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Abstract—The exceptional performance of Deep neural net-
works (DNNs) encourages their deployment in safety- and
dependability-critical systems. However, DNNs often demonstrate
erroneous behaviors in real-world corner cases. Existing counter-
measures center on improving the testing and bug-fixing practice.
Unfortunately, building a bug-free DNN-based system is almost
impossible currently due to its black-box nature, so anomaly
detection is imperative in practice.

Motivated by the idea of data validation in a traditional
program, we propose and implement Deep Validation, a novel
framework for detecting real-world error-inducing corner cases
in a DNN-based system during runtime. We model the speci-
fications of DNNs by resorting to their training data and cast
checking input validity of DNNs as the problem of discrepancy
estimation. Deep Validation achieves excellent detection results
against various corner case scenarios across three popular
datasets. Consequently, Deep Validation greatly complements
existing efforts and is a crucial step toward building safe and
dependable DNN-based systems.

Keywords-neural networks, classification, safety, anomaly de-
tection

I. INTRODUCTION

Deep neural networks (DNNs), as emerging machine learn-

ing techniques, have amazingly approached or surpassed hu-

man performance on diverse tasks, such as image classifica-

tion [18], [25], [28], machine translation [17], [64], [70], and

text analysis [10], [20], [43]. These advances have facilitated

the application of DNNs in a growing spectrum of safety- and

dependability-critical domains, like self-driving [66], [73], bio-

metric authentication [34], [61], and medical diagnosis [35],

[71].

Despite the impressive capacities, researchers recently un-

cover a prominent issue in the context of image classification

that these top performers often exhibit unexpected behaviors

facing unseen real-world corner cases. For example, a Tesla

car in Autopilot mode failed to identify a trailer against a

bright sky [63], and an autonomous Uber vehicle misclassified

a pedestrian during road-test at night [68], both resulting

in deadly accidents. In essence, real-world corner cases are

naturally transformed images that will not harm human percep-

tion [57], [67]. Therefore, it is dangerous to trust the prediction

of a DNN classifier when developers do not include similar

scenes in its training data. We focus on coping with such

accidental failures of DNN classifiers in this paper.

Existing solutions to harden DNNs against such flaws

mainly follow the idea of model retraining with data augmen-

tation [13], [28], [57], [58], [67]. They assume that the DNN

classifier has never seen these difficult corner cases before,

and retraining with known corner cases can contribute to a

more knowledgeable model. Unfortunately, real-world scenes

can vary with many factors, like brightness, camera alignment,

and object movements. Hence the training data we possess

are just a relatively small fraction of all scenarios in practice.

Beyond that, it is also doubtful whether there exists a perfect

DNN classifier that can handle all possible images in light

of the “no free lunch” theorem [69], [72]. Such methods are

also notorious for their painful bug-fixing process since it is

computationally intensive to train DNNs which usually contain

millions of parameters.

Therefore, corner case detection should be an indispensable

safety tool when deploying DNNs in real-world systems. This

kind of anomaly detection is a fundamental building block

in many fail-safe systems. It is employed to foresee possible

risks, which enables human intervention to correct system

errors. However, to our best knowledge, there is no existing
detection method in the literature tailored for addressing such

real-world error-inducing corner cases in DNNs.

We believe a meaningful corner case detector should be

scenario-agnostic. It is discouraged to build a detector upon

known anomalies, which may inherit similar drawbacks of

model retraining. We consider error-inducing corner cases

come from distributions that the classifier has not yet learned

to settle. Motivated by the idea of data validation in traditional

software engineering [1], [9], [19], [60], we hence infer error-

inducing corner cases are out of range of the valid input

domain of a DNN model and propose Deep Validation. It

proceeds by validating intermediate model inputs/states to

identify invalid examples that may lead to misbehaviors of

the whole system. As a result, the detector is favorably model-

dependent rather than scenario-dependent.

Data validation within a traditional program often resorts to

specific validation constraints, because the logic of a program

is manually defined and is capable of being expressed as

succinct control flow statements. However, a similar vali-

dation process appears infeasible for a DNN model due to

the distinct design philosophy. The functionality of a DNN

model is indeed learned from a large amount of training data

spontaneously without much human supervision. Therefore, its

knowledge is encoded in millions of indecipherable parameters

as well as the associated intricate network structures [15], [50].
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To tackle these challenges, we first justify why we can in-

stead look for support from the training data for the declaration

of valid inputs. We then show how to model the valid input

range of intermediate layers within DNNs through character-

izing reference distributions. We follow by introducing our

approach to quantify the validity of input images by estimating

their discrepancy to the valid input region. We finally provide

extensive experiments to corroborate the high effectiveness

and great superiority of our framework in detecting real-world

corner cases. Along with other merits we demonstrate, Deep

Validation conduces to promoting the safety and dependability

of DNN-based systems.

In summary, the main contributions of this work are:

• We formally reveal the risk of real-world corner cases

for DNN-based systems. To this end, we first specify

the fault model of a DNN classifier to elucidate the

real-world corner cases well recognized in the commu-

nity (Section II-B). Next, we adopt metamorphic testing

techniques to synthesize such error-inducing samples,

which reflects the variable working environment of DNNs

(Section III-A) [8]. We show that these real-world corner

cases can significantly undermine the safety and depend-

ability of DNN-based systems (Section IV-B).

• We introduce Deep Validation as the first framework to

automatically validate internal inputs/states and identify

error-inducing real-world corner cases for a working

DNN-based system. It monitors the deviation from the

normal functionality of internal components within a

DNN and makes sure this black-box system works cor-

rectly. As such, Deep Validation contributes to further

improving the safety and dependability of a DNN-based

system by enabling fail-safe solutions (Section III-B).

• We conduct extensive experiments across various datasets

and DNN architectures to evaluate our framework. Deep

Validation consistently reports prominent results on eight

different categories of corner cases with an overall ROC-

AUC score of 0.9937 on MNIST, 0.9805 on CIFAR-

10, and 0.9506 on SVHN, respectively (Section IV-D3).

The superior performance of Deep Validation also breaks

the unexplored belief that detection methods tailored for

intentional attacks can also work well facing real-world

corner cases (Section IV-D4).

• We investigate the efficacy of Deep Validation on de-

fending against numerous cutting-edge white-box attacks.

It also achieves impressive performance with an overall

ROC-AUC score of 0.9572 and 0.9755 in two settings

respectively. Both are competitive with state-of-the-art

results (Section IV-D5). We further test Deep Valida-

tion under high dynamical range working conditions. It

confirms that Deep Validation is sensitive to impend-

ing dangers with consistently satisfactory detection rates

(Section IV-D6).

II. PRELIMINARIES

In order to precisely characterize the real-world corner

cases that attract substantial interest in the community and

disclose their harmfulness, we first elaborate on the system

model and fault model of DNN classifiers considered in

this work [57], [58], [67]. We then present a categorization

of representative techniques for adversarial image detection,

which makes it convenient to determine the state-of-the-art

benchmark methods for better comparisons.

A. System Model of DNN Classifiers

In the field of image classification, a customized DNN

structure, convolutional neural network (CNN), is embraced as

the canonical solution [22], [30]. CNN classifiers often stack

numerous simple components (namely, layers of neurons) with

non-linear activation. These simple components collaborate to

extract increasingly abstract features automatically [21], [47],

[48], [76]. As a whole, they can learn the mapping between

raw input images and a predefined set of labels (namely,

classes of images) by mere end-to-end supervision.

In this sense, we can regard a CNN as a function f :
X → Y . Here X denotes the input space, and Y is the output

space representing a predefined categorical set {1, ..., N}. In

a conventional CNN, neurons in each layer are connected to

the ones in the succeeding layer by weighted edges. We can

thus regard the ith layer (with i ∈ {1, ..., L}) as a function

fi(fi−1; θi). It is controlled through parameters θi and takes

as inputs the outputs from the former layer fi−1.

Consequently, we can formulate the link between input

images and label predictions delineated by a CNN as a

composition of L parametric functions:

f(x; θ) = fL(fL−1(...f1(x; θ1); θL−1); θL). (1)

Here x represents the vectorized pixel values of raw images,

which is considerably high-dimensional. The parameter set

θ := {θ1, θ2, ..., θL} hence encodes the model knowledge

learned from the training data. When it is clear from the

context, we may take fi(x) or fi as shorthand for the output

of the ith layer for the input image x.

We usually translate the final output of a CNN classifier as

a probability vector f(x), where the kth entry f(x)[k] stands

for the confidence of the model on categorizing image x as

class k. Because the last layer is a softmax layer, and we can

see the final output f(x) as fitting a logistic regression on the

logit outputs zk (k ∈ {1, ..., N}) of the penultimate layer.

B. Fault Model of DNN Classifiers

We adopt a behavioral-level fault model to specify the

fault type of DNN classifiers covered in this paper [5], [26],

[59]. It clarifies the real-world corner cases with which we

are concerned. Therefore the fault model can not only guide

the selection of strategies for corner case generation but also

profile the testbed for evaluating anomaly detection methods.

Although the defects of computing infrastructures can

thwart the normal functionality of a DNN-based system, the

misuse of DNN classifiers is one main culprit of their failures

in practice, which remains challenging to alleviate [11], [13],

[23], [49], [57], [58], [67], [77]. As introduced before, a DNN

classifier merely possesses a limited capacity, and hence it
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often misbehaves in the presence of unfamiliar images. In

contrast with the training data of a DNN classifier, these error-

inducing samples bear distinct characteristics. They usually

arise out of unexpected, especially dramatic changes in the

working environment, like the variations in illumination, which

is the reason why they are dubbed real-world corner cases in

the literature [57], [58], [63], [67], [68].

Therefore in order to simulate variable working conditions

a DNN-based system may face, we follow the idea of the

metamorphic testing to generate real-world corner cases [8].

Specifically, we convert available normal images into real-

world corner cases by applying naturally occurring image

transformations without destroying their original semantic

meanings. For example, utilizing image rotation, we can craft

images perceived by a DNN-based system when its camera

deviates from the original position. We believe error-inducing

corner cases are not born of the same distribution that the DNN

classifier has grasped. Hence identifying these abnormal inputs

beforehand can prevent the misuse of DNN classifiers.

C. Adversarial Sample Detection

Recent works on adversarial machine learning conceive a

malicious context. They discover that perturbing clean images

with imperceptible noise can fool state-of-the-art DNN clas-

sifiers to make wrong predictions with high confidence [7],

[16], [38], [44], [45], [54], [55], [65]. As such, attackers in

their thought are allowed to modify the pixel values of images

freely and feed the resultant artifacts directly to the victim

model. In the fight against such white-box attacks, recent

studies instead turn to adversarial image detection considering

the vast input space exploitable. Cutting-edge solutions mainly

resort to two strategies: prediction inconsistency and statistical

detection [74].

Prediction inconsistency based detection builds upon the

instability of model predictions on adversarial samples. In

particular, it is found that transformed adversarial images

are more prone to introduce large variations into model

outputs than clean counterparts. Meng and Chen [41] exploit

auto-encoders to perform image transformation. In contrast,

Xu et al. independently propose another better and cheaper

technology named feature squeezing, where they instead fil-

ter images by different “hard-coded” squeezers [74]. They

achieve exceptional results in detecting a variety of state-of-

the-art white-box attacks. Nevertheless, as evaluated in Sec-

tion IV-D4, this approach gives inferior detection performance

when confronted with real-world corner cases.

Statistical detection generally seeks to discriminate ad-

versarial images from clean ones through the hidden rep-

resentations extracted by DNNs. Metzen et al. utilize the

outputs from one middle layer of the target DNN to train

a small subnetwork, which acts as a detector [42]. Similarly,

Lu et al. quantize outputs from the last ReLU layer to learn a

detector [36]. Ma et al. instead leverage all the transformation

layers to characterize the Local Intrinsic Dimensionality (LID)

of adversarial samples [37]. Unfortunately, detection methods

of this type require both clean and adversarial training samples.

Therefore, they often generalize poorly to unseen or stronger

attacks [6].

Feinman et al. overcome this flaw by performing kernel den-
sity estimation to capture the statistical properties of legitimate

images directly [14]. To the same end, Zheng et al. choose to

employ Gaussian Mixture Model (GMM) approximation [78],

while Lee et al. propose to model class conditional Gaussian

distributions on the penultimate layer of DNNs [32]. They

exploit only the outputs from the fully connected hidden

layers to simplify the distribution they need to deal with

and hope that adversarial samples can retain malicious in

these layers. Pang et al. apply kernel density estimation to

DNNs improved with reverse cross-entropy (RCE) training.

They again demonstrate the outstanding performance of kernel

density estimation [52]. We thus decide to adopt kernel density

estimation as a representative baseline under this category. De-

spite achieving fabulous results in spotting adversarial images,

the comparison between kernel density estimation and ours

in Section IV-D4 reveals their limitations in addressing real-

world corner cases.

III. METHODOLOGY

A. Corner Case Generation

In line with the fault model we account for, we now

detail the metamorphic testing technique employed to synthe-

size real-world corner cases, which can simulate unexpected

changes in the working conditions of a DNN-based system.

In particular, we will introduce the image transformations and

search strategy exploited.

1) Image Transformations: There is a growing body of

research on DNN testing that applies metamorphic testing

techniques to enrich their test cases [12], [13], [23], [57], [58],

[67], [77]. They find that classical image transformations, like

rotation, are capable of effectively mimicking changing work-

ing environment and exposing erroneous behaviors of DNNs

in practice [13], [23], [57], [58], [67]. Note that as one cannot

cover all types of corner cases, we employ well-recognized

transformations (brightness adjustment, contrast adjustment,

rotation, shear, scale, and translation) to synthesize corner

cases following [67]. Compared to other transformations, our

preliminary study also confirms that selected ones can both

generate effective real-world corner cases and reserve original

labels of images through controllable parameters, avoiding

introducing problematic test cases.

Image brightness is a measure of color intensity. Therefore,

to change the brightness of an image, we can increase or

reduce all the current pixel values by a constant bias β. The

contrast of an image, as its name implies, is determined by

the amount of color and luminance differentiation that exists

between various objects in the image. We can manipulate the

contrast of an image through multiplying all the current pixel

values by a constant gain α. The brightness and contrast of an

image can frequently change in practice due to the variation of

illumination. Rotation, shear, scale, and translation compose

the whole set of affine transformations, which is common

geometric deformation that happens to captured images due
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TABLE I
TRANSFORMATION MATRICES OF AFFINE TRANSFORMATIONS COVERED

IN THIS PAPER.

to perspective irregularity. We leverage them to simulate the

distorted appearance of an object resulting from varying cam-

era positions and the shift of this object, which can frequently

occur in the real world as well.

Using homogeneous coordinates can formulate affine trans-

formations succinctly. In homogeneous coordinates, we first

extend the original coordinates of a two-dimension image

I = (a, b) into homogeneous coordinates I = (a, b, 1) with

three dimensions. Then the coordinates of an affinely trans-

formed image I
′
= (a

′
, b

′
, 1) are merely the dot product of the

corresponding transformation matrix T and I (i.e., I
′
= T · I).

We list the transformation matrices of four kinds of affine

transformation in Table I.

Complement is a different type of image transformation that

flips all the pixel values of an image. For example, in the

complement of a binary image, black and white are reversed.

For greyscale images, their complements are still clearly

distinguishable and familiar to human observers, whereas the

complements of color images look peculiar and are unlikely

to appear in reality. So we only apply this transformation to

greyscale images. Since the model never sees the complement

of an image during training, it can be regarded as a kind of

corner cases as well.

2) Search Strategy: As introduced before, all the image

transformations we covered except for complement can be pa-

rameterized with different strength, so the first question is how

to determine the most suitable parameters for them. A small

degree of deformation is scarcely sufficient to reproduce real-

world corner cases and disclose the vulnerability of DNNs,

while too much distortion may compromise the semantic

meanings of seed images and render them unrecognizable. We

resolve this issue by grid search in a trial-and-error fashion.

In short, for the sake of exploring a variety of real-world

corner cases, we start by applying single transformations to

each seed image in turn. We then follow by performing the

combination of different image transformations. To decide

the parameter for single transformations, we apply it to a

fixed set of clean test images with growing distortion strength

iteratively. During the search, we also monitor whether the

altered images preserve their original semantic meanings. The

search stops when the average accuracy of the model on the

transformed image set starts to drop by a notable margin. We

take it as the omen that the DNN classifier is unfamiliar with

the distorted test images and working in trouble. We hold the

resultant synthetic test images for the following experiments.

Combining these transformations also contributes to dis-

covering new corner cases. However, it is computationally

inhibitive to explore all combinations exhaustively. Therefore

we mainly consider the combination of two transformations.

The idea of figuring out the most suitable parameters here is

similar to that discussed before. Small modification according

to empirical observation is explained in Section IV-B. Al-

though the most suitable parameter choices rely on subjective

judgments, we also collect error-inducing samples via trans-

formations with a broader range of parameters. We evaluate

Deep Validation under this dynamic setting in Section IV-D6.

B. Deep Validation

Figure 1 outlines the framework of Deep Validation. In a

word, we take a trained DNN model and add probes into every

layer internal to it. During inference, rather than taking the

classifier as a black-box oracle and trusting its final decisions

blindly, we validate the internal states of the model, namely,

outputs of the layer i through discrepancy estimation di. We

quantify the validity of an input image by its joint discrepancy.

Once the total discrepancy exceeds a preset threshold ε, we

will mark the test image as an invalid input, namely, corner

cases that may lead to unexpected behaviors of the system.

In this way, we seek to ascertain that the model functions

correctly and there is no sign of tampering.

More specifically, we make sure that the internal states of

a running DNN classifier follow consistent patterns observed

from the training samples when making the same prediction.

Otherwise, it is risky to accept its decisions due to rare training

samples similar to the ones it confronts. We at first justify the

fundamental idea of Deep Validation that validating internal

states of a model assists in alleviating its misbehavior. Then we

show how to turn to the training data to quantify the validity of

inputs via computing discrepancy, which estimates its distance

to the region where the probability density of training data

resides.

1) Justification: In a traditional program, complex tasks are

usually divided into smaller ones and conquered by individual

modules separately. We can hence assign these sub-tasks to

different developers. In order to make these modules work

together seamlessly, it is a good practice to work out a detailed

specification first. The specification of a module generally

elaborates on what tasks it is supposed to complete, what are

the expected inputs and outputs, and so on. Data validation is

a beneficial way to guarantee that every component within

a large program abides by the respective specification and

functions correctly during collaboration [1], [2], [9], [19], [51],

[60].

Similarly, as introduced in Section II, a DNN classifier

can also be regarded as a sophisticated program. Its layers

are small components that summarize the raw input image

into increasingly abstract forms, which are usually called the
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Fig. 1. Deep Validation framework: fi is short-hand for the output of the

ith hidden layer where i ∈ {1, 2, ..., L − 1}. y
′

means the predicted label
for input x. di is the discrepancy estimation for the output of the ith hidden
layer.

hidden representations of the image. Recall that each layer

can only perform a specific simple computation and owns

relatively much-limited capability. It is thus apparent that each

layer has an input domain where it has learned to work well.

We can regard this region as its valid input range.

Under normal circumstances, since the test images follow

the same distribution of the training data, the raw images are

mapped into valid input space of each inner layer sequentially,

and all layers cooperate in harmony as a whole. Therefore it is

enough for images to escape from the “familiar” input region

of any middle layer to crack the whole system. Worse still,

due to the high dimensionality of input space, small unsafe

perturbations can be exacerbated when pushed forward along

layers [16], [53]. As a result, the contaminated outputs of

internal layers can gradually deviate from the regular input

areas of succeeding layers and bring about false predictions

in the end. Therefore, validating the inputs/states of all middle

layers is conducive to spotting abnormal images that the DNN

classifier has not yet learned to handle and preventing the

misuse of each component layer.

2) Discrepancy Estimation: In traditional programs, we can

develop data validation routines in line with detailed program

specification. Nevertheless, the obstacle in the context of DNN

models is that the legitimate input range for every layer is ill-

defined. It is because the decision functions of these layers

are learned on their own rather than manually designed by the

developers. Moreover, the classification rules they derive from

the training data are encoded in millions of parameters, which

are nearly impossible to translate. We instead circumvent this

difficulty by backtracking the training data.

Since the model has learned to work well on training

samples, their hidden representations are supposed to out-

line the valid working areas of corresponding layers. These

legitimate regions, however, can still be too complicated to

depict. We hence further decompose the valid input domain

of each layer according to different image classes. Recall that

in order to tell different categories of images apart, each layer

within a DNN should carefully abandon redundant features

and retain discriminative ones until only the label information

survives in the end. Consequently, images of different classes

can fire different patterns and follow different paths when

transferred from one area into another one when going through

layers. Based on this observation, Deep Validation proceeds by

validating the following claim for each intermediate output of

a test image:

Whether the output stays near the region where the corre-
sponding hidden representations of training images with the
same label concentrate.

Whenever there are considerable discrepancies, the predic-

tion for the test image is no longer credible, and this abnormal

input is likely to be an error-inducing corner case, because

some components within the DNN classifier are compelled to

extrapolate in unknown regions or the input has gone through

a strange mapping route.

As a result, we begin by portraying the regions where

training images of different categories locate layer by layer.

We then mark them as reference distributions. When a new

test image comes, we evaluate its divergence regarding the

corresponding reference distributions to determine whether the

test image is legitimate.

We build our discrepancy estimation on the method pro-

posed by Schlkopf et al. [62] to efficiently model the reference

distributions. Roughly speaking, their method aims to locate

the separating hyperplane of training points after casting them

into kernel space. We leverage this approach to capture the

region where the probability density of training images resides.

Specifically, for each reference distribution, we train a one-

class support vector machine (SVM) on the corresponding set

of hidden representations of training images. We follow their

idea to learn the decision function through requiring its values

to be non-negative on small input region where most of the

training data spread while negative otherwise.

After that, we approximate the validity of a given sample

by calculating its signed distance to the learned supporting

hyperplane in kernel space. By doing so, we circumvent the

difficulty in depicting data whose underlying distribution is too

elusive to express explicitly. On top of that, since we simplify

the reference distribution through a careful segmentation of

training samples, it helps the training of one-class SVM to

scale well to high-dimension data.

Algorithm 1 elucidates the procedure for training these one-

class SVMs. In simple terms, we begin by removing training

images misclassified by the model, since they are likely to

be outliers and will do harm to the training of SVMs. Then

in each layer except for the last one, we get the hidden

representations of all the training images and group them

based on their original labels. Each subset of these points

is applied to fit one SVM, and therefore we conduct SVM

training repeatedly for every class in every layer. The training

procedure SVMTRAIN is based on the implementation of

the algorithm of Schlkopf et al. in the scikit-learn library [4],

[56]. We denote the final distance function of SVM(i, k),
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Algorithm 1 One-class SVM Training

Require: CNN classifier f , layer number L, class number N ,

and training data set Xtrain

1: // obtain correctly classified images from the training
dataset

2: Xtrain ← {x(t) ∈ Xtrain : y(t) == f(x(t))}
3: for layer i ∈ {1, ..., L− 1} do
4: for class k ∈ {1, ..., N} do
5: // select corresponding training data
6: Xk ← {x(t) ∈ Xtrain : y(t) == k}
7: // get hidden representations in a specific layer
8: Xk

i ← {fi(x(t)) : x(t) ∈ Xk}
9: // train one-class SVM(i, k)

10: SVMTRAIN(Xk
i )

11: end for
12: end for

Algorithm 2 Discrepancy Estimation

Require: CNN classifier f , layer number L, and test image

xtest
1: y

′ ← f(xtest)
2: for layer i ∈ {1, ..., L− 1} do
3: // compute discrepancy di for layer i
4: di ← DISCREPANCY (y

′
, fi(xtest))

5: end for
6: // evaluate joint discrepancy d for the test image
7: d← joint (d1, d2, ..., dL−1)

namely, the signed distance of input to its decision hyperplane,

as tki . Here SVM(i, k) is the SVM trained with hidden features

of images from class k in layer i.

Algorithm 2 describes the routine to estimate discrepancy

of a test image xtest. In order to obtain the discrepancy

estimation for the intermediate output fi(xtest) of the test

image in the ith layer, we first obtain its label prediction y
′

to index the reference SVM (i, y
′
). Next, we feed fi(xtest) to

the corresponding SVM distance function and directly define

the opposite as the discrepancy value:

DISCREPANCY (y
′
, fi(xtest)) := − tk

y′ (fi(xtest)). (2)

It is because we want to have positive discrepancy values for

outliers and negative ones otherwise. Finally, we formulate

the total discrepancy d as the unweighted sum of discrepancy

estimations of all layers:

d = joint(d1, d2, ..., dL−1) :=

L−1∑

i=1

di. (3)

This simple joint function turns out to work well. Still, we can

further explore it since better combination can lead to more

precise estimation.

TABLE II
MODEL ARCHITECTURE FOR SVHN.

TABLE III
MODEL ACCURACY ON TEST DATA.

Dataset Accuracy on Test Data Mean Top-1 Prediction Confidence
MNIST 0.9943 0.9979
CIFAR-10 0.9484 0.9456
SVHN 0.9223 0.9878

IV. EXPERIMENTS

A. Experimental Setup

We consider three standard datasets for image classification:

MNIST [31], CIFAR-10 [27], and SVHN [46]. We note that

SVHN is a relatively “noisy” dataset without much data

preprocessing effort in advance. It has two formats of which

we utilize the one made up of 32-by-32 color images with

cropped digits. We engage the standard training-test partitions

of all these datasets.

We utilize pre-trained models for MNIST and CIFAR-10 for

the sake of fair comparisons in the following experiments. The

MNIST model is a seven-layer CNN [74], and the CIFAR-10

model is DenseNet [25], [39], which has 40 layers in total. We

train a seven-layer CNN for SVHN, and Table II summarizes

its architecture. We adopt an Adadelta optimizer [75] during

training, with an initial learning rate of 1.0 and a decay factor

of 0.95. We train the model for 60 epochs with a batch size of

128. We do not apply any data augmentation during training.

Table III presents the mean accuracy and prediction confidence

of these models on test datasets. Their performances are all

comparable to the state-of-the-art results [3].

B. Corner Case Generation

We fix a clean seed image set of 200 images for each

model. They are randomly sampled from each test dataset

respectively. We make sure that all get correctly classified

before any modification. These seed images are leveraged to

synthesize corner cases according to the strategies introduced

in Section III-A. Table IV lists the search range and step size

for each transformation. We note that we only alter the seed

images from MNIST by complement since the other datasets

are all color images.

At each iteration, we evaluate the accuracy of the target

classifier on synthetic images and define the success rate of

each configuration as 1 − accuracy. As we expect, different

transformations have different destructive power in different

datasets. Some transformations degrade the accuracy of target

classifiers quickly with increasing distortion, while others fail
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Fig. 2. Examples of synthetic corner cases.

TABLE IV
TRANSFORMATIONS AND SEARCH SPACE UTILIZED WHEN SYNTHESIZING

CORNER CASES.

Transformation Parameter Parameter Range and Search Step
Brightness 0 through 0.95, step 0.004
Contrast 0 through 5.0, step 0.1
Rotation 1  through 70 , step 1

Shear (0, 0) through (0.5, 0.5), step (0.1, 0.1)

Scale (1, 1) through (0.4, 0.4), step (0.1, 0.1)

Translation (0, 0) through (18, 18), step (1, 1)
Complement maximum pixel value 1.0  - 

bias    
gain    

rotation angle    

shear vector ( ,  )  

scale vector ( ,  )  

translation vector ( , )  

to convert legitimate samples into error-inducing counterparts

until they become hardly discernible.

For individual transformation, the search stops when it

obtains a success rate of about 60%. In the following experi-

ments, we do not consider transformations that cannot achieve

a success rate of greater than 30% in the end. Combined

transformations are mainly meant to enrich the corner cases,

and therefore we directly utilize the final parameters above

to parametrize component transformations. We select one

transformation combination for each dataset that results in

the smallest deformation because it can preserve the semantic

meaning of images and test the sensitivity of detectors.

Table V lists the success rates of all settings along with

the final parameters we employ. Figure 2 illustrates some

examples of resultant corner cases. No images are given for

transformations with less than 30% success rate. Although

our target models obtain exceptional accuracy on clean test

data, they are susceptible to these unusual corner cases and

undesirably show high confidence in their wrong predictions.

It once again reveals the serious threat real-world corner cases

can pose.

C. One-class SVM Training

We note that training one-class SVMs merely utilizes the

clean training data introduced in Section IV-A. To facilitate the

selection of SVM parameters, we leave out 1000 examples as

validation data from each training dataset. We apply the same

training parameter for all the SVMs within the same layer (i.e.,
SVM(i, k) : k ∈ {1, ..., N}). Nevertheless, they vary from

layer to layer since the intermediate outputs from different

layers are usually of substantially different dimensions. We

note that the overhead of the proposed framework is low,

because it is much cheaper to train one-class SVMs than

TABLE V
SUCCESS RATES OF DIFFERENT KINDS OF CORNER CASES.

training DNNs. As the hidden representations of input images

are already available when running DNN systems, querying

SVMs also incurs negligible costs. Besides, the training and

validation pipeline can be parallelized based on our design.

The target model for CIFAR-10, DenseNet, contains 40

layers. Therefore it takes much more time if we train SVMs

for all layers. Thanks to the dense inter-connections between

layers, it is convenient for the latter layers to receive the

outputs from the former ones directly. Accordingly, errors

happen in the early layers can also smoothly propagate to the

latter ones, which means that it may be enough to validate

the inputs of the rear layers. Based on this observation, Deep

Validation only works on the last six layers of DenseNet.

However, we envisage validating internal inputs of all layers

can make further improvements.

D. Corner Case Detection

1) Evaluation Dataset: As shown in Table V, we have six

kinds of successful corner cases for each dataset. Therefore,

for each target classifier, there are 1200 synthetic corner

cases. We sample the same number of images from the

corresponding clean test dataset. They together compose the

evaluation dataset. According to whether these corner cases

get misclassified or not, we further group them into successful

corner cases (SCCs) and failed corner cases (FCCs).

2) Evaluation Metric Definition: The ROC-AUC score is

a widely recognized metric to assess an anomaly detection

method in similar tasks [6], [14]. It takes both the false positive

rate (FPR) and the true positive rate (TPR) into consideration.

Since some corner cases fail to fool the target model, how to

define true positives is the first problem we need to address.

Although detectors should also label failed corner cases as

true positives under some application-specific requirements,

we follow the practice in adversarial machine learning to put

aside failed corner cases first [74]. We defer further discussions
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to Section IV-D6. Consequently, the true positive rate means

the proportion of detected SCCs in all SCCs present. Because

taking clean samples for true positives is undesired in most

cases, we define the false positive rate as the percentage of

normal instances mislabeled by the detectors.

3) Detection Results: Figure 3 describes the distributions

of the normalized discrepancy estimation d in three datasets.

As we expected, almost all legitimate images have negative

discrepancy values while the opposite holds for SCCs. One can

set the center of both distribution centroids as the discrepancy

threshold ε. It is a reasonable trade-off between achieving high

true positive rates and remaining relatively small false positive

rates.

We report ROC-AUC scores of Deep Validation in Table VI.

We call the whole set of SVMs in the ith layer as the

ith single validator. The “Single Validator” row indicates

the detection result when we only exploit the discrepancy

estimation from the specific single validator. We show the best

result for each transformation among these single validators

in the “Best Transformation-specific Single Validator” row.

It depicts the best results single validators can achieve when

they are allowed to adapt to different settings by choosing

corresponding top performers. A joint validator represents the

actual Deep Validation system we deploy, and the last row of

every dataset shows its performance.

For the MNIST model, the best single validators against

specific transformations all lie in the first three layers. The

first and third single validator each can resist one-half transfor-

mations most effectively. Because the target model never sees

the synthesized corner cases during training, these corner cases

may cause great discrepancy once entering the system, which

renders the former validators to be immediately aware of

them. However, the last validator possesses the most balanced

detection capacity, which makes it stand out in the fight against

all corner cases. We suspect the reason is that SCCs are pushed

so far away from the normal distribution that during inference,

they cannot return to the valid input region of the last layer.

Therefore, the last validator gets a chance to spot them.

As for CIFAR-10, now each of the last two validators

performs best under one-half transformations respectively. The

penultimate validator is the best candidate that can handle all

transformations when working alone. It supports our design in

Section IV-C to focus on the validation of rear layers. Finally,

for single validators in the SVHN model, the best players

return to the first two layers except for shear transformation,

where the penultimate validator outperforms the others. The

accumulation of small discrepancies throughout former layers

may explicate why the penultimate validator can observe larger

discrepancy values.

Notably, the last single validators in the SVHN model

are less capable of distinguishing SCCs from clean images,

which leads to deteriorated detection performance of the joint

validator, especially for scale. It may imply that some corner

cases have been transferred into “safe” regions by former

layers mistakenly, where normal samples may concentrate as

well. As a result, the last layer thinks that these are the

legitimate inputs it has seen before and is confident about

its predictions. As shown in Table V, the relatively high

confidence of the SVHN model on its wrong predictions

corroborates our reasoning.

Since different single validators are capable of coping with

different transformations, it inspires us to build up a versatile

detector through listening to all their opinions. Also, when

dealing with invalid inputs, layers are working in unhealthy

conditions, which can cause the shift of these samples to-

ward legitimate ones along layers by mistake. As such, the

performance of single validators can fluctuate. Therefore,

combining them as a joint validator can improve and stabilize

the performance.

The fact that joint validators obtain the best ROC-AUC

scores under most settings evidences the idea. In MNIST and

CIFAR-10, joint validators always outperform single validators

except for brightness adjustment in CIFAR-10. It may result

from the unsatisfactory performance of the second validator.

Nevertheless, this is compensated by the latter layers as the

discrepancies can propagate along inter-connections. Therefore

the degradation of the joint validator in this configuration

is negligible. As for SVHN, the joint validator precedes

best single validators in addressing rotated images, while in

the other scenarios, it lags slightly behind the best single

validators. We suppose the unstable performance of single

validators is the main reason. However, it can be improved

via carefully assigning different weights to different single

validators when computing joint discrepancy values, rather

than adopting equal importance here.

We note that joint validators achieve best overall ROC-

AUC scores across three datasets, which again corroborates

their effectiveness in detecting a variety of invalid inputs (i.e.,
SCCs). When constraining the overall false positive rate to be

around 3%, 7%, and 11% on MNIST, CIFAR-10, and SVHN

respectively, joint validators can achieve a respective overall

true positive rate (i.e., detection rate) over 96%, 94%, and

90%.

4) Comparison with Adversarial Image Detection Methods:
Adversarial images can fool a DNN classifier by attaching

imperceptible additive perturbations to clean ones after ac-

quiring white-box access. Methods that succeed to filter out

these samples are supposed to capture the intrinsic properties

of normal images. In contrast, real-world corner cases seem to

introduce much larger distortions. Hence one may think such

detection mechanisms can also identify real-world corner cases

with ease.

In order to verify this conjecture, we choose two representa-

tive detection methods, feature squeezing [74] and kernel den-

sity estimation [14], that both report state-of-the-art detection

results on a crowd of adversarial images. We directly adopt

their original implementations and deploy them according to

the descriptions in their work. For feature squeezing, they

exploit the same MNIST and CIFAR-10 models we experi-

ment with, so we employ the same squeezer (i.e., detector)

configurations as they suggested. Since they do not consider

SVHN dataset, we try out the best squeezer combination they
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Fig. 3. Discrepancy distributions of legitimate images and invalid ones (successful corner cases). Each plot is based on 200 histogram bins and fitted over
discrepancy estimations for corresponding evaluation dataset.

TABLE VI
ROC-AUC SCORES OF DEEP VALIDATION.

Validator Layer No. Brightness Contrast Rotation Shear Scale Translation Complement Combined Transformations
1  -  - 0.8760 0.9987 0.8827 0.8952 1.0000 1.0000 0.9440
2  -  - 0.9200 0.9719 0.8048 0.8893 1.0000 0.9996 0.9324
3  -  - 0.9741 0.9797 0.9591 0.9728 0.9850 0.9197 0.9618
4  -  - 0.9740 0.9823 0.9224 0.9657 0.9876 0.9670 0.9657
5  -  - 0.9732 0.9788 0.9053 0.9602 0.9861 0.9630 0.9601
6  -  - 0.9659 0.9889 0.9237 0.9620 0.9871 0.9786 0.9676

 -  - 0.9741 0.9987 0.9591 0.9728 1.0000 1.0000 0.9676

 -  - 0.9891 0.9991 0.9881 0.9844 1.0000 1.0000 0.9937

34 0.7615 0.7579 0.8154 0.8828 0.9670  -  - 0.9752 0.8669
35 0.5119 0.8749 0.9175 0.8765 0.9339  -  - 0.9099 0.8412
36 0.7111 0.8230 0.8821 0.8557 0.9722  -  - 0.9497 0.8706
37 0.8958 0.9664 0.9109 0.9315 0.9988  -  - 0.9993 0.9528
38 0.9674 0.9788 0.9272 0.9351 0.9988  -  - 0.9992 0.9692
39 0.9321 0.9566 0.9245 0.9353 1.0000  -  - 1.0000 0.9603

0.9674 0.9788 0.9272 0.9353 1.0000  -  - 1.0000 0.9692

0.9550 0.9882 0.9561 0.9787 1.0000  -  - 1.0000 0.9805

1 0.9887  - 0.8367 0.7200 0.9824 0.9307  - 0.9992 0.9168
2 0.8880  - 0.9006 0.7988 0.9934 0.9664  - 0.9994 0.9317
3 0.8186  - 0.8714 0.7385 0.9141 0.8993  - 0.9980 0.8831
4 0.7696  - 0.8650 0.8596 0.9057 0.8958  - 0.9858 0.8887
5 0.8923  - 0.8759 0.8930 0.9314 0.9124  - 0.9940 0.9220
6 0.9602  - 0.8631 0.8075 0.7784 0.8737  - 0.9007 0.8633

0.9887  - 0.9006 0.8930 0.9934 0.9664  - 0.9994 0.9317

0.9638  - 0.9181 0.8729 0.9757 0.9510  - 0.9979 0.9506

Overall ROC-AUC Score

Best Transformation-specific 
Single Validator

Joint Validator

Configuration

Best Transformation-specific 
Single Validator

Joint Validator

Single Validator

Transformation Method Used to Synthesize Corner Cases

MNIST

SVHN

Single Validator

Dataset

Best Transformation-specific 
Single Validator

Joint Validator

CIFAR-10

Single Validator

offered. For kernel density estimation, we train and fine-tune

their detectors on the same data we leverage.

The comparison between Deep Validation and these

two benchmark approaches, however, provides a surprising

counter-example as shown in Table VII. Despite their tremen-

dous success against numerous white-box attacks, both detec-

tion methods disappoint us in the face of real-world corner

cases. Our Deep Validation, on the contrary, overwhelmingly

dominates the competition. Kernel density estimation can

hardly mitigate real-world corner cases as its ROC-AUC scores

are below 0.26 across all three datasets. We suspect the

reason is that unlike our method, they rely on only one layer

and mix all the clean images from different classes together.

It is therefore difficult to precisely depict the complicated

distribution.

Feature squeezing surpasses kernel density estimation on

all experiments. However, its performance is still consistently

inferior to ours. As introduced before, even the clean images

in the SVHN dataset are a little noisy, which makes it hard to

characterize their distribution. Consequently, it is remarkable

that we prevail by a significant margin in the SVHN dataset,

and there is enough reason to doubt whether feature squeezing

indeed captures the very nature of the normal data. The severe

degradation of the detection performance of both benchmark

techniques also demonstrates that real-world corner cases may

embrace distinct properties, compared to artificially generated

adversarial samples. It would be an interesting problem for

future study.

5) Use Case in Defending against White-box Attacks:
Since our Deep Validation is designed to be oblivious to

application scenarios, we expect that it can alleviate white-box

attacks as well. We only compare Deep Validation with feature
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TABLE VII
COMPARISON WITH FEATURE SQUEEZING AND KERNEL DENSITY

ESTIMATION IN DETECTING REAL-WORLD CORNER CASES.

Dataset Method Overall ROC-AUC Score (SCCs)

Deep Validation 0.9937
Feature Squeezing 0.9784

Kernel Density Estimation 0.1436

Deep Validation 0.9805
Feature Squeezing 0.8796

Kernel Density Estimation 0.1254

Deep Validation 0.9506
Feature Squeezing 0.6870

Kernel Density Estimation 0.2543

MNIST

CIFAR-10

SVHN

squeezing here because it has been tested under more attacks.

We conduct extensive experiments on the MNIST dataset

following the same setting as described in [74]. We explore

all the white-box attacks that were covered: fast gradient

sign method (FGSM) [16], basic iterative method (BIM) [29],

Jacobian-based saliency map approach (JSMA) [55], and Car-

lini/Wagner Attacks (CW2, CW∞, and CW0) [7]. They are

all representative and fierce attack methods to date. We utilize

the same seed and clean images in the previous evaluation

dataset for consistency.

Table VIII enumerates all the results. We adopt the same

notations in [74] where “Next” and “LL” mean the next

class and least-likely class in reference to the ground truth

label respectively. However, successful adversarial samples

(SAEs) still mean the ones that cause wrong predictions

regardless of their target labels, which is more reasonable

from the perspective of defenders. The others are named failed

adversarial samples (FAEs), while adversarial samples (AEs)

contain both of them.

Overall, Deep Validation obtains impressive results compa-

rable with feature squeezing. When only counting SAEs as

true positives, Deep Validation slightly falls behind feature

squeezing, but the result reverses when also incorporating

FAEs as true positives. As adversarial samples are deliberately

synthesized images that seldom happen in practice, failed

attempts are an apparent sign of intrusion. It is therefore

commendable that Deep Validation can outperform feature

squeezing in spotting unsuccessful efforts, which is conducive

to alerting people for upcoming attacks. Since we focus this

paper on real-world corner cases, we do not conduct similar

experiments on other datasets, which, however, are worthwhile

for future work. We further note that the prominent perfor-

mance of Deep Validation observed here is not a guarantee

that Deep Validation can be immune to arbitrary attacks, but

the promising results confirm that it can be combined with

other security methods to make the life of attackers harder.

6) Detection Rate Variations under Increasing Distortions:
During the search for crafting real-world corner cases, in-

creasing distortion can lead to more and more error-inducing

samples in most cases. A prominent detector is supposed to

identify all successful corner cases (SCCs) even the ones with

slight perturbation. Besides, it is generally more appreciated

that detectors should also pay attention to failed corner cases

(FCCs) when there is significant distortion, because it means

that the system is working at elevated risk of fatal mistakes.

On the other hand, gentle image deformation can frequently

happen in practice, and we do not want to care about it as the

underlying system can adapt to such changes on its own.

Consequently, we conduct similar experiments as in Sec-

tion IV-D3 to study how the detection rates of Deep Validation

and feature squeezing vary with increasing distortion. We do

not consider kernel density estimation here due to its poor

performance reported before. Figure 4 shows the results for

scale transformation in MNIST. The results for other settings

show a similar trend and are thus omitted here.

Deep Validation almost keeps 100% detection rates on SCCs

with various scale ratios. The drop in scale ratio two is because

there are six SCCs in total, and only one escapes from the

detection. Increasing the scale ratio is likely to push normal

images further away from the distribution they previously stay,

which leads to growing detection rates of Deep Validation

on FCCs as well. Notably, the growth is proportional to the

success rate of corner cases, which is desirable as stated

before. It means that Deep Validation is aware of the imminent

danger.

As for feature squeezing, it exhibits irregular violent oscilla-

tions and trend of deterioration in detection rates with increas-

ing deformation. Worse still, it hardly approaches satisfactory

detection rates on SCCs, even when the degradation of model

accuracy has become disastrous. This result further confirms

the flaws of feature squeezing in handling real-world corner

cases.

V. RELATED WORK

A. Testing of Deep Learning Systems

Regular test data often lack diversity and fail to expose

stealthy bugs in DNNs. Hence there is a growing interest

in automatically generating a mass of test cases, which are

capable of simulating different real-world circumstances [57],

[58], [67], [77]. In order to bypass the test oracle problem [24],

they often resort to differential or metamorphic testing tech-

niques [8], [40]. They generally synthesize test cases by apply-

ing image transformation or by taking advantage of Generative

Adversarial Networks (GANs) [33]. Such efforts are conducive

to enhancing the dependability and safety of DNNs before

deployment, but in a running DNN-based system, we still need

to monitor the status of the system in case of any unexpected

situation it cannot handle. Our work indeed fills this gap.

B. Data Validation

Data validation seeks to protect the system by disallowing

the entry of data that violate predefined validation rules [1],

[9], [19], [60]. For example, web applications often turn to data

validation to prevent input attacks like buffer overflow, SQL

injection, and cross-site scripting [2], [51]. Concurrent with

our work, Zhang et al. propose to validate the inputs of DNNs

via VGGNet features [77]. However, they only demonstrate the

viability of their method to differentiate images under different
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TABLE VIII
COMPARISON WITH FEATURE SQUEEZING IN THE FACE OF WHITE-BOX ATTACKS.
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Fig. 4. Detection rate with regard to increasing scale ratios in MNIST. Both
methods have the same false positive rate of 0.059 on clean data.

weather conditions. Furthermore, they do not investigate the

efficacy of their approach in mitigating model misbehavior.

So their technique is merely aware of changing weather, no

matter whether misclassification occurs, which generally has

comparatively limited use in practice. We investigate general

misbehavior of DNN classifiers and propose an effective model

validation mechanism to enable fail-safe operations in practice.

VI. CONCLUSION

The blind spots of DNN-based systems are more stealthy

and challenging to fix compared to traditional programs, ren-

dering them error-prone under real-world corner cases. Current

efforts mostly concentrate on developing precaution strategies

and neglect the importance of the fail-safe mechanism. Our

Deep Validation is the first promising solution to automat-

ically monitor and validate the intermediate inputs/states of

running DNN classifiers. It can identify error-inducing inputs

and actively call for human intervention when the system is

perceived working incorrectly.

Extensive investigations of Deep Validation exhibit its ex-

ceptional performance in addressing a broad spectrum of real-

world corner cases and sensitivity to approaching risks. The

comparisons with well-recognized detection methods of ad-

versarial images further showcase its superiority and promise

of complementing existing approaches to make DNN-based

systems more safe and dependable.

The limitation of Deep Validation stems from the computa-

tion overhead of validating all components. Fortunately, it can

be mitigated by ad hoc modifications according to network

structures, as we do for DenseNet before. How to offer the

flexibility that allows a trade-off between ultra dependability

and high efficiency is an exciting direction for future work.
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