
MTTM: Metamorphic Testing for Textual Content
Moderation Software

Wenxuan Wang∗, Jen-tse Huang∗, Weibin Wu†, Jianping Zhang∗, Yizhan Huang∗, Shuqing Li∗,
Pinjia He‡, and Michael R. Lyu∗

∗ Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
† School of Software Engineering, Sun Yat-sen University, Zhuhai, China

‡ School of Data Science, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China

{wxwang, jthuang, jpzhang, yzhuang22, sqli21, lyu}@cse.cuhk.edu.hk

wuwb36@mail.sysu.edu.cn, hepinjia@cuhk.edu.cn

Abstract—The exponential growth of social media platforms
such as Twitter and Facebook has revolutionized textual com-
munication and textual content publication in human society.
However, they have been increasingly exploited to propagate
toxic content, such as hate speech, malicious advertisement,
and pornography, which can lead to highly negative impacts
(e.g., harmful effects on teen mental health). Researchers and
practitioners have been enthusiastically developing and exten-
sively deploying textual content moderation software to address
this problem. However, we find that malicious users can evade
moderation by changing only a few words in the toxic content.
Moreover, modern content moderation software’s performance
against malicious inputs remains underexplored. To this end, we
propose MTTM, a Metamorphic Testing framework for Textual
content Moderation software. Specifically, we conduct a pilot
study on 2, 000 text messages collected from real users and
summarize eleven metamorphic relations across three pertur-
bation levels: character, word, and sentence. MTTM employs
these metamorphic relations on toxic textual contents to generate
test cases, which are still toxic yet likely to evade moderation.
In our evaluation, we employ MTTM to test three commercial
textual content moderation software and two state-of-the-art
moderation algorithms against three kinds of toxic content. The
results show that MTTM achieves up to 83.9%, 51%, and 82.5%
error finding rates (EFR) when testing commercial moderation
software provided by Google, Baidu, and Huawei, respectively,
and it obtains up to 91.2% EFR when testing the state-of-the-
art algorithms from the academy. In addition, we leverage the
test cases generated by MTTM to retrain the model we explored,
which largely improves model robustness (0% ∼ 5.9% EFR) while
maintaining the accuracy on the original test set. A demo can be
found in this link1.

Index Terms—Software testing, metamorphic relations, NLP
software, textual content moderation

I. INTRODUCTION

In the recent decade, social media platforms and community

forums have been developing rapidly, which tremendously

facilitates modern textual communication and content publi-

cation worldwide. For example, the number of tweets posted

on Twitter has grown from 50 million per day in 2010 to 500
million per day in 2020 [1]. However, they inevitably exacer-

bate the propagation of toxic content due to the anonymity of

the web. Textual toxic contents typically refer to three major

Pinjia He is the corresponding author.
1http://ariselab.cse.cuhk.edu.hk/projects.html

kinds of texts: (1) abusive language and hate speech, which are

abusive texts targeting specific individuals, such as politicians,

celebrities, religions, nations, and the LGBTIQA+ [2]; (2)

malicious advertisement, which are online advertisements with

illegal purposes, such as phishing and scam links, malware

download, and illegal information dissemination [3]; and (3)

pornography, which is often sexually explicit, associative, and

aroused [4].

These toxic contents can lead to highly negative impacts.

Specifically, Munro [5] studied the ill effects of online hate
speech on children and found that children may develop de-

pression, anxiety, and other mental health problems. Malicious
advertisements remain a notorious global burden, accounting

for up to 85% of daily message traffic [6]. Pornography
can cause significant undesirable effects on the physical and

psychological health of children [7]. Moreover, these toxic

contents can even increase the number of criminal cases to a

certain extent [8]. All these studies reflect that toxic content

can largely threaten social harmony; thus, content moderation

software, which detects and blocks toxic content, has attracted

massive interest from academia and industry.

Typical content moderation software first detects toxic con-

tent and then blocks it or warns the users before showing it.

As the core of content moderation, toxic content detection

has been widely formulated as a classification task, and it has

been tackled by various deep learning models, such as convo-

lutional neuron networks, Long-Short-Term-Memory (LSTM)

models, and Transformer models [9]–[11]. Recently, the devel-

opment of pre-trained language models (e.g., BERT [12] and

RoBERTa [13]) has significantly improved the held-out accu-

racy of toxic content detection. Because of the recent progress

in this field, industrial companies have also extensively de-

ployed commercial-level content moderation software on their

products, such as Google [14], Facebook [15], Twitter [16],

and Baidu [17].

However, the mainstream content moderation software is

not robust enough [17], [18]. For example, Facebook content

moderation software cannot understand many languages, leav-

ing non-English speaking users more susceptible to harmful

posts [18]. In addition, toxic content can bypass mainstream

content moderation software by applying simple textual trans-

2387

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00200

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
02

00

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

formations. For example, changing “fuck” to “fμck”. The

essential first step is to develop a testing framework for

content moderation software to address this problem, similar

to traditional software.

There remains a dearth of testing frameworks for content

moderation software—partly because the problem is quite

challenging. First, most of the existing testing [19]–[21]

or adversarial attack [22]–[24] techniques for Natural Lan-

guage Processing (NLP) software rely on word-level semantic-

preserving perturbations (e.g., from “I like it” to “I love it”).

Most of the perturbed texts generated by these approaches

still contain toxic words, and thus, they are unlikely to evade

moderation. In addition, as reported by a recent study [25],

44% of the test cases generated by the State-of-the-Art (SOTA)

approaches are false alarms, which are test cases with in-

consistent semantics or incorrect grammar, rendering these

approaches suboptimal. Moreover, existing character-based

perturbation approaches [26]–[29] are designed for general

NLP software, so they consider common transformations (e.g.,

from “foolish” to “folish”), which only cover a very limited

set of the possible real user inputs for content moderation

software.

In this paper, we propose MTTM, a Metamorphic Testing

framework for Textual content Moderation software. Specif-

ically, to develop a comprehensive testing framework for

content moderation software, we first need to understand

what kind of transformations real users might apply to evade

moderation. Thus, we conduct a pilot study (Section III) on

2, 000 text messages collected from real users and summarize

eleven metamorphic relations across three perturbation levels:

character level, word level, and sentence level, making MTTM

provide metamorphic relations that reflect real-world user

behaviors and are specially designed for content moderation

software. MTTM employs these metamorphic relations on

toxic contents to generate test cases that are still toxic (i.e.,

being easily recognizable to humans) yet are likely to evade

moderation. All these metamorphic relations are implemented

for two languages, English and Chinese, because English is a

representative language based on the alphabet, while Chinese

is a representative language based on the pictograph.

We apply MTTM to test three commercial textual content

moderation software and two SOTA moderation algorithms

against three typical kinds of toxic content (i.e., abusive

language, malicious advertisement, and pornography). The

results show that MTTM achieves up to 83.9%, 51%, and

82.5% error finding rates (EFR) when testing commercial

content moderation software provided by Google, Baidu, and

Huawei, respectively, and it obtains up to 91.2% EFR when

testing the SOTA algorithms from the academy. In addition,

we leverage the test cases generated by MTTM to retrain the

model we explored, which largely improves model robustness

(0% ∼ 5.9% EFR) while maintaining the accuracy on the

original test set. Codes, data and results of our pilot study in

this paper are available2. The main contributions of this paper

2https://github.com/Jarviswang94/MTTM

are as follows:

• The introduction of the first comprehensive testing frame-

work, MTTM, for textual content moderation software val-

idation.

• A pilot study on 2, 000 real-world text messages that leads to

eleven metamorphic relations, facilitating the implementa-

tion of MTTM towards two languages: English and Chinese.

• An extensive evaluation of MTTM on three commercial

content moderation software and two SOTA academic mod-

els, demonstrating that MTTM can generate toxic contents

that easily bypass moderation and those toxic contents can

improve the robustness of the SOTA algorithms.

Content Warning: We apologize that this paper presents

examples of aggressive, abusive, or pornographic expressions

for clarity. Examples are quoted verbatim. In addition, to

conduct this research safely, we performed the following

precautionary actions for the participants: (1) in every stage,

we prompted a content warning to the researchers and the

annotators and told them that they could leave anytime during

the study and (2) we provided psychological counseling after

our study to relieve their mental stress.

II. BACKGROUND

A. Textual Content Moderation

1) Commercial Content Moderation Software: Many large

companies, such as Google, Facebook, Twitter, and Baidu,

have deployed commercial content moderation software on

their products. According to their official technical documents,

the typical backbone of moderation software is a hybrid clas-

sification algorithm of neural network models and pre-defined

rules, which leverages the advantages of both parties. Neural

network-based methods can effectively understand contextual

and semantic information, while rule-based methods can easily

implement user-defined functionality. For example, Baidu’s

commercial content moderation software is powered by a deep

neural network and a huge list of pre-defined banned words.

2) Academic Content Moderation Models: There are gen-

erally two categories of academic models for textual content

moderation: feature engineering-based models and neural
network-based models.

Feature Engineering-Based Models. Feature engineering-

based models train their toxic content classification models

based on manually-constructed features. Specifically, textual

feature engineering can be further divided into rule-based
methods and statistical methods.

The core of rule-based methods is pre-defined rules or

dictionaries of banned words. Spertus et al. [30] employed 47
handcrafted linguistic rules to extract binary feature vectors

and used a decision tree to detect toxic contents. Razavi

et al. [31] constructed an abusive language dictionary to

extract lexicon-level features for abuse detection. Handcrafted

rules and lexicons generalize well across data from different

domains. However, they can hardly deal with implicit abuse

and sarcasm (e.g., “I haven’t had an intelligent conversation

with a woman in my whole life” from [32]). In addition, they

2388

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

are vulnerable to the detection of toxic text with errors in

spelling, punctuation, and grammar [33].

Statistical methods leverage different statistics of the textual

data. Yin et al. [34] and Salminen et al. [35] computed

the Term Frequency-Inverse Document Frequency (TF-IDF)

of words as features and used Support Vector Machines

(SVMs) to detect online harassment and hate speech. Statisti-

cal methods require less human effort and are more robust to

spelling, punctuation, and grammar variations. Nevertheless,

these methods often capture superficial patterns instead of

understanding the semantics [33].

Neural Network-Based Models. Advancements in text repre-

sentation learning have spurred researchers to explore neural

network-based models for textual content moderation. Djuric

et al. [36] was the first that utilized neural networks to obtain

surface-level representations and trained a logistic regression

classifier to detect abusive language. Badjatiya et al. [2]

adopted GLoVe word embedding [37] to extract text features

and used a word-level LSTM to moderate textual content. With

the help of the pre-trained language models (e.g., BERT [12]

and RoBERTa [13]), researchers fine-tune these models on a

downstream dataset and achieved remarkable performance on

textual content moderation tasks.

B. Metamorphic Testing

Metamorphic testing [38] is a testing technique that has been

widely employed to address the oracle problem. The core idea

of metamorphic testing is to detect violations of metamorphic
relations (MRs) across multiple runs of the software under

test. Specifically, MR describes the relationship between input-

output pairs of software. Given a test case, metamorphic

testing transforms it into a new test case via a pre-defined

transformation rule and then checks whether the corresponding

outputs of these test cases returned by the software exhibit the

expected relationship.

Metamorphic testing has been adapted to validate Artificial

Intelligence (AI) software over the past few years. These

efforts aim to automatically report erroneous results returned

by AI software via developing novel MRs. In particular, Chen

et al. [39] investigated the use of metamorphic testing in

bioinformatics applications. Xie et al. [40] defined eleven

MRs to test k-Nearest Neighbors and Naive Bayes algorithms.

Dwarakanath et al. [41] presented eight MRs to test SVM-

based and ResNet-based image classifiers. Zhang et al. [42]

tested autonomous driving systems by applying GANs to

produce driving scenes with various weather conditions and

checking the consistency of the system outputs.

III. MTTM

This section first introduces a pilot study on text mes-

sages collected from real users (Section III-A). Then we

introduce eleven metamorphic relations that are inspired

by the pilot study. These metamorphic relations can be

grouped into three categories according to the perturbation

performed: character-level perturbations (Sec. III-B), word-

level perturbations (Sec. III-C), and sentence-level perturba-

tions (Sec. III-D).

A. Pilot Study

In this work, we intend to develop metamorphic relations

that assume the seed test case (i.e., a piece of text) and

the perturbed test case should have identical classification

labels (i.e., labeled as “toxic content”) returned by the content

moderation software. To generate effective test cases, we think

the perturbations in our MRs should be:

• Semantic-preserving: the perturbed test cases should have

the identical semantic meaning as the seed.

• Realistic: should reflect possible inputs from real users.

• Unambiguous: should be defined clearly.

In order to design satisfactory perturbations, we first con-

ducted a pilot study on text messages from real users to

explore what kind of perturbations the users would apply to

the toxic content to bypass the content moderation software.

We consider text messages from four platforms with a large

number of users:

• Twitter3 is a worldwide microblogging and social media

platform on which users post and interact via messages

known as “tweets”. HateOffensive4 [43] is a GitHub repos-

itory containing 24, 802 English hate speech sentences col-

lected from Twitter.

• Grumbletext5 is a UK forum on which cell phone users make

public claims about SMS spam messages. Kaggle released

a spam classification competition dataset6 with a collection

of 5, 574 messages extracted manually from Grumbletext.

• Taobao7 is an e-commercial platform with around 900
million active users. SpamMessage8 is a dataset containing

10 thousand user comments collected from Taobao.

• Dirty9 is a GitHub repository containing 2, 500 Chinese

toxic sentences with abusive and sexual words collected

from Chinesse Internet community.

We randomly selected 2, 000 sentences from the above

dataset for manual inspection and recruited three annotators to

label all the sentences independently. All the annotators have a

Bachelor’s degree or above and are proficient in both English

and Chinese. Annotators were given extensive guidelines, test

tasks, and training sessions on content moderation software

and toxic content. For each sentence, annotators were asked

two questions. (1) Whether the sentence is toxic or not?

(2) Is the toxic content intentionally perturbed to bypass the

content moderation software? After the annotation, we use the

label that most workers agree with as the final human label

and finally obtain 1476 toxic sentences with 121 labeled as

“toxic and intentionally perturbed” sentences. We collected

3https://twitter.com/
4https://github.com/t-davidson/hate-speech-and-offensive-language
5http://www.grumbletext.co.uk/
6https://www.kaggle.com/uciml/sms-spam-collection-dataset
7https://www.taobao.com/
8https://github.com/hrwhisper/SpamMessage
9https://github.com/pokemonchw/Dirty

2389

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Summary of the perturbation categories in the pilot study.

Perturbation Level Perturbation Method Examples in English Examples in Chinese Percentage

Character Level

Visual-based Substitution a → α; C → (; l → 1 日 → 曰; 北 → 兆 12.3%
Visual-based Splitting K → |<; W → VV 好的 → 女子白勺 5.0%
Visual-based Combination Earn → Eam 不用 → 甭 0.8%
Noise Injection Hello → H**elll*o 致电 → 致*电 13.2%
Char Masking Hello → H*llo 新年快乐 → 新年快* 7.4%
Character Swap Weather → Waether 简单来说 → 简来单说 4.1%

Word Level

Language Switch Hello → Hola; + → Add 龙 → 龍 14.9%
Homophone Substitution Die → Dye; Night → Nite 好吧 → 猴八; 这样 → 酱 36.4%
Abbreviation Substitution As Soon As Possible → ASAP 永远的神 → yyds 15.7%

Word Splitting Hello → Hell o 使用戶滿意 → 使用..戶滿意 6.6%

Sentence Level Benign Context Camouflage
Golden State Warriors guard won’t
play Sunday, <add a spam sentence
here>, due to knee soreness.

金融业增加值超香港, <在这里
添加一条广告>, 是金融市场体系
最完备、集中度最高的区域。

2.5%

the contents labeled as toxic and intentionally perturbed by

the annotators to design our perturbation methods.

We manually inspected all these toxic contents perturbed by

the real users and collectively summarized eleven perturbation

methods that real users have been using to evade moderation.

We categorize these toxic sentences from three perspectives:

1) basic unit of perturbation, such as character level, word

level, and sentence level; 2) basic perturbation operation, such

as substitution, insertion, deletion, split, and combination;

and 3) the logic behind perturbation, such as visual-based,

homophone-based, and language-based. Accordingly, we de-

rive eleven MRs based on eleven perturbation methods, where

each MR assumes that the classification label returned by

the content moderation software on the generated test case

(i.e., perturbed text) should be the same as that on the seed

(i.e., original text). Table I presents the eleven perturbation

methods, their categories, examples in two languages, and the

percentage of each in our study. We will introduce the MRs

(their corresponding perturbation methods) in the following.

B. MRs with Character-Level Perturbations

MR1-1 Visual-Based Substitution
This MR uses visual-based substitutions, which replace

characters with visually similar characters. These visually sim-

ilar characters are not required to be semantically equivalent or

similar to the original characters. Usually, the candidates come

from the alphabet of other languages. For example, users can

replace “a” with “å”, “ä”, “ą”, “α”, etc. The candidates can

also be punctuation or numbers, such as “(” for “C” and “1”

for “l”. For Chinese characters, we can consider their variants

from different language systems, such as Kanji in Japanese,

Hanja in Korean, and Han character in Vietnamese, making

a Chinese character usually has up to three variants. Besides

variants, we can easily find many characters that look highly

similar. “カ” (one of the Japanese kana) for “力” (Power) and

“曰” (Say) for “日” (Sun) are examples of such substitutions.

MR1-2 Visual-Based Splitting
This MR employs visual-based splitting, which separates

a character into multiple parts. This MR is inspired by the

fact that many characters are composed of other characters.

Therefore, some characters can be separated into two char-

acters, such as “VV” for “W” and “女子” (Woman) for

“好” (Good). Some Chinese characters can even be split into

three characters, for example “木身寸” (Wood/Body/Inch) for

“榭” (Pavilion). It is worth noting that Chinese characters can

sometimes be split vertically, like “亡心” (Die/Heart) for “忘”

(Forget).
MR1-3 Visual-Based Combination

This MR’s perturbation method is the inverse transforma-

tion of MR1-2. Visual-based combination combines adjacent

characters into a single character, such as “m” for “rn”. The

difference between this MR and MR1-2 is that, in MR1-2,

the underlying meaning is expressed by the combination of

characters. Instead, in this MR, we understand the meaning

by splitting certain characters.
MR1-4 Noise Injection

This MR perturbs text via noise injection, which inserts

additional characters into the original text. To not affect human

comprehension, users tend to let the noise be closely related to

the context (e.g., “o” in “Hellooo”) or from a different domain

which can make users ignore the noise when reading (e.g.,

“*” in “H*ell*o”). Specifically, “Hello” has multiple “o”s, and

“*” is a mathematical symbol outside the English alphabet.

Therefore, humans can easily ignore the noises.
MR1-5 Character Masking

This MR uses character masking, which masks a small

portion of the characters by replacing them with some spe-

cial characters. The content moderation software can hardly

recognize the word, but humans can easily infer the masked

character within the context. For example, we can infer that

the masked word is “your” in “what’s y*ur name” with our

prior knowledge.
MR1-6 Character Swap

“Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it
deosn’t mttaer in waht oredr the ltteers in a wrod are, the
olny iprmoetnt tihng is taht the frist and lsat ltteer be at the
rghit pclae. The rset can be a toatl mses and you can sitll raed
it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not
raed ervey lteter by istlef, but the wrod as a wlohe.”10 Inspired

10https://www.mrc-cbu.cam.ac.uk/personal/matt.davis/Cmabrigde

2390

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

by this fact, this MR uses character swap, which randomly

swaps characters within a word.

C. MRs with Word-Level Perturbations

MR2-1 Language Switch
This MR translates some words into other languages. Many

users on social media platforms can comprehend more than

one language. Thus, users may use words or phrases from

different languages in a piece of text to evade moderation.

Note that we also consider the switch between different written

forms of a language as a language switch. For example, in

Chinese, it is commonly seen the transformation between tra-

ditional Chinese characters and simplified Chinese characters,

such as “發” (Send) and “发” (Send).

MR2-2 Homophone Substitution
This MR is based on homophone substitution, which re-

places words with other words or characters that have the

same or similar pronunciation. Simple examples include “Dye”

([daı]) for “Die” ([daı]), “Nite” ([naıt]) for “Night” ([naıt]) and

“C” ([si:]) for “see” ([si:]). Complex homophone substitution

includes “w8” ([w] [eıt]) for “wait” ([weıt]), which uses a

character outside English alphabet.

In Chinese, the pronunciation of “酱” ([tCjAN], Sauce) is

similar to that of “这样” ([tùG] [jAN], Such) when speaking fast.

In addition, the homophone class of a same character can vary

in Chinese, leading to may possible substitutions. For example,

“重” (heterophones: [tùUN], Repetition; or [tùhUN], Heavy) can

be in the same homophone class with “虫” ([tùUN], Insect),

but it can be in the same homophone class with “众” ([tùhUN],
Many) as well. Another example is that “九” (Nine) and “狗”

(Dog) are in the same homophone class [k5u] in Cantonese,

but in different homophone class in Mandarin ([tCjoU] and

[koU] respectively).

In addition, the substitution can happen between different

languages. For example, “exciting” ([ık"saıtıN]) and “亦可赛
艇” ([ı] [khG][saı][tıN], Also/Can/Race/Boat) are acoustically

similar, and “Bu” is the Pinyin form of the Chinese character

“不” ([pu], No). Unlike the language switch in MR2-1, the

perturbation logic behind this MR is homophone similarity

rather than semantic equivalence.

MR2-3 Abbreviation Substitution
This MR focuses on abbreviation substitution. Users tend to

use the first letter to represent a word for convenience, such as

“ASAP” for “As Soon As Possible”. In Chinese, people usually

use the first letter of the characters’ Pinyin to represent the

characters. For example, on social media platforms, “YYDS”

is a common abbreviation for “永远的神” (Eternal God),

whose Pinyin is “Yong Yuan De Shen”.

MR2-4 Word Splitting
This MR injects spaces into the word, aiming to split a

word into sub-words. For example, “Hello” can be recognized

in most popular NLP models. If we add a space into the

word, making it “Hell o”, most NLP tokenizers will recognize

it as two separate tokens, namely “Hell” and “o”, which

could affect the models’ judgment. This can also happen in

Chinese. For example, “使用户满意”, which means “satisfy

the users”, should be tokenized as “使/用户/满意”. If we add

some noises to separate the characters, it is easy to make the

tokenization results become “使用/户/满意”, which means

“Use/Household/Satisfy”, leading to the change of semantic

meaning.

D. MRs with Sentence-Level Perturbations

MR3-1 Benign Context Camouflage
This MR uses benign context camouflage, which inserts

plenty of benign or unrelated sentences to camouflage the toxic

sentence. For example, a malicious advertisement can be sur-

rounded by numerous unrelated and non-commercial contents

to bypass the malicious advertisement detection model.

E. Discussion

Intersections of Different MRs. Some perturbations can fall

into multiple MR categories. For example, some substitution

candidates not only have a similar visual appearance to the

original character but also are the homophone of the original

character, which corresponds to MR1-1 (visual-based sub-

stitution) and MR2-2 (homophone substitution), respectively.

In addition, similar-looking characters tend to have similar

pronunciations, especially for Chinese. However, the MR

definitions are clear and can cover all the examples from

our pilot study. When counting the distribution, we randomly

assign examples to one of the possible MRs.

Combinations of Different MRs. We can use a combination

of different MRs to generate diverse test cases. However, to

balance the generated test cases’ diversity and readability, we

restrict the maximum number of MRs used in each test case.

We evaluate the impact of MR combinations in Section IV-C.

Generalization to other software and languages. In this

work, we focus on textual content moderation software and

implement our MRs for the two most widely used languages:

English and Chinese. However, based on our design method-

ology, these MRs can be easily generalized to other languages

and to test other NLP software, such as software for user

review analysis and machine translation.

F. Implementation Details

In this section, we describe the implementation details of

MTTM. Specifically, we implement (1) a target word selection

approach and (2) the perturbations on the selected word

in different MRs except MR3-1. For MR3-1, we conduct

sentence-level perturbation without the need to identify target

words.

Target Word Selection. We intend to perturb the words

important for the content moderation scenario so that pertur-

bations on these words are more likely to affect the output of

content moderation software. Specifically, we focus on words

frequently appearing in the toxic content datasets but less

frequently in a general domain corpus. Thus, we use TF-IDF to

select target words. We utilize sklearn11 for the English corpus

and Jieba library12 for the Chinese corpus. After filtering out

11https://scikit-learn.org/
12https://github.com/fxsjy/jieba

2391

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

the stop words, we select the top 20 words with the highest

TF-IDF score for each dataset.

MR1-1 Visual-Based Substitution. For each English charac-

ter in the target words, we use DeepAI visual similarity API13

to find the most visually similar character in the Greek and

German alphabets as the candidate. For each Chinese character

in target words, we leverage SimilarCharacter14, a Python

library that uses OpenCV15 to calculate the visual similarity

score within 3, 000 commonly used Chinese characters, to find

another word with the highest visual similarity score as the

candidate. To ensure a high similarity, we only replace the

original character with the candidate if their similarity score

is higher than 0.7.
MR1-2 Visual-Based Splitting. For both languages, we use

DeepAI visual similarity API to find the most visually similar

bi-char combinations as the candidate. We only replace the

original character with the candidate if their similarity score

is higher than 0.7. Due to the large character space of

Chinese characters, it is time-consuming to transverse all the

bi-char combinations. Thus, we use the Chinese Character

Dictionaries16 to split the character that is split-able in target

words as the candidate.

MR1-3 Visual-Based Combination. MR1-3 uses the splitting

substitution (the original character, the candidate) dictionary

built in MR1-2 (Visual-Based Splitting). For each target word,

if any of its bi-char combinations occur in the dictionary, we

substitute the combined character for the bi-char combination.

MR1-4 Noise Injection. We implement two character-level

noise injection methods: insertion and repetition. For insertion,

we randomly insert a character into the target word. According

to the definition in Section III-B, we implement two types of

insertion: inserting a character from the language’s alphabet,

which is closely related to the context, and inserting a unique

punctuation character, which is from a different domain. For

repetition, we repeat the vowel in each English target word

and randomly repeat a character in each Chinese target word.

MR1-5 Character Masking. For each target word, we ran-

domly replace a character with “*” to mask the character. For

English, we mask a vowel in the target word.

MR1-6 Character Swap. For each target word, we randomly

swap two adjacent characters. For Chinese, we randomly swap

characters after tokenization.

MR2-1 Language Switch. For each target word in English

(resp. Chinese), we invoke Google Translate API17 to translate

it into Spanish (resp. English), which is the most widely used

second language in the USA (resp. China).

MR2-2 Homophone Substitution We use the eng-to-ipa18

Python library to convert English words to International Pho-

netic Alphabet (IPA) and then find other English words with

the most similar IPA as substitution candidates. For Chinese,

13https://deepai.org/machine-learning-model/image-similarity
14https://github.com/contr4l/SimilarCharacter
15https://opencv.org/
16https://github.com/kfcd/chaizi
17https://translate.google.com/
18https://github.com/mphilli/English-to-IPA

TABLE II: Statistics of Toxic Datasets.

Dataset #Sent Lang Type Source

HateOffensive 24.8K English Abuse Twitter
Dirty 2.5K Chinese Abuse Weibo
SMSSpam 5.5k English Spam Grumbletext
SpamMessage 60K Chinese Spam Taobao
Sexting 0.5K English Porno Github
Midu 7.3K Chinese Porno Midu

we use the pypinyin19 and pinyin2hanzi20 libraries to find the

substitution candidates.

MR2-3 Abbreviation Substitution. For English target words,

we replace them with their acronym, which is the word

composed of the first letters of the target words. For Chinese

target words, we first use the pypinyin Python library to

convert them to Pinyin and then use the acronym of their

Pinyin as the candidate.

MR2-4 Word Splitting. For each target word, we randomly

insert a blank space.

MR3-1 Benign Context Camouflage. We randomly collect

ten benign sentences for each dataset from its non-toxic class.

Then for each toxic sentence, we insert the benign sentence

either before or after it.

IV. EVALUATION

To evaluate the effectiveness of MTTM, we use our method

to test three commercial software products and two SOTA

algorithms for content moderation. In this section, we try to

answer the following four Research Questions (RQs):

• RQ1: Are the test cases generated by MTTM toxic and

realistic?

• RQ2: Can MTTM find erroneous outputs returned by con-

tent moderation software?

• RQ3: Can we utilize the test cases generated by MTTM to

improve the performance of content moderation?

• RQ4: How would different factors affect the performance

of MTTM?

A. Experimental Settings

1) Datasets: We used different kinds of datasets as seed

data to validate MTTM. Previous researchers have collected,

labeled, and released various types of data for research

purposes. In this paper, we choose the datasets with the

highest citations according to Google Scholar or those with

the most stars on GitHub. Other than the above-mentioned

four datasets (in Section III-A), namely HateOffensive, SMS

Spam Collection, SpamMessage, and Dirty, we utilize another

two datasets: Sexting21, an English pornographic text dataset

containing 537 sexual texting messages, and Midu [44], a

Chinese novel paragraph dataset collected from an online

literature reading platform called MiDu App22, which is a

corpus with 62, 876 paragraphs including 7, 360 pornographic

19https://github.com/mozillazg/python-pinyin
20https://github.com/letiantian/Pinyin2Hanzi
21https://github.com/mathigatti/sexting-dataset
22http://www.midureader.com/

2392

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

paragraphs and 55, 516 normal paragraphs. Important statistics

of the six datasets are shown in Table II.

2) Software and Models Under Test: We use MTTM to

test commercial textual content moderation software products

and SOTA academic models. Commercial software products

include Google Jigsaw’s Perspective23, Baidu AI Cloud24, and

Huawei Cloud25. These software products were tested against

the three typical kinds of toxic content in our evaluation.

One exception is Google Jigsaw’s moderation of malicious

advertisements because Google does not provide such func-

tionality. They are all popular software products for content

moderation developed by companies and can be accessed by

registered users via their APIs. For research models, we select

models from GitHub and Huggingface Model Zoo26 with the

highest downloads and stars in recent three years. For abuse

detection, we select HateXplain [45], a BERT model fine-

tuned on abuse detection datasets. For spam detection, we

use a BERT model fine-tuned on the spam detection dataset,

downloaded from Huggingface27. Since there are no publicly

available pornography detection models, we do not test this

research model in our experiments.

B. RQ1: Are the test cases generated by MTTM toxic and
realistic?

MTTM aims to generate test cases that are toxic and are

as realistic as the ones real-world users produce to evade

moderation. Thus, in this section, we evaluate whether the

generated test cases are still toxic (i.e., semantic-preserving)

and whether they are realistic. We generated 100 sentences

with each perturbation method (i.e., 1, 100 generated sentences

in total) and recruited two annotators with Bachelor’s degrees

or above and proficiency in both English and Chinese. After

given guidelines and training sessions, the annotators were

asked to annotate all the generated pairs, each containing an

original and a perturbed sentence. For each sentence pair,

we asked the following two questions: (1) From “1 strongly

disagree” to “5 strongly agree”, how much do you regard the

sentence as toxic content (abuse, pornographic, or spam)? (2)

From “1 strongly disagree” to “5 strongly agree”, how much

do you think the perturbation is realistic in the sense that real

users may use it? Note that when asking whether a sentence is

toxic or not, the original sentence and the perturbed sentence

were not presented at the same time. The annotators can only

view one sentence each time from shuffled data when labeling

the toxicity. We would review test cases with any disagreement

or unrealistic flags. Annotation results show that the average

toxic score is 4.51, and the average realistic score is 4.12.
We follow [46] to measure the inter-rater agreement using

Randolph’s Kappa, obtaining a value of 0.81, which indicates

“almost perfect agreement”.

23https://www.perspectiveapi.com/
24https://ai.baidu.com/tech/textcensoring
25https://www.huaweicloud.com/product/textmoderation.html
26https://huggingface.co/models
27https://huggingface.co/mrm8488/bert-tiny-finetuned-sms-spam-detection

TABLE III: Test Cases Statistic.

Software Tasks Ori Num Seed Num

Google
Abuse 1,633 1,306
Porn 537 168

Baidu
Abuse 1,515 985
Porn 258 153
Spam 1,000 280

Huawei
Abuse 1,515 598
Porn 258 142
Spam 1,000 288

Academic Model
Abuse 1,633 659
Spam 746 674

Answer to RQ1: The test cases generated by MTTM

are toxic and realistic.

C. RQ2: Can MTTM find erroneous outputs returned by
content moderation software?

MTTM aims to automatically generate test cases to find

potential bugs in current content moderation software. Hence,

in this section, we evaluate the number of bugs that MTTM can

find in the outputs of commercial content moderation software

and academic models. We first input all the original sentences

and obtain the classification label for each software product or

model under test. If an original sentence was labeled as “non-

toxic”, it would be filtered out because we intend to find toxic

contents that can evade moderation. The remaining sentences

will be regarded as seed sentences for test case generation. The

number of original sentences and seed sentences is presented

in Table III. Then, we conduct perturbations in MTTM’s MRs

on the seed sentences to generate test cases. Finally, we use

the generated test cases to validate the software products

and academic models. In particular, we check whether these

test cases were labeled as “toxic” or “non-toxic”. Since the

generated text should preserve the semantics of the seed

sentence, they are supposed to be labeled as “toxic”. If not,

the generated test cases evade the moderation of the software

products or academic models, indicating erroneous outputs. To

evaluate how well MTTM does on generating test cases that

trigger errors, we calculate Error Finding Rate (EFR), which

is defined as follows:

EFR =
the number of misclassified test cases

the number of generated test cases
∗ 100%.

The EFR results are shown in Table IV. In general, MTTM

achieves high EFRs. The EFRs of commercial software prod-

ucts are lower than that of academic models. Using different

MRs, MTTM achieves up to 83.9%, 51%, and 82.5% EFR

when testing moderation software provided by Google, Baidu,

and Huawei, respectively, and it obtains up to 91.2% EFR

when testing the SOTA academic models. We think it is

because commercial software has been armed with various

rule-based methods to detect input perturbation. For example,

2393

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Error Finding Rates of commercial content moderation software and Academic Models (AM).

Level Perturbation Methods Abuse Detection Spam Detection Pron Detection

Google Baidu Huawei AM Baidu Huawei AM Google Baidu Huawei

Char

Visual-based Substitution 19.4 28.0 75.9 91.2 51.0 75.7 84.0 36.9 35.2 47.2
Visual-based Split 30.9 16.3 52.7 53.1 49.3 81.3 82.2 51.6 19.7 31.0
Noise Injection (non-lang) 57.1 0.0 2.2 88.9 0.0 1.8 28.8 9.2 0.0 0.4
Noise Injection (lang) 72.7 12.1 56.2 88.9 49.3 63.5 79.2 19.5 19.7 49.3
Char Masking 50.8 19.8 50.3 88.9 47.2 58.1 78.9 10.7 38.0 47.9
Char Swap 64.3 10.2 54.8 66.2 47.5 55.6 75.7 23.0 18.1 46.5

Word

Language Switch 57.7 38.0 76.3 84.1 35.7 49.3 53.9 32.7 39.4 49.3
Homophone Substitution 73.4 26.8 77.4 85.6 48.9 75.7 77.1 22.6 36.6 47.2
Abbreviation Substitution 83.9 22.7 63.4 88.9 52.2 82.5 83.6 32.1 38.0 48.6
Visual Split 68.2 0.0 0.0 85.6 0.0 0.0 87.0 8.3 0.0 0.0

Sentence Benign Context Camouflage 41.7 24.7 0.0 4.6 8.5 0.0 0.0 50.0 42.4 0.0

Multi Perturbation Combinations 75.1 30.5 79.8 90.3 50.2 76.4 80.1 66.4 45.1 48.9

Baidu has a patent titled “Method and equipment for deter-

mining sensitivity of target text”28. Specifically, they provide

pre-service rules in their pretreatment unit to: 1) remove the

unusual characters, such as “*”, “%”, “#”, “$”, and 2) convert

text strings with the deformed bodies, such as perpendicular

shape literal and characters in a fancy style, to normal text

strings. Notably, all the academic models can detect sentence-

level benign context camouflage, which may be due to the

attention mechanism employed by these models. In addition,

all software products and models can pass the test cases

generated on MR1-3 (Visual-Based Combination). Therefore,

we do not include the results in Tables IV. The performance of

commercial textual content moderation software varies greatly

against different kinds of toxic content. For example, Google

Jigsaw’s Perspective performs much better on pornography

detection than on abusive language detection. It is probably

because some abusive language, especially swear words like

“fuck”, is not taken that seriously on informal occasions. The

performance of Baidu AI Cloud on malicious advertisement

detection is much worse than that on the other two tasks, which

might be related to the fact that Baidu’s revenue mainly comes

from advertising. In addition, there is a possible consensus

among Chinese web users that malicious advertisement is

not as bad as abusive language and pornography. Therefore,

companies seem to focus on different kinds of toxic content

when developing their content moderation software.

As the biggest search engine company in China, the textual

content moderation software in Baidu outperforms the one in

Huawei, which is the biggest communication technology com-

pany in China. It is probably because Baidu has more business

scenarios to design more rules and collect more training data

to improve content moderation software’s performance.

28https://patents.google.com/patent/CN102184188A/en

Answer to RQ2: MTTM achieves up to 83.9%, 51%,

and 82.5% EFR when testing moderation software

provided by Google, Baidu, and Huawei, respectively,

and it obtains up to 91.2% EFR when testing the SOTA

academic models.

D. RQ3: Can we utilize the test cases generated by MTTM to
improve the performance of content moderation?

We have demonstrated that MTTM can generate toxic

and realistic test cases that can evade the moderation of

commercial software products and SOTA academic models.

As shown in the “Abuse Detection” column in Table IV,

MTTM achieves high EFR on academic models for most of

its MRs (e.g., 91.2% for MR1-1 Visual-Based Substitution),

indicating the generated test cases can easily fool the models.

The following substantial question is: can these test cases be

utilized to improve the performance of content moderation? In

other words, we hope to improve model robustness. A natural

thought is to retrain the models using test cases generated

by MTTM and check whether the retrained models are more

robust to various perturbations.

Specifically, we select the Abuse Detection task and use the

Hate-Offensive Dataset [43]. We split the dataset into three

parts: training set, validation set, and test set with the ratio of

6:2:2. We first fine-tune a pre-trained BERT model [12] on the

training set as our abuse detection model, which is a widely

used scheme for text classification. We adopt the default fine-

tuning settings suggested by Huggingface29. Specifically, we

train the model with 3 epochs, a learning rate of 5× 10−5, a

batch size of 16, 500 warming up steps, and a weight decay

of 0.01. We select the model with the highest accuracy on the

validation set and use MTTM to test its robustness.

Then, for retraining with MTTM, we conduct fine-tuning

with the failed test cases generated by MTTM. We generated

test cases with MTTM and randomly collected 300 cases that

could fool the model. Labeling them as toxic contents, we

add them to the original training set to retrain the model.

29https://huggingface.co/transformers/v3.2.0/custom_datasets.html

2394

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Error Finding Rates (EFRs) on abusive language

detection models after retraining on the original test set and

the test cases generated by MTTM.

Level Perturb Methods Ori Aug

Char

Visual-Based Substitution 71.3 0.0
Visual-Based Splitting 49.5 1.4
Noise Injection (non-lang) 56.1 2.5
Noise Injection (lang) 56.1 2.5
Char Masking 43.9 2.5
Char Swap 45.6 3.0

Word

Language Switch 76.2 5.9
Homophone Substitution 62.5 3.1
Abbreviation Substitution 76.2 2.2
Visual Splitting 71.3 2.0

Sentence Benign Context Camouflage 12.0 0.0

Multi Perturbation Combinations 81.4 3.5

The setting of hyper-parameters is identical to that of regular

training mentioned above.

To validate the effectiveness of robust retraining with

MTTM, we use MTTM to test the model after robust re-

training, denoted as “Aug”, and compared the EFRs with the

original model’s, denoted as “Ori”. The results are presented

in Table V. We can observe that the test case generated by

MTTM can largely improve the robustness of the content

moderation models in the sense that the EFRs have been

significantly reduced (e.g., from 71.3% to 0.0% for the MR1-

1 Visual-Based Substitution). In other words, after retraining

with MTTM’s test cases, the model is rarely fooled by all the

perturbations. Moreover, the model’s accuracy remains on par

after robust training (from 91.5% to 91.2 %), which means the

retraining did not affect model performance on the original test

set.

Notably, our approach will not introduce extra unknown

tokens because: (1) BERT has a huge (∼ 30, 000 tokens)

vocabulary generated from massive data on the web, including

characters from various languages; (2) BERT uses byte-pair

encoding, an encoding technique that can effectively mitigate

the out-of-vocabulary problem. For example, the generated

“helllo” will be tokenized into “hell” and “lo” instead of

treating the whole word as an unknown token.

We do not conduct experiments on improving industrial

models because industrial moderation only provides APIs

while robust retraining requires access to model internals.

However, we believe robust retraining with MTTM’s test

cases would also improve the robustness of industrial models

because the underlying models are similar. In the future, we

can study on how to improve the robustness of industrial

moderation by designing a preprocessing module to detect and

filter out/reverse-perturb intentionally-perturbed inputs.

Answer to RQ3: Test cases generated by MTTM can

effectively improve the robustness of academic content

moderation models.

Er
ro

r F
in

di
ng

 R
at

es

0

60

Number of Target Words
0 10 20 30 40 50

Char-split
Lang-switch
Abbreviation
Char-subs
Homophone
Char-swap
Noise-inject
Word-split
Char-mask

Fig. 1: The Errors Finding Rates of MTTM with different

number of target words.

E. RQ4: How would different factors affect the performance
of MTTM?

This section explores the impact of four factors on the

performance of MTTM. First, we studied the impact of noisy

character selection on the performance of our method. In the

previous sections, we observe that inserting noisy characters

into target words (MR1-4) can help bypass the content mod-

eration software and models. To study the impact of noisy

character selection, we try two types of noisy characters:

characters from the dataset and special characters that are not

in the dataset. As shown in Table IV, inserting characters from

the dataset as noise (dubbed Noise Injection (lang)) is much

more effective than inserting special characters that are not in

the dataset (named Noise Injection (non-lang)). One possible

reason is that commercial software products have designed

some rule-based preprocessing to the input sentence to remove

special tokens that are not commonly seen or recover non-

English characters (e.g., ä) to English characters (e.g., a).

These techniques are usually called text normalization.

Second, we studied the impact of the number of target

words. We calculated the TF-IDF scores in the previous

sections and selected the top 20 words as target words. To

study the impact of the number of target words, we vary

the number of target words from 10 to 50 and compute the

corresponding EFRs. As shown in Fig. 1, MTTM can find

more errors as the number of target words increases. However,

the EFRs saturate when the number of target words is larger

than 40.
Third, we studied the impact of the number of perturbations.

In the previous sections, we perturbed all the target words

in each sentence. In this experiment, for each sentence, we

compare the EFRs of perturbing all the target words and that

of randomly perturbing half of the target words. As shown in

Fig. 2, perturbing all the target words in each sentence can

significantly improve the EFRs. Only perturbing half of the

target words in each sentence is not sufficient to bypass the

content moderation software.

Last but not least, we studied the impact of the perturbation

combinations. In the previous sections, we showed that using

2395

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

Er
ro

r F
in

di
ng

 R
at

es

0

55

Perturbation Methods

Cha
r-s

ub
s

Cha
r-s

pli
t

Nois
e-i

nje
ct

Cha
r-m

ask

Cha
r-s

wap

Lan
g-s

witc
h

Hom
op

ho
ne

Abb
rev

iat
ion

Word
-sp

lit

Half Full

Fig. 2: The Error Finding Rates of different perturbation

numbers to be applied to a single example.

each perturbation method alone can achieve a good EFR. To

study the impact of different perturbation combinations, we

randomly select one char-level perturbation and one word-level

perturbation, leading to 24 (6×4) combinations. According to

the results in Table IV, combining the different perturbation

levels can increase the EFR.

Answer to RQ4: Noisy characters from the same

dataset, more target words, more perturbations, and the

combination of different perturbations can boost the

performance of MTTM.

F. Compared with Textual Adversarial Attack Methods

In this section, we will illustrate the advantage of MTTM

compared to textual adversarial attack methods, which is

another line of research for finding the error in NLP software.

First, MTTM is more comprehensive than adversarial meth-

ods because most of these methods focus on a small subset of

the perturbations in MTTM. In addition, as reported by recent

studies [25], [47], textual adversarial attack methods often

generate low-quality test cases because their semantics change

in many cases (around 40%), while MTTM can generate toxic

and realisitic test cases (Section IV B).

To show the effectiveness of MTTM, we conduct an ex-

peirment to compare the performance of MTTM with textual

adversarial attacks methods in terms of EFR and running time.

Specifically, we attacked our BERT-based abusive detection

model in English using two famous NLP adversarial methods:

PSO [48] and BAE [23], leading to an EFR of 65.0% and

47.8%, respectively, while a majority of MTTM’s MRs achieve

more than 85% EFR (Table IV). In addition, adversarial

methods need much more running time than MTTM because

these methods rely on extensive model queries, while MTTM

needs one query per test case. The running time of the two

adversarial methods are 605.2x and 72.5x more. In summary,

MTTM can find more error in less running time.

V. THREATS TO VALIDITY

The validity of our study may be subject to some threats.

The first threat is that the test cases generated by MTTM

after many perturbations may become “non-toxic”, leading to

false positives. To relieve this threat, we conducted a user

study to validate whether the generated test cases are toxic or

not. We further asked the annotators to label whether the test

cases reflect inputs from real users. The results show that the

generated test cases are toxic and realistic. The second threat
is that we implement MTTM for two languages, which may

not generalize to other natural languages. To reduce this threat,

the choice of the two languages is made thoughtfully: they are

representative alphabet-based language and pictograph-based

language, respectively. In addition, we believe our MRs can

generalize to other languages because most of the languages

share similar properties (e.g., visual similarity, homophone,

language switch). The third threat lies in our evaluation of

five content moderation systems, which might not be a proper

estimate of MTTM’s performance on other systems. We test

commercial content moderation software and SOTA academic

models to mitigate this threat. In particular, we test content

moderation software provided by three big companies, which

already have their techniques to defend malicious inputs. In the

future, we could test more commercial software and research

models to further mitigate this threat. The fourth threat is

that our MTTM could be outdated with the bypass techniques

evolving. To reduce this threat, we provide a comprehensive

workflow: study the user behaviors, summarize and design the

MRs, generate test cases, and use failure cases to improve

the robustness. If other bypass techniques were proposed,

people could follow this workflow to design new MRs. We

also believe that automated MR generation is a promising

and useful direction. This line of research mainly focuses

on automated generation of a specific kind of MRs (e.g.,

polynomial MRs [49], [50] or automated MR generation

leveraging software redundancy [51]. Since automated MR

generation for content moderation software faces different

challenges, we regard it as an important future work.

VI. RELATED WORK

A. Robustness of AI Software

AI software has been adopted by various domains, such

as autonomous driving and face recognition. However, AI

software is not robust enough and can generate erroneous

outputs that lead to fatal accidents [52], [53]. To this end,

researchers have proposed a variety of methods to generate ad-

versarial examples or test cases that can fool AI software [54]–

[64]. Meanwhile, researchers have also designed approaches

to improve AI software’s robustness, for example, the robust

training mechanism [65]–[67] and network debugging [68],

[69]. NLP software has also been used in recent years.

Typical scenarios include sentiment analysis [70], [71], ma-

chine translation [72]–[74] and text-to-speech synthesis [75],

[76]. Because of its importance, researchers from both NLP

and software engineering areas have started to explore the

2396

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

robustness of NLP software [77]–[79]. In particular, Ribeiro

et al. [80] designed a behavioral testing method to test NLP

software for sentiment analysis, duplicate question answering,

and machine comprehension. Li et al. [22] used deep learning

models to generate test cases for deep learning-based NLP

software. Sun et al. [21] propose a word-replacement-based

approach to test and fix machine translation bugs without re-

training. Our paper studies the robustness of a widely-used

AI software, content moderation software, which has not been

systematically studied.

B. Robustness of Textual Content Moderation Software

We systematically reviewed papers on testing and attack-

ing textual content moderation across related research areas:

software engineering, natural language processing, and speech

signal processing. Specifically, Ahlgren [81] used metamor-

phic testing to test Facebook’s simulation system, which is

used to tackle harmful content. Li et al. [27] reported that

visual-based substitution (MR1-1), character swap (MR1-6),

and word splitting (MR2-4) could fool the NLP model. Gao

et al. [26] proposed a black-box attack method based on

character swap (MR1-6) to fool deep learning classifiers. Eger

et al. [29] use visual-based substitution (MR1-1) to attack NLP

models. Kapoor et al. [82] stated that Indian Internet users

could use English-Hindi code-switched language to express

abusive content (MR2-1). Cid et al. [83] found that spammers

reduce the effectiveness of the spam detection algorithm by

introducing noise in their messages (MR1-4). Li et al. [84]

found that malicious Chinese netizens may obfuscate some

toxic words in their comments with the corresponding variants

that are visually similar to the original words (MR1-1).

However, our paper has sufficient contribution compared

with the above papers. First, MTTM is much more compre-

hensive. Only five kinds of perturbations explored in these

papers overlap with our MRs. To the best of our knowledge,

the other six MRs in MTTM have not been explored in

the existing papers across different related research areas.

Moreover, all these papers focus on one language setting,

while we implement MTTM for both English and Chinese.

In addition, all the MRs were supported by our pilot study on

real user inputs, which are different from existing papers that

came up with the perturbations based on domain knowledge.

Furthermore, most of the existing papers were only evaluated

on research models, while MTTM has also been evaluated

on three commercial content moderation software products.

Thus, we believe MTTM is the first comprehensive testing

framework for textual content moderation.

VII. CONCLUSION

This paper proposed the first comprehensive testing frame-

work MTTM for validating textual content moderation soft-

ware. Unlike existing testing or adversarial attack technique

for general NLP software, which only provide common pertur-

bations and cover a very limited set of toxic inputs that mali-

cious users may produce, MTTM contains eleven metamorphic

relations that are mainly inspired by a pilot study. In addition,

all the metamorphic relations in MTTM have been imple-

mented for two languages: English and Chinese. Our evalua-

tion shows that the test cases generated by MTTM can easily

evade the moderation of two SOTA moderation algorithms and

commercial content moderation software provided by Google,

Baidu, and Huawei. The test cases have been utilized to retrain

the algorithms, which exhibited substantial improvement in

model robustness while maintaining identical accuracy on the

original test set. We believe that this work is the crucial first

step toward systematic testing of content moderation software.

For future work, we will continue developing metamorphic

relations in MTTM and extend it to more language settings.

We will also launch an extensive effort to help continuously

test and improve content moderation software.

VIII. ACKNOWLEDGEMENT

The work described in this paper was supported by the

Research Grants Council of the Hong Kong Special Admin-

istrative Region, China (No. CUHK 14206921 of the General

Research Fund) and the National Natural Science Foundation

of China (Grant Nos. 62102340 and 62206318).

REFERENCES

[1] D. Sayce, “The number of tweets per day in 2020,” https://www.dsayce.
com/social-media/tweets-day/, 2020, accessed: 2022-03-01.

[2] P. Badjatiya, S. Gupta, M. Gupta, and V. Varma, “Deep learning for
hate speech detection in tweets,” Proceedings of the 26th International
Conference on World Wide Web Companion, 2017.

[3] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang, “Knowing your enemy:
understanding and detecting malicious web advertising,”Proceedings of
the 2012 ACM conference on Computer and communications security,
2012.

[4] H. A. Rowley, Y. Jing, and S. Baluja, “Large scale image-based adult-
content filtering,” in VISAPP, 2006.

[5] E. R. Munro, “The protection of children online: a brief scoping review
to identify vulnerable groups,” Childhood Wellbeing Research Centre,
2011.

[6] N. Cveticanin, “What’s on the other side of your inbox - 20 spam
statistics for 2022,” https://dataprot.net/statistics/spam-statistics/, 2022,
accessed: 2022-03-01.

[7] T.-K. Yu and C.-M. Chao, “Internet misconduct impact adolescent
mental health in taiwan: The moderating roles of internet addiction,”
International Journal of Mental Health and Addiction, vol. 14, pp. 921–
936, 2016.

[8] Y. Chen, R. Zheng, A. Zhou, S. Liao, and L. Liu, “Automatic detection of
pornographic and gambling websites based on visual and textual content
using a decision mechanism,” Sensors (Basel, Switzerland), vol. 20,

2020.
[9] P. Mishra, H. Yannakoudakis, and E. Shutova, “Tackling online

abuse: A survey of automated abuse detection methods,”ArXiv, vol.

abs/1908.06024, 2019.
[10] A. Schmidt and M. Wiegand, “A survey on hate speech detection using

natural language processing,” in SocialNLP@EACL, 2017.
[11] T. Wu, S. Wen, Y. Xiang, and W. Zhou, “Twitter spam detection: Survey

of new approaches and comparative study,”Comput. Secur., vol. 76, pp.
265–284, 2018.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,”NAACL,
vol. abs/1810.04805, 2019.

[13] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” ArXiv, vol. abs/1907.11692, 2019.

[14] L. Hanu, J. Thewlis, and S. Haco, “How ai is learning to iden-
tify toxic online content,” https://www.scientificamerican.com/article/
can-ai-identify-toxic-online-content/, 2021, accessed: 2022-03-01.

2397

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

[15] J. Vincent, “Facebook is now using ai to sort content for
quicker moderation,” https://www.theverge.com/2020/11/13/21562596/
facebook-ai-moderation, 2020, accessed: 2022-03-01.

[16] T. Gillespie, “Content moderation, ai, and the question of scale,” Big
Data & Society, vol. 7, no. 2, p. 2053951720943234, 2020.

[17] M. Jing, “China’s baidu turns to ai to police
online content, but is the technology reliable?”
https://www.scmp.com/tech/innovation/article/2143759/
chinas-baidu-turns-ai-police-online-content-technology-reliable?
module=perpetual_scroll_0&pgtype=article&campaign=2143759, 2018,
accessed: 2022-03-01.

[18] K. Canales, “Facebook’s ai moderation reportedly can’t
interpret many languages, leaving users in some countries more
susceptible to harmful posts,” https://www.businessinsider.com/
facebook-content-moderation-ai-cant-speak-all-languages-2021-9,
2021, accessed: 2022-03-01.

[19] P. He, C. Meister, and Z. Su, “Structure-invariant testing for machine
translation,” 2020 IEEE/ACM 42nd International Conference on Soft-
ware Engineering (ICSE), pp. 961–973, 2020.

[20] Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, and L. Zhang, “Auto-
matic testing and improvement of machine translation,” 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), pp.
974–985, 2020.

[21] Z. Sun, J. Zhang, Y. Xiong, M. Harman, M. Papadakis, and L. Zhang,
“Improving machine translation systems via isotopic replacement,” 2022
IEEE/ACM 44th International Conference on Software Engineering
(ICSE), pp. 1181–1192, 2022.

[22] L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu, “Bert-attack: Adversarial
attack against bert using bert,” EMNLP, vol. abs/2004.09984, 2020.

[23] S. Garg and G. Ramakrishnan, “Bae: Bert-based adversarial examples
for text classification,” EMNLP, 2020.

[24] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, “Is bert really robust? a
strong baseline for natural language attack on text classification and
entailment,” in AAAI, 2020.

[25] J. Huang, J. Zhang, W. Wang, P. He, Y. Su, and M. R. Lyu, “AEON:
a method for automatic evaluation of NLP test cases,” in International
Symposium on Software Testing and Analysis (ISSTA), 2022.

[26] J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi, “Black-box generation
of adversarial text sequences to evade deep learning classifiers,” 2018
IEEE Security and Privacy Workshops (SPW), pp. 50–56, 2018.

[27] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “Textbugger: Generating
adversarial text against real-world applications,” NDSS, 2019.

[28] N. P. Boucher, I. Shumailov, R. Anderson, and N. Papernot, “Bad char-
acters: Imperceptible nlp attacks,” 2022 IEEE Symposium on Security
and Privacy (SP), pp. 1987–2004, 2022.

[29] S. Eger, G. G. Sahin, A. Rücklé, J.-U. Lee, C. Schulz, M. Mesgar,
K. Swarnkar, E. Simpson, and I. Gurevych, “Text processing like humans
do: Visually attacking and shielding nlp systems,” NAACL, 2019.

[30] E. Spertus, “Smokey: Automatic recognition of hostile messages,” in
AAAI/IAAI, 1997.

[31] A. H. Razavi, D. Inkpen, S. Uritsky, and S. Matwin, “Offensive language
detection using multi-level classification,” in Advances in Artificial
Intelligence, 2010.

[32] M. Wiegand, J. Ruppenhofer, and E. Eder, “Implicitly abusive language
– what does it actually look like and why are we not getting there?” in
NAACL, 2021.

[33] M. Wiegand, J. Ruppenhofer, A. Schmidt, and C. Greenberg, “Inducing
a lexicon of abusive words – a feature-based approach,” in NAACL,
2018.

[34] D. Yin, Z. Xue, L. Hong, B. D. Davison, A. Kontostathis, and L. Ed-
wards, “Detection of harassment on web 2.0,” Proceedings of the
Content Analysis in the WEB, vol. 2, pp. 1–7, 2009.

[35] J. O. Salminen, H. Almerekhi, M. Milenkovic, S.-G. Jung, J. An,
H. Kwak, and B. J. Jansen, “Anatomy of online hate: Developing a
taxonomy and machine learning models for identifying and classifying
hate in online news media,” in ICWSM, 2018.

[36] N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Radosavljevic, and
N. L. Bhamidipati, “Hate speech detection with comment embeddings,”
Proceedings of the 24th International Conference on World Wide Web,
2015.

[37] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[38] T. Y. Chen, S. C. Cheung, and S.-M. Yiu, “Metamorphic testing: A new
approach for generating next test cases,” ArXiv, vol. abs/2002.12543,
2020.

[39] T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie, “An innovative approach
for testing bioinformatics programs using metamorphic testing,”BMC
Bioinformatics, vol. 10, pp. 24 – 24, 2008.

[40] X. Xie, J. W. K. Ho, C. Murphy, G. E. Kaiser, B. Xu, and T. Y. Chen,
“Testing and validating machine learning classifiers by metamorphic
testing,” The Journal of systems and software, 2011.

[41] A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. P. J. C. Bose,
N. Dubash, and S. Podder, “Identifying implementation bugs in machine
learning based image classifiers using metamorphic testing,”Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2018.

[42] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deep-
road: Gan-based metamorphic testing and input validation framework
for autonomous driving systems,” 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2018.

[43] T. Davidson, D. Warmsley, M. Macy, and I. Weber, “Automated hate
speech detection and the problem of offensive language,” in Proceedings
of the 11th International AAAI Conference on Web and Social Media,
ser. ICWSM ’17, 2017, pp. 512–515.

[44] K. Song, Y. Kang, W. Gao, Z. Gao, C. Sun, and X. Liu, “Evidence
aware neural pornographic text identification for child protection,” in
AAAI, 2021.

[45] B. Mathew, P. Saha, S. M. Yimam, C. Biemann, P. Goyal, and
A. Mukherjee, “Hatexplain: A benchmark dataset for explainable hate
speech detection,” in AAAI, 2021.

[46] H. R. Kirk, B. Vidgen, P. Röttger, T. Thrush, and S. A. Hale, “Hatemoji:
A test suite and adversarially-generated dataset for benchmarking and
detecting emoji-based hate,” ACL, vol. abs/2108.05921, 2021.

[47] J. X. Morris, E. Lifland, J. Lanchantin, Y. Ji, and Y. Qi, “Reevaluating
adversarial examples in natural language,” EMNLP, 2020.

[48] Y. Zang, C. Yang, F. Qi, Z. Liu, M. Zhang, Q. Liu, and M. Sun, “Word-
level textual adversarial attacking as combinatorial optimization,” in
Annual Meeting of the Association for Computational Linguistics, 2019.

[49] J. M. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei,
“Search-based inference of polynomial metamorphic relations,”Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, 2014.

[50] B. Zhang, H. Zhang, J. Chen, D. Hao, and P. Moscato, “Automatic
discovery and cleansing of numerical metamorphic relations,”2019
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 235–245, 2019.

[51] A. Carzaniga, A. Goffi, A. Gorla, A. Mattavelli, and M. Pezzè, “Cross-
checking oracles from intrinsic software redundancy,” Proceedings of
the 36th International Conference on Software Engineering, 2014.

[52] C. Ziegler, “A google self-driving car caused a crash for the
first time. [online],” https://www.theverge.com/2016/2/29/11134344/
google-self-driving-car-crash-report, 2016, accessed: 2016-09.

[53] S. Levin, “Tesla fatal crash: ’autopilot’ mode sped up car before driver
killed, report finds [online],” https://www.theguardian.com/technology/
2018/jun/07/tesla-fatal-crash-silicon-valley-autopilot-mode-report,
2018, accessed: 2018-06.

[54] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. E. Sherr, C. Shields,
D. A. Wagner, and W. Zhou, “Hidden voice commands,” inUSENIX
Security Symposium, 2016.

[55] J. Tu, H. Li, X. Yan, M. Ren, Y. Chen, M. Liang, E. Bitar, E. Yumer, and
R. Urtasun, “Exploring adversarial robustness of multi-sensor perception
systems in self driving,” ArXiv, vol. abs/2101.06784, 2021.

[56] Y. Luo, M. Meghjani, Q. H. Ho, D. Hsu, and D. Rus, “Interactive
planning for autonomous urban driving in adversarial scenarios,”2021
IEEE International Conference on Robotics and Automation (ICRA), pp.
5261–5267, 2021.

[57] K. Pei, Y. Cao, J. Yang, and S. S. Jana, “Deepxplore: Automated
whitebox testing of deep learning systems,” Proceedings of the 26th
Symposium on Operating Systems Principles, 2017.

[58] J. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” IEEE Transactions on Software En-
gineering, vol. 48, pp. 1–36, 2022.

[59] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and
P. Tonella, “Testing machine learning based systems: a systematic
mapping,” Empir. Softw. Eng., vol. 25, pp. 5193–5254, 2020.

2398

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

[60] N. Humbatova, G. Jahangirova, and P. Tonella, “Deepcrime: mutation
testing of deep learning systems based on real faults,” Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2021.

[61] H. V. Pham, M. Kim, L. Tan, Y. Yu, and N. Nagappan, “Deviate:
A deep learning variance testing framework,” 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 1286–1290, 2021.

[62] J. Wang, J. Chen, Y. Sun, X. Ma, D. Wang, J. Sun, and P. Cheng, “Robot:
Robustness-oriented testing for deep learning systems,” 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pp.
300–311, 2021.

[63] W. Huang, Y. Sun, X.-E. Zhao, J. Sharp, W. Ruan, J. Meng, and
X. Huang, “Coverage-guided testing for recurrent neural networks,”
IEEE Transactions on Reliability, 2021.

[64] J. Zhang, W. Wu, J. tse Huang, Y. Huang, W. Wang, Y. Su, and M. R.
Lyu, “Improving adversarial transferability via neuron attribution-based
attacks,” 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 14 973–14 982, 2022.

[65] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards deep learning models resistant to adversarial attacks,” ICLR, vol.
abs/1706.06083, 2018.

[66] M. H. Asyrofi, Z. Yang, J. Shi, C. W. Quan, and D. Lo, “Can dif-
ferential testing improve automatic speech recognition systems?” 2021
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 674–678, 2021.

[67] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz
testing based data augmentation to improve robustness of deep neural
networks,” 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pp. 1147–1158, 2020.

[68] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Y. Grama, “Mode: automated
neural network model debugging via state differential analysis and
input selection,” Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018.

[69] G. Tao, S. Ma, Y. Liu, Q. Xu, and X. Zhang, “Trader: Trace divergence
analysis and embedding regulation for debugging recurrent neural net-
works,” 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pp. 986–998, 2020.

[70] L. Zhang and B. Liu, “Sentiment analysis and opinion mining,” in
Encyclopedia of Machine Learning and Data Mining, 2017.

[71] S. Wang, W. Wang, J. Zhao, S. Chen, Q. Jin, S. Zhang, and Y. Qin,
“Emotion recognition with multimodal features and temporal models,”

Proceedings of the 19th ACM International Conference on Multimodal
Interaction, 2017.

[72] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” ICLR, vol. abs/1409.0473, 2015.

[73] W. Wang, W. Jiao, Y. Hao, X. Wang, S. Shi, Z. Tu, and M. R.
Lyu, “Understanding and improving sequence-to-sequence pretraining
for neural machine translation,” in Annual Meeting of the Association
for Computational Linguistics, 2022.

[74] W. Jiao, Z. Tu, J. Li, W. Wang, J. tse Huang, and S. Shi, “Tencent’s
multilingual machine translation system for wmt22 large-scale african
languages,” WMT, 2022.

[75] Y. Wang, R. J. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. V. Le, Y. Agiomyrgiannakis,
R. A. J. Clark, and R. A. Saurous, “Tacotron: Towards end-to-end speech
synthesis,” in Interspeech, 2017.

[76] D. Ma, Z. Su, W. Wang, and Y. Lu, “Fpets: Fully parallel end-to-end
text-to-speech system,” in AAAI Conference on Artificial Intelligence,
2018.

[77] S. Gupta, “Machine translation testing via pathological invariance,” 2020
IEEE/ACM 42nd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pp. 107–109, 2020.

[78] P. He, C. Meister, and Z. Su, “Testing machine translation via referen-
tial transparency,” 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pp. 410–422, 2021.

[79] W. Jiao, W. Wang, J. tse Huang, X. Wang, and Z. Tu, “Is chatgpt a good
translator? a preliminary study,” ArXiv, vol. abs/2301.08745, 2023.

[80] M. T. Ribeiro, T. S. Wu, C. Guestrin, and S. Singh, “Beyond accuracy:
Behavioral testing of nlp models with checklist,” in ACL, 2020.

[81] J. Ahlgren, M. E. Berezin, K. Bojarczuk, E. Dulskyte, I. Dvortsova,
J. George, N. Gucevska, M. Harman, M. Lomeli, E. Meijer, S. Sapora,
and J. Spahr-Summers, “Testing web enabled simulation at scale using
metamorphic testing,” 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-
SEIP), pp. 140–149, 2021.

[82] R. Kapoor, Y. K. Singla, K. Rajput, R. R. Shah, P. Kumaraguru, and
R. Zimmermann, “Mind your language: Abuse and offense detection for
code-switched languages,” AAAI, 2019.

[83] I. Cid, L. R. Janeiro, J. R. Méndez, D. Glez-Peña, and F. F. Riverola,
“The impact of noise in spam filtering: A case study,” in ICDM, 2008.

[84] J. Li, T. Du, X. Liu, R. Zhang, H. Xue, and S. Ji, “Enhancing
model robustness by incorporating adversarial knowledge into semantic
representation,” ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 7708–7712,
2021.

2399

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:24 UTC from IEEE Xplore. Restrictions apply.

