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Modern systems are serving 
many 

aspects of our daily life
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Search 
engine

Office 
software

Online
chatting

Popular modern systems

And many others…
3

Cloud services



System reliability is very 
important
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Real-World Revenue Loss
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148,213 websites 121,176 unique domains

[Statistics from: https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-
apps/]

https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/


Real-World Revenue Loss

6[Source: http://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud-outage-at-19-billion]

http://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud-outage-at-19-billion


Reliability management of 
modern

systems is important,
but challenging
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Modern systems are becoming
large-scale in size

[Image from: http://www.lancaster.ac.uk/scc/research/distributed-systems/]

http://www.lancaster.ac.uk/scc/research/distributed-systems/


Modern systems are 
complex in structure

[Image from: http://www.smashingbuzz.com/2015/01/ultimate-github-features]

http://www.smashingbuzz.com/2015/01/ultimate-github-features


Traditional engineering 
techniques 

are often not sufficient
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Automated 
runtime data analysis 

is in need



Automated runtime data analysis
for system reliability management

11
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Automated runtime data analysis
for system reliability management
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Automated runtime data analysis
for system reliability management
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Thesis contributions
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Evaluation study on log parsing [DSN’16] 
(Chapter 3)Parallel log parsing [TDSC’17] (Chapter 4)

Online log parsing [ICWS’17] (Chapter 5) Service Logs Unstructured Logs



Thesis contributions
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Evaluation study on log parsing [DSN’16] 
(Chapter 3)

Parallel log parsing [TDSC’17] (Chapter 4)

Online log parsing [ICWS’17] (Chapter 5) 

Service Logs Unstructured Logs

– Reviews and evaluate four representative log parsers
– A case study of the effectiveness of log parsers on log 

mining
– Six findings and open-source toolkit

– The first parallel log parsing framework
– Specially-designed heuristic rules and clustering 

algorithm
– Evaluate on real-world data and large-scale synthetic 

data
– Open-source
– Online parser Drain via fixed depth tree
– 51.85% ~ 81.47% efficiency improvement with 

comparable accuracy
– Open-source



Thesis contributions
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Operational issues prioritization (Chapter 
6) 

1 : 

2 : 

3 :
4 :

( Event 1, Event 2, Event 3)

……

Log Event Sequences

( Event 4, Event 1, Event 3)

( Event 1, Event 2)

( Event 3, Event 3, Event 6)

QoS prediction [ICWS’14] (Chapter 7) 
QoS of service 1: (q11, q12,…, q1m)
QoS of service 2: (q21, q22, …, q2m)

QoS of service 3: (q31, q32, …, q3m)
QoS of service 4: (q41, q42, …, q4m)
……

QoS Values 

– An operational issue prioritization framework POI
– Coarse-grained clustering and fine-grained clustering
– Novel weighting method Inverse Cardinality (IC)

– Hierarchical matrix factorization model
– Location of both users and services



Outline
• Topic 1: Evaluation study on log parsing

• Topic 2: Parallel log parsing for large-scale log 
data

• Topic 3: Online log parsing via fixed depth tree

• Conclusion and future work
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Outline
• Topic 1: Evaluation study on log parsing

• Topic 2: Parallel log parsing for large-scale log 
data

• Topic 3: Online log parsing via fixed depth tree

• Conclusion and future work

18



Logs are widely-employed to 
enhance the system 

reliability by 
log analysis
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Log Analysis
Detecting largescale system problems by 
mining console logs [SOSP’09] 
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Anomaly Detection

Log Clustering based Problem 
Identification for Online Service Systems 
[ICSE’16] 

Program Verification

Leveraging existing instrumentation to 
automatically infer invariant-constrained 
models [FSE’11] Assisting developers of big data analytics 
applications when deploying on hadoop
clouds [ICSE’13] 

Performance Monitoring

Structured comparative analysis of 
systems logs to diagnose performance 
problems [NSDI’12] Be conservative: enhancing failure 
diagnosis with proactive logging [OSDI’12] 



Log Analysis contains two 
steps: 

Log Parsing and Log Mining

21



Log Analysis: log parsing & log 
mining

22

Log Parsing

Log Mining



Log Parsing Example
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Raw Log

Log Parsing

The goal of log parsing is to distinguish between constant part and 
variable part from the log contents.

Structured 
Log

2008-11-11  03:41:48  Received  block  blk_90 src: 
/10.251.30.6 dest: /10.251.30.6: of  size  67108864

blk_90  ->  Received  block *  src:  * dest:  * of size  *



Log Parsing: a clustering 
problem

24

Event1 Event2 Event3 Event4
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• The volume of log is growing rapidly. (e.g., 50 
GB/h [Mi TPDS’13])

• Developer may not understand the logging 
purpose. (open source components [Xu 
SOSP’09])

• Log statements in modern systems update 
frequently. (e.g., hundreds of new statements a 
month [Xu PhD Thesis’10])

Manual maintenance of log event is 
difficult, even with the help of regular 

expression



Automated log parsing 
is highly in demand
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State-of-the-art Log Parsing 
Methods

• SLCT: Simple Logfile Clustering Tool [IPOM’03]

• IPLoM: Iterative Partitioning Log Mining 
[KDD’09, TKDE’12]

• LKE: Log Key Extraction [ICDM’09]

• LogSig: Log Signature Extraction [CIKM’11]
27

Heuristic Rules

Clustering 
Algorithms
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SLCT IPLoM LogSig Ground
Truth

Anomaly detection algo.

Will the performance of log 
parsers affect the anomaly 

detection results?

Log parsing

Log mining
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• Case study on real-world anomaly detection 
task [SOSP’09]

• 11,175,629 HDFS logs
• 575,061 HDFS blocks
• 16,838 anomalies
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• Parsing accuracy: F-measure of clustering 
algorithm

• F-measure = 2 * Precision * Recall / (Precision + Recall)

• Precision = TP/(TP+FP)                 Recall = TP/(TP+FN)

• TP: assigns two logs with the same log event to the same 
cluster

• TN: assigns two logs with different log events to different 
clusters

• FP: assigns two logs with different log events to the same 
cluster

Accuracy Metric
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• Parsing Accuracy: F-measure\
• Report Anomaly: #anomalies reported
• Detected Anomaly: #true anomalies detected
• False Alarm: #wrongly detected anomalies
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Finding: Log parsing is important because log mining is 
effective only when the parsing accuracy is high 
enough.
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SLCT

Original 
SLCT

Refined
SLCT
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SLCT

Finding: Log mining is sensitive to some critical events. 
Errors in parsing 1 log event could even cause nearly 
an order of magnitude performance degradation in log 
mining.



Outline
• Topic 1: Evaluation study on log parsing

• Topic 2: Parallel log parsing for large-scale log 
data

• Topic 3: Online log parsing via fixed depth tree

• Conclusion and future work
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Why we need parallel log 
parsers?
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Motivations & Contributions

38

Weakness of existing parsers
• Existing log parsers do not consistently obtain

high accuracy on all datasets. 

• When logs grow to a large scale, existing 
parsers fail to complete in reasonable time.
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Weakness of existing parsers 
• Existing log parsers do not consistently obtain

high accuracy on all datasets. 

• When logs grow to a large scale, existing 
parsers fail to complete in reasonable time.

POP can handle 200m HDFS logs in 7 mins, while the state-of-the-
art needs more than half an hour.

POP achieves the highest parsing accuracy on all datasets.

Parallel log parser: POP

Motivations & Contributions



Framework of POP
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Preprocess by 
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Merge Groups 
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Novelty of POP
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Preprocess by 
Domain 

Knowledge

Distributed File System

Merge Groups 
by Log Event

Worker Worker Worker

Spark
Driver

1

2
3

Partition by Log 
Message Length

4 5 6 7

Generate Log 
Events

12 13
14

Recursively 
Partition by 

Token Position

98

15

Spark
Cluster

1110

(Step 1) (Step 2) (Step 3) (Step 4) (Step 5)

Accuracy

Efficiency



Step 1: Preprocess by domain 
knowledge

42

• Prune variable parts according to simple regular 
expressions

blk_904791815409399662Received block of size 67108864 from /10.251.43.210

blk_[0-9]+

Received block of size 67108864 from /10.251.43.210



Step 2: Partition by log message 
length

43

• Partition logs into different groups based on log 
message length

1088       bytes     sent,    0128    bytes   received,   lifetime   00:03
1024       bytes     sent,    2056    bytes   received,   lifetime   00:10
Send         file     file_01
Send         file     file_02
Receive    file     file_03

……

Log message 
length

8

3

1088 bytes sent, 0128 bytes received, lifetime 00:03
1024 bytes sent, 2056 bytes received, lifetime 00:10

………

…
Connect    to       IP_01

Send file file_01
Send file file_02
Receive file file_03
Connect to IP_01



Step 3: Recursively partition by 
token position

44

• Find split token position
• Recursively partition a log group
• Stop until all log groups are complete groups



Step 3: Recursively partition by 
token position

45

• Find split token position

Send
Send
Receive
Connect

file
file
file
to

file_01
file_02
file_03

IP_01

1                2              3

1: {Send, Receive, Connect} 
2: {file, to}
3: {file_01, file_02, file_03, IP_01}

1: 3 distinct tokens
2: 2 distinct tokens
3: 4 distinct tokens



Step 3: Recursively partition by 
token position
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• Find split token position
• Recursively partition a log group

Send
Send
Receive
Connect

file
file
file
to

file_01
file_02
file_03

IP_01

Connect to IP_01

Send
Send
Receive

file
file
file

file_01
file_02
file_03

Send
Send

file
file

file_01
file_02

Receive        file        file_03



Step 3: Recursively partition by 
token position
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• Find split token position
• Recursively partition a log group
• Stop until all log groups are complete groups

Send
Send
Receive
Connect

file
file
file
to

file_01
file_02
file_03

IP_01

Connect to IP_01

Send
Send
Receive

file
file
file

file_01
file_02
file_03

Send
Send

file
file

file_01
file_02

Receive        file        file_03



Step 3: Recursively partition by 
token position

48

• Stop until all log groups are complete groups

Send
Send
Receive

file
file
file

file_01
file_02
file_03

Send
Send

file
file

file_01
file_02

Group goodness = #"#$%& '#()")#& *)"+ #&% ,)(")&-" "#$%&
.#/ 0%((1/% .%&/"+

1
3 ≈ 0.33

2
3 ≈ 0.66

• Compare with a group threshold gs (e.g., 0.5)

Complete group

file
file
file



Step 4: Generate log events
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• Inspect the tokens in each token position of 
each log, calculate the number of distinct 
tokens

1088 bytes sent, 0128 bytes received, lifetime 00:03
1024 bytes sent, 2056 bytes received, lifetime 00:10

Send file file_01
Send file file_02

Receive file file_03
Receive file file_04

Send file Receive file bytes sent,           bytes received, lifetime* * * * *



Step 5: Merge groups by log 
event

50

• Hierarchical clustering on log events, instead of 
log messages

1. Send
2. Send

1. Send
2. Send

configuration
network

user interface
set up

file
file

file
file

Send * file

Send * * file

1. Send
2. Send
3. Send
4. Send

configuration
network

user interface
set up

file
file
file
file



Parallelization

51

• Log message lengths in Step 2

1088       bytes     sent,    0128    bytes   received,   lifetime   00:03

1024       bytes     sent,    2056    bytes   received,   lifetime   00:10

Send         file     file_01

Send         file     file_02

Stop process
Connect    to       IP_01

{8, 3} 

{8, 3}

{2, 3}

{8, 3, 2}

Receive    file     file_03



• Data set (supercomputer,  distributed system, 
standalone software)

• Randomly select 2,000 logs from each data set
52

[DSN’07]

[TKDE’12
]

[SOSP’09
]

Data sets



• Accuracy results:
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RQ1: Accuracy    RQ2: Efficiency

BGL HPC HDFS Zookeeper Proxifier

SLCT 0.94 0.86 0.93 0.92 0.89

IPLoM 0.99 0.64 1.00 0.90 0.90

LKE 0.70 0.17 0.96 0.82 0.81

LogSig 0.98 0.87 0.93 0.99 0.84

POP 0.99 0.95 1.00 0.99 1.00
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BGL 400 4k 40k 400k 4m

HPC 600 3k 15k 75k 375k

HDFS 1k 10k 100k 1m 10m

Zookeeper 4k 8k 16k 32k 64k

Proxifier 600 1200 2400 4800 9600

• Evaluate the running time of log parsing 
methods on all data sets by varying the 
number of raw logs.

RQ1: Accuracy    RQ2: Efficiency



• Efficiency experiments (real-world datasets):

RQ1: Accuracy    RQ2: Efficiency

• Running time (y-axis)

• Slope



RQ1: Accuracy    RQ2: Efficiency



• Efficiency experiments (synthetic datasets):

RQ1: Accuracy    RQ2: Efficiency



Outline
• Topic 1: Evaluation study on log parsing

• Topic 2: Parallel log parsing for large-scale log 
data

• Topic 3: Online log parsing via fixed depth tree

• Conclusion and future work
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Why we need online log 
parsers?

59
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• Offline log parsers
– Log event changes

• Modern system structure
– Log collection works in a streaming manner

Motivations



An online log parser is
in demand

61



Framework of Online Parser

62

2008-11-11 03:41:48  Received  block  blk_90  of  size  
67108864  from /10.250.18.114

blk_90  ->  Received  block *  of  size *  from *

…



Framework of Drain
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2008-11-11 03:41:48  Received  block  blk_90  of  size  
67108864  from /10.250.18.114

blk_90  ->  Received  block *  of  size *  from *

Fixed depth tree



Novelty of Drain
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2008-11-11 03:41:48  Received  block  blk_90  of  size  
67108864  from /10.250.18.114

blk_90  ->  Received  block *  of  size *  from *

• Encodes heuristic rules in the 
tree to conduct pre-clustering.

• The depth can be fixed by a pre-
defined parameter depth.

depth



Depth
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Under-parsed

Send       file     file_01
Send       file     file_01
Receive   file     file_02

Over-parsed Send       file     run.py

Send       file     boot.py



Framework of Drain
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A List of Log Groups

. . . 

Length: 4 .  .  . 

Root

Length: 5 Length: 10

Send Receive Starting

Log Event: Receive from node *

Log IDs:  [1, 23, 25, 46, 345, …]

Log Group

Root Node

Internal Node

Leaf Node

Log Group*

Fixed depth tree (depth=3)



Update of Drain

67

Fixed depth tree (depth=4)

Root

Length: 3

Send

block

Log Event:  Send 
block 44

Log IDs:  [1]

Receive file 01

Length is 3

First token is Receive

NOT match! 
Need to update the tree.



Update of Drain
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Fixed depth tree (depth=4)

Root

Length: 3

Send

Root

Length: 3

Receive

file

Send

blockblock

Log Event:  Send 
block 44

Log IDs:  [1]

Log Event:  Receive 
file 01

Log IDs:  [2]

Log Event:  Send 
block 44

Log IDs:  [1]

file

Receive
Receive file 01



• Accuracy results:
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RQ1: Accuracy    RQ2: Efficiency



• Efficiency experiments:

RQ1: Accuracy    RQ2: Efficiency
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Parsers are open source on github.com/logpai/logparser
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• Topic 1: Evaluation study on log parsing

• Topic 2: Parallel log parsing for large-scale log 
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Conclusion
Contributions
– Evaluation study of log parsing 
• Six insightful findings and an open-source log parsing 

toolkit

– Parallel log parsing for large-scale log data
• A parallel log parsing framework POP

– Online log parsing
• An online log parsing method Drain based on fixed 

depth tree
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Conclusion
Contributions
– Evaluation study of log parsing 
• Six insightful findings and an open-source log parsing 

toolkit
– Parallel log parsing
• A parallel log parsing framework POP built on top of Spark

– Online log parsing
• An online log parsing method Drain based on fixed depth 

tree
– Operational issues prioritization
• An operational issues prioritization method POI via 

hierarchical clustering
– Location-based QoS prediction
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Future work
Parameter-free Online log parser
– An online log parser that automatically tunes the 

parameters   

75
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