
A Roadmap towards Intelligent Operations for
Reliable Cloud Computing Systems

Yintong Huo, Cheryl Lee, Jinyang Liu, Tianyi Yang, and Michael R. Lyu
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.

Email: {ythuo, jyliu, tyyang, lyu}@cse.cuhk.edu.hk, cheryllee@link.cuhk.edu.hk

Abstract—The increasing complexity and usage of cloud sys-
tems have made it challenging for service providers to ensure
reliability. This paper highlights two main challenges, namely
internal and external factors, that affect the reliability of cloud
microservices. Afterward, we discuss the data-driven approach
that can resolve these challenges from four key aspects: ticket
management, log management, multimodal analysis, and the
microservice resilience testing approach. The experiments con-
ducted show that the proposed data-driven AIOps solution
significantly enhances system reliability from multiple angles.

I. INTRODUCTION

IT enterprises have significantly increased the development

of cloud applications and services like search engines, messag-

ing apps, and online shopping. The growing complexity and

volume of cloud systems make critical failures inevitable, po-

tentially causing service interruptions and performance degra-

dation. For example, on October 4th, 2021, a Facebook outage

disconnected Facebook data centers from the Internet globally

for nearly six hours 1. This outage significantly impacted Face-

book’s market revenue and user experience. The increasing

complexity and distributed nature of these services necessities

intelligent software reliability engineering. In this paper, we

have identified critical reliability challenges in industrial cloud

systems and developed a general roadmap for improving cloud

reliability using data-driven AIOps.

Challenges to the reliability of cloud microservices orig-

inate from both internal and external factors of microser-

vices. Internal factors refer to issues within the microservices

themselves, such as software bugs and resilience problems.

Software bugs are errors or flaws in the design, development,

or operation of the microservice that can result in incorrect

behavior. On the one hand, a software bug is an error, flaw

or fault in the software’s design, development, or operation.

Bugs lead to erroneous behaviors of the microservice. Service

resilience [22], on the other hand, refers to the ability to

maintain acceptable performance levels and recover from

service failures. Resilience issues can affect the availability of

the microservice, which can harm cloud providers’ revenue.

To ensure service reliability, test engineers conduct resilience

tests on microservices, intentionally injecting failures [9] to

discover flaws.

External factors refer to the threats from outside the mi-

croservice, such as cascading failures and low-quality logs

1https://www.facebook.com/business/news/update-about-the-october-4th-
outage

and alerts. Cascading failures that lead to service degradation

are prevalent in cloud services. Although cloud management

frameworks provide automatic mechanisms for failure recov-

ery, unplanned service failures may still cause severe cascading

effects. Therefore, it is crucial to evaluate the impact of

service failures rapidly and accurately for efficient operation

and maintenance of cloud services. Besides, low-quality logs

and alerts are often caused by system-level misconfigurations.

When failures occur, On-Call Engineers (OCEs) typically

inspect logs and alerts to locate and diagnose failures. If the

logs and alerts are of low-quality or misleading, the manual

diagnosis process will be impeded.

To tackle the challenges above, we develop intelligent oper-

ations to improve the reliability of microservice systems. The

roadmap includes (1) proactive measures for internal factors;

and (2) reactive measures for external factors. Proactive mea-

sures examine the microservice system to detect possible flaws

in the system before the occurrence of a failure, including

adaptive resilience testing and architectural resilience opti-

mization. Reactive measures assist On-Call Engineers (OCEs)

in reducing the impact of a failure during failure mitigation,

including log and metric analysis for anomaly detection,

postmortem incident ticket analysis, and multimodal root cause

localization.

II. DATA-DRIVEN AIOPS FOR CLOUD COMPUTING

Ensuring system reliability is a significant challenge for

cloud providers. To achieve the goal, cloud providers gather

extensive monitoring data that reflects run-time microservice

systems’ behavior, which includes logs, traces, and tickets. We

describe their details as follows.

• Traces record the status of each microservice invocation,

such as the return value and the duration of execution.

• Alerts are notifications sent to OCEs when the cloud

service exhibits abnormal behavior, as defined by the alert

strategy.

• Tickets are the problem descriptions sent to service

providers when customers encounter a technical issue

with a product.

• Logs are semi-structured text printed by logging state-

ments (e.g., logger.info()) in the source code.

• Metrics Metrics are fixed-interval time series reflecting

the statuses of the cloud system [6].

The cloud monitoring system collects and processes the

above monitoring data, and when an abnormal state is de-

1213

2023 IEEE International Conference on Data Mining Workshops (ICDMW)

2375-9259/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDMW60847.2023.00158

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

W
or

ks
ho

ps
 (I

C
D

M
W

) |
 9

79
-8

-3
50

3-
81

64
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

M
W

60
84

7.
20

23
.0

01
58

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 13,2024 at 08:00:28 UTC from IEEE Xplore. Restrictions apply.

Alerts & Tickets

Metrics & KPIs

ADsketchiPACK

Logs SemParser

Traces

Hades

EadroAVERT

AID

Proactive Reactive

Fig. 1: The Roadmap of Intelligent Operations for Reliable Cloud Systems

tected, the alerting module in the monitoring system will send

an alert to OCEs.

Although the monitoring data provide rich information for

system status and help engineers intervene in potential faults,

they are generated in an overwhelming volume for developers

to inspect manually. For example, a high-performance com-

puting (HPC) system generates hundreds of gigabytes of log

data in just one week [23]. To utilize the large volume of

data, modern AIOps solutions apply a data-driven approach

to identify system behavior patterns and performance trends

that may not be apparent. Once the normal patterns have been

learned from past data, the model can inform developers by

effectively identifying the abnormal state of a system in the

production environment.

III. ALERTS AND TICKETS

In order to ensure the reliability of cloud systems, cloud

vendors rely on comprehensive monitoring mechanisms, which

can be divided into two aspects. Firstly, various components

within the cloud systems, such as hardware and microservices,

are equipped with monitors that raise alerts to draw the

attention of on-call engineers and enable timely mitigation

actions [29]. Our first part on alert research focuses on

achieving accurate monitoring of these components to ensure

the reliability of cloud systems. Secondly, the customers’

experience outside the cloud systems is also closely monitored

through a support system, where customers can report encoun-

tered problems by issuing tickets. Due to the cloud systems’

scale, many tickets may be received, including duplicate ones.

The second part on ticket research proposes aggregating these

duplicate tickets to alleviate the burden on support engineers

who handle a high volume of tickets.

A. Adaptive and Interpretable Monitoring for Cloud Systems

Service interruptions, also known as incidents, are an in-

evitable aspect of large-scale cloud platforms [17]. To maintain

the reliability of cloud systems, contemporary cloud vendors

widely employ monitors to continuously detect anomalies, or

unexpected behaviors, of cloud systems. Once an anomaly is

detected, the monitor generates alerts that provide a descrip-

tion of the anomaly, which promptly notifies on-call engineers

to investigate the matter. An established practice is to detect

anomalies on key performance indicators (KPIs) to generate

alerts. These KPIs capture the runtime states of a system,

including various metrics such as CPU usage and service

response delay [5].

Although many efforts have been dedicated to detecting

anomalies on KPIs [31], most of the existing work lacks

interpretability. Specifically, these methods calculate a prob-

ability indicating the likelihood of performance anomalies at

each timestamp. They then choose a threshold to convert the

probability into a binary label, normal or anomaly. However,

in practice, a mere recommendation of suspicious anomalies

may not be very useful to engineers. This is because they have

to manually investigate the problematic metrics (suggested

by the model) to locate faults. The issue is compounded by

the prevalence of false alerts. Furthermore, many state-of-the-

art methods train models with historical metric data in an

offline setting. As online services undergo feature upgrades

and system renewal continuously, the patterns of metrics

may evolve accordingly, resulting in concept drift [7], where

Without adaptability, these models cannot accommodate the

ever-changing services and user behaviors.

To tackle this issue, we propose ADSketch, an interpretable

and adaptive KPI anomaly detection approach based on pat-
tern sketching. The core concept is to identify discriminative

subsequences from metric time series that can represent classes

of different issues. This approach is similar to the problem of

shapelet discovery in time series data [30]. Specifically, for

multiple subsequences that describe the same type of issue,

we compute their average and regard the result as a metric
pattern for the issue. In this way, ADSketch provides a novel

mechanism to characterize service performance issues using

metric time series. Our experimental results demonstrate that

our design outperforms existing state-of-the-art time series

1214

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 13,2024 at 08:00:28 UTC from IEEE Xplore. Restrictions apply.

�������

	�
�
�

��

���

������ ������� �� 	
�� ���
����

��� ��
����� ��
�� ���
���������

���������� ��
��

������

��������������
�������
���
����

��
������������ ��!�"#��
�����
����
$
���

%�����������&�
����
�	
�������
���
����

�

�

�

�
�
� '�����'

Fig. 2: Alerts and resultant tickets caused by an incident.

anomaly detectors on both public and industrial data. Specif-

ically, we have achieved an average F1 score of over 0.8 in

production systems.

B. Incident-aware Duplicate Ticket Aggregation

When customers face technical difficulties with a platform,

they usually seek help from cloud providers by submitting a

support ticket. However, in the case of a large-scale cloud

platform with millions of users, an incident could result

in a substantial number of tickets, many of which may be

duplicates. To alleviate the burden of support engineers, it is

crucial to group together duplicate tickets that stem from the

same incident [18]. By doing so, the support team can handle

the tickets efficiently.

Most existing studies on duplicate issue report detection

measure the semantic similarity between two reports based

on their textual descriptions, using natural language pro-

cessing techniques such as word frequency [24], and topic

modeling [3]. However, they are suboptimal for aggregating

duplicate tickets in cloud systems due to their large-scale and

heterogeneous architecture [28]. The primary reason is that

customers of cloud systems could encounter different issues

with distinct symptoms caused by the same incident. Figure 2

shows an example. When an infrastructure-level service (e.g.,

a storage service) is interrupted, other services depending on

it (e.g., VM and Web application) can also be impacted. As a

result, customers using different services may observe different

symptoms and submit tickets with dissimilar descriptions.

Consequently, solely relying on textual descriptions of tickets

is insufficient to tackle this problem.

To address the limitations of existing studies, we propose

incorporating cloud-side runtime information, i.e., alerts, to

facilitate ticket aggregation in cloud systems. As shown in

Figure 3, we formulate the ticket aggregation problem in

cloud systems as a two-stage linking problem, i.e., alert-

alert linking and ticket-alert linking. If multiple interlinked

alerts are triggered by the same incident and are further

linked to different tickets, we consider these tickets should

be aggregated (i.e., caused by the same incident). Thus, it is

����������
�	
����

��������������	��

��	���� ������

�	
�������������

��� ����

���
����
���	�����

�����
����	
��

���

������

������

	#

���������	��

������	����
	�	�

���

��	��������	��
�
������	��
�����	

���
��������
�����	�����

�#

�������	

�

����

������������

���

�

�

�

�����

Fig. 3: Overview of iPACK.

possible to aggregate semantically different tickets via alert-

alert links. Specifically, iPACK consists of three main steps,

i.e., alert parsing, incident profiling, and ticket-event correla-
tion. In the alert parsing step, we parse alerts as more coarse-

grained events to reduce redundant alerts. Next, in the incident
profiling step, we propose a graph-based incident profiling

(GIP) method to remove the regular events (i.e., parsed regular

alerts) and link correlated indicative events. Then, in the ticket-
event correlation, we propose an attentive interaction network

(AIN) to correlate a ticket to an event. Finally, if two tickets

are correlated to the events within the same event graph (i.e.,

the same incident), we aggregate the tickets as the same

cluster. The results of the ticket aggregation are presented to

the CSS (Customer Support Services) team to streamline the

ticket processing process and improve efficiency. This allows

support engineers to send out batch notifications to potentially

affected customers and provide quick guidance for service

recovery. Additionally, the results can aid on-call engineers in

conducting impact assessments, including identifying affected

services and determining the extent of customer impact caused

by the incident (e.g., number of affected customers). The

experimental results on Microsoft Azure show that iPACK can

accurately and comprehensively aggregate duplicate tickets,

achieving an F1 score of 0.871∼0.935 and outperforming

state-of-the-art methods by 12.4%∼31.2%.

IV. LOGS

The logging statements, which developers put into the

source code, carry run-time information about software sys-

tems [11]. By reading these logs, software system operators

and administrators can monitor software status [4] or detect

anomalies [26]. The overwhelming logs, however, impede

developers from reading every line of log files as modern

software systems get more complicated than before [10].

Therefore, intelligent software engineering necessitates auto-

mated log analysis.

1215

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 13,2024 at 08:00:28 UTC from IEEE Xplore. Restrictions apply.

��� �����	
��	���	
���	�
������������
��� ��
������������
����������	����
�	�����
���
���

��!��"����	�	
�#!!��������

��
����������������������(�)
	
���(�)����
��������(�)
�
���
������(�)��
�
���

	��������������� ��������(��)
	
���(��) ���
��������(����)
�
���
������(������)��
�
���

��������������

������	
����
	
�
���
!����

�
�
"���#$$

+�,--.
+�,--.���
����
��������������
�
/00

�������������� ���������

���
����

	�
�
�

��

��

���������	�
��
��
��

�
%	�
�����
�
���	��&���

Fig. 4: Difference between syntax-based parsers and semantic-based SemParser.

��������	�
����

�
�������	��

���������

�!�����
����	
��

�������
������

	�
��

���������	
������
�	���

$��������%�
	$��������%
�$��&
����'�('��%�

��������
	$��)'
���%
�$����%�
	�

�����������������
	�$����%
�$��������%��
	�

������������
��)'������)'
��������������������
���� ��������
��*���� �+ ��&
����'�('��

��������������� ����
�� �������
��������
��)'������)'
������������������
���	��������
��*���
��+�����

��$����%��$��������%��
��$����%��$��������%��

��
�$��&
����'�('��%�

�$��)'
���%�
��

� �������������������
� �����������������
� ������

��� ������	
��������

�

��$
���%��$��������%��
�$�����
'%��$��������%�

�

Fig. 5: The pipeline of SemParser.

A. Semantic-based Log Parser

Basically, a log message is a type of semi-structured lan-

guage comprising a natural language written by software

developers and some auto-generated variables during software

execution [16]. As most log analysis tools accept a structured

input, the fundamental step for automated log analysis is log

parsing. Given a raw message, a log parser recognizes a

set of fields (e.g., verbosity levels, date, time) and message

content, while the latter is represented as structured event

templates (i.e., constants) with corresponding parameters (i.e.,

variables) [12], [13]. For example, for the log message “Listing

instance in cell 949e1227”, “Listing instance in cell <*>”

is the template describing the system event, and “949e1227”

corresponds to the parameter indicator “<*>” in the template.

Although automatic log parsing is full of challenges,

researchers have made progress leveraging statistical and

history-based methods. For instance, SLCT [25] and LFA [20]

constructed log templates by counting the number of historical

frequently-appearing words. The most widely-used parser in

industry, Drain [8], formed log templates by traversing leaf

nodes in a tree. However, we argue that all current parsers are

syntax-based with superficial features (e.g., word length, log

length, frequency), and they have limited high-level seman-

tic acquisition from three aspects: (1) individual informative

tokens; (2) semantics within a message; and (3) semantics

between messages.

To tackle the aforementioned complicated but critical limi-

tations, we propose a novel semantic-based log parser, Sem-

Parser, the first work to target parsing logs with respect to

their semantic meaning as shown in Figure 4. The pipeline

of SemParser is exhibited in 5. We first define two-level

granularities of semantics in logs, message-level and instance-
level semantics. Message-level semantics refers to identifying

technical concepts (e.g., cell) within log messages, while

instance-level semantics means resolving what the instance

(i.e., parameters) describes. Our framework comprises two

parts, an end-to-end semantics miner and a joint parser. To

begin with, log messages are sent to the semantic miner

for acquiring template-level semantics (i.e., concepts) and

explicit instance-level semantics (i.e., explicit CI pairs) of

each log independently. This step mainly solves the first

two stated challenges. The unseen explicit CI pairs will

be added to the Domain Knowledge database to keep the

knowledge updated. Moreover, to uncover potential implicit

semantics from domain knowledge, instances in log messages

are kept. Hence, the challenge of missing inter-log relations

is addressed. Following that, the joint parser receives outputs

from the semantics miner, taking charge of implicit semantics

inference with the help of domain knowledge. The newfound

implicit instance semantics, coupled with the explicit one,

form the instance-level semantics, denoted as CI pairs. The

remaining concepts and instances that cannot be paired are

stored as orphan concepts and orphan instances, respectively.

Besides, the conceptualized templates are derived by replacing

instances with their related concepts (if available), or “<*>”

for else. The final structural outcome of SemParser consists of

conceptualized templates, CI pairs, orphan concepts, as well

as orphan instances. The experimental results demonstrate

the effectiveness of our model, which could extract both

1216

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 13,2024 at 08:00:28 UTC from IEEE Xplore. Restrictions apply.

high-quality and comprehensive semantics from log messages.

SemParser achieves an average F1 score of 0.985 for six

systems logs even though it was only fine-tuned the base model

on 50 annotated samples with a large portion of templates

unseen in the test set.

B. Log-based Anomaly Detection and Failure Identification

After acquiring the semantics from SemParser, we investi-

gate whether these can benefit log downstream applications,

i.e., log-based anomaly detection and failure identification.

In the anomaly detection task, the detector predicts whether

anomalies exist within a short period of log messages (i.e., ses-

sion). Motivated by previous studies, we decouple the anomaly

detection framework into two components, a log parser to

generate templates, and a detection model to analyze template

sequences in a session. A dependable parser should perform

well as a foundational processor for log analysis, regardless

of the down-streaming detection model used. Our experiments

compare the performance of different baseline parsers under

various anomaly detection techniques. Equipping with the

semantic outputs of SemParser, we observe that SemParser

outperforms all syntax-based parsers by an average F1 score

of 1.22% and 11.71% over state-of-the-art detection models

in the HDFS and OpenStack system logs, respectively. While

anomaly detection identifies present faults from logs, failure

identification looks deeper into the problems and identifies

what type of failure occurs. In the more challenging failure

identification task, SemParser achieves an average precision

score of 0.95, exceeding all baselines of 8.52%.

V. MULTIMODAL DATA

As introduced in I, software operators must closely monitor

the system status via multi-source run-time information to

discover and tackle potential failures in their earliest efforts.

Yet, the explosion of monitoring data makes automated trou-

bleshooting techniques imperative. Many efforts have been

devoted to troubleshooting automation. Generally, they focus

either on anomaly detection (AD) [19] or on root cause

localization (RCL) [21].

AD tells whether an anomaly exists, and RCL identifies

the culprit microservice upon the existence of an anomaly.

However, unlike operation teams that closely monitor diverse

sources of run-time information, existing efforts mainly fo-

cus on a single information source, which is insufficient to

precisely depict the system status. We argue that leveraging

multimodal monitoring data can contribute to more effective

troubleshooting approaches. Hence, we propose two works to

study using multimodal data to deal with AD and RCL.

A. Anomaly Detection for General Distributed Software Sys-
tems

We first intensively study system anomalies resulting from

typical faults in Apache Spark. We find that logs and metrics

complement each other and also collaborate in revealing sys-

tem health. While both logs and metrics respond to anomalies,

neither alone is sufficiently informative [15]. This results in

Hades, a heterogeneous anomaly detector via semi-supervised

learning for large-scale software systems equipped with a

novel cross-modal attention mechanism, as shown in Figure 6.

Hades involves four components: 1) We model lexical seman-

tics and sequential dependencies of logs by adopting FastText

and Transformer. 2) For metrics, we employ a hierarchical en-

coder to jointly learn aspect-oriented temporal dependencies,

cross-metric relationships, and inter-aspect correlations. 3) We

design novel cross-modal attention to learn meaningful intra-

and inter-modal properties. 4) Finally, the framework infers the

system status and triggers an alarm upon detecting anomalies.

We also present a two-phase semi-supervised training strategy

to reduce labor-intensive annotation: 1) train the model with

a small amount of labeled data and apply pseudo-labeling on

the unlabeled data; 2) update the model using both labeled

and high-confidence pseudo-labeled data until convergence.

Hades is evaluated on one simulated dataset from Spark

and two datasets from the cloud services of Huawei Cloud.

The experimental results demonstrate the superiority of Hades,

which achieves an average F1-score of 0.933 and outperforms

all state-of-the-art competitors by 9.12%∼174.41%.

B. Root Cause Localization for Microservices

RCL aims to identify which microservice is initially experi-

encing a functional anomaly. An anomaly in one microservice

could propagate to others and magnify its impact, so the

monitoring data exhibit complex patterns and relationships,

making RCL extremely difficult [14]. We identify that existing

data-driven localizers suffer two main limitations: 1) Existing

research deeply relies on traces only, which is demonstrated

to be insufficient. Other sources, such as logs and metrics,

are underutilized, though they provide valuable clues into

presenting abnormal patterns. 2) In the context of microservice

troubleshooting, RCL follows AD since we must discover an

anomaly before analyzing it. However, current research treats

them as independent with little consideration for their shared

inputs and knowledge of the microservice status.

To overcome the limitations, we propose Eadro, the first

end-to-end framework integrating AD and RCL to trou-

bleshoot microservices based on multi-source monitoring

data, as shown in Figure 7. Specifically, Eadro consists of

three components: 1) Modal-wise learning: It contains three

modality-specific modules for learning intra-service behaviors

from logs, metrics, and traces. We apply Hawkes process

and dilated causal convolution to model the log event oc-

currences, temporal dependencies and inter-series associations

of metrics, and meaningful fluctuations of latency in traces.

2) Dependency-aware status learning: This fuses the multi-

modal representations via gated concentration and a graph

attention network, where the topological dependency is built

on historical invocations. 3) Joint detection and localization:

It consists of an anomaly detector and a root cause localizer

sharing representations. The detector predicts the existence of

anomalies, and the localizer predicts the probability of each

microservice being the culprit upon an anomaly alarm.

1217

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 13,2024 at 08:00:28 UTC from IEEE Xplore. Restrictions apply.

Attn α

Attn β

Fused Rα

Fused RβC
o

n
ca

t

Global RgFCAbnormal?

INFO util.SignalUtils: Registered signal
WARN netlib.BLAS: Failed to load implementation
INFO storage.BlockManager: Removing RDD 36
INFO util.Utils: Successfully started service
INFO storage.BlockManager: Removing RDD 18

Trans Trans Trans

Event Embeddings
Token Embeddings

Avg

Pooling

Parsing

FastText

Sequence Encoder

No

Yes

Details

= =K V Rm

= =K V Rl
=Q Rm

=Q Rl D

D
D

Multivariate Metrics

Conv

Conv

Conv
Conv Conv Conv

Max

Pooling

Grouping

Intra-aspect Encoder Inter-aspect Encoder

Log Modeling

Heterogeneous FusionDetection

Metric Modeling

Fig. 6: Overview of Hades.

1 Modal-wise Learning 2 Dependency-aware Status Learning 3 Joint Detection & Localization

MTS

Hawkes
Parse FC

Causal Conv

Causal Conv
Latency

Gated Fusion

Detector

Root Cause Localizer

Normal? Yes

No

[

[

P[1:M]

Logs

Metrics

Traces

Dependency Graph

GAT

Status
Representation

CulpritJoint Learning

Intensity Vectors

Fig. 7: Overview of Eadro.

Experimental results on two widely-used benchmark mi-

croservices demonstrate the effectiveness of Eadro, which

surpasses all compared anomaly detectors by 53.82%∼92.68%

in F1-score and achieves state-of-the-art RCL results with

290%∼5068% higher in Top-1 Hit Rate than five advanced

baselines.

VI. MICROSERVICES

Modern online services are moving towards the microser-

vice architecture [1], where a monolithic online service is split

into fine-grained, independently-managed microservices which

collectively serve user requests. A microservice is a small

independent program that communicates over well-defined

APIs. Multiple microservices serve users’ requests as a whole.

The microservice architecture exhibits three prominent at-

tributes [2]: (1) highly decoupled, (2) highly dynamic, and

(3) specialized. Their further clarifications are described as

follows. First, a microservice system is highly decoupled.

Each microservice in a microservices system can be devel-

oped, deployed, operated, and scaled without affecting the

functioning of other services. The microservices communi-

cate with each other through well-defined APIs. Second, the

microservice architecture is highly dynamic. New features

and updates are delivered continuously and frequently. Last,

microservices are specialized. Different from other existing

distributed systems (e.g., Hadoop, Spark, and Blockchain),

each microservice is designed for a set of capabilities and

focuses on serving a specific problem. If developers contribute

1218

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 13,2024 at 08:00:28 UTC from IEEE Xplore. Restrictions apply.

Failure Execution Degradation-based Metric Lattice Search Resilience Indexing

Load
Generation

Failure Injection

Failure Clearance Degradation-based
Metric Selection

Metric Lattice Search

Metric Lattice
Construction

Ranked Metrics Resilience
Indexing

Metric
Visualization

Fig. 8: Overview of AVERT.

more code to a service over time and the service becomes

complex, it can be broken into smaller services. As a result,

the microservice failures are usually cascaded due to the multi-

layer deployment and inter-service dependencies architecture.

Such three attributes lead to the challenges specific to the

microservice architecture. Our research work focuses on two

closely-related tasks towards reliable microservices. First, we

propose predicting the intensity of microservice dependencies,

by which engineers can identify the potential risk factors that

can lead to cascading failures and take proactive measures to

prevent them. microservice systems use runtime metrics during

testing to identify potential resilience issues. It is another

proactive way to ensure the reliability of cloud services. The

task details are listed as follows.

A. Predicting the Intensity of Microservice Dependency
Service invocations create dependencies between services.

Online service systems have binary dependency tracing frame-

works, but using binary-valued dependency for failure di-

agnosis and recovery is inefficient. The callee microservice

impacts the caller microservice in different ways. Hence, the

procedure of failure recovery can be sped up by skipping

those unimportant services. In microservice systems, exam-

ining different dependencies manually without any priority

is inefficient, especially when the microservice components

are highly decoupled and dynamic. Therefore, measuring the

dependency as a continuous value indicating the dependency’s

intensity could be useful. Specifically, by checking microser-

vices dependent on the failed microservice with large intensity

values, OCEs can find the root cause of a failure with a higher

probability [28]. By recovering the services strongly dependent

on the failed one, the whole system could be restored faster.

To this end, we propose AID, the first method to quantify

the intensity of dependencies between different services. The

evaluation results on both the simulated and industrial en-

vironments show the proposed method’s effectiveness and

efficiency. Additionally, our method has been successfully

applied in a leading public cloud provider, and helped greatly

reduce manual maintenance effort.

B. Resilience Testing of Microservice Systems
The resilience of a microservice system refers to the ability

to maintain the performance of services at an acceptable level

and recover the service back to normal when a failure in

one or more parts of the system causes service degradation.

Resilience testing is one of the primary ways to measure the re-

silience of software. By purposefully introducing failures into

the system, the test engineers can monitor how the microser-

vice system performs and improve the architectural design

according to the discovered flaws. Automation of the resilience

testing procedure is possible, but manual standardization of

test parameters is still required, which is burdensome and

unscalable. This is due to microservice systems’ decoupled and

specialized nature. For the resilience testing of microservice

systems, [27] identifies the scalability and adaptivity issues of

current industrial practice for resilience testing. Then we con-

duct the first empirical study on the failures’ manifestations on

resilient and unresilient microservice systems. The empirical

study demonstrates the feasibility of self-adaptive resilience

testing. We propose AVERT, shown in Figure 8, the first self-

adaptive resilience testing framework that can automatically

index the resilience of a microservice system to different

failures. AVERT measures the degradation propagation from

system performance metrics to business metrics. The higher

the propagation, the lower the resilience. The evaluation on

two open-source and one industrial benchmark microservice

systems indicates that AVERT can effectively and efficiently

produce accurate test results.

VII. CONCLUSION

This paper presents a roadmap toward intelligent operations

for reliable cloud computing systems. To do so, we identify

two challenges to cloud microservice reliability: internal and

external factors. To mitigate the two challenges, the roadmap

illustrates four approaches to ensure software reliability: tick-

ets management, logs management, multimodal data analysis,

and microservice resilience testing approach.

VIII. ACKNOWLEDGEMENT

The work described in this paper was supported by the

Research Grants Council of the Hong Kong Special Admin-

istrative Region, China (No. CUHK 14206921 of the General

Research Fund).

1219

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 13,2024 at 08:00:28 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Amazon: What are microservices? (2022), https://aws.amazon.com/
microservices/

[2] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Kon-
winski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia,
M.: Above the clouds: A berkeley view of cloud computing. Tech.
Rep. UCB/EECS-2009-28, EECS Department, University of California,
Berkeley (Feb 2009)

[3] Budhiraja, A., Reddy, R., Shrivastava, M.: Lwe: Lda refined word
embeddings for duplicate bug report detection. In: Proceedings of the
40th ICSE-C. pp. 165–166 (2018)

[4] Chen, M., Zheng, A.X., Lloyd, J., Jordan, M.I., Brewer, E.: Failure di-
agnosis using decision trees. In: International Conference on Autonomic
Computing, New York, NY, USA, May 17-19, 2004. pp. 36–43. IEEE
Computer Society (2004)

[5] Chen, Z., Liu, J., Su, Y., Zhang, H., Ling, X., Yang, Y., Lyu, M.R.:
Adaptive performance anomaly detection for online service systems via
pattern sketching. In: Proceedings of the 44th ICSE. pp. 61–72 (2022)

[6] Dickson, C.L.: A working theory-of-monitoring. Tech. rep.,
Google, Inc. (2013), https://www.usenix.org/conference/lisa13/
working-theory-monitoring

[7] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A
survey on concept drift adaptation. ACM computing surveys (CSUR)
46(4), 1–37 (2014)

[8] He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: An online log parsing
approach with fixed depth tree. In: 2017 IEEE International Conference
on Web Services, Honolulu, HI, USA, June 25-30, 2017. pp. 33–40.
IEEE (2017)

[9] Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M.K., Sekar, V.:
Gremlin: Systematic resilience testing of microservices. In: 36th IEEE
International Conference on Distributed Computing Systems, ICDCS
2016, Nara, Japan, June 27-30, 2016. pp. 57–66. IEEE Computer Society
(2016)

[10] Huo, Y., Lee, C., Su, Y., Shan, S., Liu, J., Lyu, M.: Evlog: Evolving log
analyzer for anomalous logs identification. Proceedings of IEEE 34th
ISSRE (2023)

[11] Huo, Y., Li, Y., Su, Y., He, P., Xie, Z., Lyu, M.R.: Autolog: A log
sequence synthesis framework for anomaly detection. Proceedings of
IEEE/ACM 38th ASE (2023)

[12] Huo, Y., Su, Y., Lee, C., Lyu, M.R.: Semparser: A semantic parser for
log analysis. In: Proceedings of IEEE 45th ICSE. IEEE (2023)

[13] Huo, Y., Su, Y., Lyu, M.: Logvm: Variable semantics miner for log mes-
sages. In: 2022 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). pp. 124–125. IEEE (2022)

[14] Lee, C., Yang, T., Chen, Z., Su, Y., Lyu, M.R.: Eadro: An end-to-end
troubleshooting framework for microservices on multi-source data. In:
Proceedings of IEEE 45th ICSE. IEEE (2023)

[15] Lee, C., Yang, T., Chen, Z., Su, Y., Yang, Y., Lyu, M.R.: Hades: Het-
erogeneous anomaly detection for software systems via semi-supervised
cross-modal attention. In: Proceedings of IEEE 45th ICSE. IEEE (2023)

[16] Li, Y., Huo, Y., Jiang, Z., Zhong, R., He, P., Su, Y., Lyu, M.R.: Exploring
the effectiveness of llms in automated logging generation: An empirical
study. arXiv preprint arXiv:2307.05950 (2023)

[17] Liu, H., Lu, S., Musuvathi, M., Nath, S.: What bugs cause production
cloud incidents? In: Proceedings of the Workshop on Hot Topics in
Operating Systems (HotOS). pp. 155–162 (2019)

[18] Liu, J., He, S., Chen, Z., Li, L., Kang, Y., Zhang, X., He, P., Zhang,
H., Lin, Q., Xu, Z., et al.: Incident-aware duplicate ticket aggregation
for cloud systems. arXiv preprint arXiv:2302.09520 (2023)

[19] Liu, P., Xu, H., Ouyang, Q., Jiao, R., Chen, Z., Zhang, S., Yang, J., Mo,
L., Zeng, J., Xue, W., Pei, D.: Unsupervised detection of microservice
trace anomalies through service-level deep bayesian networks. In: 31st
IEEE International Symposium on Software Reliability Engineering,
ISSRE 2020, Coimbra, Portugal, October 12-15, 2020. pp. 48–58. IEEE
(2020)

[20] Nagappan, M., Vouk, M.A.: Abstracting log lines to log event types for
mining software system logs. In: Proceedings of the 7th International
Working Conference on Mining Software Repositories, Cape Town,
South Africa, May 2-3, 2010. pp. 114–117. IEEE, IEEE Computer
Society (2010)

[21] Pan, Y., Ma, M., Jiang, X., Wang, P.: Faster, deeper, easier: Crowd-
sourcing diagnosis of microservice kernel failure from user space. In:
Proceedings of the 30th ACM SIGSOFT International Symposium on

Software Testing and Analysis. p. 646–657. Association for Computing
Machinery, New York, NY, USA (2021)

[22] Samir, N., Kyle, B.: Production software application performance and
resiliency testing (2020)

[23] Shilpika, Lusch, B., Emani, M., Vishwanath, V., Papka, M.E., Ma, K.:
MELA: A visual analytics tool for studying multifidelity HPC system
logs. In: 3rd IEEE/ACM Industry/University Joint International Work-
shop on Data-center Automation, Analytics, and Control, DAAC@SC,
Denver, CO, USA, November 22, 2019. pp. 13–18. IEEE (2019)

[24] Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S.C.: A discriminative model
approach for accurate duplicate bug report retrieval. In: Proceedings of
the 32nd International Conference on Software Engineering (ICSE). pp.
45–54 (2010)

[25] Vaarandi, R.: A data clustering algorithm for mining patterns from event
logs. In: Proceedings of the 3rd IEEE Workshop on IP Operations &
Management (IEEE Cat. No. 03EX764), Kansas City, MO, USA, Oct
3, 2003. pp. 119–126. IEEE (2003)

[26] Xu, W., Huang, L., Fox, A., Patterson, D.A., Jordan, M.: Large-scale
system problems detection by mining console logs. Tech. rep., EECS
Department, University of California, Berkeley (Jul 2009)

[27] Yang, T., Lee, C., Shen, J., Su, Y., Yang, Y., Lyu, M.R.: An adap-
tive resilience testing framework for microservice systems. CoRR
abs/2212.12850 (2022)

[28] Yang, T., Shen, J., Su, Y., Ling, X., Yang, Y., Lyu, M.R.: Aid:
Efficient prediction of aggregated intensity of dependency in large-scale
cloud systems. In: Proceedings of the 36th International Conference on
Automated Software Engineering (ASE). pp. 653–665 (2021)

[29] Yang, T., Shen, J., Su, Y., Ren, X., Yang, Y., Lyu, M.R.: Characterizing
and mitigating anti-patterns of alerts in industrial cloud systems. In:
Proceedings of the 52st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE (2022)

[30] Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A.,
Silva, D.F., Mueen, A., Keogh, E.: Matrix profile i: all pairs similarity
joins for time series: a unifying view that includes motifs, discords and
shapelets. In: 2016 IEEE 16th international conference on data mining
(ICDM). pp. 1317–1322. IEEE (2016)

[31] Zhao, G., Hassan, S., Zou, Y., Truong, D., Corbin, T.: Predicting perfor-
mance anomalies in software systems at run-time. ACM Transactions on
Software Engineering and Methodology (TOSEM) 30(3), 1–33 (2021)

1220

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 13,2024 at 08:00:28 UTC from IEEE Xplore. Restrictions apply.

