
Automated Runtime Data Analysis
for System Reliability Management

HE, Pinjia
Supervisor: Prof. Michael R. Lyu

2018/02/08

Modern systems are serving
many

aspects of our daily life

2

Search
engine

Office
software

Online
chatting

Popular modern systems

And many others…
3

Cloud services

System reliability is very
important

4

Real-World Revenue Loss

5

148,213 websites 121,176 unique domains

[Statistics from: https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-
apps/]

https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/

Real-World Revenue Loss

6[Source: http://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud-outage-at-19-billion]

http://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud-outage-at-19-billion

Reliability management of
modern

systems is important,
but challenging

7

8

Modern systems are becoming
large-scale in size

[Image from: http://www.lancaster.ac.uk/scc/research/distributed-systems/]

http://www.lancaster.ac.uk/scc/research/distributed-systems/

Modern systems are
complex in structure

[Image from: http://www.smashingbuzz.com/2015/01/ultimate-github-features]

http://www.smashingbuzz.com/2015/01/ultimate-github-features

Traditional engineering
techniques

are often not sufficient

10

Automated
runtime data analysis

is in need

Automated runtime data analysis
for system reliability management

11

User Info

System Logs

QoS Values

System
 Runtim

e Data

Automated runtime data analysis
for system reliability management

12

Operational
Issues

Prioritization

QoS
Prediction

Reliability
M

anagem
ent

System Logs

User Info

QoS Values

System
 Runtim

e Data

Automated runtime data analysis
for system reliability management

13

System Logs

User Info

QoS Values

System
 Runtim

e Data

Operational
Issues

Prioritization

QoS
Prediction

Reliability
M

anagem
ent

Log
Parsing

Thesis contributions

14

Evaluation study on log parsing [DSN’16]
(Chapter 3)Parallel log parsing [TDSC’17] (Chapter 4)

Online log parsing [ICWS’17] (Chapter 5) Service Logs Unstructured Logs

Thesis contributions

15

Evaluation study on log parsing [DSN’16]
(Chapter 3)

Parallel log parsing [TDSC’17] (Chapter 4)

Online log parsing [ICWS’17] (Chapter 5)

Service Logs Unstructured Logs

– Reviews and evaluate four representative log parsers
– A case study of the effectiveness of log parsers on log

mining
– Six findings and open-source toolkit

– The first parallel log parsing framework
– Specially-designed heuristic rules and clustering

algorithm
– Evaluate on real-world data and large-scale synthetic

data
– Open-source
– Online parser Drain via fixed depth tree
– 51.85% ~ 81.47% efficiency improvement with

comparable accuracy
– Open-source

Thesis contributions

16

Operational issues prioritization (Chapter
6)

1 :

2 :

3 :
4 :

(Event 1, Event 2, Event 3)

……

Log Event Sequences

(Event 4, Event 1, Event 3)

(Event 1, Event 2)

(Event 3, Event 3, Event 6)

QoS prediction [ICWS’14] (Chapter 7)
QoS of service 1: (q11, q12,…, q1m)
QoS of service 2: (q21, q22, …, q2m)

QoS of service 3: (q31, q32, …, q3m)
QoS of service 4: (q41, q42, …, q4m)
……

QoS Values

– An operational issue prioritization framework POI
– Coarse-grained clustering and fine-grained clustering
– Novel weighting method Inverse Cardinality (IC)

– Hierarchical matrix factorization model
– Location of both users and services

Outline
• Topic 1: Evaluation study on log parsing

• Topic 2: Parallel log parsing for large-scale log
data

• Topic 3: Online log parsing via fixed depth tree

• Conclusion and future work

17

Outline
• Topic 1: Evaluation study on log parsing

• Topic 2: Parallel log parsing for large-scale log
data

• Topic 3: Online log parsing via fixed depth tree

• Conclusion and future work

18

Logs are widely-employed to
enhance the system

reliability by
log analysis

19

Log Analysis
Detecting largescale system problems by
mining console logs [SOSP’09]

20

Anomaly Detection

Log Clustering based Problem
Identification for Online Service Systems
[ICSE’16]

Program Verification

Leveraging existing instrumentation to
automatically infer invariant-constrained
models [FSE’11] Assisting developers of big data analytics
applications when deploying on hadoop
clouds [ICSE’13]

Performance Monitoring

Structured comparative analysis of
systems logs to diagnose performance
problems [NSDI’12] Be conservative: enhancing failure
diagnosis with proactive logging [OSDI’12]

Log Analysis contains two
steps:

Log Parsing and Log Mining

21

Log Analysis: log parsing & log
mining

22

Log Parsing

Log Mining

Log Parsing Example

23

Raw Log

Log Parsing

The goal of log parsing is to distinguish between constant part and
variable part from the log contents.

Structured
Log

2008-11-11 03:41:48 Received block blk_90 src:
/10.251.30.6 dest: /10.251.30.6: of size 67108864

blk_90 -> Received block * src: * dest: * of size *

Log Parsing: a clustering
problem

24

Event1 Event2 Event3 Event4

25

• The volume of log is growing rapidly. (e.g., 50
GB/h [Mi TPDS’13])

• Developer may not understand the logging
purpose. (open source components [Xu
SOSP’09])

• Log statements in modern systems update
frequently. (e.g., hundreds of new statements a
month [Xu PhD Thesis’10])

Manual maintenance of log event is
difficult, even with the help of regular

expression

Automated log parsing
is highly in demand

26

State-of-the-art Log Parsing
Methods

• SLCT: Simple Logfile Clustering Tool [IPOM’03]

• IPLoM: Iterative Partitioning Log Mining
[KDD’09, TKDE’12]

• LKE: Log Key Extraction [ICDM’09]

• LogSig: Log Signature Extraction [CIKM’11]
27

Heuristic Rules

Clustering
Algorithms

28

SLCT IPLoM LogSig Ground
Truth

Anomaly detection algo.

Will the performance of log
parsers affect the anomaly

detection results?

Log parsing

Log mining

29

• Case study on real-world anomaly detection
task [SOSP’09]

• 11,175,629 HDFS logs
• 575,061 HDFS blocks
• 16,838 anomalies

30

• Parsing accuracy: F-measure of clustering
algorithm

• F-measure = 2 * Precision * Recall / (Precision + Recall)

• Precision = TP/(TP+FP) Recall = TP/(TP+FN)

• TP: assigns two logs with the same log event to the same
cluster

• TN: assigns two logs with different log events to different
clusters

• FP: assigns two logs with different log events to the same
cluster

Accuracy Metric

31

• Parsing Accuracy: F-measure\
• Report Anomaly: #anomalies reported
• Detected Anomaly: #true anomalies detected
• False Alarm: #wrongly detected anomalies

32

Finding: Log parsing is important because log mining is
effective only when the parsing accuracy is high
enough.

33

34

SLCT

Original
SLCT

Refined
SLCT

35

SLCT

Finding: Log mining is sensitive to some critical events.
Errors in parsing 1 log event could even cause nearly
an order of magnitude performance degradation in log
mining.

Outline
• Topic 1: Evaluation study on log parsing

• Topic 2: Parallel log parsing for large-scale log
data

• Topic 3: Online log parsing via fixed depth tree

• Conclusion and future work

36

Why we need parallel log
parsers?

37

Motivations & Contributions

38

Weakness of existing parsers
• Existing log parsers do not consistently obtain

high accuracy on all datasets.

• When logs grow to a large scale, existing
parsers fail to complete in reasonable time.

39

Weakness of existing parsers
• Existing log parsers do not consistently obtain

high accuracy on all datasets.

• When logs grow to a large scale, existing
parsers fail to complete in reasonable time.

POP can handle 200m HDFS logs in 7 mins, while the state-of-the-
art needs more than half an hour.

POP achieves the highest parsing accuracy on all datasets.

Parallel log parser: POP

Motivations & Contributions

Framework of POP

40

Preprocess by
Domain

Knowledge

Distributed File System

Merge Groups
by Log Event

Worker Worker Worker

Spark
Driver

1

2
3

Partition by Log
Message Length

4 5 6 7

Generate Log
Events

12 13
14

Recursively
Partition by

Token Position

98

15

Spark
Cluster

1110

(Step 1) (Step 2) (Step 3) (Step 4) (Step 5)

Novelty of POP

41

Preprocess by
Domain

Knowledge

Distributed File System

Merge Groups
by Log Event

Worker Worker Worker

Spark
Driver

1

2
3

Partition by Log
Message Length

4 5 6 7

Generate Log
Events

12 13
14

Recursively
Partition by

Token Position

98

15

Spark
Cluster

1110

(Step 1) (Step 2) (Step 3) (Step 4) (Step 5)

Accuracy

Efficiency

Step 1: Preprocess by domain
knowledge

42

• Prune variable parts according to simple regular
expressions

blk_904791815409399662Received block of size 67108864 from /10.251.43.210

blk_[0-9]+

Received block of size 67108864 from /10.251.43.210

Step 2: Partition by log message
length

43

• Partition logs into different groups based on log
message length

1088 bytes sent, 0128 bytes received, lifetime 00:03
1024 bytes sent, 2056 bytes received, lifetime 00:10
Send file file_01
Send file file_02
Receive file file_03

……

Log message
length

8

3

1088 bytes sent, 0128 bytes received, lifetime 00:03
1024 bytes sent, 2056 bytes received, lifetime 00:10

………

…
Connect to IP_01

Send file file_01
Send file file_02
Receive file file_03
Connect to IP_01

Step 3: Recursively partition by
token position

44

• Find split token position
• Recursively partition a log group
• Stop until all log groups are complete groups

Step 3: Recursively partition by
token position

45

• Find split token position

Send
Send
Receive
Connect

file
file
file
to

file_01
file_02
file_03

IP_01

1 2 3

1: {Send, Receive, Connect}
2: {file, to}
3: {file_01, file_02, file_03, IP_01}

1: 3 distinct tokens
2: 2 distinct tokens
3: 4 distinct tokens

Step 3: Recursively partition by
token position

46

• Find split token position
• Recursively partition a log group

Send
Send
Receive
Connect

file
file
file
to

file_01
file_02
file_03

IP_01

Connect to IP_01

Send
Send
Receive

file
file
file

file_01
file_02
file_03

Send
Send

file
file

file_01
file_02

Receive file file_03

Step 3: Recursively partition by
token position

47

• Find split token position
• Recursively partition a log group
• Stop until all log groups are complete groups

Send
Send
Receive
Connect

file
file
file
to

file_01
file_02
file_03

IP_01

Connect to IP_01

Send
Send
Receive

file
file
file

file_01
file_02
file_03

Send
Send

file
file

file_01
file_02

Receive file file_03

Step 3: Recursively partition by
token position

48

• Stop until all log groups are complete groups

Send
Send
Receive

file
file
file

file_01
file_02
file_03

Send
Send

file
file

file_01
file_02

Group goodness = #"#$%& '#()")#& *)"+ #&% ,)(")&-" "#$%&
.#/ 0%((1/% .%&/"+

1
3 ≈ 0.33

2
3 ≈ 0.66

• Compare with a group threshold gs (e.g., 0.5)

Complete group

file
file
file

Step 4: Generate log events

49

• Inspect the tokens in each token position of
each log, calculate the number of distinct
tokens

1088 bytes sent, 0128 bytes received, lifetime 00:03
1024 bytes sent, 2056 bytes received, lifetime 00:10

Send file file_01
Send file file_02

Receive file file_03
Receive file file_04

Send file Receive file bytes sent, bytes received, lifetime* * * * *

Step 5: Merge groups by log
event

50

• Hierarchical clustering on log events, instead of
log messages

1. Send
2. Send

1. Send
2. Send

configuration
network

user interface
set up

file
file

file
file

Send * file

Send * * file

1. Send
2. Send
3. Send
4. Send

configuration
network

user interface
set up

file
file
file
file

Parallelization

51

• Log message lengths in Step 2

1088 bytes sent, 0128 bytes received, lifetime 00:03

1024 bytes sent, 2056 bytes received, lifetime 00:10

Send file file_01

Send file file_02

Stop process
Connect to IP_01

{8, 3}

{8, 3}

{2, 3}

{8, 3, 2}

Receive file file_03

• Data set (supercomputer, distributed system,
standalone software)

• Randomly select 2,000 logs from each data set
52

[DSN’07]

[TKDE’12
]

[SOSP’09
]

Data sets

• Accuracy results:

53

RQ1: Accuracy RQ2: Efficiency

BGL HPC HDFS Zookeeper Proxifier

SLCT 0.94 0.86 0.93 0.92 0.89

IPLoM 0.99 0.64 1.00 0.90 0.90

LKE 0.70 0.17 0.96 0.82 0.81

LogSig 0.98 0.87 0.93 0.99 0.84

POP 0.99 0.95 1.00 0.99 1.00

54

BGL 400 4k 40k 400k 4m

HPC 600 3k 15k 75k 375k

HDFS 1k 10k 100k 1m 10m

Zookeeper 4k 8k 16k 32k 64k

Proxifier 600 1200 2400 4800 9600

• Evaluate the running time of log parsing
methods on all data sets by varying the
number of raw logs.

RQ1: Accuracy RQ2: Efficiency

• Efficiency experiments (real-world datasets):

RQ1: Accuracy RQ2: Efficiency

• Running time (y-axis)

• Slope

RQ1: Accuracy RQ2: Efficiency

• Efficiency experiments (synthetic datasets):

RQ1: Accuracy RQ2: Efficiency

Outline
• Topic 1: Evaluation study on log parsing

• Topic 2: Parallel log parsing for large-scale log
data

• Topic 3: Online log parsing via fixed depth tree

• Conclusion and future work

58

Why we need online log
parsers?

59

60

• Offline log parsers
– Log event changes

• Modern system structure
– Log collection works in a streaming manner

Motivations

An online log parser is
in demand

61

Framework of Online Parser

62

2008-11-11 03:41:48 Received block blk_90 of size
67108864 from /10.250.18.114

blk_90 -> Received block * of size * from *

…

Framework of Drain

63

2008-11-11 03:41:48 Received block blk_90 of size
67108864 from /10.250.18.114

blk_90 -> Received block * of size * from *

Fixed depth tree

Novelty of Drain

64

2008-11-11 03:41:48 Received block blk_90 of size
67108864 from /10.250.18.114

blk_90 -> Received block * of size * from *

• Encodes heuristic rules in the
tree to conduct pre-clustering.

• The depth can be fixed by a pre-
defined parameter depth.

depth

Depth

65

Under-parsed

Send file file_01
Send file file_01
Receive file file_02

Over-parsed Send file run.py

Send file boot.py

Framework of Drain

66

A List of Log Groups

. . .

Length: 4 . . .

Root

Length: 5 Length: 10

Send Receive Starting

Log Event: Receive from node *

Log IDs: [1, 23, 25, 46, 345, …]

Log Group

Root Node

Internal Node

Leaf Node

Log Group*

Fixed depth tree (depth=3)

Update of Drain

67

Fixed depth tree (depth=4)

Root

Length: 3

Send

block

Log Event: Send
block 44

Log IDs: [1]

Receive file 01

Length is 3

First token is Receive

NOT match!
Need to update the tree.

Update of Drain

68

Fixed depth tree (depth=4)

Root

Length: 3

Send

Root

Length: 3

Receive

file

Send

blockblock

Log Event: Send
block 44

Log IDs: [1]

Log Event: Receive
file 01

Log IDs: [2]

Log Event: Send
block 44

Log IDs: [1]

file

Receive
Receive file 01

• Accuracy results:

69

RQ1: Accuracy RQ2: Efficiency

• Efficiency experiments:

RQ1: Accuracy RQ2: Efficiency

71

Parsers are open source on github.com/logpai/logparser

Outline
• Topic 1: Evaluation study on log parsing

• Topic 2: Parallel log parsing for large-scale log
data

• Topic 3: Online log parsing via fixed depth tree

• Conclusion and future work

72

Conclusion
Contributions
– Evaluation study of log parsing
• Six insightful findings and an open-source log parsing

toolkit

– Parallel log parsing for large-scale log data
• A parallel log parsing framework POP

– Online log parsing
• An online log parsing method Drain based on fixed

depth tree

73

Conclusion
Contributions
– Evaluation study of log parsing
• Six insightful findings and an open-source log parsing

toolkit
– Parallel log parsing
• A parallel log parsing framework POP built on top of Spark

– Online log parsing
• An online log parsing method Drain based on fixed depth

tree
– Operational issues prioritization
• An operational issues prioritization method POI via

hierarchical clustering
– Location-based QoS prediction

74

Future work
Parameter-free Online log parser
– An online log parser that automatically tunes the

parameters

75

Publications (1)
1. Pinjia He, Jieming Zhu, Shilin He, Jian Li, Michael R. Lyu. Towards Automated Log Parsing for Large-
Scale Log Data Analysis. IEEE Transactions on Dependable and Secure Computing (TDSC), 14
pages, accepted, 2017.

2. Jieming Zhu, Pinjia He, Zibin Zheng, Michael R. Lyu. Online QoS Prediction for Runtime Service
Adaptation via Adaptive Matrix Factorization. IEEE Transactions on Parallel and Distributed Systems
(TPDS), Volume 28, Issue 10, pages 2911-2924, 2017.

76

Journal

1. Pinjia He. An End-to-end Log Management Framework for Distributed Systems. The 36th International
Symposium on Reliable Distributed Systems (SRDS), pages 266-267, 2017.

2. Jieming Zhu, Pinjia He, Zibin Zheng, Michael R. Lyu. CARP: Context-Aware Reliability Prediction of
Black-Box Web Services. The 24th International Conference on Web Service (ICWS), pages 17-24,
2017.

3. Pinjia He, Jieming Zhu, Zibin Zheng, Michael R. Lyu. Drain: An Online Log Parsing Approach with Fixed
Depth Tree. The 24th International Conference on Web Service (ICWS), pages 33-40, 2017.

4. Jian Li, Pinjia He, Jieming Zhu, Michael R. Lyu. Software Defect Prediction via Convolutional Neural
Network. The International Conference on Software Quality, Reliability and Security (QRS), pages 318-
328, 2017.

Conference

Publications (2)
5. Pinjia He, Jieming Zhu, Shilin He, Jian Li, Michael R. Lyu. An Evaluation Study on Log Parsing and Its

Use in Log Mining. The 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 654-661, 2016.

6. Shilin He, Jieming Zhu, Pinjia He, Michael R. Lyu. Experience Report: System Log Analysis for
Anomaly Detection Factorization. The 27th International Symposium on Software Reliability
Engineering (ISSRE), pages 207-218, 2016.

7. Cuiyun Gao, Baoxiang Wang, Pinjia He, Jieming Zhu, Yangfan Zhou, Michael R. Lyu. PAID: Prioritizing
App Issues for Developers by Tracking User Reviews Over Versions. The 26th International
Symposium on Software Reliability Engineering (ISSRE), pages 35-45, 2015.

8. Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, Dongmei Zhang. Learning to Log:
Helping Developers Make Informed Logging Decisions. The 37th International Conference on
Software Engineering (ICSE), pages 415-425, 2015.

9. Jieming Zhu, Pinjia He, Zibin Zheng, Michael R. Lyu. A Privacy-Preserving QoS Prediction Framework
for Web Service Recommendation. The 22nd International Conference on Web Service (ICWS),
pages 241-248, 2015.

10. Pinjia He, Jieming Zhu, Zibin Zheng, Jianlong Xu, Michael R. Lyu. Location-Based Hierarchical Matrix
Factorization for Web Service Recommendation. The 21st International Conference on Web Service
(ICWS), pages 297-304, 2014.

77

Publications (3)
11. Jieming Zhu, Pinjia He, Zibin Zheng, Michael R. Lyu. Towards Online, Accurate, and Scalable QoS

Prediction for Run time Service Adaptation. The 34th International Conference on Distributed
Computing Systems (ICDCS), pages 318-327, 2014.

12. Tong Zhao, Junjie Hu, Pinjia He, Hang Fan, Michael R. Lyu, Irwin King. Exploiting Homophily-based
Implicit Social Network to Improve Recommendation Performance. The International Joint Conference
on Neural Networks (IJCNN), pages 2539-2547, 2014.

13. Pinjia He, Jieming Zhu, Jianlong Xu, Michael R. Lyu. A Hierarchical Matrix Factorization Approach for
Location-Based Web Service QoS Prediction. The International Workshop on Internet-based Virtual
Computing Environment (iVCE), pages 290-295, 2014.

78

Thank you!
Q&A

