].

A key problem of multi-task learning is to find the explana-
tory features across these multiple related tasks [5, 121, 194].
Many methods have been proposed to solve this problem by uti-
lizing a variant of the L1-norm on the regularization, or more
specifically, by imposing the mixed Lp,1-norm (p is usually set
to 2 or ∞) on the regularization [5, 104, 121, 127]. The main
idea of these methods is that they not only can gain benefit from
the L1-norm regularization which is theoretically proven to yield
sparse solutions while maintaining good perfromance [155], but
also can achieve grouped sparsity through the Lp-norm.

Although previous multi-task feature selection (MTFS) meth-
ods succeed in several aspects, they still contain some draw-
backs. First, these methods are conducted in batch-mode train-

44
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ing. The training procedure cannot be started until the data are
prepared. A fatal drawback is that these methods cannot solve
the applications when the training data is obtained sequentially.
For example, in prompt new classification, if one needs a timely
classifier, previous batch-mode trained algorithms cannot fulfill
this objective. The second drawback is that these algorithms
suffer from inefficiency when the size of training dataset is huge,
especially when the data cannot be loaded into memory simul-
taneously. In this case, one may have to conduct additional
procedure, e.g., subsampling, to choose the data for training.
This may degrade the performance of the model since the avail-
able data are not sufficiently utilized. The third drawback is
that most previous MTFS methods can only select features in
individual tasks or across all tasks, but cannot find important
tasks further from the important features. This reduces the abil-
ity of the MTFS methods in interpreting the physical meaning
of the learned model. Although there is an MTFS method based
on the Multiple Inclusion Criterion [47] to seek both important
features and important tasks, its formulation needs to solve a
non-convex problem by minimizing the L0,0-norm regularization
on the weights and it suffers from the local optimal solution.

To tackle the above problems, we first develop a novel MTFS
model, named multi-task feature and task selection (MTFTS),
which selects important features across all tasks and important
tasks that dominate the selected features. Furthermore, we pro-
pose a novel online learning framework to convert the batch-
mode trained MTFS models into their online ones. The key
contributions of this article are highlighted as follows:

∙ The new proposed MTFTS model can select important fea-
tures across all tasks and further reveal the important tasks
that dominate the important features. This strengthens the
interpretation ability of the MTFS models. As indicated in
our experiments, the MTFTS can achieve more sparse so-
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lutions even without sacrificing the performance.

∙ A novel online learning framework is proposed to solve the
Multi-task feature selection problem. By converting the
batch-mode trained models into their online learning ver-
sions, we can update the models sequentially with new com-
ing data and achieve high efficiency.

∙ Three batch-mode trained MTFS models are converted into
their online modes under our proposed online learning frame-
work. More importantly, they can achieve high efficiency in
both time complexity and memory cost. At each iteration,
the algorithms only need O(d×Q) memory space to store
the required information and O(d×Q) time to update the
learning weight, where d is the number of features and Q
is the number of tasks. Hence, the online algorithms can
solve the MTFS problem in large-scale datasets.

∙ We have provided the convergence rate of the online learn-
ing algorithm. The result theoretically guarantees the con-
vergence of the proposed online learning algorithms.

∙ We have conducted detailed experiments on three real-world
datasets to demonstrate the merits of our proposed model
and the online learning algorithm. Empirical results show
the efficiency and effectiveness of the proposed online learn-
ing algorithms.

The rest of the chapter is organized as follows. In Section 4.2,
we review the existing batch-mode training multi-task feature
selection methods in the literature. In Section 4.3, we define the
problem setup and introduce the multi-task feature selection
formulation. In Section 4.4, we depict the proposed MTFTS
method and in Section 4.5, we present the online learning frame-
work for solving the MTFS models. The convergence rate of the
average regret bound is provided in Section 4.6. In Section 4.7,
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we report the experimental comparison and results. Finally, we
conclude the chapter with future work in Section 4.8.

iMTFS aMTFS MTFTS⎛⎜⎜⎜⎜⎝
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Figure 4.1: Illustration of the weight matrices learned by three multi-task
feature selection methods. Here is an example with five tasks. The iMTFS
method selects important features individually. The aMTFS method selects
all relevant features and discards the second irrelevant feature for all the
tasks. The MTFTS method not only discards the second irrelevant feature,
but also finds out the important tasks for the important features. As in this
example, the weights learned from the MTFTS method indicate that the
first feature is further dominated by the first to fourth tasks, while the last
feature is dominated by the second, fourth, and fifth tasks. This provides
more specific information in interpreting the learned model.

4.2 Related Work

Multi-task feature selection is an important topic in machine
learning [4, 31, 107, 82] as well as a very useful tool for data
mining applications [5, 30, 47]. In the following, we review some
existing methods to solve this problem.

Methods based on variants of the L1-norm, particularly ma-
trix norms such as the L2,1-norm and L∞,1-norm have been
widely used in multi-task feature selection [5, 121, 107, 127].
In [5], a generalization of the single-task L1-norm regularization
is formulated to learn a few common features across multiple
tasks. Although the formulated model is a non-convex problem,
it is solved by an iterative alternating algorithm, where at each
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step a convex optimization problem is solved. This method can
be easily extended to learn the sparse nonlinear representation
using kernels, which leads to solving an optimization problem in-
volving the trace norm. The time cost of this method is usually
high since it needs to perform the Singular Value Decomposition
(SVD) on the kernel matrices at each step. In [121], a blockwise
path-following algorithm is proposed to solve the MTFS models
based on the mixed norms of joint regularization of hybridiz-
ing L1-norm with L2-norm, or L∞-norm. A theoretical result
in [121] shows that the proposed algorithm with random pro-
jection can obtain non-linear solution which approximates the
solution obtained from the trace norm minimization in [5]. The
Nesterov’s method, an optimal first-order black-box method for
smooth convex optimization, has been adopted in [107] to solve
the MTFS problem with the L2,1-norm regularization on the
weight matrices. An efficient Euclidean projection is proposed
to solve the non-smooth problem in the L2,1-norm regularizer.
This method scales well, linearly on the number of training sam-
ples, the sample dimensionality and the number of tasks.

In summary, various batch-mode trained algorithms, but no
online learning algorithm, have been proposed to solve the MTFS
problem in the literature. For the batch-mode trained MTFS
methods, they are unsuitable for those applications where the
data appear in sequence and for the case that the data are so
large that they cannot be loaded into memory simultaneously.
The above problems motivate us to propose the online learning
algorithm in this article.

4.3 Multi-Task Feature Selection

In this section, we first introduce the notation and the problem
setup for multi-task learning. Following that, we present the
formulation for multi-task feature selection in the literature.
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4.3.1 Problem Setup

Suppose there are Q tasks with all data coming from the same
space X×Y , where X ⊂ ℝd and Y ⊂ ℝ. For each task, there are
Nq data points. Hence, it consists of a dataset of D =

∪Q
q=1Dq,

where Dq = {zqi = (xqi , y
q
i )}

Nq

i=1 are sampled from a distribution
Pq on X ×Y . Here, Pq is usually assumed different for each task
but all Pq’s are related, e.g., as discussed in [14]. The goal of
multi-task learning (MTL) is to learn Q functions fq : ℝd → ℝ,
q = 1, . . . , Q such that fq(x

q
i ) approximates yqi . When T = 1, it

is the standard (single task) learning problem.

4.3.2 Formulation

Typically, in multi-task learning models, the decision function
fq for the q-th task is assumed as a hyperplane parameterized
by the model weight vector wq [5, 121], i.e.,

fq(x) = wq⊤x, q = 1, . . . , Q. (4.1)

Hence, the total learned weights form a matrix in the size of
d × Q. To make the notation uncluttered, in the following, we
express the learned weight matrix into column-wise and row-
wise vectors as follows:

W =
(
w1,w2, . . . ,wQ

)
= (W∙1, . . . ,W∙Q) =

(
W⊤

1∙, . . . ,W
⊤
d∙
)⊤
.

(4.2)
The objective of multi-task feature selection models is to learn
the weight matrix W by minimizing an empirical risk and the
regularization on the weights:

min
W

Q∑
q=1

1

Nq

Nq∑
i=1

lq(W∙q, z
q
i ) + Ω�(W), (4.3)

where � ≥ 0 is a constant to balance the loss and the regular-
ization term. lq(W∙q, z

q
i ) defines the loss on the sample zqi for
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the q-th task. Various loss functions can be adopted and they
are usually assumed convex. Some typical loss functions are
∙ Squared loss: l(w, z) = 1

2(y − w⊤x)2. This loss is a
standard loss used in regression problems [107].
∙ Logit loss: l(w, z) = log(1 + exp(−y(w⊤x))). This loss is

usually used in binary classification problems [106].
∙ Hinge loss: l(w, z) = [1 − yw⊤x]+. This loss is usually

used in solving binary classification problems by support
vector machines [160].

Note that in the above loss function definitions, we use w to
denote the weight of a task for simplicity.

In (4.3), Ω�(W) defines the regularization on the weights of
tasks. Various mixed norms on the regularization have been
proposed in the literature to impose sparse solutions so as to
select the important features. They include
∙ L1,1-norm Regularization: This model simply sums the
L1-regularizations on the weights of all tasks together to
yield sparse solutions [121]. We name it as the individually
learned Multi-Task Feature Selection (iMTFS) method.

Ω�(W) = �

Q∑
q=1

∥W∙q∥1 = �

d∑
j=1

∥∥W⊤
j∙
∥∥

1
. (4.4)

The above formulation is equivalent to solving a lasso prob-
lem for each task when the squared loss is used [121]. The
reason that the L1-norm regularization can yield sparse so-
lutions is that it usually attains the optimal solutions at the
corner [155]. Hence, imposing the L1,1-regularization in the
formulation can yield sparse solutions for each individual
task, but it does not find the information across the tasks.
∙ L2,1-norm Regularization: It is to penalize the L1-norm

on the L2-norms of the weight vectors across tasks [107,
121]. It is to conduct feature selection across multiple tasks.
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We name it as the aMTFS method.

Ω�(W) = �
d∑
j=1

∥∥W⊤
j∙
∥∥

2
. (4.5)

It is easy to show that the L2,1-norm regularization reduces
to L1-norm regularization if there is only one task. When
there are multiple tasks, the weights corresponding to the
j-th feature are grouped together via the L2-norm of W⊤

j∙.
Hence, the L2,1-norm regularization tends to select features
based on the strength of the input variables of the Q tasks
jointly, rather than on the strength of individual input vari-
ables as in the case of single task learning [5, 121].
∙ Lp,1-norm Regularization: It can be easily extended to

include other joint regularization on the weights, e.g., the
Lp,1-norm for 1 ≤ p ≤ ∞ to yield sparse solutions [127].
The choice of p usually depends on how much feature shar-
ing that one assume between tasks, from none (p = 1) to
full sharing (p = ∞). Increasing p corresponds to allow-
ing better “group discounts” for sharing the same feature,
from p = 1 where the cost grows linearly with the number
of tasks that use a feature, to p =∞ where only the most
demanding task matters [121].

Remark 8. Although the above introduced MTFS models
find the decision functions in linear forms, it is noted that by
projecting the data points on a random direction in the Repro-
ducing Kernel Hilbert Space (RKHS), one can attain non-linear
solutions on the original space [121].

4.4 Multi-Task on both Feature and Task Se-

lection

The MTFS method imposed by the L2,1-norm regularization can
select features across all tasks, however, it yields non-sparse so-
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lutions for that selected features [121]. This is because sparse
solutions cannot be obtained when p is greater than one [200].
Hence, the aMTFS method cannot further find out the impor-
tant tasks for the selected features. This degrades the model
ability in interpreting the data. In order to find out impor-
tant explanatory features across all tasks and to find out the
important tasks on the selected features simultaneously, we pro-
pose the multi-task feature selection method on both feature
and task selection (MTFTS) by introducing a new L1/2,1-norm
regularization as follows:

Ω�,r = �
d∑
j=1

(
rj
∥∥W⊤

j∙
∥∥

1
+
∥∥W⊤

j∙
∥∥

2

)
, (4.6)

where rj ≥ 0, for j = 1, . . . , d, is a constant controlling the spar-
sity of the solutions on task level: a larger rj value will introduce
more sparsity on the task selection. Usually, we can select a very
small rj value to yield additional sparse solution while keeping
the model performance [180]. Note that this model is similar to
the sparse group lasso introduced in [59, 181].

4.5 Online Learning for Multi-Task Feature

Selection

To tackle the insufficiency of batch-mode trained algorithms and
motivated by the recent success of online learning algorithms
for solving the L1-regularization problem [12, 52, 97], we pro-
pose an online learning framework to solve the multi-task fea-
ture selection problem, namely DA-MTFS, in the following.
This framework has been successfully developed for minimiz-
ing the L1-regularization [169] and group lasso [181], which is
based on recently developed first-order method for optimizing
convex composite functions [118]. The algorithm is outlined in
Algorithm 2.
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Algorithm 2 Online learning framework for multi-task feature selection
Input:
∙ W0 ∈ ℝd×Q, and a strongly convex function ℎ(W) with modulus 1

such that
W0 = arg min

W
ℎ(W) ∈ arg min

W
Ω(W) . (4.7)

∙ Given a const � > 0 for the regularizer, 
 > 0 for the function ℎ(W)
Initialization: W1 = W0, Ḡ0 = 0.
for t = 1, 2, 3, . . . do

1) Given the function lt, compute the subgradient on Wt, Gt ∈ ∂ lt
for the coming Q instances with each for one task, (z1

t , . . . , z
Q
t )

2) Update the average subgradient Ḡt:

Ḡt =
t− 1

t
Ḡt−1 +

1

t
Gt

3) Calculate the next iteration Wt+1 based on Ḡt:

Wt+1 = arg min
W

Υ(W) =

{
Ḡ⊤t W+Ω(W)+


√
t
ℎ(W)

}
. (4.8)

end for
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For Algorithm 2, we have the following remarks:

Remark 9. In Algorithm 2, it should be noted that instances
for every task come at each iteration. This follows the same
online learning scheme for multi-task learning in [46]. In real-
world applications, if we cannot get one instance for all tasks at
one iteration, we an simply set the instance for that task to zero
so as not update the weights for that task. However, intuitively,
this will make the learned weight matrices unbalance bias to
those tasks with training instances.

Remark 10. Algorithm 2 needs to calculate the subgradients
of the loss functions on the weights at each iteration. For typical
loss functions, we can calculate them by

l′(w, z) =

⎧⎨⎩
(w⊤x− y)x square loss

−yx
1+exp(y(w⊤x))

logit loss

[−yx]+ hinge loss

, (4.9)

where w means the weight of a task and x corresponds to a
feature vector in that task for simplicity.

Remark 11. The above proposed online learning framework
for the MTFS models is motivated from the regularized dual
averaging method for lasso [169] and group lasso [181]. We can
also consider the FOBOS [52] to solve the online learning for
the MTFS models. In this case, at each iteration, the FOBOS
method is to solve the following minimization problem:

Wt+1 =arg min
W

{
1

2
∥W−(Wt−�tGt)∥2

F +�tΩ(W)

}
, (4.10)

where Ω(W) is defined as Eq. (4.4) for the iMTFS, Eq. (4.5) for
the aMTFS, or Eq. (4.6) for the MTFTS. �t is a constant term
which can be set to O(1/

√
t). The difference between the FO-

BOS for the MTFS and our DA-MTFS algorithm is clear: The
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FOBOS method scales the regularization term by a diminishing
stepsize �t, while our method keeps it the same, a more balance
setting for online algorithms.

In Algorithm 2, the key to solve the online MTFS algorithms
efficiently depends on the simplicity of updating the weight
in (4.8). Here, we have the following theorem to efficiently up-
date the weight matrix Wt+1 in (4.8) by closed-form solutions:

Theorem 3. Given ℎ(W) = 1
2∥W∥

2
F , and the average subgradi-

ent Ḡt at each iteration, the optimal solution of the correspond-
ing MTFS models can be updated by

(a) iMTFS: For i = 1, . . . , d and q = 1, . . . , Q,

(Wi,q)t+1 = −
√
t




[
∣(Ḡi,q)t∣ − �

]
+
⋅ sign ((Ḡi,q)t). (4.11)

(b) aMTFS: For j = 1, . . . , d,

(Wj∙)t+1 = −
√
t




[
1− �

∥(Ḡj∙)t∥2

]
+

⋅ (Ḡj∙)t. (4.12)

(c) MTFTS: For j = 1, . . . , d,

(Wj∙)t+1 = −
√
t




[
1− �

∥(Ūj∙)t∥2

]
+

⋅ (Ūj∙)t, (4.13)

where the q-th element of (Ūj∙)t is calculated by

(Ūj,q)t =
[
∣(Ḡj,q)t∣ − �rj

]
+
⋅ sign ((Ḡj,q)t), q = 1, . . . , Q.

(4.14)

The proof of Theorem 3 is provided in the Appendix. We
first give some remarks about the results.

Remark 12. Equation (4.11) implies that the online learning
algorithm for the iMTFS can yield sparse solutions in the ele-
ment level, but it does not utilize any information across tasks.
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Equation (4.12) indicates that the online learning algorithm for
the aMTFS can select those important features in a grouped
manner and it will discard irrelevant features for all tasks. Equa-
tion (4.13) implies that the online learning algorithm for the
MTFTS can select important features and important tasks dom-
inated the selected features. Since ∥(Ūj∙)t∥2 ≤ ∥(Ḡj∙)t∥2, the
MTFTS tends to select fewer features than the aMTFS under
the same regularization parameter.

Remark 13. Theorem 3 indicates simplicity in updating the
weight in (4.8). It is noted that the algorithm only needs O(d×
Q) space to store the required information, the average subgradi-
ent and the weight at each iteration. In addition, the worst case
time complexity for updating the weights is also O(d×Q). How-
ever, it is possible to adopt the lazy update scheme in [52, 97]
to update the weight only with the non-zero elements. This is
especially useful when the data is sparse but with very large
dimension.

4.6 Convergence and Regret Analysis

A main issue to guarantee the online learning algorithm is to
analyze its regret bound and the convergence rate. The regret
is defined as the difference of the objective value up to the T -th
step and the smallest objective value from hindsight. Here, we
use an average regret which is defined by

R̄T (W):=
1

Q

Q∑
q=1

(
1

T

T∑
t=1

(
Ω(W∙qt) + lt(Wt)

)
− ST (W∙q)

)
,

(4.15)
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where ST (WT ) defines the objective up to the T -th step, ST (WT )
as follows:

ST (WT ) := Ω�(WT ) +

Q∑
q=1

1

T

T∑
t=1

l(WT , zqt ),

=
1

T

T∑
t=1

(Ω�(WT ) + lt(WT )). (4.16)

In the above, we use lt(⋅) to simplify the expression of the loss
induced by the t-th coming instances for all tasks.

The following theorem provides the bound of the average re-
gret:

Theorem 4. Suppose there exists an optimal solution W★ for
the problem of (4.3) which satisfies ℎ(W★) ≤ D2 for some D >

0, and there exists a constant L such that
∥∥(Ḡ∙q)T∥∥∗ ≤ L for all

T ≥ 1 and q = 1, . . . , Q. Then we have the following properties
for Algorithm 2: for each T ≥ 1, the average regret is bounded
by

R̄T ≤

(


√
TD2 +

L2

2


T∑
t=1

1√
t

)
/T. (4.17)

The proof of Theorem 4 can follow the scheme developed
in [118, 169] for each task and (4.17) is summed up for all
the tasks. The above theorem indicates that Algorithm 2 can
achieve the optimal convergence rate O(1/

√
T ). In addition, the

bound in (4.17) can further be simplified as



√
TD2 + L2

2


T∑
t=1

1√
t

T
≤


√
TD2 + L2

2
2
√
T

T
≤
(

D2 +

L2




)
/
√
T .

This indicates that the best 
 for the above bound is attained
when 
★ = L/D and this leads to the average regret bound as
R̄T ≤ 2LD/

√
T . For practical problems, the best 
 is usually

tuned by cross validation.



CHAPTER 4. ONLINE LEARNING FOR MTFS 58

4.7 Empirical Analysis

In the following, we conduct detailed experiments to demon-
strate the characteristics and merits of the online learning al-
gorithms on the MTFS problem. Five algorithms are com-
pared: the batch-mode learning algorithms for the iMTFS and
the aMTFS; the online learning algorithms 1 by the dual averag-
ing method for the iMTFS (DA-iMTFS) updated by Eq. (4.11),
for the aMTFS (DA-aMTFS) updated by Eq. (4.12), and for the
MTFTS (DA-MTFTS) updated by Eq. (4.13), respectively. All
algorithms are run in Matlab on a PC with 2.13 GHz dual-core
CPU.

The experiments try to answer the following questions: (1)
What is the performance of the compared algorithms on the
realworld datasets? (2) What is the trade-off between the per-
formance and the sparsity in the online algorithms? (3) What
is the effect of the algorithm parameter 
 with respect to the
regularization parameter �? (4) What are the most important
features learned and how are the learned weight matrices? (5)
How is the efficiency of the algorithms?

4.7.1 School Data

We first test the algorithms on a benchmark dataset, the school
dataset 2. This dataset has been previously evaluated on the
batch-mode trained multi-task learning [11, 56] and multi-task
feature learning [5, 55, 107]. This dataset consists of the exam
scores of 15,362 students from 139 secondary schools in London
during the years 1985, 1986, and 1987. The goal is to predict
the exam scores of the students based on the following features:
year of the exam (YR), 4 school-specific and 3 student-specific

1Our source codes are available in http://appsrv.cse.cuhk.edu.hk/˜hqyang/doku.

php?id=OLMTFS
2http://ttic.uchicago.edu/˜argyriou/code/mtl_feat/school_splits.tar

http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=OLMTFS
http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=OLMTFS
http://ttic.uchicago.edu/~argyriou/code/mtl_feat/school_splits.tar
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features. Features that are constant in each school in a certain
year are: percentage of students eligible for free school meals,
percentage of students in VR band one (highest band in a verbal
reasoning test), school gender (S. GN.) and school denomination
(S. DN.). Student-specific features are: gender (GEN), VR band
(values are 1, 2, or 3) and ethnic group (EG). For the categorical
features, we transform them into binary (dummy) variables and
totally form 27 features as that in [5, 55]. Here, each school is
taken as “one task”. Hence, we obtain 139 tasks.

Following the same evaluation criterion in [5, 11, 56], we em-
ploy the explained variance, one minus the mean squared test
error over the total variance of the data (computed within each
task), and the percentage of variance explained by the prediction
model. A large explained variance indicates better performance.
This measure corresponds to a percentage version of the stan-
dard R2 error measure for regression on the test data [11].

Since the task is a regression problem to predict the exam
scores of the students, we use squared loss in the algorithms. In
the training, we randomly generate 20 sets of training data and
apply the rest data as the test data. The number of training data
is set to the same, half of the minimum number of data among
all individual tasks, which meets the requirement of Algorithm 2
that there is an instance in a task at each iteration.

Table 4.1 reports the best performance on the five compared
algorithms and lists the corresponding parameters. For the
batch-mode algorithms, the best results are obtained by tuning
the parameters � in a hierarchical scheme, from a large searching
step in the whole parameter space to a small searching step in a
small region. As a reference, the largest � making all the learn-
ing weights of the aMTFS vanish is about 1,000 and is about
100 for the iMTFS, respectively. For the online algorithms, the
parameters are tuned by the grid search scheme. � is searched
from {0.1, 1, 10, 20, 30, 40}. 
 is searched from 0.1, 1, 10 to 100
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Table 4.1: Explained variance and the corresponding NNZs obtained by dif-
ferent methods on the school data.

Method Explained variance NNZs Parameters

aMTFS 21.0±1.7 815.5±100.6 � = 300

iMTFS 13.5±1.8 583.0±16.6 � = 40

DA-aMTFS 20.8±1.8 605.8±180.3 � = 20, 
 = 1, ep=120

DA-MTFTS 20.8±1.9 483.7±130.7 � = 20, 
 = 1, ep=120

DA-iMTFS 13.5±1.8 1037.1±21.4 � = 1, 
 = 50, ep=120

with each increment being 10. The number of epoches is tested
from 1 to 120. Here, epoch is a traditional concept in online
algorithms. Multiple epoches mean that cycling through all the
training examples multiple times with a different random permu-
tation for each epoch. The sparse parameter in the DA-MTFTS
is set to 0.01 at each task for simplicity in all the experiments.
Here, we do not put much effort on tuning the sparse parameter
for the DA-MTFTS since by this simple setting, we can achieve
good performance.

There are several observations from Table 4.1. First, the
results of the aMTFS vs. the iMTFS and the DA-aMTFS/DA-
MTFTS vs. the DA-iMTFS clearly show that learning multi-
ple tasks simultaneously can gain over 50% improvement than
learning the task individually. Second, the DA-aMTFS and the
DA-MTFTS attain the same explained variance, which is nearly
the same as that obtained by the aMTFS. Both the number of
non-zeros (NNZs) in weights obtained by the DA-aMTFS and
the DA-MTFTS is less than that obtained by the aMTFS. More
specially, the NNZs of the DA-aMTFS is about 25% less than
that of the aMTFS. The DA-MTFTS gets fewer NNZs than the
DA-aMTFS, about 20% decrease in the number. This indicates
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that the learned DA-aMTFS and the DA-MTFTS are easier to
be interpreted. Third, the DA-iMTFS obtains the same perfor-
mance as that of the iMTFS and selects more NNZs than the
iMTFS.
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Figure 4.2: Trade-off results on the school data with varying regularizer
parameter � and the online algorithm parameter 
.

Figure 4.2 further shows the trade-off between the regularizer
parameter � and the algorithm parameter 
. The test first fixes
one parameter to their best ones and varies the other. The
best results of the batch-mode trained models are also shown
for reference. From the results, we know that the number of
non-zero elements (NNZs) decreases as � increases for all three
online algorithms. The best results are obtained when � = 1 for
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the DA-iMTFS and when � = 20 for both the DA-aMTFS and
the DA-MTFTS. By varying 
, it is shown that NNZs increases
as 
 increases. The best ones are obtained when 
 = 50 for the
DA-iMTFS and when 
 = 1 for the DA-aMTFS and the DA-
MTFTS. The results indicate that usually for a given dataset,
the best � and 
 have to be tuned based on the given data.
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Figure 4.3: The 8 most important features learned commonly across all 139
schools(tasks) are shown.

Figure 4.3 shows the learned features across all tasks by the
aMTFS, the DA-aMTFS, and the DA-MTFTS, respectively.
The results indicate that features learned from the online al-
gorithms are consistent to those learned from the batch-training
algorithm. That is, the predicted exam score depends very
strongly on the students’ VR band and it is influenced secondary
by ethnic background and year admission of the students. A
difference between the DA-aMTFS and the DA-MTFTS is that
DA-MTFTS gets smaller values in the weight matrices and achieves
more sparsity. This again verifies the results in Table 4.1 and
the learned weight matrices shown in Fig. 4.4.

4.7.2 Conjoint Analysis

In the following, we conduct empirical study to demonstrate the
characteristics and merits of the online learning algorithms for
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(a) aMTFS (b) DA-aMTFS

(c) DA-MTFTS

Figure 4.4: Weight matrices with the 8 most important features learned from
the aMTFS, the DA-aMTFS, and the DA-MTFTS on the school dataset,
resepctively are shown. Here, the values of the coefficients are represented
by different colors. Brighter color means larger value while darker color
means smaller value.
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conjoint analysis on a real-world survey dataset. The objec-
tive of conjoint analysis is to estimate respondents’ partworths
vectors (weight matrices) while revealing the salient attributes
dominating respondents’ utilities [1]. Here, we test on a real-
world dataset about MBA students’ rating on personal comput-
ers [102], which consists of 180 students who rated the like-
lihood of purchasing one of 20 different personal computers.
From this dataset, we have Q = 180. The output (response)
is an integer rating on an 11-point scale (0 to 10). The input
consists of 13 binary attributes and a bias term. The binary
attributes include telephone hot line (TE), amount of memory
(RAM), screen size (SC), CPU speed (CPU), hard disk (HD),
CDROM/multimedia (CD), cache (CA), color (CO), availabil-
ity (AV), warranty (WA), software (SW), guarantee (GU) and
price (PR). As in [5], we use the first 8 examples per respondent
as the training data and the last 4 examples per respondent as
the test data. The root mean square errors (RMSEs) of the
predicted from the actual ratings for the test data are averaged
across all respondents to measure the error.

To simulate the online procedure on the collecting survey
data, we let the training data come one example per respon-
dent sequentially. To attain good performance, the regularizer
parameters for the batch-mode trained algorithms are tuned by
cross validation in a hierarchical search. The regularizer param-
eters and the algorithm parameters for the online-mode trained
algorithms are tuned by cross validation in grid search [180].
Similarly, we set the sparse parameter of the DA-MTFTS to
0.01 at each task for simplicity.

Table 4.2 reports the results obtained by the compared meth-
ods and the corresponding parameters. From these results, we
have the following observations. First, learning partworths vec-
tors across respondents can help to improve the performance.
For batch-mode trained methods, the result improves from 1.91
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Table 4.2: RMSEs and the corresponding NNZs obtained by different meth-
ods on the conjoint analysis dataset.

Method RMSEs NNZs Parameters

aMTFS 1.82 2148 � = 44.5

iMTFS 1.91 789 � = 3

DA-aMTFS 1.83 1800 � = 5, 
 = 0.9, ep=20

DA-MTFTS 1.83 1816 � = 5, 
 = 0.95, ep=20

DA-iMTFS 1.92 662 � = 0.5, 
 = 1.0, ep=20

for the iMTFS to 1.82 for the aMTFS, about 5% improvement.
For online-mode trained algorithms, the improvement is from
1.92 from the DA-iMTFS to 1.83 from the DA-aMTFS and the
DA-MTFTS, which gains about 5% improvement. Second, the
DA-aMTFS and the DA-MTFTS achieve the best results by a
slight different 
 value.

Again, we test the trade-off between the regularizer parame-
ter � and the algorithm parameter 
 in the following. Here, we
first fix 
 to their best ones, and vary � in {0.1, 0.5, 1, 5, 10, 20}
for both online learning algorithms. Fig. 4.5(a) and Fig. 4.5(b)
show the results on this test (The best results of the batch-
mode trained models are also shown for reference). It is shown
that the number of non-zero elements (NNZs) in the partworths
vectors decrease as � increases. The best results are obtained
when � = 0.5 for the DA-iMTFS and when � = 5 for the
DA-aMTFS and the DA-MTFTS. In the second test, we fixe
the best �’s for the corresponding models and changes 
 in
{0.85, 0.9, 0.95, 1, 2, 3, 4, 5}. It is shown that NNZs increases as

 increases. The best ones are obtained when 
 = 1 for the DA-
iMTFS, when 
 = 0.9 for the DA-aMTFS, and when 
 = 0.95
for the DA-MTFTS. The results again indicate that usually for
a given dataset, the best � and 
 have to be tuned based on the
given data.
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Figure 4.5: Testing results on the conjoint analysis with the varying of the
regularizer parameter � and the online algorithm parameter 
.
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Figure 4.6: The most important features learned commonly across all 180
persons(tasks) are shown.
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We further plot the learned features across all tasks by the
aMTFS, the DA-aMTFS, and the DA-MTFTS in Figure 4.6.
This shows that all methods obtain nearly the same impor-
tant features. The results indicate that the students’ ratings are
strongly negative to the price and they are positive to the RAM,
the CPU speed, CDROM, and cache. Figure 4.6 also shows the
difference between the DA-aMTFS and the DA-MTFTS. That
is, the DA-MTFTS yields more sparse than the DA-aMTFS and
its coefficients are general in smaller mathan the DA-aMTFS.
This can be seen from Fig. 4.7 that the weight matrix learned
by the DA-aMTFT is brighter than that learned by the DA-
MTFTS.

4.7.3 Time Cost Issue

When executing an algorithm, the time cost includes the time
of loading data and the running time of the algorithm. Here,
we emphasize again that an advantage of the online algorithms
is that they are low-cost in loading the data, a very favorite
property for training large-scale datasets. On the contrary, the
batch-mode training algorithms may have the risk of out-of-
memory when the size of training dataset is large.

Table 4.3: Time cost in different datasets.

Dataset aMTFS (s) DA-MTFTS (s) Reduction ratio

School 1.30 0.99 34.3%

Conjoint 0.162 0.115 40.9%

In terms of the running time of the algorithms, it is usu-
ally very difficult to carry out a fair comparison among different
algorithms, due to the implementation issue, the choice of algo-
rithm parameters, and different stopping criteria. A theoretical
analysis of the convergence rate of the algorithms has been an-
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(a) aMTFS (b) DA-aMTFS

(c) DA-MTFTS

Figure 4.7: Weight matrices learned from the aMTFS, the DA-aMTFS, and
the DA-MTFTS on the conjoint analysis dataset, resepctively.
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alyzed in our paper and can be referred to the corresponding
papers in [5, 107, 121]. As a reference, Table 4.3 reports the
running time of the DA-MTFTS, the slowest MTFS online algo-
rithm, and the aMTFS [5] with the setting of “epsilon init=0”,
“iterations=50”, and “method=3”. It is shown that all the on-
line learning algorithms cost less time than the batch ones. In
addition, we will emphasize that another efficiency of the on-
line learning algorithms lies that they can update the weights
as a new data comes while maintaining the good performance.
On the contrary, the batch-trained algorithms have to train the
models starting from scratch when a new data arrives. The total
time for the batch-trained algorithms will be accumulated.

4.8 Summary

In this work, we we study the multi-task feature selection prob-
lem, which has been previously applied in various applications.
More specially, we propose the first online learning framework
to solve the MTFS models, including a new developed MTFS
model which can seek both important features and important
tasks for the selected features. We derive closed-form solutions
to update the weights of three MTFS methods, which makes the
online learning algorithm work very efficiently in both time cost
and memory cost. Moreover, we provide theoretical results for
the online learning algorithms. Our detailed empirical evalua-
tion demonstrates the characteristics and merits of the proposed
online MTFS algorithms in various aspects.

There are several future work directions associated with this
work. First, it is interesting to extend the current linear MTFS
methods to non-linear forms by the projection method to im-
prove the model performance. Second, as our proposed online
algorithms require each instance from each task at a round, it
is interesting to know how to balance the weight update when
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the instances of some tasks do not appear. Third, the pro-
posed online algorithm framework assumes the training samples
are independent and identically-distributed. It is attractive to
consider the case where the i.i.d. assumption does not hold in
practice.

□ End of chapter.



Chapter 5

Maximum Margin
Semi-supervised Learning With
Irrelevant Data

5.1 Introduction

Traditional classification techniques need a large number of la-
beled data in the training to achieve good performance [53, 99,
137]. However, labeling data is usually difficult and time con-
suming. On the contrary, unlabeled data are relatively easy to
acquire and they may provide useful information, e.g., data dis-
tribution, or data-dependent regularization, to improve classifi-
cation performance. Hence, semi-supervised learning algorithms
have been proposed to learn from both labeled and unlabeled
data [28, 195, 197] and applied in various applications [7, 44, 83,
120].

In ordinary semi-supervised learning, unlabeled data are as-
sumed relevant to the target task [3, 13, 161]. That is, they are
assumed from the same distribution as the labeled data in the
target task. This assumption means that the unlabeled data
need well prepared [29, 195], excluding irrelevant data, or the
data with distributions different from the labeled data. How-
ever, this is not in general true for real world applications.

71
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Practically, it is easy to incorporate other irrelevant data into
unlabeled data. For example, when one crawls web pages of
some topics, it is easy to collect irrelevant web pages as unla-
beled data; when classifying two handwritten digits, e.g., “5”
and “8”, with the help of unlabeled handwritten digits, it is
also possible to include other digits, e.g., “3”, or “4”, as unla-
beled data; see Figure 5.1 as an illustration. In these situations,
when learning from both labeled and mixed unlabeled data, the
irrelevant unlabeled data, which do not fit the assumption of
previously proposed semi-supervised learning algorithms, indeed
do harm to the consequently suggested semi-supervised learning
models [115, 145].

(a) USPS (b) MNIST

Figure 5.1: Two benchmark handwritten digit datasets illustration: block
digits are labeled data on the target task, while black digits are mixed unla-
beled data.

To distinguish relevant and irrelevant data from the unlabeled
data, we propose a novel maximal margin classifier, namely the
tri-class support vector machine (3C-SVM), to learn a decision
boundary from both labeled and mixed unlabeled data simul-
taneously. The idea is to introduce a new min loss function to
measure the empirical risk on the unlabeled data. When an
unlabeled data point is assumed the from relevant data, its em-
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pirical risk is measured by the symmetrical hinge loss. When
an unlabeled data point is assumed from the irrelevant data,
its empirical risk is determined by the "-insensitive loss func-
tion. This min loss counts the error of an unlabeled data point
based on which error is smaller when the unlabeled data point
is assigned to an associated class. The motivation of adopting
the min loss function is based on two principles: First, from
logistic regression perspective [71, 125], when a data point lies
farther away from the decision boundary, it can be classified into
±1-class with more confidence. That is, it is relevant to the tar-
get task. Second, following the maximum entropy principle, a
classifier should rely more on the labeled data and the relevant
data, while maximally ignoring the irrelevant data. Hence, we
should make the irrelevant data close to the decision boundary
and the min loss function can achieve these two principles. In
some cases, the irrelevant data may be scattered around. To
attain this condition, it corresponds to seeking a good kernel to
represent the data similarity.

There are several advantages of our proposed 3C-SVM algo-
rithm. First, the 3C-SVM provides a framework to generalize
several popular maximum margin classifiers, including standard
SVMs, Semi-supervised SVMs (S3VMs), and SVMs learned from
universum (U -SVMs). Second, a theoretical analysis on the 3C-
SVM indicates that the irrelevant data play the role of seeking
a good subspace and guarantee why the 3C-SVM works. Third,
the 3C-SVM is solved by a standard concave-convex procedure
(CCCP) [185] and only requires to solve several quadratic pro-
gramming (QP) problems, with the same worst case time com-
plexity as that of S3VMs [36]. It is a highly scalable algorithm
currently existed. Fourth, empirical evaluation results on both
synthetic and two benchmark hand-written digit datasets have
shown the effectiveness and efficiency of the 3C-SVM algorithm.

The rest of this chapter is organized as follows: In Section 5.2,
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we review the related work on learning from both labeled and
universum data. In Section 5.3, the proposed 3C-SVM with its
properties is presented. In Section 5.4, we detail how to solve the
3C-SVM algorithm through CCCP. We report the experimental
comparison and results in Section 5.5 and conclude the paper in
Section 5.6.

5.2 Related Work

In this section, we review some ideas in learning a binary clas-
sifier with auxiliary data.
U -SVMs have been formulated in [161], implemented in [165]

and further studied in [146]. The authors derive a new inductive
principle by learning from the labeled data and the universum,
a third kind of data whose distribution is different from neither
of the ±1-class. These models have to specify the universum
data explicitly and choose them carefully. Those relevant unla-
beled data, which are beneficial to S3VMs, will contrarily hurt
the U -SVM eventually; see dash-dot line in Figure 5.2 for an
illustration comparison.

Graph-based semi-supervised learning models have been pro-
posed in the literature [44, 187, 195, 197]. In [187], the authors
incorporate the manifold regularization [13, 86] with minimizing
the empirical risk on universum data to learn a classifier on a
manifold. Their method has to specify the universum data ex-
plicitly and also cannot tackle the problem of mixed unlabeled
data.

There are also other algorithms concerning three kinds of
data. In [192], an algorithm combining �-support vector clas-
sification with �-support vector regression [138], is proposed to
solve the multiclass problem in one-vs-one strategy. In the learn-
ing, they additionally minimize the distance of the separating
hyperplane to the examples that are in neither of the classes with
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Figure 5.2: Illustration of different classifiers in ℝ2 space. The 3C-SVM (the
thin solid line) achieves the best result, which is closest to the Bayesian op-
timal classifier (the thick solid line), among all other maximum margin clas-
sifiers and automatically distinguishes the irrelevant unlabeled data (black
dots with red circles) correctly.

the aim of sharpening the contrast between the different binary
classifiers. The model in [192] has to know all the label infor-
mation of training samples. Its setup is different from that of
semi-supervised learning. In [98], a Gaussian process approach,
which can be viewed as the parallel of Transductive SVM [84]
is proposed to solve the semi-supervised learning task. Differ-
ent from a standard Gaussian process, this model introduces a
“null category noise model”, which maps the hidden continu-
ous variable to three instead of two labels, where the label “0”
is assigned when the hidden variable is around zero. Further,
the unlabeled data points are restricted not to take the label 0.
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This model intends to omit those unlabeled data close to the
decision boundary and does not utilize all available data, which
may miss some useful information among them. In [74], a trans-
ductive method is proposed to learn the labels of test data by
training on the labeled, the test data and the universum data
simultaneously. The model is transformed into a Semi-Definite
Program (SDP) problem [22], whose time complexity scales to
O((L + U 2)2(L + U)2.5), the same as that in the relaxed trans-
ductive SVM by SDP [28]. Here, L and U are the corresponding
number of labeled and unlabeled training data. This is very time
consuming and cannot solve large scale datasets and therefore,
it cannot utilize those abundant unlabeled data sufficiently.

5.3 Learning with Irrelevant Data

5.3.1 Problem Statement and Formulation

Suppose we are given L labeled samples, ℒ = {(xi, yi)}Li=1, and
U unlabeled samples, U = {xi}L+U

i=L+1, where xi ∈ X ⊆ ℝd, and
the labels are triple, i.e., yi ∈ {−1, 0, 1}. Here, the labeled data
consist of two sets of data, ℒ±1 and ℒ0, where data in ℒ±1 follows
the same distribution in the target task and they are labeled by
−1 or +1; while data in ℒ0 are irrelevant to the target task. That
is, data with distributions different from the labeled target data
are all cast into 0-class to construct the ℒ0 dataset. Similarly,
unlabeled data are a mixture of these data. We denote them as
U = Uℒ ∪ U0, where data in Uℒ follow the same distribution of
±1 data, and data in U0 follow distributions different from the
±1 data, but the same as the ℒ0 data. Normally, the number
of unlabeled data is much larger than the number of the labeled
target data, i.e., ∣ℒ±1∣ ≪ U , and given an unlabeled data point,
one does not know whether it comes from Uℒ or from U0.

Here, the goal is to seek a decision boundary, f#(x) = w⊤�(x)+
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b, to classify the ±1 data well with the help of given labeled and
mixed unlabeled data, where # = (w, b) and � : ℝd → ℝf , is
a feature mapping function often implicitly defined by a Mercer
kernel [137, 160]. Hence, we formulate the objective as follows:

min.
#

�

2
∥w∥2 +

∑
xi∈ℒ

riℓL(f#(xi), yi) +
∑
xi∈U

riℓU(f#(xi)) , (5.1)

where � is a trade-off constant for the regularization term. ℓL(⋅, ⋅)
is a loss function to measure the empirical risk of the labeled
data and ℓU(⋅) is a loss function to measure the empirical risk
of the unlabeled data. ri, i = 1, . . . , L+ U , is a ratio penalty to
balance the loss on the point xi and the regularization term.
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Figure 5.3: Illustration of loss functions. The min loss is the minimum
between the symmetrical hinge loss and the "-insensitive loss.

Typically, one may choose different loss functions to measure
the empirical risk on the given data. These loss functions include

∙ Hinge loss: H1(u) = max{0, 1 − u}, a loss function has
been used to measure the empirical risk of labeled data in
standard SVMs [160]; see dash-dot line in Figure 5.3(a).

∙ Symmetric hinge loss: H1(∣ ⋅ ∣), a loss function has been
applied to measure the empirical risk on unlabeled data for
S3VMs [36]; see dashed line in Figure 5.3(a).
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∙ "-insensitive loss: I"(u) = max{0, ∣u∣−"}, a loss function
has been adopted to measure the empirical risk in Sup-
port Vector Regression [160] and the Universum data in
U -SVMs [165]; see dotted line in Figure 5.3(a).

In practical scenarios, the unlabeled data may be a mixture
of data relevant or irrelevant to the target task. How to distin-
guish them correctly is a very difficult task. Here, we are based
on the following two principles. First, from logistic regression
perspective [71, 125], when a data point lies farther away from
the decision boundary, the data are classified as ±1-class with
more confidence; while data points lie near the decision bound-
ary, their classification on ±1-class is of less confidence. Hence,
ideally, data from ±1-class should lie on or outside of the mar-
gin gap; while other irrelevant data are close to the decision
boundary. Second, the maximum entropy principle indicates
that a classifier should rely more on the labeled and relevant
data, while maximally ignoring the irrelevant data. These two
principles indicate that irrelevant data should lie around the
sought decision boundary.

In order to fulfill the above objectives, we adopt a min loss
function to measure the risk of unlabeled data, so as to separate
the unlabeled data into relevant and irrelevant data. The loss
of unlabeled data is determined by the smaller value of which
measured by the symmetric hinge loss and by the "-insensitive
loss; see Figure 5.3(b). Hence, for an unlabeled data point, when
the error measured by the "-insensitive loss is smaller than the
error measured by the symmetric hinge loss, we can deem it as
irrelevant data; otherwise, we set it as relevant data.

With this loss function, we can develop a novel maximum
margin classifier, named the tri-class support vector machine
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(3C-SVM), as follows:

min.
#

�

2
∥w∥2 +

∑
xi∈ℒ±1

riH1(yif#(xi)) +
∑
xi∈ℒ0

riI"(f#(xi))

+
∑
xi∈U

ri min{H1(∣f#(xi)∣), I"(∣f#(xi)∣)} . (5.2)

In the above, the first two terms correspond to the formu-
lation of a standard SVM [160]. The third term measures the
empirical risk of ℒ0 data, the same in U -SVMs [165]. The last
term measures the loss of unlabeled data.

5.3.2 Properties of 3C-SVMs

We first list the properties of the 3C-SVM, then outline the
intuition behind 3C-SVMs through a specific case with ri = ∞
for unlabeled data and " = 0.

Our 3C-SVM provides a framework for the following popular
maximum margin classifiers:

1. A standard SVM formulation [160] is a special case of the
3C-SVM. This can be attained by setting ri to zero for the
third and fourth terms in (5.2). When only labeled data
are given in the training set, we can adopt this formulation.

2. An S3VM formulation [28] is a special case of the 3C-SVM.
This can be achieved by setting ri to zero in the third term
and using only symmetrical hinge loss to measure the em-
pirical risk of unlabeled data in the fourth term in (5.2).
When only labeled data and relevant unlabeled data are
given, we can use this formulation.

3. The 3C-SVM also includes a U -SVM [165]. It can be easily
obtained by setting ri to zero in the fourth term of (5.2).
This formulation works when only labeled data and univer-
sum data are given.
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Hence, our 3C-SVM, a general maximum margin semi-supervised
learning formulation, includes standard SVMs, S3VMs, and U -
SVMs as its special cases. A summarization is shown in Ta-
ble 5.1.

Table 5.1: Relation between different models and the training data.

3C-SVM SVM S3VM U -SVM

ℒ −1 0 1 ℒ −1 1 ℒ −1 1 ℒ −1 0 1

U −1 0 1 U U −1 1 U

It should be noted that the 3C-SVM can map the data to
a feature space through the kernel trick. This can tackle the
problem when data in U0 do not lie near the middle of the two
kinds of labeled target data in the original data space.

We now study how the 3C-SVM can work and give an insight
of the model in the following theorem:

Theorem 5. A 3C-SVM with ri = ∞ for unlabeled data and
" = 0 is equivalent to one of the following two cases: 1) training
a general S3VM to keep the unlabeled data falling on or out of
the margin gap with only one or none of the unlabeled data in
the decision boundary; or 2) separating the unlabeled data into
two sets, Uℒ and U0 with ∣U0∣ ≥ 2, and training a general S3VM
on the training data projected onto the orthogonal complement
of span {�(xj)− �(x0), xj ∈ U0}, where x0 is an arbitrary data
point from U0, while keeping the unlabeled data in the set of Uℒ
falling on or out of the margin gap.

Proof. ri = ∞ for U data and " = 0 imply that the min term
in the fourth term of (5.2) vanish and the optimal solution of w
and b in (5.2) is attained when one of the following conditions
is fulfilled: (a) ∣w⊤�(xj) + b∣ ≥ 1, or (b) w⊤�(xj) + b = 0.
Hence, the above conditions set up the criterion of separating
the unlabeled data into two sets, Uℒ and U0, where data in Uℒ
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satisfy the condition of (a) and data in U0 satisfy the condition
of (b).

First, if ∣U0∣ = 0 or 1, it leads to the result of case 1) in
the above theorem. Here, a general S3VM means that it is a
generalization of the S3VM and the U -SVM.

Next, if U0 contains at least two samples. For the data xj
from U0, we have w⊤�(xj) + b = 0. Hence, picking arbitrary

data x0 from U0, we obtain w⊤(�(xj)− �(x0)) = 0. That is, w
is orthogonal to span {�(xj) − �(x0), xj ∈ U0}. Now, let PU⊥0
denote an orthogonal project on the orthogonal complement of
the mapped set U0, we have w = PU⊥0 w, w⊤w = w⊤P⊤U⊥0

PU⊥0 w =

w⊤w, and w⊤xi = w⊤P⊤U⊥0
xi = w⊤PU⊥0 xi. This means that the

optimal w is sought by training a general S3VM on the projected
labeled data and Uℒ data with projection by PU⊥0 while keeping
the condition (a) valid, or other unlabeled data falling on or out
of the margin gap.

Theroem 5 clearly shows that the optimization of our pro-
posed model is to eventually find the most suitable subspace in
which the margin is maximized while the overall empirical risk
is minimized. The irrelevant data play the role of finding the
subspace.

5.4 Solution and Computation

Due to the non-convexity of the min loss function, the formula-
tion of the 3C-SVM in (5.2) is non-convex in general, which is
the same as S3VMs [15, 84]. Moreover, there are two difficulties
to be solved in the formulation: the min term and the absolute
operation on the unlabeled data. In the following, we show how
to solve these two difficult problems.
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5.4.1 Elimination of Min Terms and Absolute Values

First, we introduce decision variables, dk ∈ {0, 1}, to remove the
min term. This trick is similar to the L1-norm S3VM in [15].
We then transform the optimization as follows:

min.
#,d

�

2
∥w∥2 +

∑
xi∈ℒ±1

riH1(yif#(xi)) +
∑
xi∈ℒ0

riI"(f#(xi))

+
∑

xk+L∈U

rk+LH1(∣f#(xi)∣+D(1− dk))︸ ︷︷ ︸
Q1

+
∑

xk+L∈U

rk+L I"(∣f#(xi)∣ −Ddk)︸ ︷︷ ︸
Q2

, (5.3)

where D > 0 is a suitable constant making Q1 = 0 when dk = 0
and Q2 = 0 when dk = 1. That means, when dk = 0, the error is
counted from Q2 and the unlabeled data are classified as 0-class;
when dk = 1, the error is incurred by Q1 and the unlabeled data
are classified as one of the ±1-class.

The loss in Q1 is H1(∣u∣+a), or H1(∣u∣+a) = max{0, 1−∣u∣−
a} = H1−a(∣u∣). It can be approximated by a symmetrical loss,
which is similar to the ramp loss used in [36, 164], as follows:

H1(∣u∣+ a) ≈ H1−a(u)−H�(u) +H1−a(−u)−H�(−u) .

For the loss in Q2, we can transform it into another symmet-
rical loss as follows:

I"(∣u∣ − a) = H−"−a(−u) +H−"−a(u) .

Due to the symmetry of the losses, we introduce new pair-data
for the unlabeled data to simplify the expression as [36]. The
new pair-data are

xL+k = xL+k, yL+k = 1,

xLU+k = xL+k, yLU+k = −1, k = 1, . . . , U,

where LU means L+ U .
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5.4.2 Concave-Convex Procedure (CCCP)

Hence, we can transform the problem in (5.3) into Q�(#, d),
which is the summation of two terms, Qvex(#, d) and Q�

cav(#).
They are defined as follows:

Qvex(#, d)=
�

2
∥w∥2 +

∑
xi∈ℒ±1

riH1(yif#(xi))

+
∑
xi∈ℒ0

riI"(f#(xi))

+
U∑
k=1

rk+LH1−D(1−dk)(yk+Lf#(xk+L))

+
U∑
k=1

rk+LH1−D(1−dk)(yk+LUf#(xk+LU))

+
U∑
k=1

rk+LH−"−Ddk(yk+Lf#(xk+L))

+
U∑
k=1

rk+LH−"−Ddk(yk+LUf#(xk+LU))) ,

Q�
cav(#)=−

L+2U∑
j=L+1

rjH�(yjf#(xj)) .

Note that the above concave term, Q�
cav, keeps the non-convexity

of the model following from the ramp loss in approximating the
Q1. The optimization in Q�(#, d) is a summation of a convex
term and a concave term, or a difference of convex program-
ming. Hence, it can be solved by the concave-convex procedure
(CCCP) [185], a technique which has been adopted in large scale
transductive SVMs [36] and SVMs on data with missing val-
ues [148].

In the CCCP, we need to use the first order Taylor expansion
to approximate the concave term of Q�

cav. Since the variable
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d does not appear in the concave term, we only need to apply
the first order Taylor expansion of Q�

cav at #t. Hence, we can
seek the optimal variables by solving a sequence of the following
optimization problem:

min.
#,d

(
Qvex(#,d) +

∂Q�
cav(#

t)

∂#
⋅ #
)
. (5.4)

The above optimization is a mixed integer optimization problem
since d is an integer vector. Here, we adopt a standard routine
to solve the integer programming problem [167]: 1) relaxing the
integer variable to a real variable, then solve the whole optimiza-
tion together; 2) rounding the corresponding variable to get its
integer solution. For our problem in (5.4), we relax the deci-
sion variable dk from {0, 1} to [0, 1] and solve the optimization
problem in (5.4) first. We then determine the value of dk by its
definition, the error incurred is less when the data are assigned
to the associated class, as follows

dk =

{
1 if �k ≤ �∗k
0 otherwise

, (5.5)

where �k = H1(∣f#(xk+L)∣) and �∗k = I"(∣f#(xk+L)∣), k = 1, . . . , U .
To simplify the first order approximation of the concave term

in (5.4), we define

�k+s=yk+s
∂Q�

cav(#)

∂f#(xk+s)
=

{
rk+s if yk+sf#(xk+s) < �

0 otherwise
, (5.6)

for those unlabeled samples xk+s with dk = 1, where k = 1, . . . , U ,
and s is L or L+ U . Hence, the first order Taylor expansion of
the concave term is then expressed as

∂Q�
cav(#

t)

∂#
⋅ # =

L+2U∑
j=L+1

�jyjf#(xj).



CHAPTER 5. TRI-CLASS SUPPORT VECTOR MACHINES 85

Now we turn to solve the relaxed optimization in (5.4) and
summarize the result in the following theorem:

Theorem 6. The dual problem of the relaxed optimization in (5.4)
is a Quadratic Programming (QP) problem as follows:

max.
�,�∗

−�
2
∥w(�,�∗)∥2 + %(�,�∗), (5.7)

s.t. 0 ≤ �,�∗ ≤ r,

Ae [�;�∗] = �⊤Y∙2U , A[�;�∗] ≤ 0 ,

where ∥w(�,�∗)∥2 is a quadratic term and %(�,�∗) is a linear
term on dual variables � and �∗. The variable [�;�∗] consists
of an ∣ℒ0∣+ L+ 4U-dimensional vector.

Detailed expression of notation and proof are in Appendix C.

Algorithm 3 CCCP for 3C-SVMs
Initialization:
t = 0
Calculate #0 = (w0, b0) from a U-SVM solution on the labeled/unlabeled data

Compute

�0i =

{
ri if yif#0(xi) < � and i ≥ L+ 1

0 otherwise
repeat
t← t+ 1
Solve the optimization in (5.7) to obtain #t

Update dt from (5.5)
Update �t from (5.6)
if Q�(#t,dt) > Q�(#t−1,dt−1) then

Let dt = dt−1

Solve the optimization in (5.7) to obtain #t by restoring d to dt−1

Update �t from (5.6)
end if

until ∣�t+1 − �t∣ ≤ �

Hence, we obtain w as a linear combination of the dual vari-
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Figure 5.4: One trial for the values of the objective function and test errors in
the procedure of training 3C-SVM on the toy data with 20 (left), 200 (right)
labeled data and unlabeled data in the combination of (100, 100) from the
first kind of U0 data. The 3C-SVM algorithm usually converges in a few
steps.

ables, � and �∗,

w =
1

�

⎛⎝ L+2U∑
i=−∣ℒ0∣,i ∕=0

�iyi�(xi) +
L+2U∑
i=L+1

(�∗i − �i)yi�(xi)

⎞⎠ , (5.8)

and the variable b corresponds to the dual variable of the equal-
ity constraint. The form of the weight we have obtained is simi-
lar to that in [13]. We can also define the corresponding support
vectors. They are those labeled data xi’s with non-zero �i values
and unlabeled data xj’s with non-zero (�j + �∗j − �j) values.

Hence, we obtain Algorithm 3 to solve the 3C-SVM algo-
rithm. Recalling Theorem 5, we can know that, intuitively,
the Algorithm 3 works in the following way: first finding out
those unlabeled data which are certainly outside the margin
gap, removing them from the training set; then training a U -
SVM model on the labeled data with the rest unlabeled data.

The following theorem summarizes the convergence of the
Algorithm 3.

Theorem 7. The Algorithm 3 converges in finite iterations.



CHAPTER 5. TRI-CLASS SUPPORT VECTOR MACHINES 87

Proof. First, we prove that the objective Q� decreases in each
iteration. From the CCCP, we have

Qvex(#
t+1,d) + ∂Q�

cav(#
t) ⋅ #t+1

≤ Qvex(#
t,d) + ∂Q�

cav(#
t) ⋅ #t (5.9)

Q�
cav(#

t+1) ≤ Q�
cav(#

t)+∂Q�
cav(#

t) ⋅ (#t+1−#t), (5.10)

where ∂Q�
cav defines the partial derivative of Q�

cav with respect to
#. Hence, summing (5.9) and (5.10) together, we getQ�(#t+1,d) ≤
Q�(#t,d) for the same d.

After rounding, the objective value Q� may increase, i.e.,
Q�(#t+1,dt+1) may be greater than Q�(#t,dt). In order to avoid
this case, we can restore dt+1 to dt and seek #t+1 again by
minimizing Q� with fixed d. This additional step guarantees to
decrease the objective of Q� at each step.

Second, the variable � can only take a finite number of dis-
tinct values. The algorithm converges in finite steps since Q�

decreases in each iteration and the inequality (5.10) is strict
unless � remains unchanged.

Remark Note that the local optimal issue of the 3C-SVM
has been alleviated by its initialization and the additional step to
avoid increasing the rounded objective function is typically not
needed. Our observation from the experimental results shows
that our 3C-SVM works well using current initialization and
the rounded objective function, Q�(#t,dt), actually decreases
in each step; see Figure 5.4.2.

Complexity Analysis Algorithm 3 has to solve a sequence
of QPs in (5.7). In practice, we find that the number of iteration
steps is a constant, usually less than 10; see figures (one trial
result of the values of the objective function and test errors
during the CCCP iterations of training 3C-SVM on toy datasets)
shown in Figure 5.4.2. Thus, training a 3C-SVM is equivalent
to solving a constant number of QP problems with ∣ℒ0∣+L+4U
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variables. Therefore, the 3C-SVM algorithm has a worst case
complexity of O((∣ℒ0∣+L+ 4U)3) [61, 137]. Possible tricks may
be applied to speed up the 3C-SVM algorithm in a quadratic
scale [36, 124, 137].

5.4.3 Balance Constraint

In the formulation of (5.2), we do not consider the balance con-
straint for the unlabeled data. Actually, balance constraint can
be easily incorporated into our formulation.

There are two observations: 1) Data from Uℒ need the balance
constraint [161]; 2) Data from Uℒ0

do not need the balance con-
straint. By Theorem 5, ideally, their decision values approach
to 0. Hence, we can adopt the same balance constraint as that
used in [37],

1

U

L+U∑
t=L+1

f#(xt) =
1

L

L∑
i=1

yi. (5.11)

This constraint can be included in the optimization in (C.1) and
rewritten into kernel form in (5.7) similar to the trick in [37].
The balance constraint in (5.11) is affected by the summation
of yi. A possibly better setting for the balance constraint is
1
U

∑L+U
t=L+1 f#(xt) = c, where c is a user-specified constant related

to the portion of the number of the unlabeled data assigning to
the positive class [28].

5.5 Experiments

In this section, we test our proposed 3C-SVM algorithm on syn-
thetic and real world benchmark handwritten digits recognition
datasets, and compare it with an SVM implemented by Lib-
SVM [27], an S3VM [36], and a U -SVM [165]. Our 3C-SVM
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Figure 5.5: The performance of four algorithms on toy datasets with differ-
ent combinations of mixed unlabeled data. The results of 3C-SVMs outper-
form the corresponding models with 95% significant level on paired t-test are
marked by circles. 3C-SVMs consistently obtain the best results.

algorithm is implemented in Matlab 7.3 and the QP problem is
solved by a general optimization toolbox, MOSEK1.

Linear kernel is employed for the synthetic datasets and an
RBF kernel, K(x,y) = exp(−
∥x−y∥2), with 
 = 1

0.3d as [137],
is applied for the real world datasets. We seek other optimal hy-
perparameters on the training datasets through cross-validation
in an incremental way from the convex models: We first tune the
soft-margin hyperparameter C for the SVM [160]; we then feed
the obtained optimal C into U -SVM and tune the parameters,
" and CU , in the U -SVM [146, 165]. For the S3VM, we further
tune its parameters on all used training data. Finally, we set
the parameters of our 3C-SVM based on the obtained optimal
parameters from other models. More specially, � is set to 1

C ,
ri = 1 for labeled data and ri = CU

C for unlabeled data, " and
� are set the same as the optimal value from the corresponding

1http://www.mosek.com

http://www.mosek.com
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model. D is set to 2.
A goal of the experiment is to test the performance of the

models learning with mixed unlabeled data. We therefore test
them on different combinations of mixed unlabeled data. That
is, U unlabeled data are selected in the combination of (�U, (1− �)U),
where �U data are randomly chosen from ±1-class and (1− �)U
data are randomly chosen from U0 data. � is tested in {0.1, 0.5, 0.9}.

5.5.1 Synthetic Datasets

Data from the±1-class are generated following the scheme of [146],
where the means are c±i = ±0.3 for i = 1, . . . , 50 and variance
values are �2

1,2 = 0.08 and �2
3,...,50 = 10. In this setting, we can

generate two Gaussians with the Bayes risk being approximately
5%. Two kinds of U0 data similar to those in [146] are gener-
ated. For the first kind, it is a zero mean with �2

1,2 = 0.1 and
�2

3,...,50 = 10. For the second kind, the variance values are the
same as the ±1-class data, but the mean is t

2 ⋅(c
+−c−) (t = 0.5),

shifted a little bit from the origin, where the optimal Bayesian
classifier passes through.

In the experiment, ten sets of data with different size (20, 50,
200, 500) from±1-class are randomly selected as labeled training
data; while ten sets of U (500) unlabeled data are selected as
above mentioned combinations and additional 500 data from
±1-class are used as test set.

Figure 5.5 shows the average performance (10 runs) of all four
algorithms. 3C-SVMs consistently attain the best results. The
performance of U -SVMs decreases as the number of U0 data
decreases and cannot beat that of SVM when the size of the
labeled training data is 500; while our 3C-SVMs keep nearly the
same accuracies and outperform U -SVMs and S3VMs when the
number of labeled training data is large.

We also test our 3C-SVMs with balanced constraints but do
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not get significant improvement. One reason may be in that
U0-data has overcome the effect of imbalance in the labeled tar-
get data. Another reason may be that we need to choose a
more suitable constant c, instead of just using

∑L
i=1 yi/L in the

balance constraint.
We further show the objective function and test errors dur-

ing the CCCP iterations of training on the toy datasets with
different number (L = 20, 200, U = 500) of training data in Fig-
ure 5.4.2. The figures show that the 3C-SVM algorithm tends
to converge in only a few iterations, usually less than 10.

5.5.2 Results on Real World Datasets

Table 5.2: The average (10 runs) accuracies (%) of SVMs, S3VMs, U -SVMs,
and 3C-SVMs on the USPS and the MNIST (“5” vs “8”) datasets for differ-
ent combinations of mixed unlabeled data. The p-values of paired t-test on
the 3C-SVMs scores against other algorithm’s scores are given in brackets.
Significant improvement with 90% confidence level and the best accuracy
are in bold. The 3C-SVMs achieve significant improvement only except for
� = 0.9 against SVMs, where the results of SVMs are unstable and with very
large variances.

Dataset Algorithm � = 0.1 � = 0.5 � = 0.9

USPS

SVM 72.4± 15.9 (0.7) 72.4± 15.9 (9.5) 72.4± 15.9 (53.1)

S3VM 63.6± 8.9 (0.0) 68.2± 8.0 (2.2) 73.2± 7.0 (9.5)

U-SVM 83.1± 2.5 (0.0) 73.4± 4.4 (0.0) 64.2± 3.6 (0.0)

3C-SVM 87.2±2.3 80.6±4.8 75.4±7.3

MNIST

SVM 70.9± 11.4 (0.3) 70.9± 11.4 (0.8) 70.9± 11.4 ( 13.6)

S3VM 70.9± 10.5 (0.7) 72.4± 10.1 (1.0) 75.7± 9.1 (9.8)

U-SVM 84.2± 2.2 (0.2) 80.0± 4.6 (0.9) 75.0± 3.9 (1.0)

3C-SVM 85.3±1.6 82.8±2.9 77.6±3.9

The USPS dataset and the MNIST dataset are two popu-
lar benchmark handwritten digit datasets used in the literature
to validate the proposed models [36, 67, 99, 137]. The USPS
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dataset was first scanned by the U.S. Postal Service from en-
velopes that passed through the Baffalo, NY Post Office [79].
Each image was further normalized and centered with the size
of 16 × 16 (Fig. 5.1(a)). This dataset contains 9,298 grayscale
handwritten digit images, 7,291 of which are used as the train-
ing set, while the remaining 2,007 are used as the test set. The
MNIST dataset consists of a training set of 60,000 digits and a
test set of 10,000 digits (Fig. 5.1(b)). The digits are grayscale
handwritten images normalized and centered in 28 × 28 [100].
We have normalized each pixel value in an image to the range
of −1 and 1.

We follow the experimental work of [146, 165]: Digits “5” and
“8” are constructed as a binary classification problem for ±1-
class data. The labeled, ℒ±1-data with the size being 20 and
the Uℒ-data with the size being �U (U = 500) are randomly
selected from digits “5” and “8”. (1 − �)U other digits are
randomly chosen to construct the U0-data.

Table 5.2 reports the average (10 runs) accuracies of four
algorithms on the two digit datasets. Our 3C-SVM obviously
achieves the best results and outperforms U -SVMs and S3VMs.
The 3C-SVM achieves significant improvement only except for
� = 0.9 against SVMs, where the results of SVMs are unsta-
ble and with large variances. Here, our 3C-SVM uses the same
regularized parameters as those in the U -SVM. That means our
3C-SVM still has room to improve its performance. Under this
setting, the results of 3C-SVMs follow the same trend of the re-
sults of U -SVMs. That is, as the number of U0-data decreases,
the performance of 3C-SVMs decreases. For S3VM, as � in-
creases, i.e., the number of unlabeled data from the target task
increases, the performance of S3VM increases gradually. This
observation shows that more unlabeled data coming from the
target task will help S3VM, but when these related data become
less, the performance of S3VM drops clearly.
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Figure 5.6: Results of accuracies, false positive rates and true positive rates
on detecting 0-class from two benchmark handwritten digits datasets. The
above results are obtained by varying " and adopting the definition of d
in (5.5) as the rule to distinguish 0-class data from the best classifiers ob-
tained from previous experiment. The 3C-SVM achieves the best accuracy
among all compared classifiers and gains about 20% improvement on the
TPR for the USPS dataset and 10% improvement on the TPR for the MNIST
dataset compared to the best of other three models at the same FPR, corre-
sponding to the largest FPR of our 3C-SVM.
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We further compare the performance of our 3C-SVM with
other three models in distinguishing the 0-class data. Here, we
prepare test data for a new binary classification task without
training classifiers. More specifically, we use the best classifiers
built in previous experiment and test them in the new task. The
new binary classification task is constructed as follows: dig-
its “5” and “8” from the test set of the benchmark datasets
consisting of a new 1-class data while the other digits on the
test set consisting of a new 0-class data. Since the other three
models have no ability in distinguishing the 0-class data auto-
matically, for fair comparison, we adopt a simple criterion, i.e.,
classifying the data into corresponding labels based on which er-
ror (the "-insensitive loss or the symmetric hinge loss) incurred
is smaller, the same definition as d in (5.5). We then use four
corresponding best classifiers obtained in the above experiment
to get the accuracies (although the accuracy here is not related
to our target task), false positive rates (FPRs), and true pos-
itive rates (TPRs) on the new binary class data by varying "
from {0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0}. Results
are shown in Figure 5.6. We can see that our 3C-SVM attains
the best accuracy versus different "’s and achieves the highest
TPR when on the same FPR for all classifiers. From Fig. 5.6(b)
and Fig. 5.6(d), we observe that the TPRs are a little low in all
models. All models tend to classify the digits “5” and “8” into
0-class data. Relatively, under the same FPR, corresponding to
the largest FPR of our 3C-SVM, our 3C-SVM can gains about
20% improvement on the TPR for the USPS dataset and 10%
improvement on the TPR for the MNIST dataset compared to
the best of other three models. These results again demonstrate
the advantage of our 3C-SVM algorithm.
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5.6 Summary

In this work, we have proposed a novel maximum margin clas-
sifier, named the tri-class support vector machine, to solve the
binary classification task in a new scenario of semi-supervised
learning, where the labeled and the unlabeled data are a mix-
ture of data from the same or different distribution of the target
labeled data. We introduce a new min loss function to distin-
guish the mixed unlabeled data into relevant and irrelevant data
based on which error is smaller when assigning the data to the
associated class. This min loss function can therefore achieve
the maximum entropy principle and make the irrelevant data
close to the decision boundary.

The 3C-SVM is a generalization of SVMs, S3VMs, and U -
SVMs and provides a framework to derive these three models.
We have further analyzed how the irrelevant data play the role of
seeking feature subspace and why the model works from theoret-
ical perspective. The implementation of the 3C-SVM needs to
solve several QP problems, which is a highly scalable algorithm
in existing algorithms.

Currently, the 3C-SVM is solved by a standard package to
handle the QP problem, whose worse case time complexity is
O(N 3), where N is the number of the training data points
mainly dominating by the number of unlabeled data. How to
further reduce the time complexity of the model to quadratic
or even sub-linear on the number of training data points is very
promising research problem. Another issue is to provide theo-
retical analysis of generalization error bound on the model. The
generalization error bound on related semi-supervised learning
model has been provided in the literature. However, the gener-
alization error bound for the U -SVM is still an open problem.
In our model, we also have to tackle some unlabeled data with
the role similar to the universum data. This makes it specifi-
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cally hard for analyzing the generalization error bound of the
3C-SVM.

□ End of chapter.



Chapter 6

Efficient Sparse Generalized
Multiple Kernel Learning

6.1 Introduction

Kernel methods such as support vector machines (SVMs), ker-
nel principle component analysis, etc. [77, 78, 137, 144] have
become useful tools in various applications, e.g., pattern recog-
nition [137, 144], bioinformatics [95, 166]. To achieve good per-
formance, one has to define a good kernel representation. The
kernel matrix is specified by the inner product of data points
mapped in a high-dimensional (possibly infinite dimensional)
feature space. The kernel matrix defines the similarity among
data and usually has to be learned from the data.

The problem of learning the optimal kernel matrix received
much attention in recent studies of machine learning [137] and
research in this field has become quite active in recent years [35,
62, 73, 105, 158]. One of the important kernel learning tech-
niques is multiple kernel learning (MKL), which was first intro-
duced in [96]. In general, multiple kernel learning searches for
the linear combination of base kernel functions/matrices that
maximizes a generalized performance measure. Typical mea-
sures for multiple kernel learning include maximum margin clas-
sification errors [9, 96], kernel-target alignment [43], and Fisher

97
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discriminative analysis [182]. MKL methods have been shown
to be usually outperformed by SVM with uniformly-weighted
kernels [38, 89, 90, 96].

Among various MKL methods, the L1-MKL has shown its
efficiency in learning the kernel weights. This method seeks the
kernel weights in a simplex and thus yields a sparse solution.
The sparsity of the selected kernels is helpful to identify appro-
priate combination of data sources or different feature subsets
in real-world applications, such as genome fusion [95], splice
site detection [150], image annotation [64], etc. However, when
a problem contains kernels encoding orthogonal or correlation
characterizations, the simplex solution space may discard useful
information and thus result in suboptimal generalization per-
formance [90]. Alternatively, an MKL with the L2-norm con-
straint on the kernel weights is proposed [89] and an MKL with
the Lp-norm (p > 1) constraint on the kernel weights is fur-
ther presented [90] to improve the L1-MKL method. Unfortu-
nately, these extensions lead to a non-sparse solution and may
be sensitive to noise. They suffer poor interpretation ability and
subsequently can lead to high computational and storage cost.

To avoid problems of the above two types of approaches, it
is strongly desirable to keep the locally orthogonal information
in the base kernels [38, 90], while at the same time, to yield
a sparse solution. Clearly, one approach toward this objective
is first to cluster the kernel matrices/functions into groups and
then to identify the leading groups. In this way, the complemen-
tary or locally orthogonal information can be kept and sparse
solutions can also be obtained. Similar methods, e.g., group
lasso [184], fussed lasso [156], etc., have been introduced in
Statistics. Group lasso aims to find important explanatory fac-
tors in predicting the response variable, where each explanatory
factor can be represented by a group of derived input variables.
In [8], Bach has shown that group lasso reduces to multiple
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kernel learning, when the Euclidean norms in group lasso are
replaced by reproducing kernel Hilbert norms. The composite
kernel learning [153] is an example of kernel learning approach
based on the group lasso, where the kernels are hierarchically
penalized. Despite their success, the group composition must
be specified ahead as a prior knowledge. However, in some real-
world problems, the prior knowledge on the composition of the
group structure may not be available before learning. More-
over, the group penalization often involves high computation
cost due to the projection to the hierarchical structure of the
kernel weights.

To tackle the above problems, we propose a novel generalized
multiple kernel learning (GMKL) model. Our model introduces
the regularization with a linear combination of the L1-norm and
the squaredL2-norm on the kernel weights, i.e., a combination
of lasso and ridge penalties on the kernel weights. This model
generalizes the L1-MKL and the L2-MKL methods. More im-
portantly, our GMKL not only enjoys sparse solution as the
L1-MKL, but also encourages the grouping effect on the solu-
tion, where similar base kernels tend to be either in or out of
the model altogether without specifying the group information
in advance. Therefore, this demonstrates distinct advantages
over the L1-MKL [96, 130] or the L2-MKL [89]. Furthermore,
compared with group lasso based approaches, the proposed ap-
proach relaxes the needs for the prior knowledge of the group
structure of base kernels.

In summary, our contributions of this work include

∙ A generalized multiple kernel learning model is introduced
to advance the research progress in this area. The model
generalizes several previously proposed MKL models, in-
cluding the L1-MKL and the L2-MKL, and overcomes the
insufficiency of these proposed methods.
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∙ Theoretical analysis of the GMKL on why it contains a
sparse solution with the grouping effect is provided. This
guarantees the favorite properties of the GMKL.

∙ The GMKL is transformed into a convex-concave optimiza-
tion problem. So the global optimal solution is guaranteed.
A very efficient method, the level method, is proposed to
solve the GMKL and its convergence rate is provided. This
solution enables the GMKL for its potential on solving large
scale datasets.

∙ A series of experiments have been conducted both on syn-
thetic and real-world datasets to demonstrate the effective-
ness and efficiency of the GMKL.

The rest of the chapter is organized as follows. In Section 6.2,
we outline the multiple kernel learning framework and introduce
the current research progress on extending this framework. In
Section 6.3, we describe our proposed generalized multiple kernel
learning model and provide theoretical analysis on the proper-
ties of the GMKL. In Section 6.4, we present the solution of the
GMKL by the level method and provide its convergence analysis.
In Section 6.5, we report the experimental results on both syn-
thetic and real-world datasets. Finally, we conclude the chapter
in Section 6.6.

6.2 Multiple Kernel Learning

In this section, we first introduce the basic concept of kernel
methods. We then present the framework of multiple kernel
learning. Finally, the L1-MKL and its extensions are further
discussed.
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6.2.1 Preliminaries

In supervised learning, a set of labeled data D = {(xi, yi)}Ni=1 is
given, where xi ∈ X ⊂ ℝd for some input space X , and yi ∈ Y .
For binary classification, yi can be −1 or 1. For regression prob-
lems, yi ∈ ℝ. The objective of supervised learning is to find a
hypothesis f ∈ ℋ, which can generalize well on new and unseen
data. This is attained by minimizing the following regularized
risk:

f ★ = arg min
f

CRemp(f) + Ω(f), (6.1)

where Remp(f) = 1
N

∑N
i=1R(f(xi), yi) is the empirical risk of

hypothesis f with respect to a loss function, R : ℝ × Y → ℝ,
and Ω(f) is a regularization term. The positive constant term,
C, is a trade-off parameter balancing the regularization and the
empirical risk.

For different problems, different loss functions R(f(x), y) are
adopted. For example,

∙ Hinge loss: R(f(x), y) = max{0, 1−yf(x)}. This loss func-
tion is usually applied in binary classification on SVMs [160].

∙ "-insensitive loss function: R(f(x), y) = max{0, ∣f(x) −
y∣ − "}, a loss function has been used in support vector
regression [160].

In this chapter, similar to previous kernel methods [137], the
regularizer, Ω(f), is 1

2∥w∥
2
2, corresponding to the squaredL2-

norm on the function weights and the function f takes a linear
form with parameters w and b as

fw,b(x) = w⊤�(x) + b, w ∈ ℝd(ℋ), b ∈ ℝ, (6.2)

where � : X → ℋ defines a (possible non-linear) feature map-
ping from the original input space to a Hilbert space ℋ. The
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feature mapping is usually implicitly defined by a Mercer kernel
computing the inner product inℋ as K(xi,xj) = ⟨�(xi), �(xj)⟩ℋ [137].

The decision function can then be represented by

f(x) =
N∑
i=1

�★iK(x,xi) + b★, (6.3)

where the optimal parameter �★ and b★ are obtained by solving
the dual of the optimization in (6.1).

6.2.2 Multiple Kernel Learning Framework

In the MKL framework, there are given Q base kernels. Each
base kernel, Kq, implicitly represents a feature mapping, �q :
X → ℋq, in a reproducing kernel Hilbert space (RKHS) ℋq, for
q = 1, . . . , Q. The hypothesis in (6.2) is then extended to

fŵ,b,�(x) = ŵ⊤��(x) + b =

Q∑
q=1

√
�qw

⊤
q �q(x) + b, (6.4)

where the weight ŵ is defined as ŵ = (w⊤1 , . . . ,w
⊤
Q)⊤, consist-

ing of a
∑Q

q=1 d(ℋq)-dimensional vector. The composite feature

mapping is defined as �� =
√
�1�1× . . .×

√
�q�Q, and �q is the

corresponding coefficient, or the kernel weights of the kernel Kq

and needs to be learned from the data.
The objective of MKL is to seek the optimal kernel com-

bination, K� =
∑Q

q=1 �qKq, by minimizing the following opti-
mization while imposing the Ivanov regularization on the kernel
weights [90, 96]

min
ŵ,b,�≥0

C

N∑
i=1

R(fŵ,b,�(xi), yi) +
1

2
ŵ⊤ŵ, (6.5)

s.t. J (�) ≤ 1, (6.6)
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where J (�) defines a regularizer on �, which will be elaborated
in the following subsections. It is noted that an MKL framework,
which seeks optimal kernels in a compact set by minimizing a
regularized functional, was also studied in [113] from a theoret-
ical perspective. The paper [113] mainly studied the theoretical
properties on the square loss with L1-norm regularization on the
functional. This is different from what we will propose in the
next section.

In addition, we should note that the non-convexity of (6.5)
can be resolved by applying the variable transformation, vq :=√
�qwq, as that in [90, 198]. Hence, the objective in (6.5) be-

comes

min
v̂,b,�≥0

C

N∑
i=1

R(fv̂,b(xi), yi) +
1

2

Q∑
q=1

v⊤q vq

�q
, (6.7)

where v̂ = (v⊤1 , . . . ,v
⊤
Q)⊤ and fv̂,b(x) =

∑Q
q=1 v⊤q �q(x) + b.

In (6.7), we use the convention that u
0 = 0 if u = 0 and ∞

otherwise. If R is a convex function and the constraint (6.6) is
convex, then (6.7) is convex. This result can be referred to [22,
Ch. 3.1.5].

6.2.3 L1-MKL

Common approaches in multiple kernel learning [9, 96, 130, 151]
impose the L1-norm constraint on the kernel weights for the
kernel selection. That is, J (�) = ∥�∥1, or ∥�∥1 ≤ 1 in the
condition of (6.6). We refer to this case as the L1-MKL.

In [96], the L1-MKL is first formulated into a semi-definite
programming problem. Due to its effectiveness in learning an
interpretable kernel representation, researchers have proposed
various methods to speed up its computation. Methods such
as second order cone programming [9], semi-infinite linear pro-
gramming [151], gradient descent [130], and the extended level
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method [170], have been proposed to reduce the time consump-
tion in seeking the optimal kernel combination weights.

An advantage of the L1-MKL constraint on the kernel combi-
nation weights is that it provides the favorite property of spar-
sity, where the obtained kernels can be easily interpreted. How-
ever, it may also discard some useful information when two ker-
nels are orthogonal [38] or yield non-unique solutions when two
kernels are strongly correlated.

6.2.4 MKL Extensions

In order to tackle the deficiency of the L1-MKL, researchers have
extended the MKL models. They include:

∙ The MKL model with the L2-norm constraint on the kernel
weights [89], i.e., J (�) = ∥�∥2

2, or ∥�∥2
2 ≤ 1 for the condi-

tion (6.6). Similarly, a multiple kernel ridge regression is
proposed in [38], where the kernel weights are constrained
in a ball around a positive mean.

∙ The MKL with the Lp-norm (p > 1) constraint on the ker-
nel weights [90, 171]. This corresponds to J (�) = ∥�∥pp,
or ∥�∥pp ≤ 1 in (6.6). The Lp-MKL is more general and
includes the L2-MKL as its special case. An interleaved
optimization strategy with second order approximation is
proposed to solved the Lp-MKL [90].

∙ The MKL model with mixed norm regularization on the
kernel weights [94]. This model imposes a mixed norm reg-
ularization on the kernel weights, which yields structure
sparsity on the solutions.

∙ Other MKL extensions: These models reformulate the MKL
problem by imposing mixed norm regularization on the
function weights [81], or by introducing the elastic net-type
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regularization, i.e., a linear combination of the lasso penalty
and the ridge penalty on the function weights [157]. These
formulations correspond to modifying the regularizer to a
block norm, i.e., a norm of the vector containing the indi-
vidual kernel norms [9, 91]. Now, we discuss several MKL
methods incorporating the elastic net-type regularization
that may be similar to our work in this chapter. Longworth
and Gales [109] included the squaredL2-norm regularization
on the kernel weights while keeping the L1-norm simplex
constraint on the kernel weights. Shawe-Taylor [143] pro-
posed a linear combination of the squaredsum of L1-norms
and the squared L2-norm on the function weights to solve
the novelty detection problem. In [157], an MKL model was
proposed to add the linear combination of the lasso penalty
and the ridge penalty on the function weights, which in-
cludes the L1-MKL and the uniformly-weighted MKL as
its special cases. However, these models lack the analysis
on the properties of the models, e.g., the grouping effect.

Among the above methods, the L1-MKL yields a sparse solu-
tion, but cannot capture the complementary information on the
kernels. For the Lp-MKL (p > 1) models, they will yield non-
sparse solutions. As indicated in [200], in the Lp (p ≥ 1) penalty
family, only the lasso penalty (p = 1) can produce sparse solu-
tions. The non-sparsity of the solution has the weaknesses in
interpreting the model and may be sensitive to noise. In the fol-
lowing section, we will present our proposed generalized multiple
kernel learning model to tackle the above insufficiency problem
of previously proposed MKL models.
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Figure 6.1: Demonstration of a linear combination (v = 0.5) of the L1-norm
and the squaredL2-norm on � in R2 space. Although, Lp-norm (p = 1.4) can
obtain a similar curve to that of the linear combination of the L1-norm and
the squaredL2-norm, it produces non-sparse solutions.

6.3 Elastic Net-type Regularization on Mul-

tiple Kernel Learning

In this section, we first introduce the formulation of the general-
ized multiple kernel learning (GMKL) model. We then provide
theoretical analysis on the properties of the GMKL model, i.e.,
explaining why it can produce sparse solutions while encourag-
ing the grouping effect.

6.3.1 Formulation and Duality

Motivated by the fact that the L1-MKL produces sparse solu-
tions and the Lp-MKL (p > 1) can capture correlations among
kernels, we propose a generalized multiple kernel learning model
incorporating a linear combination norm on the kernel weights
as follows:

min
�∈Θ,v̂,b

C
N∑
i=1

R(fv̂,b(xi), yi) +
1

2

Q∑
q=1

v⊤q vq

�q
. (6.8)
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More specially, we set p = 2, and the domain of � is

Θ = {� ∈ ℝQ
+ : v∥�∥1 + (1− v)∥�∥2

2 ≤ 1} , (6.9)

where the parameter v, 0 ≤ v ≤ 1, is a non-negative constant
to balance the two terms in the constraint. For this MKL ex-
tension, we have several remarks:

∙ There are two main reasons why we adopt this elastic net-
type regularization, i.e., a linear combination of the L1-
norm and the squared L2-norm on the kernel weights. One
is due to computational consideration. Through this set-
ting, the optimization in (6.8) is a convex optimization
problem given that the loss R is convex. More specifically,
it is a quadratically-constrained quadratic programming
(QCQP) problem when the hinge loss or the "-insensitive
loss is used. The second reason is that as discussed in Sec-
tion 6.3.2, our GMKL enjoys the sparsity property as the
L1-MKL and encourages the grouping effect on the ker-
nel weights similar to that of the elastic net on the model
weights.

∙ Our formulation generalizes previously proposed L1-MKL
and the L2-MKL models. When v = 0, the constraint re-
duces to a ridge penalty on � and the model is equivalent
to the L2-MKL [89]. When v = 1, the constraint is a lasso
constraint and the model is the L1-MKL [96]. This moti-
vates us to name our model as GMKL. When v ∈ (0, 1),
the constraint contains the characteristics of both the lasso
and ridge penalty and the model includes several favorite
properties, which will be introduced in Section 6.3.2. Fig-
ure 6.1 illustrates the change of the combined L1-norm and
the squaredL2-norm on � in a two-dimensional space.

∙ The constraint can be further extended by combining the
L1-norm and the Lp-norm (p > 1) on the kernel weights
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and therefore generalizes previously proposed related MKL
methods [90, 171]. When v ∈ (0, 1), the extended con-
straint is strictly convex on � and contains similar proper-
ties of our GMKL formulation; see Section 6.3.2 for more
details.

∙ Our proposed GMKL also generalizes the L2-norm regu-
larization proposed in [38]. A main difference is that the
L2-norm regularization in [38] introduces an L2-ball with a
predefined positive ball center. Actually, predefining a ball
center is not necessary in practical applications and is not
required in our model. Furthermore, the formulation in [38]
lacks the properties of sparsity and the grouping effect.

Now, we derive the corresponding dual form of the optimiza-
tion in (6.8) with respect to ŵ, b by fixing �. Here, we con-
sider the classification problem where the hinge loss is adopted.
Hence, the primal problem of GMKL is equivalent to

min
�∈Θ

min
v̂,b,�

C
N∑
i=1

�i +
1

2

Q∑
q=1

v⊤q vq

�q

s.t. yi

(
Q∑
q=1

v⊤q �q(xi) + b

)
≥ 1− �i

�i ≥ 0, i = 1, . . . , N.

Following the standard Lagrange multipliers method [152, 160],
we construct the corresponding Lagrangian functional, ℒ(v̂, b, �,�,
),
of the minimization on the primal variables with fixed � as

ℒ(⋅) = C
N∑
i=1

�i +
1

2

Q∑
q=1

v⊤q vq

�q
−

N∑
i=1


i�i

−
N∑
i=1

�i

(
yi

(
Q∑
q=1

v⊤q �q(xi) + b

)
− 1 + �i

)
,
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where the multipliers satisfy � ≥ 0 and 
 ≥ 0.
Taking the partial derivative of the Lagrangian function with

respect to the corresponding primal variables and setting them
to zeros, we obtain

∂ℒ
∂vq

=vq−�q
N∑
i=1

�iyi�q(xi)=0, q=1, . . . , Q, (6.10)

∂ℒ
∂b

=
N∑
i=1

�iyi = 0, (6.11)

∂ℒ
∂�i

= C − �i − 
i = 0, i = 1, . . . , N. (6.12)

From (6.10), we can obtain the dual form of (6.8) as follows:

min
�∈Θ

max
�∈A

D(�,�), (6.13)

where the objective function is defined as

D(�,�) = 1⊤N�−
1

2
(� ∘ y)⊤

(
Q∑
q=1

�qKq

)
(� ∘ y). (6.14)

Correspondingly, constraints (6.11) and (6.12) with the con-
ditions of � ≥ 0 and 
 ≥ 0 yield the domain of � defined in
the set of A as

A = {� ∈ ℝN
+ , �

⊤y = 0, � ≤ C1N}. (6.15)

The formulation in (6.13) is a convex-concave problem and
its optimal solution is guaranteed to be the global optimal solu-
tion. Wrapping-based methods [130, 151] have been proposed to
solve this kind of optimization problems. Especially, the maxi-
mization problem in (6.13) corresponds to a standard dual form
of SVMs. Currently, solvers for SVMs are very efficient [21, 32]
and can be directly adopted in our model.
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6.3.2 Properties

Here, we present several properties for our GMKL model. First,
we prove that the constraint on � is tight when the optimal
solution is obtained. Second, we provide a theorem to show
that the solution of the GMKL is sparse with the grouping effect.
Third, we prove that our GMKL model introduces the grouping
effect when two kernels are strongly correlated.

To simplify the analysis, we first define the optimal (�★,�★)
as follows:

Definition 1. (�★,�★) is the optimal solution of (6.13). That
is,

�★ = arg min
�∈Θ

D(�,�★) �★ = arg max
�∈A

D(�★,�).

Now, the following theorem shows that the optimal solution
in (6.13) is attained when the constraint of � is tight.

Theorem 8. Suppose the kernel matrices, K1, . . . ,KQ are posi-
tive semi-definite. Then the condition v∥�★∥1 +(1−v)∥�★∥2

2 = 1
always holds.

Proof. First, we have the following two observations about the
function D(�,�★):

1. The function D(�q,�
★) is a monotonically, but not strictly,

decreasing function on each element of �, or �q, with fixed
�★. It is because that D(�q,�

★) is a linear function on �q
with each coefficient being non-positive. That is, D(�q,�

★) =
uq�q, where the q-th coefficient on �q is uq = −1

2(�★ ∘
y)⊤Kq(�

★ ∘ y). Obviously, uq is non-positive since the ker-
nel matrix Kq is positive semi-definite.

2. The constraint function, v∥�∥1 + (1 − v)∥�∥2
2, is element-

wise and it is an increasing function on each element of �,
or �q, with �q ≥ 0, for q = 1, . . . , Q.



CHAPTER 6. GENERALIZED MULTIPLE KERNEL LEARNING 111

Hence, we can conclude that the optimal �★ should be attained
when the constraint of (6.9) is tight. Otherwise, we have the
following two cases:

1. If there is an element, e.g., q with uq < 0, we can select �q
and increase its value to make (6.9) tight. This again will
further reduce the function value of D(�,�★), which is a
better solution of (6.13), from the above first observation.

2. For all q, uq = 0, we can select any �q and increase its
value to make (6.9) tight, while keeping the same optimal
objective function value.

We now turn to study the grouping effect of our GMKL. First,
we note that the grouping effect is only derived from � and it
is not related to the variable �. By the Lagrange multiplier
method [22], we know that (6.13) is equivalent to the following
minimization problem given the fixed �★ for some � ≥ 0:

min
�≥0
D(�,�★) + �

(
v∥�∥1 + (1− v)∥�∥2

2

)
. (6.16)

We then have the following theorem stating one aspect of the
grouping effect.

Theorem 9. Suppose � > 0, Ki = Kj, i, j ∈ {1, . . . , Q}, and
�★ is a minimizer of (6.16), we have

1. If v ∕= 1, then

�★q = max

{
0,

1

2(1− v)

(
1

2�
(�★ ∘ y)⊤Kq(�

★ ∘ y)− v
)}

,

(6.17)
and therefore �★i = �★j .
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2. If v = 1, then �̃ is another minimizer of (6.16) with

�̃q =

⎧⎨⎩
�★q if q ∕= i and q ∕= j

(�★i + �★j ) ⋅ � if q = i

(�★i + �★j ) ⋅ (1− �) if q = j

for any � ∈ [0, 1].

A detailed proof is in Appendix D.1. There are some remarks
about the above theorem:

∙ Theorem 9 provides an explicit solution of � in (6.17). This
is different from that of the elastic net in [200, Lemma 2].

∙ Theorem 9 indicates that our GMKL can achieve the group-
ing effect and the L1-MKL does not have a unique solution
when two kernels are the same. This analysis can be also
extended to other regularizers with strictly convex prop-
erty.

∙ Eqation (6.17) also indicates that our GMKL can yield
sparse solutions when the second term in the bracket of (6.17)
is less than 0. On the otherhand, by setting v = 0 into (6.17),
we can obtain, �★q = 1

2(1−v)

(
1

2�(�★ ∘ y)⊤Kq(�
★ ∘ y)

)
for the

L2-MKL. This also shows that the L2-MKL yields the group-
ing effect, but usually yields non-sparse solutions on the
kernel weights.

We further analyze the grouping effect when the given kernels
are strongly correlated. Here, we define a ratio for two kernels
to indicate the correlation of two kernels:

Definition 2. Let rij define the ratio of two kernels on given
�★ as

rij =
(�★ ∘ y)⊤Ki(�

★ ∘ y)

(�★ ∘ y)⊤Kj(�★ ∘ y)
.
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If rij ≈ 1, we say Ki and Kj are strongly correlated. Now,
we can easily obtain the following theorem:

Theorem 10. Given two kernels Ki and Kj, if v ∕= 1, as rij
approaches 1, we have �★i approaches �★j .

Proof. Since v ∕= 1, from (6.17) in Theorem 9, we note that
�★q can be simplified as max{0, tq}, a continuous function of tq,
where tq = 1

2(1−v)

(
1

2�(�★ ∘ y)⊤Kq(�
★ ∘ y)− v

)
. Hence, we have

∣�★i − �★j ∣ ≤ ∣ti − tj∣, for i, j = 1, . . . , Q. (6.18)

This inequality can be obtained by analyzing the following sev-
eral cases.

1. When �★i and �★j are both positive, we have ti, tj > 0 and
attain the equality in (6.18).

2. When �★i > 0 and �★j = 0, we have ∣�★i − �★j ∣ = ∣ti∣ ≤ ∣ti− tj∣.
The inequality is due to the condition that tj ≤ 0. For the
case of �★i = 0 and �★j > 0, we can derive the result similarly.

3. When �★i = �★j = 0, the inequality in (6.18) is satisfied for
all ti and tj.

From (6.18), we have

∣�★i − �★j ∣ ≤
1

2(1− v)

1

2�
(�★ ∘ y)⊤Kj(�

★ ∘ y)∣rij − 1∣. (6.19)

Hence, as rij ≈ 1, we have ∣�★i − �★j ∣ ≈ 0. That is, �★i approaches
�★j .

From (6.19), we note that the difference of two weights, ∣�★i −
�★j ∣, is proportional to the ratio value, ∣rij − 1∣, and inversely
proportional to 2(1 − v). The ratio value indicates that if two
kernels are strongly correlated, the weights are nearly the same.
The inversely proportional value 2(1−v) indicates that a smaller
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v will yield closer solutions for the kernel weights. Meanwhile,
we should note that the coefficient, 2, is introduced due to the
use of the L2-norm on the kernel weights. If the Lp-norm is
adopted, the ratio is inversely related to p. As p increases,
e.g., approaches to infinity, it will lead to the same weights,
i.e., uniformly-weighted MKL, which is the same as the result
in the previous MKL models.

In summary, our GMKL contains the following properties:

∙ In view of (6.17), we can see that out GMKL imposes the
sparsity on the coefficients of the model. This surpasses
those non-sparse MKL models [89, 90], which may be prone
to noise and have a larger computation/storage cost.

∙ Theorem 9 and Theorem 10 state that the GMKL can pro-
vide the grouping effect, which retains more useful infor-
mation from the data than the L1-MKL.

∙ Non-linearity is embedded in the formulation of (6.8) and
is represented by the kernels. Our GMKL can therefore
capture more information of the data than other statistic
models, e.g., the lasso [155] and the elastic net [200].

Table 6.1 summarizes the above arguments.

Table 6.1: Comparison between GMKL and the other models.

L1-MKL L2-MKL GMKL Lasso Elastic net Group Lasso

Sparsity ✓ × ✓ ✓ ✓ ✓

Non-linearity ✓ ✓ ✓ × × ×
Grouping × ✓ ✓ × ✓ ×
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6.4 Optimizing the GMKL

Due to the efficiency in solving SVMs, the wrapping-based meth-
ods have been adopted to solve the MKL models, e.g., [90, 105,
130, 151, 162, 170]. In the wrapping-based methods, the first
step is to seek the optimal ŵ, b or the dual variable � given a
fixed � by an SVM solver. The second step is to update the
kernel weights � to further decrease the objective value of (6.5)
with fixed primal variables ŵ and b or fixed dual variable �.
Many previously proposed MKL methods try to speed up the
model in the second step. For example, a gradient method is
proposed in [130, 162]; an SILP method is applied in [90, 151];
and the level method is introduced in [170].

Among these optimization methods, the level method, a cut-
ting plane method derived from the family of bundle meth-
ods [117], has shown better success in solving machine learn-
ing and kernel learning methods. For example, it has been in-
troduced to efficiently solve regularized risk minimization prob-
lems [149], the L1-MKL [170], and neighborhood kernel learn-
ing [105]. Hence, in this chapter, we adopt the level method to
solve our GMKL of (6.13).

6.4.1 GMKL by the Level Method

The key part of the level method is to construct the correspond-
ing lower bound and upper bound of the objective function.
First, we know that D(�,�) in (6.13) is convex on � and con-
cave on �. According to von Neumann Lemma [163], for any
optimal solution (�★,�★), we have

D(�★,�) ≤ max
�∈A
D(�★,�) = D(�★,�★)

= min
�∈Θ
D(�,�★) ≤ D(�,�★).(6.20)
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The above property indicates that our model can easily obtain
the corresponding lower bound and the upper bound.

Suppose {(�i,�i)}ti=1 denote the solutions of (6.13) obtained
in the last t iterations. We define the corresponding lower
bound, Dt, and the corresponding upper bound, Dt, as follows:

Dt = min
�∈Θ

ℎt(�), Dt = min
1≤i≤t

D(�i,�i) , (6.21)

where ℎt(�) corresponds to a cutting plane as follows:

ℎt(�) = max
1≤i≤t

D(�,�i). (6.22)

It is noted that the lower bound is the minimum value at the
cutting plane and the upper bound is the minimum objective
value attained at previous steps.

We can then define the level set as follows

ℒt = {� ∈ Θ : ℎt(�) ≤ V t = �Dt + (1− �)Dt = Dt + �Δt} ,
(6.23)

where � ∈ (0, 1) is a given constant controlling the tradeoff of the
two bounds. The level set specifies the set of solution where the
objective is bounded by the lower bound and the upper bound.
The gap, Δt, between the upper bound and the lower bound at
each step is defined as

Δt = Dt −Dt , (6.24)

and measures the sub-optimality for the solution (�t,�t) at each
step.

The final step in the level method is to project �t onto the
level set ℒt to calculate a new solution, �t+1. That is, we obtain
�t+1 by solving the following quadratic optimization problem:

min
�∈Θ

∥� − �t∥2
2 (6.25)

s.t. D(�,�i) ≤ V t, i = 1, . . . , t.
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The intuition of the projection is to make the solution satisfy
the level set conditions in a faster way and to require �’s in two
consecutive steps close to each other, avoiding oscillation on the
solution.

The following pseudo code presents how to solve the GMKL
by the level method.

Algorithm 4 The Level Method for the Generalized Multiple Kernel Learn-
ing

Given: predefined tolerant error � > 0
Initialization: Let t = 0 and �0 = c1Q, where c is the positive root of
the quadratic equation: (1− v)c2 + vc− 1

Q
= 0;

repeat
1. Solve the dual problem of the SVM with

∑Q
q=1 �

t
qKq to get the

optimal solution, �;
2. Construct the cutting plane model, ℎt(�), in (6.22);

3. Calculate the lower bound Dt and the upper bound Dt in (6.21),
and the gap Δt in (6.21);

4. Compute the projection of �t onto the level set ℒt by solving the
optimization problem in (6.25);

5. Update t = t+ 1;
until Δt ≤ �.

Remarks: Two points about Algorithm 4 need to be empha-
sized.
∙ Initialization of �: We set �0 uniformly at each element, i.e.,
�0 = c1Q, where c > 0. From Theorem 8, we must have
v ⋅Q ⋅c+(1−v) ⋅Q ⋅c2 = 1. This requires to seek the positive
root of the quadratic equation as that in Algorithm 4.
∙ In terms of computation, the main part of our GMKL is

that we have introduced a quadratic constraint in (6.9).
This may require a bit more computation when compared
with the L1-MKL approach. In Algorithm 4, there are two
steps involving the quadratic constraint. They are: the
step 2) in Algorithm 4, which constructs the cutting plane
in (6.22) by solving a linear program with a quadratic con-
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straint, and the step 4) in Algorithm 4, which projects �
to the level set by solving a quadratic programming with
a quadratic constraint in (6.25). We believe some warm
start methods, e.g., solving the corresponding problems
with previously obtained optimal value [92], can be adopted
to speed up the seeking of the next optimal value.

6.4.2 Convergence Analysis

Algorithm 4 is terminated when the gap between the two bounds
is small. To analyze the convergence of the level method on our
GMKL model, we first have the following theorem to state that
in each iteration, the gap is non-increasing and the difference
between the optimal objective value and the attained objective
value is bounded by the gap.

Theorem 11. We have the following properties on the gap, Δi,
i = 1, . . . , t:

1. Δi ≥ 0,

2. Δ1 ≥ Δ2 ≥ . . . ≥ Δt,

3. ∣D(�i,�i)−D(�★,�★)∣ ≤ Δt.

We then have the following theorem, which provides the con-
vergence rate of Algorithm 4.

Theorem 12. For any � > 0, Algorithm 4 converges to the
desired precision after T steps, and

T ≥ 2c(�)V 2

�2
, (6.26)

where c(�) = 1
(1−�)2�(2−�), V is calculated by 1

2NC
2
√
Q max

1≤q≤Q
Λmax(Kq),

and Λmax(Kq) defines the maximum eigenvalue of matrix Kq.
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We put the proof of the Theorem 11 and the Theorem 12 in
Appendix D.2 and Appendix D.3, respectively. It is noted that
the convergence rate of the level method is O(�−2). According
to [117], empirically, a better convergence rate O(N log(1

� )) can
be observed.

Table 6.2: Summary of the synthetic and UCI datasets.

Type Dataset
# Training # Test # Dim # Kernel

(N) (d) (Q)

Synthetic
Toy 1 150 150 20 273

Toy 2 150 150 20 273

UCI

Breast 341 342 10 143

Heart 135 135 13 182

Ionosphere 175 176 33 442

Liver 172 173 6 91

Pima 384 384 8 117

Sonar 104 104 60 793

Wdbc 284 285 30 403

Wpbc 99 99 33 442

Table 6.3: Summary of the proteins subcellular localization datasets.

Dataset # Classes # Training (N) # Test # Kernel (Q)

Plant 4 470 470 69

Psort+ 4 270 271 69

Psort– 5 722 722 69

6.5 Experiments

We conduct a series of experiments on evaluating the proposed
GMKL in contrast with the L1-MKL, the L2-MKL, and the
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uniformly-weighted MKL (UW-MKL) with three objectives. The
first objective is to show how our GMKL model can select im-
portant kernels in group manners. This is illustrated through
two toy examples. The second objective is to show the efficiency
of our GMKL model solved by the level method. This is veri-
fied by eight datasets from the UCI repository [17]. The third
objective is to show the GMKL can improve the performance
on predicting the proteins subcellular localization by different
kinds of kernels [198]. A summary of the three types of data,
including 13 datasets, is listed in Table 6.2 and Table 6.3, re-
spectively. Detailed descriptions of the data are in Section 6.5.2
to Section 6.5.4, respectively.

6.5.1 Experimental Setup

In the experiment, for all compared four MKL models, the reg-
ularization parameter C is tuned by cross validation on one run
of the training data. The tradeoff parameter v for the GMKL
is set to 0.5 for simplicity.

The L1-MKL is solved by the SimpleMKL toolbox [130]. The
L2-MKL is solved by our GMKL 1 with the parameter v = 0.
The optimization on constructing the cutting plane of (6.22) and
seeking the projection of (6.25) in the level method are solved
by a standard toolbox, Mosek 2. To conduct a fair comparison
among the MKL algorithms, we set the stopping criterion similar
to that in [130]: The duality gap is lower than 0.01 for the L1-
MKL; for other MKL algorithms (except UW-MKL), when the
number of iterations exceeds 500, the difference of � in consecu-
tive step is lower than 0.001. For our GMKL and the L2-MKL,
we empirically initialize the algorithm parameter � in the level
method to 0.9 and increase it to 0.99 when the ratio Δt/V t is

1Our GMKL toolbox can be downloaded in http://appsrv.cse.cuhk.edu.hk/

˜hqyang/doku.php?id=gmkl.
2http://www.mosek.com

http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=gmkl
http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=gmkl
http://www.mosek.com
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less than 0.01 for all experiments, since a larger � accelerates
the projection when the solution is close to the optimal one.

6.5.2 Toy Examples

In designing the synthetic datasets, we have the following ex-
pectations: 1) data containing nonlinearity on the features; and
2) data being embedded with redundant and grouping features.
We then generate two 20-dimensional toy examples by additive
models motivated by an example in [65].

1. In example 1, the data are generated by

Yi = sign

(
3∑
j=1

f1(xij) + �i

)
, (6.27)

where sign (⋅) is determined by the sign of the value in the
bracket, x is uniformly distributed in [0, 1]N×20, f1(a) =
−2 sin(2a) + 1 − cos(2) and the noise �i ∼ N (0, 1) is a
Gaussian noise. Hence, the data contain 17 irrelevant fea-
tures.

2. In example 2, the data are generated by

Yi = sign

(
3∑
j=1

f1(xij) +
6∑
j=4

f2(xij)

+
9∑
j=7

f3(xij) +
12∑
j=10

f4(xij) + �i

)
, (6.28)

where there are four kinds of mapping f1, f2, f3, and f4. f1

is the same as Example 1, f2(a) = a2 − 1
3 , f3(a) = a − 1

2 ,
and f4(a) = e−a + e−1− 1. For x and �i, they are the same
as Example 1. The output Yi is determined by the corre-
sponding features, from 1 to 12, of xi which are mapped by
f1, f2, f3, and f4, respectively. The data therefore contain
8 irrelevant features.
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It is noted that by the above generation scheme, the data
have the following properties:

1. The outputs (labels) of the data are dominated by only
some features. The corresponding feature is mapped by a
linear function as f3, or non-linear functions, f1, f2, and f4.

2. Each mapping, fi, i = 1, 2, 3, 4, acts on three features
equally, which implicitly incorporates grouping effect on
those features.

3. The mean of the output is zero since each mapping is with
zero mean on the corresponding feature.

In the experiment, we randomly sample 300 instances, where
150 data are used for training and the other 150 data are used
for test. Following the settings of [130], we construct the base
kernel matrices as follows
∙ Gaussian kernels with 10 different widths ({2−3, 2−2, . . . , 26})

on all features and on each single feature;
∙ Polynomial kernels of degree 1 to 3 on all features and on

each single feature.
Each base kernel matrix is further normalized to unit trace
as [130]. Therefore, we build 273 kernels for the toy examples.

Table 6.4 reports the average accuracy, number of selected
kernels, and executed time after repeating the algorithms 20
times. Our GMKL obtains significant improvement on the accu-
racy against the L1-MKL and the L2-MKL with 99% confidence
level on the paired t-test. The results show that our GMKL can
utilize the grouping structure information embedded in the data
sufficiently. Table 6.4 also shows that both the L2-MKL and the
UW-MKL achieve worse accuracies than the sparse MKL mod-
els. This verifies that the non-sparse MKL models are prone to
noise. In terms of the number of selected kernels, our GMKL
selects more kernels, about 1.5 times of that selected by the
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Table 6.4: Average performance measured by our GMKL, the L1-MKL, the
L2-MKL, and the UW-MKL algorithms on Toy examples.

Dataset Method Accuracy # Kernel Times (s)

Toy 1

GMKL 70.4±3.3 36.8±5.0 2.9±0.2

L1-MKL 69.2±4.5 22.1±5.2 4.4±1.2

L2-MKL 68.2±3.0 273 2.9±0.4

UW-MKL 66.3±5.3 273 –

Toy 2

GMKL 72.9±3.2 43.4±7.1 2.8±0.1

L1-MKL 72.3±3.1 30.2±8.1 4.9±1.3

L2-MKL 71.9±3.6 273 2.9±0.1

UW-MKL 71.6±4.0 273 –
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Figure 6.2: Figures in the first line correspond to the kernel weights on
the Toy 1 example learned by the L1-MKL, the GMKL, and the L2-MKL,
respectively. Figures in the second line are the kernel weights on Toy 2
example learned by the L1-MKL, the GMKL, and the L2-MKL, respectively.
The L1-MKL selects few kernels and discards some useful information. The
L2-MKL selects all kernels and is easily affected by the noise. Meanwhile,
the GMKL selects suitable kernels with the grouping effect.



CHAPTER 6. GENERALIZED MULTIPLE KERNEL LEARNING 124

L1-MKL; while the L2-MKL selects all kernels (see Figure 6.2
for more details). The computation cost of our GMKL and the
L2-MKL is nearly the same, and they cost less time than that
of the L1-MKL. This is due to that the level method consumes
less outer iterations than the SimpleMKL [130] used.

Figure 6.2 further shows the average coefficients obtained by
the L1-MKL, the GMKL, and the L2-MKL. The figure again
shows the grouping effect and the sparsity of our GMKL. The
results in the figures refer to the results in the fourth column of
the Table 6.4.
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Figure 6.3: Accuracy and the number of selected kernels by the GMKL with
varying v on the toy datasets. It is noted that the best accuracy for the Toy
1 dataset is achieved when v = 0.4 while the best accuracy for the Toy 2
dataset is achieved when v = 0.6. The number of selected kernels decreases
as v increases (see text for more descriptions).

We further test the effect of v on the accuracy and the number
of selected kernels for the toy datasets. We vary v from 0 to
1 with an incremental step being 0.1 and show the results in
Figure 6.3. Actually, Figure 6.3 includes the results reported in
Table 6.4, the L1-MKL (v = 1), the L2-MKL (v = 0), and our
GMKL with v = 0.5. It is shown that the optimal v is around
0.5 for both toy datasets. Figure 6.3(b) indicates that as v
increases, the number of selected kernels decreases. This shows
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that the optimal v is data-dependent, i.e., a better v corresponds
to the suitable number of kernels selected for that training data.
Hence, usually we can tune the parameter v by cross-validation
on the training data.

6.5.3 UCI Datasets

In order to verify the performance of our GMKL on datasets
which do not show manifest group structure on the base kernels,
we employ eight UCI datasets in our test, i.e., Breast, Heart,
Ionosphere, Liver, Pima, Sonar, Wdbc, and Wpbc, from the UCI
repository [17] are used in our test. These datasets have been
frequently used in evaluating the MKL models [96, 130, 170].

We repeat all the algorithms 20 times on each dataset. In
each run, 50% of the examples are randomly selected as the
training data and the remaining data are used for testing. The
training data are normalized to have zero mean and unit vari-
ance, and the test data are then normalized using the mean and
variance of the training data. The construction and the post-
processing of the base kernel matrices are conducted the same
as the synthetic data in Section 6.5.2.

Table 6.5 reports the average results, including accuracy, the
number of selected kernels, and the running time, on the UCI
datasets. Our GMKL achieves the highest accuracy for five
datasets: “Breast”, “Heart”, “Pima”, “Wdbc”, and “Wpbc”.
Especially, for the datasets of “Pima” and “Wdbc”, our GMKL
obtains significantly better results. The L2-MKL gets the high-
est accuracy for the rest three datasets: “Ionosphere”, “Liver”,
and “Sonar”, and attains significantly better results for “Liver”
and “Sonar”. The UW-MKL gets the same highest accuracy
as the GMKL for “Breast” and “Heart”. It is important to
note that better results can be obtained by tuning v through
cross-validation on the training data. For example, the cross-
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validation procedure on the “ionosphere” data set suggests that
a smaller v with the value near zero can recover the result of the
L2-MKL.

In terms of the number of selected kernels, on average, our
GMKL selects a little more kernels than the L1-MKL, owing
to the grouping effect on some features. This is deserved since
among all the datasets, our GMKL achieves no worse results
than the L1-MKL. Especially, our GMKL improves the accuracy
from 64.3% to 67.6% for the Liver dataset, and from 95.3% to
96.0% for the Wdbc dataset.

For the running time, our GMKL is efficient. The time
needed by our GMKL and the L2-MKL is much less than that
used in the L1-MKL for the datasets of Breast, Ionosphere,
Pima, and Wdbc. Especially, for the datasets of Breast, Pima,
and Wdbc, the number of data points is relatively larger than
other datasets, the SimpleMKL costs more time. This is be-
cause that the simple MKL has to solve more QP problems when
updating the descent direction. When the number of training
samples is large, more time is required in the SVM solver.

6.5.4 Protein Subcellular Localization Datasets

Three datasets are used to predict the proteins subcellular lo-
calization 3, where the plant dataset of TargetP is a four class
problem, and the other two datasets of bacterial protein loca-
tions are the psort+ dataset consisting of four classes and the
Psort– dataset consisting of five classes. The summary of the
datasets is in Table 6.3. MKL methods have succeeded in these
datasets with those well-defined graph kernels [90, 198]. We hy-
pothesize the graph kernels may still provide the grouping effect
and help to improve the prediction performance.

For the proteins subcellular localization datasets, we follow

3http://www.fml.tuebingen.mpg.de/raetsch/suppl/protsubloc/

http://www.fml.tuebingen.mpg.de/raetsch/suppl/protsubloc/
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Table 6.5: Average performance measured by the GMKL, the L1-MKL, the
L2-MKL, and the UW-MKL algorithms on UCI datasets. Better results are
in bold. Significantly better results with 95% confidence level over other
methods are indicated by †.

Dataset Method Accuracy # Kernel Times (s)

Breast

GMKL 97.2±0.5 61.1±6.5 2.8±0.5

L1-MKL 97.0±0.7 18.6±3.8 23.0±3.9

L2-MKL 96.9±0.4 143 5.1±0.3

UW-MKL 97.2±0.5 143 –

Heart

GMKL 83.9±1.9 38.5±5.4 1.4±0.1

L1-MKL 83.4±2.6 29.7±4.6 3.5±0.7

L2-MKL 82.8±2.5 182 1.7±0.1

UW-MKL 83.9±1.9 182 –

Ionosphere

GMKL 91.8±1.7 66.5±7.2 5.1±0.3

L1-MKL 91.5±2.1 38.4±5.0 19.2±3.3

L2-MKL 92.0±1.8 442 4.0±0.4

UW-MKL 89.9±1.8 442 –

Liver

GMKL 67.6±1.8 19.5±1.7 1.0±0.0

L1-MKL 64.3±2.8 9.2±3.0 1.7±0.4

L2-MKL †69.7±2.2 91 1.4±0.0

UW-MKL 67.2±4.6 91 –

Pima

GMKL †76.9±1.6 27.1±2.4 3.8±0.2

L1-MKL 76.5±1.9 18.7±2.7 24.8±3.4

L2-MKL 76.0±1.8 117 6.2±1.0

UW-MKL 76.2±1.7 117 –

Sonar

GMKL 80.4±4.1 81.1±6.5 12.4±0.6

L1-MKL 80.4±4.2 60.3±7.4 16.7±2.0

L2-MKL †83.8±3.7 793 3.9±0.3

UW-MKL 81.5±4.3 793 –

Wdbc

GMKL 96.0±1.1 79.7±7.6 6.6±0.8

L1-MKL 95.3±1.4 34.9±8.9 37.8±5.8

L2-MKL 95.9±0.7 403 7.8±1.6

UW-MKL 93.9±1.0 403 –

Wpbc

GMKL 76.7±3.3 275.4±96.9 1.3±1.0

L1-MKL 76.6±2.8 40.4±10.2 4.8±1.0

L2-MKL 76.3±3.7 442 1.6±0.2

UW-MKL 76.6±2.9 442 –
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Figure 6.4: Accuracy and the number of kernels selected by the L1-MKL,
the GMKL, and the L2-MKL on the protein subcellular localization datasets,
where the L2-MKL and the UW-MKL select all the 69 kernels. Our GMKL
achieves the best results on all datasets and selects about three times to four
times of kernels compared to that selected by the L1-MKL. It should be noted
that here the accuracy of the plant dataset is measured by the Matthew’s
Correlation Coefficient (MCC) [198], while for the psort+ and the psort-
datasets, it is measured by the F1 score.

the setup of [198] and construct 69 kernels: 2 kernels on phyloge-
netic trees, 3 kernels from BLAST E-values, and 64 sequence mo-
tif kernels. Each kernel for the proteins subcellular localization
datasets is normalized such that the implied variance equal one

as [198] by K(x, z) = K(x, z)/
(

1
N

∑N
i=1 K(xi,xi)− 1

N2

∑N
i,j=1 K(xi,xj)

)
.

Different from [198], we randomly split the protein subcellu-
lar localization datasets into two parts equally, where half the
data are used for training and the rest of the data are used for
test. We use the 1-vs-rest scheme on the multi-class classifica-
tion problems. As in [198], the Matthew’s Correlation Coeffi-
cient (MCC) is used to evaluate the plant dataset and the F1
score is used to evaluate the psort+ and the Psort– datasets.

Figure 6.4(a) reports the average results on 10 runs. Our
GMKL achieves the best results on all three datasets. The
MCC obtained by our GMKL for the plant dataset is 88.3%
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compared to 87.5% obtained by the L1-MKL, 86.6% obtained
by the L2-MKL, and 80.3% obtained by the UW-MKL. For the
two bacterial protein locations datasets, our GMKL and the L1-
MKL gets the same 87.7% F1 score compared to the L2-MKL
of 85.9% and the UW-MKL of 83.0% for the psort+ dataset
and obtains 90.3% F1 score compared to the L1-MKL of 89.6%,
the L2-MKL of 89.3%, and the UW-MKL of 82.7%. Hence, the
results verify our hypothesis.

Table 6.6: p-values of the paired t-test of our GMKL vs. the L1-MKL, the
L2-MKL and the UW-MKL on the proteins subcellular localization datasets.

Dataset GMKL vs. L1-MKL GMKL vs. L2-MKL GMKL vs. UW-MKL

Plant 0.319 0.054 0.000

Psort+ 0.545 0.047 0.002

Psort– 0.049 0.040 0.000

To further verify whether our GMKL model performs statis-
tically better than the other three MKL methods, we report the
p-values of the paired t-test of our GMKL on the L1-MKL, the
L2-MKL, the UW-MKL in Table 6.6. The results show that our
GMKL improves the classification accuracy significantly com-
pared to the UW-MKL for all three protein datasets. Our
GMKL performs significantly better results compared to the L2-
MKL for the psort+ dataset and the Psort– dataset. Compared
to the L1-MKL, our GMKL performs significantly better results
for the Psort– dataset.

Figure 6.4(b) shows the number of selected kernels by the L1-
MKL, the GMKL, and the L2-MKL. Our GMKL again selects
more kernels than the L1-MKL. Figure 6.5 further shows the
obtained kernel weights by the L1-MKL, our GMKL, and the
L2-MKL for the protein subcellular localization datasets. Our
GMKL again can obtain sparse solutions with the grouping ef-
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fect. It is noted that most of the groups are embedded in the
sequence motif kernels and captured by our GMKL.

In summary, the experimental results in the above section
indicate the good performance in terms of accuracy, sparsity,
and efficiency. The advantage of our GMKL is more explicit on
data with latent group structure.

6.6 Summary

In this work, we presented a generalized multiple kernel learn-
ing (GMKL) model by introducing a linear combination of the
L1-norm and the squared L2-norm regularization on the ker-
nel weights to seek the optimal kernel combination. Our GMKL
generalizes previously proposed L1-MKL and the L2-MKL meth-
ods. The theoretical analysis on the GMKL guarantees to hav-
ing sparse solutions and also encourages the grouping effect.
Moreover, the optimization of GMKL is a convex optimization
problem, where the global optimality can be assured. We further
derive a level method to efficiently solve the optimization prob-
lem, followed by the convergence analysis and optimal condition
on the algorithm.

Experimental results on both synthetic and real-world datasets
indicate that the proposed GMKL can take advantage of the
group structure of data, and thus produce sparse solutions ac-
cordingly. In addition, it keeps the balance between accuracy
and sparsity of MKL: it improves the accuracy of the L1-MKL,
and at the same time produces more sparse solutions than the
L2-MKL while achieving competitive accuracy. Moreover, the
reported running time on the datasets indicates the efficiency of
the level method on solving our GMKL.

There are several future work associated with our GMKL.
First, it would be interesting to apply our GMKL model in other
applications, e.g., regression, multiclass classification problems,
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etc. Second, it is promising to employ advanced optimization
techniques to speed up our GMKL, e.g., employing warm start
on the previously obtained solution on solving the optimization
problem with a quadratical-constraint, or solving the optimiza-
tion problem by second-order methods or coordinate-wise opti-
mizers. Third, it is attractive to extend our GMKL to include
the uniformly-weighted MKL as a special case.

□ End of chapter.
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Figure 6.5: Figures in the first line correspond to the average kernel weights
on the plant dataset learned by the L1-MKL, the GMKL, and the L2-MKL,
respectively. Figures in the second line are the average kernel weights on
the psort+ dataset learn by the L1-MKL, the GMKL, and the L2-MKL, re-
spectively. Figures in the third line are the average kernel weights on the
Psort– dataset learn by the L1-MKL, the GMKL, and the L2-MKL, respec-
tively. The horizontal axis indexes the 69 kernels. The two phylogenetic
profile kernels and the three BLAST E-value kernels are on the left. The
L1-MKL selects few kernels and the L2-MKL selects all kernels. Meanwhile,
the GMKL selects suitable number of kernels. Most of the grouping kernels
are from the sequence motif kernels.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this chapter, we provide a summary of the thesis. The the-
sis provides promising solutions for the large-scale applications
in three main learning areas: online learning, semi-supervised
learning, and multiple kernel learning.

In the first part of this thesis, we propose a novel online
learning framework to solve group lasso and multi-task feature
selection. This work is extended from the lasso model to select
the important explanatory features in different tasks. Through
online learning framework, it can solve the applications where
training data appear sequentially and scale well in any num-
ber of training data with any number of features. By deriving
the closed-form solutions for the corresponding models, we can
update the corresponding models in an extremely efficient way.
The experimental results show that the proposed online learning
algorithms work efficiently while achieving good performance.

In the second part of this thesis, we propose a novel max-
imum margin semi-supervised learning classifier, 3C-SVM, to
learn from both labeled and unlabeled data. Different from the
common assumption of previous standard semi-supervised learn-
ing models, we assume the data are a mixture of data relevant
and irrelevant to the target labeled data. By introducing a novel

133
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min loss function and based on the maximum entropy principle,
we can distinguish the relevant data as well as the irrelevant
data. The 3C-SVM is solved by CCCP and is potential for solv-
ing large-scale datasets. The experimental results show that the
3C-SVM outperforms the standard SVM, S3VM, and U -SVM.

In the third part of this thesis, we propose a generalized mul-
tiple kernel learning model, which contains sparse solutions with
the grouping effect. Solving the model by an efficient method,
the level method, we can solve the MKL model in large-scale
applications. We demonstrate the advantages and properties of
the GMKL not only by a series of detailed experiments, but also
by theoretical analysis.

In summary, our proposed algorithms and models provide
promising solutions for large-scale applications in various as-
pects.

7.2 Future Work

There are still several important research problems remaining in
this thesis. We will elaborate them in the following:

First, in the sparse group lasso model and the multi-task fea-
ture task selection model, there is an additional sparse parame-
ter. In this thesis, we set it as a very small value without tuning
for simplicity since they have achieved good performance. How
to determine a good sparse parameter is still a question.

Second, in the online learning algorithms, there are two main
parameters, the model regularization parameter and the algo-
rithm regularization parameter. Currently, we use cross valida-
tion method in grid search to tune these two parameters. How to
devise solution path algorithms to efficiently explore the entire
solution paths is very promising.

Third, the online multi-task feature selection algorithms re-
quires that at one iteration, one instance arrives for each task si-
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multaneously. Although this thesis has pointed out one method
to remove this requirement, i.e., simply setting the instance for
those tasks without coming instances to zero, how to avoid un-
balance and to make the learned matrices not bias to those tasks
with training instances needs to be explored.

Fourth, the tri-class SVM has relaxed the original integral
programming problem into a quadratic programming problem
with a box constraint on real variables. What is the approxima-
tion bound for the relaxation is an interesting question.

□ End of chapter.



Appendix A

Proof of Theorem 1, in
Chapter 3

Proof. Since the objective of (3.5) is component-wise, we can
focus on the solution in one group, say g. In the following, we
first sketch the proof of a) in Theorem 1.

The optimal wg
t+1 in (3.5) should be wg

t+1 = �gū
g
t with �g ≤ 0.

Otherwise, we can assume for the sake of contradiction that
wg
t+1 = �gū

g
t + vg, where �g ∈ ℝ and vg is in the null space of

ūgt . It is easy to verify that vg should be a zero vector.
Next, �g > 0 is not the optimal solution. If �g > 0, it can be

easily verified that by setting �g = −�g we can obtain a lower
objective function value. Hence, the objective of (3.5) becomes

min
�g≤0

�g∥ūgt∥2
2 − �

√
dg�g∥ūgt∥2 +




2
√
t
�2
g∥ū

g
t∥2

2 (A.1)

By constructing the Lagrangian, ℒ(�g, �), of the above optimiza-
tion problem, we have � ≥ 0 and

ℒ = �g∥ūgt∥2
2 − �

√
dg�g∥ūgt∥2 +




2
√
t
�2
g∥ū

g
t∥2

2 + ��g.

The Karush-Kuhn-Tucker (KKT) condition indicates the op-
timal solution must satisfy

∂ℒ
∂�g

= ∥ūgt∥2
2 − �

√
dg∥ūgt∥2 +


√
t
�g∥ūgt∥2

2 + � = 0,

��g = 0.
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Hence, the value of �g < 0 iff �
√
dg < ∥ūgt∥2. If �

√
dg > ∥ūgt∥2,

then � must be positive and �g should be zero. The above
analysis concludes the closed form of wg

t+1 in (3.10).
The sparse group lasso and the enhanced sparse group lasso

have an additional L1-norm on the weight only with different
coefficients. Hence, the proof of b) and c) is similar.

Here, we just sketch the proof of b). Since the objective
of (3.5) for the sparse group lasso is also element-wise, we can
consider one entry, say j, in the g-th group. The objective
of (3.5) on wg,j

t+1 is

Υ(wg,j
t+1) = ūg,jt wg,j

t+1 + �rg∣wg,j
t+1∣+ �((wg,j

t+1)
2), (A.2)

where �((wg,j
t+1)

2) is a non-negative function on (wg,j
t+1)

2 and �(wg,j
t+1)

2) =

0 iff wg,j
t+1 = 0 for all j ∈ [1, dg].

If ūg,jt = 0, obviously, the optimal solution for (A.2) is wg,j
t+1 =

0. When ūg,jt ∕= 0, to simplify the analysis, we first assume ūg,jt >

0, then wg,j
t+1 should be non-positive. Otherwise, if wg,j

t+1 > 0, we

have Υ(−wg,j
t+1) < Υ(wg,j

t+1). It means that we can set wg,j
t+1 to its

negative and obtain a lower objective function value.
Next, if ūg,jt+1 ≤ �rg, then wg,j

t+1 = 0 is the optimal solution.

Otherwise, we have wg,j
t+1 < 0 and Υ(wg,j

t+1) = (ūg,jt − �rg)w
g,j
t+1 +

�((wg,j
t+1)

2) > Υ(0). This implies that by setting wg,j
t+1 = 0 we can

obtain a lower objective function value.
Third, ūg,j > �rg for all j ∈ [1, dg]. The objective of (3.5) for

the g-th group, Υ(wg
t+1), becomes

(ūgt − �rg1dg)⊤wg
t+1 + �

√
dg∥wg

t+1∥2 +



2
√
t
∥wg

t+1∥2
2 (A.3)

This objective function has the same structure to that of the
group lasso in (3.5). The only difference is a slight change in
the vector ūt. Hence, following the result of a), we can define
cg,j as that in (3.12) and obtain a closed form solution in (3.11)
for (A.3).
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The analysis for ūg,jt < 0 is similar. Hence, we conclude the
proof of b).

□ End of chapter.



Appendix B

Proof of Theorem 3, in
Chapter 4

Proof of Theorem 3. In the following, we first prove the result
of (a) in Theorem 3. Since the objective of (4.8) is element-wise
for the case of L1,1-norm regularization defined in (4.4), we can
only consider any one element, say, the (i, j)-th element. By
denoting (Ḡi,j)t and (Wi,j)t+1 with ḡt and wt+1, respectively, we
obtain the objective of (4.8) on the (i, j)-th element as

Υ(wt+1) = ḡt ⋅ wt+1 + �∣wt+1∣+



2
√
t
w2
t+1. (B.1)

If ḡt = 0, obviously, the optimal solution for (B.1) is wt+1 = 0.
Now, we consider the case of ḡt ∕= 0. To simplify the analysis,
we first assume ḡt > 0, then wt+1 should be non-positive. Other-
wise, if wt+1 > 0, we have Υ(−wt+1) < Υ(wt+1). It means that
by setting wt+1 to its negative, we can obtain a lower objective
function value.

Next, if ḡt ≤ �, then the optimal wt+1 should be zero. Other-
wise, we have wt+1 < 0 and Υ(wt+1) = (ḡt− �)wt+1 + 


2
√
t
w2
t+1 >

0 = Υ(0). This implies that by setting wt+1 = 0 we can obtain
a lower objective function value.

Third, if ḡt > �, by setting the derivative of (B.1) to zero, we
obtain the solution of that in (4.11).
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If ḡt < 0, we can follow the above analysis. Hence, we con-
clude the proof of (a).

Now, we turn to prove (b) in Theorem 3. It is noted that
the objective of (4.8) is component-wise on one row of W for
the case of L1,2-norm regularization defined in (4.5). Hence, we
focus on one row of W, say W⊤

j∙, and use w to denote it for
simplicity. Correspondingly, we use ḡt to denote (Ḡj∙)t. Then,
the objective of (4.8) on (W⊤

j∙)t becomes

Υ(wt+1) = ḡ⊤t wt+1 + �∥wt+1∥2 +



2
√
t
∥wt+1∥2

2. (B.2)

It is noted that the optimal wt+1 in (B.2) should be wt+1 = �ḡt
with � ≤ 0. Otherwise, for the sake of contradiction, we can
assume that wt+1 = �ḡt + v, where � ∈ ℝ and v is in the null
space of ḡt. It is easy to verify that v should be a zero vector.

Next, � > 0 is not the optimal solution. If � > 0, it can be
easily verified that by setting � = −� we can obtain a lower
objective function value. Hence, the objective of (B.2) becomes

min
�≤0

�∥ḡt∥2
2 − ��∥ḡt∥2 +




2
√
t
�2∥ḡt∥2

2 (B.3)

By constructing the Lagrangian of the above optimization prob-
lem, we have � ≥ 0 and

ℒ(�, �) = �∥ḡt∥2
2 − ��∥ḡt∥2 +




2
√
t
�2∥ḡt∥2

2 + ��.

The Karush-Kuhn-Tucker (KKT) condition [22] indicates that
the optimal solution must satisfy

∂ℒ
∂�

= ∥ḡt∥2
2 − �∥ḡt∥2 +


√
t
�∥ḡt∥2

2 + � = 0,

�� = 0.

This leads to

� = −
√
t




(
1− �

∥ḡt∥2
+

�

∥ḡt∥2
2

)
(B.4)
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The KKT conditions indicate that the value of � < 0 iff � <
∥ḡt∥2. If � > ∥ḡt∥2, then � must be positive and � should be
zero. By substituting (W⊤

j∙)t+1 with wt+1 and (Ḡ⊤j∙)t with gt
back to (B.4), we obtain the closed form solution of Wt+1 as
that in (4.12).

We now sketch the proof of (c) in Theorem 3. Similar to
the proof of (b), we use ḡt to denote (Ḡ⊤j∙)t and wt+1 to denote(
W⊤

j∙
)
t+1

, and c to denote cj for simplicity. Then, the objective

of (4.8) on (W⊤
j∙)t+1 becomes

Υ(wt+1) = ḡ⊤t wt+1 + �(c∥wt+1∥1 + ∥wt+1∥2) +



2
√
t
∥wt+1∥2

2.

(B.5)
It is noted that the objective in (B.5) is element-wise. Hence we
consider one element, say k. The objective of (B.5) on (wq)t+1

then becomes

Υ ((wq)t+1) = (ḡq)t ⋅ (wq)t+1 + �c∣(wq)t+1∣+ �((wq)
2
t+1), (B.6)

where �((wq)
2
t+1) is a non-negative function on (wq)

2
t+1 and �((wq)

2
t+1) =

0 iff (wq)t+1 = 0 for all k ∈ [1, Q].
It is noted that the objective of (B.6) follows the same struc-

ture of (B.1) with the only difference on the coefficient of the
first term. Hence, similar to the proof of (a), we can first assume
(ḡq)t ≥ 0 and can easily conclude that the optimal (wq)t+1 = 0
when (ḡq)t ≤ �c. Hence, when (ḡq)t ≥ �c, for all q = 1, . . . , Q,
the objective of (B.5) becomes

Υ(wt+1) = (ḡt − �c)⊤wt+1 + �∥wt+1∥2 +



2
√
t
∥wt+1∥2

2 (B.7)

The above objective function has the same structure as that
in (B.2) with the only difference in the coefficient of the first
term. Hence, following the result of (b), we can define (Ū⊤j∙)t as
that in (4.14) and obtain a closed form solution as that in (4.13)
for (B.7). The analysis for (ḡq)t < 0 is similar and we conclude
the proof of (c).
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□ End of chapter.



Appendix C

Proof in Chapter 5

Proof. Due to the symmetry of "-insensitive loss function, I", we
first introduce new pair-training data for ℒ0-data in the convex
term, Qvex, as U -SVM in [165]. That is for ℒ0-data, we introduce
new paired data as x−i = xi, y−i = −1 and xi = xi, yi = 1, for
i = 1, . . . , ∣ℒ0∣. In this setting, when no ℒ0-data, i.e., ∣ℒ0∣ = 0,
no new paired data are introduced. Here, for simplicity, but in a
slight abuse of notation, we use −i to indicate the corresponding
index shifting i advance from the 0-index. Hence, the relaxed
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optimization in (5.4) can be expanded as

min.
w,b,�,�∗,d

�

2
∥w∥2 +

L∑
i=−∣ℒ0∣,i∕=0

ri�i +
L+2U∑
i=L+1

ri(�i + �∗i )

+
L+2U∑
i=L+1

�iyif#(xi) (C.1)

s.t.

⎧⎨⎩

yif#(xi) + "+ �i≥ 0, i=−∣ℒ0∣, . . . , ∣ℒ0∣, i ∕=0

yif#(xi)− 1 + �i≥ 0, i= ∣ℒ0∣+ 1, . . . , L,

yk+Lf#(xk+L)+ D(1− dk)− 1 + �k+L ≥ 0,

yk+LUf#(xk+LU) +D(1−dk)−1 + �k+LU ≥ 0,

yk+Lf#(xk+L)+ Ddk + "+ �∗k+L ≥ 0,

yk+LUf#(xk+LU) +Ddk + "+ �∗k+LU ≥ 0,

�i ≥ 0, i =−∣ℒ0∣, . . . , L+ 2U, i ∕=0,

�∗i ≥ 0, i =L+ 1, . . . , L+ 2U,

0 ≤ dk ≤ 1, k =1, . . . , U.

This is a standard QP problem with inequality constraints. We
can adopt the standard Lagrange multiplier method [16, 22] to
solve it.

Hence, we construct the corresponding Lagrange function,
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ℒ(w, b, �, �i,d,�,�
∗,
,
∗,p,q), as follows:

ℒ=�
2
∥w∥2 +

L∑
i=−∣ℒ0∣,i∕=0

ri�i +
L+2U∑
i=L+1

ri(�i + �∗i )

+
L+2U∑
i=L+1

�iyif#(xi)−
∣ℒ0∣∑

i=−∣ℒ0∣,i ∕=0

�i(yif#(xi) + "+ �i)

−
L∑

i=∣ℒ0∣+1

�i(yif#(xi)− 1 + �i)

−
U∑
k=1

�k+L(yk+Lf#(xk+L) +D(1− dk)− 1 + �k+L)

−
U∑
k=1

�k+LU(yk+LUf#(xk+LU)+D(1−dk)−1+�k+LU)

−
U∑
k=1

�∗k+L(yk+Lf#(xk+L) +Ddk + "+ �∗k+L)

−
U∑
k=1

�∗k+LU(yk+LUf#(xk+LU) +Ddk + "+ �∗k+LU)

−
L+2U∑

i=−∣ℒ0∣,i ∕=0


i�i−
L+2U∑
i=L+1


∗i �
∗
i−

U∑
k=1

pk(1−dk)−
U∑
k=1

qkdk

Hence, taking the derivative of ℒ with respect to the primal
variables, setting them to zeros, and utilizing the conditions of

 ≥ 0 and 
∗ ≥ 0, we obtain

w=
1

�

⎛⎝ L+2U∑
i=−∣ℒ0∣,i ∕=0

�iyi�(xi)+
L+2U∑
i=L+1

(�∗i − �i)yi�(xi)

⎞⎠ , (C.2)
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and
L+2U∑

i=−∣ℒ0∣,i∕=0

�iyi +
L+2U∑
i=L+1

�∗i yi =
L+2U∑
i=L+1

�iyi, (C.3)

0 ≤ �i ≤ ri, i = −∣ℒ0∣, . . . , L+ 2U, i ∕= 0,

0 ≤ �∗i ≤ ri, i = L+ 1, . . . , L+ 2U,

D(�k+L + �k+LU − �∗k+L − �∗k+LU) = qk − pk, (C.4)

where pk, qk ≥ 0, k = 1, . . . , U .
Similar to the solution in SVMs [160], minimizing the objec-

tive in (C.1) corresponds to maximizing the following objective

max.
�,�∗,p,q

− 1

2�
[�;�∗]⊤Ω[�;�∗]+%⊤[�;�∗]−p⊤1 (C.5)

s.t. (C.3)− (C.4), and p ≥ 0, q ≥ 0, (C.6)

where Ω =

[
Q∣ℒ0∣+L+2U,∣ℒ0∣+L+2U Q∣ℒ0∣+L+2U,2U

Q2U,∣ℒ0∣+L+2U Q2U,2U

]
, and

% =
1

�

[
Q2U,∣ℒ0∣+L+2U

Q2U,2U

]
�+

⎡⎢⎢⎢⎢⎣
−"12∣ℒ0∣

1L−∣ℒ0∣

(1−D)12U

−"12U

⎤⎥⎥⎥⎥⎦ .
In (C.5), the variable [�;�∗] constructs an ∣ℒ0∣+L+4U -dimensional
vector. The kernel expression, Q, is abstracted as Qℛ,C, where
ℛ and C indicate the corresponding row and column ranges of
data indices. For ℛ = 2U , it means the row index ranges from
L + 1 to L + 2U . For ℛ = ∣ℒ0∣ + L + 2U , in a little abuse the
notation of index, it denotes the row index ranges from −∣ℒ0∣
to L + 2U without the 0 index. C is defined in the same way.
The (i, j)-element of Qi,j is calculated by a kernel, k(xi,xj). 1n
is an n-dimensional vector with all elements being 1.

In the following, we analyze the optimization in (C.5) on how
to discard variables p and q. The following are two reasons:
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1. Since pk and dk are non-negative, in order to maximize
the objective in (C.5), we will get pkdk = 0, for all k. In
addition, from the KKT conditions, we have pk(1−dk) = 0.
Summarizing these two equalities, we obtain pk = 0.

2. After pk vanishes, adding the condition of qk ≥ 0, we
can transform the inequality constraint of (C.4) to �k+L +
�k+LU − �∗k+L − �∗k+LU ≥ 0, for k = 1, . . . , U .

Now we define A⊤e = [Y; Y∙2U ] and A = [0U,L, − IU , − IU , IU , IU ],
where Y is a vector containing the label value of all training data
with the index ranging from −∣ℒ0∣ to L+2U exclusive 0, Y∙2U is
a vector consisting of the label value for the unlabeled data with
the index ranging from L+ 1 to L+ 2U . With these notations,
we obtain the QP problem as that in (5.7).

□ End of chapter.



Appendix D

Proof in Chapter 6

D.1 Proof of Theorem 9

Proof. 1. When v ∕= 1, we denote the objective in (6.16) as
ℒ(�) = D(�,�★) + �

(
v∥�∥+ (1− v)∥�∥2

2

)
. Since the ob-

jective function is continuous on �, its minimizer (6.16)
should satisfy

∂ℒ
∂�q

= −1

2
(� ∘ y)⊤Kq(� ∘ y) + �(v + 2(1− v)�q) = 0.

As � > 0, combining with � ≥ 0, we get �★q as (6.17). When
Ki = Kj, we then have �★i = �★j .

2. When v = 1, the regularizer, v∥�∥ + (1 − v)∥�∥2
2, reduces

to lasso regularizer. It can be easily verified that both min-
imizers, �★ and �̃, achieve the same objective value.

D.2 Proof of Theorem 11

Proof. To prove Theorem 11, we first need the following propo-
sition.

Proposition 1. For any � ∈ Θ, we have
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1. ℎt+1(�) ≥ ℎt(�), and

2. ℎt(�) ≤ max�∈AD(�,�).

The above two propositions can be easily checked by their
definitions. They support the definition of the lower bound and
the upper bound in (6.21).

Next, we have the following lemma indicating the relation
between bounds:

Lemma 1. Suppose we have a sequence of bounds, {Dt}Tt=1 and

{Dt}Tt=1, defined in (6.21), we can obtain the following properties
for their relation:

1. Dt ≤ D(�★,�★) ≤ Dt,

2. D1 ≥ D2 ≥ . . . ≥ Dt, and

3. D1 ≤ D2 ≤ . . . ≤ Dt.

We now give a short proof of 1) in Lemma. For 2) and 3) of
Lemma 1 can be easily verified based on the definitions.

First, Proposition 1 indicates that for any � ∈ Θ, ℎt(�) ≤
max�∈AD(�,�). Hence,

Dt = min
�∈Θ

ℎt(�) ≤ min
�∈Θ

max
�∈A
D(�,�) = D(�★,�★).

Second, since D(�t,�t) = max�∈AD(�t,�), then we have

Dt = min
1≤k≤t

D(�k,�k) = min
�∈{�1,...,�t}

max
�∈A
D(�,�)

≥ min
�∈Θ

max
�∈A
D(�,�) = D(�★,�★).

The above two results conclude 1) of Lemma 1.
Hence, by applying 1) of Lemma 1, we can obtain 1) and 3)

of Theorem 11. Combining 2) and 3) of Lemma 1, we have 2)
of Theorem 11.
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D.3 Proof of Theorem 12

Proof. Before starting the proof, we first introduce the theorem:

Theorem 13 (Theorem 8.2.1 in Chapter 8, pp. 135–137 of [117]).
Let D be a convex and Lipschitz continuous function defined on
the domain Θ of diameter D(Θ) with the Lipschitz constant be-
ing L(D) < ∞. Applying the level method to this convex prob-
lem, the gap ΔT converges to 0; or for any positive �, one has

T ≥ c(�)

(
L(D)D(Θ)

�

)2

, (D.1)

where c(�) = 1
(1−�)2�(2−�).

We then can derive the result based on the above theorem.
First, let’s define �max be the maximum element value of �.

We then have �max ≤ 1. It can be derived by

1 = v∥�∥1 + (1− v)∥�∥2
2, from Theorem 8

≥ v�max + (1− v)�2
max, by � ≥ 0. (D.2)

The above inequality derives �max ≤ 1, so as � ≤ 1.
Next, by applying � ≤ 1, we have

�⊤� ≤ 1⊤� = ∥�∥1, ∀� ∈ Θ. (D.3)

Hence, ∀�,�′ ∈ Θ, we have

∥� − �′∥2
2≤�⊤� + �′⊤�′

=v(�⊤� + �′⊤�′) + (1− v)(�⊤� + �′⊤�′)

≤v(∥�∥1 + ∥�′∥1) + (1− v)(∥�∥2
2 + ∥�′∥2

2)

=1 + 1 = 2 .

We then obtain the diameter D(Θ) as

D(Θ) = max
�,�′∈Θ

∥� − �′∥2 =
√

2. (D.4)
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Further, the Lipschitz constant for the GMKL is

L�(D)= max
�∈Θ,�∈A

∥∇D�(�,�)∥2

=max
�∈A
∥[V1, . . . ,VQ]⊤∥2

≤1

2
NC2

√
Q max

1≤q≤Q
Λmax(Kq), (D.5)

where Vq = 1
2(� ∘ y)⊤Kq(� ∘ y), and Λmax(Kq) defines the

maximum eigenvalue of the matrix Kq.
Substituting (D.4) and (D.5) into (D.1) of Theorem 13, we

can obtain the result as (6.26) and conclude the proof.

□ End of chapter.
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