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Modern systems are serving
many

aspects of our daily life
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System reliability is very
important




Real-World Revenue Loss

1488 Febsites 121,176 {:':?e domains
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[Statistics from: https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-ad-

apps/]



https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/

Real-World Revenue Loss

Lloyd's Estimates the Impact of a U.S. Cloud Outage at $19 Billion

I
By: Sean Michael Kerner | January 24, 2018

A joint research report from insurance provider Lloyd's of London and the American Institutes for Research (AIR), looks at the
potential costs related to a major public cloud outage in the U.S.

| As organizations around the world increasingly rely on
the cloud, the impact of a public cloud failure is
something that insurance companies are now concerned

about. A 67-page report released on Jan. 23 from Lloyd's

of London and AIR Worldwide provides some insight and

estimates on the potential losses from a major cloud

services outage—and the numbers are large.

According to the report, a cyber-incident that impacted
the operations of one of the top three public cloud
providers in the U.S. for three to six days, could result in

total losses of up to s1dBmon. O those Joses, only $1.1

to $3.5 billion would be insured, leaving organizations

left to cover the rest of the costs.

[Source: http://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud-outage-at-19-billion]
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Reliability management of
modern

systems IS iImportant,
but challenging



(et

Modern systems are becoming
large-scale in size

ey

[Image from: http://www.lancaster.ac.uk/scc/research/distributed-systems/]
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@L&ﬂ? Modern systems are
complex in structure

glthub

SOCIAL CODING

[Image from: http://www.smashingbuzz.com/2015/01/ultimate-github-features]
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Traditional engineering
techniques

are often not sufficient
Automated

runtime data analysis
is in need
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Automated runtime data analysis
for system reliability management

User Info

System Logs
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Automated runtime data analysis
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Automated runtime data analysis
for system reliability management

—> Log
Parsing
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Thesis contributions

—> Evaluation study on log parsing [DSN’16]

— ‘%hr%'flteelr I%)g parsing [TDSC’17] (Chapter 4)

Unstructured Logs ——> Online log parsing [ICWS’17] (Chapter 5)
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Thesis contributions

Evaluation study on log parsing [DSN’16]
(ChaptBev@dws and evaluate four representative log parsers

— A case study of the effectiveness of log parsers on log
Unstructured Logs mining

— Six findings and open-source toolkit

Parallel log parsing [TDSC’17] (Chapter 4)
— The first parallel log parsing framework

— Specially-designed heuristic rules and clustering
algorithm

— Evaluate on real-world data and large-scale synthetic
data

Onlinejlegspatsing [ICWS'17] (Chapter 5)
— Online parser Drain via fixed depth tree

— 51.85% ~ 81.47% efficiency improvement with
comparable accuracy

— Open-source 15



Thesis contributions

1 : (Event1, Event 2, Event 3)
2 : (Event4, Event1, Event 3)
3 : (Event1, Event2)

4 : (Event 3, Event 3, Event 6)

Log Event Sequences

QoS of service 1: (911, q12,..., g1m)
QoS of service 2:(q21, 922, --+5 G2m)
QoS of service 3:(q31, 932, ..., q3m)

QoS of service 4:(q41, 42, ..., q4m)

QoS Values

——> QOperational issues prioritization (Chapter

— An gaerational issue prioritization framework POI
— Coarse-grained clustering and fine-grained clustering
— Novel weighting method Inverse Cardinality (IC)

——> QoS prediction [ICWS’14] (Chapter 7)

— Hierarchical matrix factorization model
— Location of both users and services

16



Outline

Topic 1: Evaluation study on log parsing

Topic 2: Parallel log parsing for large-scale log
data

Topic 3: Online log parsing via fixed depth tree

Conclusion and future work

17



Outline

» Topic 1: Evaluation study on log parsing

18



Logs are widely-employed to
enhance the system
reliability by

log analysis



Log Analysis

Detecting largescale system problems by

— .
mining console logs [SOSP’09]
Log Clustering based Problem
— Identification for Online Service Systems
[ICSE’16]
NI Leveraging existing instrumentation to

automatically infer invariant-constrained

<> nwtiglagrdevélopers of big data analytics
Program Verification applications when deploying on hadoop
clouds [ICSE’13]

| Structured comparative analysis of
% .
I g!! l systems logs to diagnose performance
proddaveritivél 2nhancing failure
Performance Monitoring diagnosis with proactive logging [OSDI’%]




Log Analysis contains two
steps:

Log Parsing and Log Mining



Log Analysis: log parsing & log

mining

Raw Log Messages

2008-11-11 03:40:58 BLOCK* NameSystem.allocateBlock: /user /root/randtxt4/

“temporary/_task_200811101024_0010_m_000011_0/part- Gttt
00011.blk_904791815409399662 [ Com )3 f"’ i)
2008-11-11 03:40:59 Receiving block blk_904791815409399662 src: / checkout ’9'1'“;: T
10.251.43.210:55700 dest: /10.251.43.210:50010 T 37 J!
2008-11-11 03:41:01 Receiving block blk_904791815409399662 src: / w1 o
10.250.18.114:52231 dest: /10.250.18.114:50010 L, 1

2008-11-11 03:41:48 PacketResponder O for block blk_904791815409399662
terminating

2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.250.18.114

2008-11-11 03:41:48 PacketResponder 1 for block blk_904791815409399662
terminating

2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.251.43.210

2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.251.43.210:50010 is added to blk_904791815409399662 size 67108864

2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.250.18.114:50010 is added to blk_904791815409399662 size 67108864

2008-11-11 08:30:54 Verification succeeded for blk_904791815409399662

Log Mining

Log Parsing

Log Events Strutured Logs
* - 1 | blk_904791815409399662 Eventl
Eventl | BLOCK* NameSystem.allocateBlock: 2 | bk 904791815409309662 Event2
Event2 | Receiving block * src: * dest: * 3 | blk_904791815409399662 Event2
Event3 | PacketResponder * for block * terminating 4 | blk_904791815409399662 Event3
5 | blk_904791815409399662 Event4
Event4 | Received block * of size * from * 6 | blk_904791815409399662 Event3
Event5 | BLOCK* NameSystem.addStoredBlock: 7 | blk_904791815409399662 Eventd
blockMap updated: * is added to * size * 8 | blk_904791815409399662 Event5
’ 9 | blk_904791815409399662 Event5
Event6 | Verification succeeded for * 10 | blk_904791815409399662 Event6




Log Parsing Example

Received block src:
Raw Log
dest: of size _

LOG.info("Received block " + block +

" src: " + remoteAddress +

Log ParSing " dest: " + localAddress +
" of size " + block.getNumBytes());

Str”:;;‘md blk_ 90 -> Received block * src: * dest: * of size *

The goal of log parsing is to distinguish between constant part and
from the log contents.

23



O;

Raw Log Messages

I

6

-]

9
10

2008-11-11 03:40:58 BLOCK* NameSystem.allocateBlock: /user /root/randtxt4/
_temporary/_task_200811101024_0010_m_000011_0/part-
00011.blk_904791815409399662

2008-11-11 03:40:59 Receiving block blk_904791815409399662 src: /
10.251.43.210:55700 dest: /10.251.43.210:50010

2008-11-11 03:41:01 Receiving block blk_904791815409399662 src: /
10.250.18.114:52231 dest: /10.250.18.114:50010

2008-11-11 03:41:48 PacketResponder O for block blk_904791815409399662
terminating

2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.250.18.114

2008-11-11 03:41:48 PacketResponder 1 for block blk_904791815409399662
terminating

2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.251.43.210

2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:

10.251.43.210:50010 is added to blk_904791815409399662 size 67108864

2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.250.18.114:50010 is added to blk_904791815409399662 size 67108864

2008-11-11 08:30:54 Verification succeeded for blk_904791815409399662

- e e e o o o e o o o Em o o e = o

Eventl Event2 Event3 Event4

Log Events Strutured Logs

Eventl
Event2
Event3
Event4
Event5

Event6

blk_904791815409399662
blk_904791815409399662
blk_904791815409399662
blk_904791815409399662
blk_904791815409399662
blk_904791815409399662
blk_904791815409399662
blk_904791815409399662
blk_904791815409399662
blk_904791815409399662

BLOCK* NameSystem.allocateBlock: *
Receiving block * src: * dest: *

PacketResponder * for block * terminating

Received block * of size * from *

BLOCK* NameSystem.addStoredBlock:
blockMap updated: * is added to * size *

LCOONOOULLDE WN PP

Verification succeeded for *

=
o

Eventl
Event2
Event2
Event3
Event4
Event3
Event4
Event5
Event5
Event6

1N
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Manual maintenance of log event is
difficult, even with the help of regular
expression

* The volume of log is growing rapidly. (e.g., 50
GB/h [Mi TPDS’13])

* Developer may not understand the logging

purpose. (open source components [Xu
SOSP’09])

* Log statements in modern systems update
frequently. (e.g., hundreds of new statements a
month [Xu PhD Thesis’10])

25



Automated log parsing
is highly in demand



State-of-the-art Log Parsing

Methods

SLCT: Simple Logfile Clustering To/

IPLOM: Iterative Partitioning Log NrrrTm‘g

[KDD’09, TKDE’12]

Heuristic Rules

~

J

-
LKE: Log Key Extraction [ICDM’09

\_

Clustering
Algorithms

~

J

LogSig: Log Signature Extraction [CIKM’11]
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Log minin 3
g 8 3 Anomaly detection algo.

Will the performance of log
parsers affect the anomaly
detection results?



Case study on real-world anomaly detection
task [SOSP’09]

11,175,629 HDFS logs
575,061 HDFS blocks
16,838 anomalies

29



Accuracy Metric

Parsing accuracy: F-measure of clustering
algorithm

F-measure = 2 * Precision * Recall / (Precision + Recall)

Precision = TP/(TP+FP) Recall = TP/(TP+FN)

TP: assigns two logs with the same log event to the same

cluster

TN: assigns two logs with different log events to different
clusters

FP: assigns two logs with different log events to the same

ﬁll ll‘+f\lﬁ

30



Parsing| | |Reported Detected False

Accuracy | |Anomaly Anomaly Alarm
SLCT 0.83 18,450 10,935 (64%) | || 7,515 (40%)
LogSig 0.87 11,091 10,678 (63%) | || 413 (3.7%)
[PLoM 0.99 10,998 10,720 (63%) | || 278 (2.5%)
Ground truth 1.00 11,473 11,195 (66%)| || 278 (2.4%)

Parsing Accuracy: F-measure\

Report Anomaly: #anomalies reported

Detected Anomaly: #true anomalies detected

False Alarm: #wrongly detected anomalies

31




Parsing | Reported Detected False

Accuracy | Anomaly Anomaly Alarm
SLCT _0.83 18,450 10,935 (64%) | 7.515 (40%)
LogSig 0.87 11,091 10,678 (63%) | |413 (3.7%)
[PLoM 0.99 10,998 10,720 (63%) | (278 (2.5%)
Ground truth 1.00 11,473 11,195 (66%) | (278 (2.4%)

Finding: Log parsing is important because log mining is

effective only when the parsing accuracy is high
enough.

32




Parsing | Reported Detected False

Accuracy | Anomaly Anomaly Alarm
SLCT _0.83 18,450 10,935 (64%) | 7.515 (40%)
LogSig 0.87 11,091 10,678 (63%) | 413 (3.7%)
IPLoM _0.99 10,998 | 10,720 (63%) | 278 (2.5%)
Ground truth 1.00 11,473 11,195 (66%) | 278 (2.4%)

33




Parsing
Accuracy

Reported
Anomaly

Detected
Anomaly

False
Alarm

SLCT

0.83

18,450

10,935 (64%)

7,515 (40%)

LogSig

0.87

11,091

10,678 (63%)

413 (3.7%)

Starting thread to transfer block to

Deleting block file /mnt/hadoop/dfs/data/current/subdir28/ | =

r
Deleting block file /mnt/hadoop/dfs/data/current/subdir19/ 1 2 2 D eeeeee
O ngl na | Deleting block file /mnt/hadoop/dfs/data/current/subdir52/
Deleting block file /mnt/hadoop/dfs/data/current/subdirlé/| \ . @ - . J | 1 o o o ...
s,ct 8« . >65»575,061< 1 2 2 2
Deleting block file /mnt/hadoop/dfs/data/current/subdir60/
Deleting block file /mnt/hadoop/dfs/data/current/subdir54/ 1 0 O 3 """
Deleting block file /mnt/hadoop/dfs/data/current/subdir32/ | J
...... "
Receiving block src: dest: ——
3
AL
' Y
r
Starting thread to transfer block to 1 Lo e
“24 Deleting block file 575, 061 < 1 2 e
Refined |
Receiving block src: dest: 1 ) eeeeee
SLCT
\.
Parsing Reported Detected False
Accuracy | Anomaly Anomaly Alarm

0.91

11,539

10,746 (64%)

193 (6.8%) |




Parsing Reported Detected False

Accuracy | Anomaly Anomaly Alarm
SLCT 0.83 18,450 10,935 (64%) | 7,515 (40%)
LogSig 0.87 11,091 10,678 (63%) | 413 (3.7%)

Starting thread to transfer block to

Deleting block file /mnt/hadoop/dfs/data/current/subdir28/
Deleting block file /mnt/hadoop/dfs/data/current/subdirto/y V1 4L 4L 4L c**ccce

Finding: Log mining is sensitive to some critical events. §
Errors in parsing 1 log event could even cause nearly
an order of magnitude performance degradation in log

Starting thread to transfer block to 1 1 eeeeee
“24 { Deleting block file » 575, 061 < 1 D eeeeen

Receiving block src: dest: 1 O """"
Parsing Reported Detected False
Accuracy | Anomaly Anomaly Alarm
091 11,539 10,746 (64%) | 7193 (6.8%) >




Outline

» Topic 2: Parallel log parsing for large-scale log
data

36



Why we need parallel log
parsers?

37



Motivations & Contributions

Weakness of existing parsers

* Existing log parsers do not consistently obtain
high accuracy on all datasets.

* When logs grow to a large scale, existing
parsers fail to complete in reasonable time.

38



Motivations & Contributions

Nﬂ'aldﬂﬁsg)baxsietrinm rsers

* Existing log parsers do not consistently obtain
high accuracy on all datasets.

POP achieves the highest parsing accuracy on all datasets.

* When logs grow to a large scale, existing
parsers fail to complete in reasonable time.

POP can handle 200m HDFS logs in 7 mins, while the state-of-the-
art needs more than half an hour.

39



Cluster

Preprocess by
Domain
Knowledge

(Step 1)

Distributed File System

/W\

orker
\/
Spark |

Partition by Log
Message Length

(Step 2)

—_—

Recursively
Partition by
Token Position

(Step 3)

Framework of POP

15

Generate Log
Events

(Step 4)

14
Spark
Driver

Merge Groups
by Log Event

(Step 5)

SEETKE

40



Novelty of POP

Accuracy

Distributed File System

Efficiency —
W W

e [Qorten) (Worker ) (Worker
| | | | [

Cluster

0 olF ol sl 2| oo

— o — — — — — — — —— — i —— — ——— —————— —— — — — — —
I
Preprocess by . . Recursively
| Domain Partition by Log Partition by Generate Log Merge Groups
| Message Length o —> Event —_— bv Loe Event
| Knowledge Token Position vents y Log Even
| (Step 1) (Step 2) (Step 3) (Step 4) (Step 5)
\ J

e — — — —



Step 1: Preprocess by domain
knowledge

* Prune variable parts according to simple regular
expressions

blk_[0-9]+

' 4

Received block blk_904791815409399662 of size 67108864 from /10.251.43.210

4

Received block of size 67108864 from /10.251.43.210

42



Step 2: Partition by log message

length

Partition logs into different groups based on log

message length

Log message
. , , , , length

1088 Ibytes. sent, 1 0128 1 bytes lrecelved |I|fet|me l 00:03 }
|
1024 :bytes: sent, ' 2056 | bytes recelved, :Ilfetlme ' 00:10

Send |
Send |
Receive :

Connect!

Send file file_01
Send file file_02
Receive file file_03
Connectto IP_01

file
file
file
to

I I =

'fne_Ol'
| file_02]

|
|
|
| . 3
|

:fHe_O3i :
|
|
1

1
' IP_01 !
| |
1

1088 bytes sent, 0128 bytes received, lifetime 00:03 I

1024 bytes sent, 2056 bytes received, lifetime 00:10

43



Step 3: Recursively partition by
token position
* Find split token position
* Recursively partition a log group
* Stop until all log groups are complete groups

o0
o0 » O
0001“ \Q
000
N

44



Step 3: Recursively partition by

token position
* Find split token position

1 : 2 : 3
by
1 1 £ | .
Send : ,f!le: : f!le_Ol 1: {Send, Receive, Connect}
Send | file  file_02 » . ffil
Receive | ifile! ! file 03 2: {file, to}
e e 3: {file_01, file_02, file_03, IP_01}
Connect ! P01

I:to||
| 4

1: 3 distinct tokens

o= o o o e e e e

1 2: 2 distinct tokens !

______________ 1

3: 4 distinct tokens
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Step 3: Recursively partition by

token position
* Find split token position
* Recursively partition a log group

_______
' Send ! file file_01 P

'Send ! file file_02  mmmp >€Nd e ffle—m
: Receive: file file_03 Send lle lle_02

T N

l |
Send ! file; file_01

Recei fil file_03
Send ' file]  file_02 eceive le lle_
Receive 1 file! file_03

Connect 1 tor  IP_01 \
|
___1

Connect to IP_0O1

46



Step 3: Recursively partition by
token position
* Find split token position
* Recursively partition a log group
* Stop until all log groups are complete groups

Send file  file_01 o p

Send file file_02 & mmmp SN f!le ffle_O;

’ Receive  file  file_03 Send ile  ftile_0O
Send file  file_01 \ : : :
N R fil fil

Send file  file_02 eceive le ile_03

Receive file  file_03

Connect to IP_01 \

Connect to IP_0O1

47



Step 3: Recursively partition by

token position
* Stop until all log groups are complete groups

#token position with one distinct token file

Group goodness = i
P8 log message length ?:e
e

Send file  filez01 :
v Send file  file_02 V'] send ;!:e 3_0;
Receive  file  file_03 Send le e 0

Complete group

~ 0.66

wl N

. 0.33
3~ .

* Compare with a group threshold gs (e.g., 0.5)

48



Step 4: Generate log events

Inspect the tokens in each token position of
each log, calculate the number of distinct

tokens

== |
:Send file/file_01 |
:Send fileifile_02 !

Send file *

= = e o oy e e e e

IRecelve f||¢'flle 03 |

|Rece|ve fI|EIfI|e 04 :

Receive file *

' 1088|bytes sentII 0128 ontes received, Ilfetlme' 00:03
1024'I¢ytes sent. 2056 ontes received, I|fet|mé 00:10

R

* bytessent, * bytesreceived, lifetime *

49



Step 5: Merge groups by log

event

» Hierarchical clustering on log events, instead of

log messages

1. Send
2. Send

1. Send
2. Send

configuration
network

user interface
set up

file
file

file
file

Send * file

Send * * file |

B wnN e

Send
Send
Send
Send

configuration
network

user interface
set up

file
file
file
file

50



Parallelization

* Log message lengths in Step 2 §pa

]| 1088 bytes sent, 0128 bytes received, lifetime 00:03

{8,3} 7

Send file file_01

1| 1024 bytes sent, 2056 bytes received, lifetime 00:10

l {8,3} =18,3,2}

Send file file_02

1| Connect to IP_01

Il Stop process {2,3}

: | Receive file file 03 51
\/ -



Data sets

e Data set (supercomputer, distributed system,
standalone software)

4 h a )
System Description #Logs Length #Events
BlueGene/L ,
BGL Supercomputer 4,747,963 10~102 376 [DSN’07]
High Performance ,
HPC Cluster 433,490 6~104 105 [TKDE’12
(Los Alamos) ]
Proxifier Proxy Client 10,108 10~27 8
HDFS Hadoop File System | 11,175.629 8~29 29 [SOSP’09
Distributed o , ]
Zookeeper System Coordinator 74.380 8~27 80
\_ _J

* Randomly select 2,000 logs from each data set

52



RQ1: Accuracy

* Accuracy results:

S aa ke | ors | zookesper | proier

SLCT 0.94 0.86 0.93 0.92 0.89
IPLoM 0.99 0.64 1.00 0.90 0.90

LKE 0.70 0.17 0.96 0.82 0.81
LogSig 0.98 0.87 0.93 0.99 0.84

POP 0.99 0.95 1.00 0.99 1.00




RQ2: Efficiency

* Evaluate the running time of log parsing
methods on all data sets by varying the
number of raw logs.

BGL 400 4k 40k 400k 4m
HPC 600 3k 15k 75k 375k
HDFS 1k 10k 100k 1m 10m
Zookeeper 4k 8k 16k 32k 64k

Proxifier 600 1200 2400 4800 9600

54



RQ2: Efficiency

- Efficiency experiments (real-world datasets):

—— SLCT —@— LKE —+— SinglePOP
—»— IPLoM —O— LogSig —#*— POP

104 ¢
 Running time (y-axis) 103
102

=

1k 10k 100k Im 10m
Log Size of Sample Datasets from HDFS

* Slope

—_—
oS O
(e
P

Time (Sec)

P p— p—
o O O
TG




Time (Sec)

Time (Sec)

RQ2: Efficiency

—— SLCT —@— LKE

—— SinglePOP

—— [PLoM —O— LogSig —#— POP

10°

10'3 1 1 1 1
400 4k 40k 400k 4m

Log Size of Sample Datasets from BGL

4k 8k 16k
Log Size of Sample Datasets from Zookeeper

32k

Time (Sec)

Time (Sec)

10° ¢
104
103
10?

10'3 1 1 1 1
600 3k 15k 75k 375k

Log Size of Sample Datasets from HPC

10*
10°
102
101 2 —d—

o (,/o/;o;_b
107k

10"2 1 1 1
600 1200 2400 4800 9600

Log Size of Sample Datasets from Proxifier




Time (Sec)

RQ2: Efficiency

- Efficiency experiments (synthetic datasets):

3000 p
2500 F
2000 F
1500 F
1000
500 F

—>— SLCT -—%— IPLoM —#— POP

10 30 50 100 150
Log Size (m) of Synthetic Datasets from HDFS

2500
2000

Time (Sec)

500 f

1500 F
1000

10 30 50 100 150 200
Log Size (m) of Synthetic Datasets from BGL




Outline

» Topic 3: Online log parsing via fixed depth tree
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Why we need online log
parsers?

59



Motivations

« Offline log parsers
— Log event changes

* Modern system structure
— Log collection works in a streaming manner

60



An online log parser is
in demand

61



Framework of Online Parser

2008-11-11 03:41:48 Received block blk 90 of size
67108864 from /10.250.18.114

§
o008 O

$

blk 90 -> Received block * of size * from *

62



Framework of Drain

2008-11-11 03:41:48 Received block blk 90 of size
67108864 from /10.250.18.114

Fixed depth tree

blk 90 -> Received block * of size * from *
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Novelty of Drain

2008-11-11 03:41:48 Received block blk 90 of size
67108864 from /10.250.18.114

 Encodes heuristic rules in the
tree to conduct pre-clustering.

* The depth can be fixed by a pre-
defined parameter depth.

blk 90 -> Received block * of size * from *
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Under-parsed

Over-parsed

i=3

CE[EE

gt
0

Send file
Send file
Receive file
Send file
Send file

file_01
file_01

file_02

run.py

boot.py
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Framework of Drain

O Root Node

Length: 4 Length: 5 I Length: 10
Internal Node
/\ \ \ Leaf Node
Send Receive Starting %
8 Log Group
- T T T~
* o Q\
A List of Log Groups N // \Log Group/ \
// Log Event: Receive from node * \l
‘ \ |:— | LogmDs: [1,23,25,46,345, .. //
NT— —
/ ~ - _ - -

Fixed depth tree (depth=3)
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Update of Drain

Receive file 01

Length: 3 Length is 3
!
Send First token is Receive
!
block
NOT match!

Log Event: Send

block 44
Log IDs: [1]

Fixed depth tree (depth=4)

Need to update the tree.
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Update of Drain

A

L

Length: 3 Length: 3
' —
Send Send Receive [Receive
T Receive file 01 > T T
block block file file

Log Event: Receive
file 01

Log IDs: [2]

Log Event: Send Log Event: Send

block 44
Log IDs: [1]

block 44
Log IDs: [1]

Fixed depth tree (depth=4)
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RQ1: Accuracy

* Accuracy results:

BGL HPC HDF'S Zookeeper Proxifier
Offline Log Parsers
LKE 0.67 0.17 0.57 0.78 0.85
[PLoM 0.99 0.65 0.99 0.99 0.85
Online Log Parsers
SHISO 0.87 0.53 0.93 0.68 0.85
Spell 0.98 0.82 0.87 0.99 0.87
Drain 0.99 0.84 0.99 0.99 0.84
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RQ2: Efficiency

- Efficiency experiments:

BGL HPC HDFS Zookeeper Proxifier
Offline Log Parsers
LKE N/A N/A N/A N/A 8888.49
IPLoM 140.57 12.74 333.03 2.17 0.38
Online Log Parsers
SHISO 10964.55 582.14 6649.23 87.61 8.41
Spell 447.14 47.28 676.45 5.27 0.87

Drain

115.96

8.76

325.7

1.81

0.27

Improvement

74.07%

81.47%

51.85%

65.65%

68.97%




® Unwatch~ 6 % Unstar = 27 Y Fork 16 Parsers

6] |nga| / Iogparsor If you are not familiar with log parser, please check the Principles of Parsers

The codes are here.

SLCT (Simple Logfile Clustering Tool): A Data Clustering Algorithm for Mining Patterns from Event Logs (SLCT is wrapped
<> Code Issues 0 Pull requests 0 Insights around on the C source code provided by the author.)

IPLoM (Iterative Partitioning Log Mining): A Lightweight Algorithm for Message Type Extraction in System Application
X ) Logs
A toolkit for automated log parsing

LKE (Log Key Extraction): Execution Anomaly Detection in Distributed Systems through Unstructured Log Analysis

- . . LogSig: LogSig: Gnerating System Events from Raw Textual Logs
og leg-mining log-analysis og-parser log-parsing

Drain: Drain: An Online Log Parsing Approach with Fixed Depth Tree

POP: a parallel log parsing method optimized on top of Spark.
D 120 commits I 2 branches © 0 releases

Data

In data, there are 5 datasets for you to play with. Each dataset contains several text files.
Branch: master v New pull request
o rawlog.log: The raw log messages with ID. "ID\tword1 word2 word3"

o template[0-9]+: The log messages belong to a certain template.

) e 5D o
}4 PunyTitan Update POP.py o templates: The text of templates.

il data Add sample data Quick Start
i} demo remove file

Input: A raw log file. Each line of the file follows "ID\tword1 word2 word3"
Output: Two parts. One is splitted log messages (only contains log ID) in different text files. The other is the templates file

t P.ov
B logparser Update POP.py which contains all templates.
i tutorials Delete some reference things in the original paper Examples: Before running the examples, please copy the parser source file to the same directory.
B .gitignore Add .so file o Examplel: This file is a simple example to demonstrate the usage of LogSig. The usage of other log parsers is similar.
e Example2: This file is to demonstrate the usage of POP.
[E) LCENSE.md Create LICENSE.md o Example3: This file is used to evaluate the performance of LogSig. It iterates 10 times and record several important
[E) README.md Update links

Parsers are open source on githuh.com/logpai/logparser
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Outline

e Conclusion and future work

72



Conclusion

Contributions
— Evaluation study of log parsing

* Six insightful findings and an open-source log parsing
toolkit

— Parallel log parsing for large-scale log data

* A parallel log parsing framework POP
— Online log parsing

* An online log parsing method Drain based on fixed
depth tree
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Conclusion

Contributions

— Operational issues prioritization

* An operational issues prioritization method POl via
hierarchical clustering

— location-based 0oS nrediction
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Future work

Parameter-free Online log parser

— An online log parser that automatically tunes the
parameters
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