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Abstract—The exponential growth of social media platforms
has brought about a revolution in communication and content
dissemination in human society. Nevertheless, these platforms
are being increasingly misused to spread toxic content, including
hate speech, malicious advertising, and pornography, leading to
severe negative consequences such as harm to teenagers’ mental
health. Despite tremendous efforts in developing and deploying
textual and image content moderation methods, malicious users
can evade moderation by embedding texts into images, such
as screenshots of the text, usually with some interference. We
find that modern content moderation software’s performance
against such malicious inputs remains underexplored. In this
work, we propose OASIS, a metamorphic testing framework
for content moderation software. OASIS employs 21 transform
rules summarized from our pilot study on 5,000 real-world toxic
contents collected from 4 popular social media applications,
including Twitter, Instagram, Sina Weibo, and Baidu Tieba.
Given toxic textual contents, OASIS can generate image test
cases, which preserve the toxicity yet are likely to bypass
moderation. In the evaluation, we employ OASIS to test five
commercial textual content moderation software from famous
companies (i.e., Google Cloud, Microsoft Azure, Baidu Cloud,
Alibaba Cloud and Tencent Cloud), as well as a state-of-the-
art moderation research model. The results show that OASIS
achieves up to 100% error finding rates. Moreover, through
retraining the models with the test cases generated by OASIS,
the robustness of the moderation model can be improved without
performance degradation.

Index Terms—Software testing, metamorphic relations, content
moderation software

I. INTRODUCTION

In the last decade, there has been a significant proliferation

of social media platforms and community forums, leading to

a remarkable advancement in contemporary textual communi-

cation and content dissemination on a global scale. Facebook

is reaching 3 billion monthly active users in 2023, while the

number of Instagram is 2 billion [1]. However, these platforms

inevitably provide malicious users an avenue to spread toxic

content due to the anonymity of the web. In general, toxic

contents can be roughly categorized into three major kinds

of information [2]: (1) Abusive language and hate speech,

which are abusive contents targeting specific individuals, such

as politicians, celebrities, religions, nations, and the LGB-

TIQA+ [3]; (2) Malicious advertisement, which are online

Jiazhen Gu is the corresponding author.

advertisements with illegal purposes, such as phishing and

scam links, malware download, and illegal information dis-

semination [4]; and (3) Pornography, which is often sexually

explicit, associative, and aroused [5].

The presence of toxic contents can cause severe adverse

effects. Hate speech exposure among children and adolescents

poses a higher chance of victimization and perpetration [6].

Malicious advertisements continue to be a significant global

problem, resulting in 3.4 billion phishing emails daily and

an average of $4.91 million in breach costs per year [7].

Pornography exposure, particularly among younger children,

may be disturbing or upsetting and cause significant unde-

sirable effects on the physical and psychological health of

children [8], [9]. Moreover, these toxic contents can even

increase the number of criminal cases to a certain extent [10].

The numerous studies conducted on the topic have shown that

the presence of toxic content poses a significant risk to social

cohesion.

As a result, content moderation software that identifies,

filters, blocks such content has become an area of immense

interest for both academic researchers and industry profes-

sionals. Toxic content detection has been widely formulated

as a text classification task, and it has been tackled by

various deep learning models, such as convolutional neuron

networks, long-short-term-memory, and Transformers [11]–

[13]. Equipped with the advanced pre-trained language models

(e.g., BERT [14] and RoBERTa [15]), industrial companies

have recently gained substantiate improvement on the held-

out accuracy of toxic content detection, providing commercial-

level content moderation software such as Google [16], Face-

book [17], Twitter [18], and Baidu [19].

Previous researchers have proposed several testing frame-

works to measure the reliability of content moderation soft-

ware, such as robustness against typos [20], code-switch [21],

adversarial text attacks [22] and other human-intended per-

turbations [2]. However, existing testing work only focuses

on textual perturbation, ignoring the spread of images. In

2013, the number of images shared per day on Instagram

and Facebook were 40 million and 300 million, respectively.

However, these numbers have significantly increased over the

years, reaching 1.3 billion and 2.1 billion for Instagram and

Facebook, respectively, by 2023 [23]. Malicious users can use
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images containing toxic texts to evade content moderation

instead of simply using textual perturbations. The advantage

of using images is that it provides more degrees of freedom

for adding perturbations, such as changing font, changing

font color, changing font size, changing the way the text

is arranged, rotation, and distortion, which cannot be easily

adopted by previous perturbation methods for text [2], [22],

[24], [25]. Figure 1 shows some examples where the toxic

information is hidden by different-level of perturbations, which

are not covered by existing studies.

In this paper, we propose OASIS, a metamorphic testing

framework to validate content moderation software, focusing

on images containing toxic contents. Specifically, to develop a

comprehensive testing framework, we first need to understand

how real-world malicious users evade moderation. To this

end, we conduct a pilot study (Section III) on 5,000 image

messages collected from real users. We study data in English

and Chinese since English is the mostly used language for

web contents [26] and China has the largest digital populations

around the world [27]. We summarize 21 transformation rules,

based on which we design metamorphic relations (MRs) across

three perturbation levels: character level, paragraph level, and

picture level. Therefore, test cases generated under our MRs

can reflect real-world user behaviors.

We then employ OASIS to validate moderation software

with these generated test cases whose toxicity remains and

can be easily recognized by humans. In the evaluation, we

apply OASIS to test five commercial content moderation soft-

ware and a State-Of-The-Art (SOTA) moderation algorithm

against three typical kinds of toxic content (i.e., abusive lan-

guage, malicious advertisement, and pornography). The results

show that OASIS achieves up to 100% Error Finding Rate

(EFR) when testing commercial content moderation software

provided by Google Cloud, Microsoft Azure, Baidu Cloud,

Alibaba Cloud and Tencent Cloud, and the SOTA algorithm

from the academy. Additionally, we leverage the test cases

generated by OASIS to retrain the model we explore, which

largely improves model robustness (EFR of OASIS drops from

100% to 6%) while maintaining the accuracy on the original

test set. The main contributions of this paper are as follows:

• A preliminary study is conducted on 5,000 image messages

in real-world scenarios, which results in a summary of 21

transform rules.

• Based on the rules, we introduce OASIS, the first com-

prehensive testing framework for textual toxic contents

spread via images, which includes 21 metamorphic relations

implemented in two languages: English and Chinese.

• Using OASIS, a thorough assessment is conducted on five

content moderation software used in commerce and a SOTA

academic model, revealing that toxic contents produced by

OASIS could effortlessly evade moderation. Furthermore,

we explore the feasibility of the generated toxic contents

strengthening the robustness of the SOTA model.

The rest of the paper is organized as follows: We first

introduce the background of metamorphic testing and content

moderation in Section II; Then, in Section III, we introduce

the design and implementation details of OASIS. In Section

IV, we conduct experiments to evaluate the effectiveness of

OASIS; And in Section V, we summarize the contribution

and analysis the threats to validity; Finally, we discuss the

previous works that are related to ours in Section VI.

Content Warning: We apologize that this paper includes

instances of hostile, offensive, or explicit language for clarity,

which have been quoted verbatim. Furthermore, in order to

ensure the safety of our participants during the research, we

take the following precautionary measures: (1) we consistently

display a warning message to both the researchers and anno-

tators at every stage, informing them that they could withdraw

from the study at any time and (2) we offered psychological

counseling after the study to alleviate any mental distress.

II. BACKGROUND

A. Metamorphic Testing

Metamorphic testing [28] has gained significant adoption

as a testing technique for tackling the oracle problem. Its

fundamental concept involves identifying deviations in MRs

across various software runs. MRs describe the relationship

between software input-output pairs under certain transfor-

mation rules. Through metamorphic testing, a test case is

modified by applying a pre-defined transformation rule, and

the software’s outputs for both the original and transformed

test cases are compared to verify if they demonstrate the

anticipated relationship.

In recent years, metamorphic testing has been applied to

validate Artificial Intelligence (AI) software. The objective of

these endeavors is to automatically identify and report errors

in AI software results using newly-defined MRs. For example,

Chen et al. [29] investigated the use of metamorphic testing

in bioinformatics applications. Xie et al. [30] defined eleven

MRs to test k-nearest neighbors and naive Bayes algorithms.

Dwarakanath et al. [31] presented eight MRs to test classifiers

based on support vector machines and ResNet. Zhang et al.

[32] tested autonomous driving systems by applying GANs to

produce driving scenes with various weather conditions and

checking the consistency of the system outputs.

B. Content Moderation Software

Commercial content moderation software has been imple-

mented by several prominent companies such as Google [16],

Facebook [17], Twitter [18], and Baidu [19] on their products.

Based on their official technical documents, the software typ-

ically employs a hybrid classification algorithm that combines

neural network models and pre-defined rules. This approach

takes advantage of the strengths of both methods. Neural

network-based methods are proficient in understanding con-

textual and semantic information, whereas rule-based methods

enable simple implementation of user-defined functionality.

Baidu, for instance, utilizes a deep neural network and an

extensive list of pre-defined banned words to power its com-

mercial content moderation software.
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III. OASIS

This section first introduces a pilot study on messages

collected from real users (Section III-A). Then we introduce

21 metamorphic relations that are inspired by the pilot study.

These metamorphic relations can be grouped into three cat-

egories according to the perturbation performed: character-

level perturbations (Sec. III-B), paragraph-level perturbations

(Sec. III-C), and picture-level perturbations (Sec. III-D).

A. Pilot Study

In this work, we intend to develop metamorphic relations

that assume the seed test case (i.e., a piece of text) and

the generated test case (the picture) should have identical

classification labels (i.e., labeled as “toxic content”) returned

by the content moderation software. To generate effective test

cases, we think the perturbations in our MRs should be:

• Semantic-preserving: the perturbed test cases should have

the identical semantic meaning as the seed.

• Realistic: should reflect possible inputs from real users.

• Unambiguous: should be defined clearly.

In order to design satisfactory perturbations, we first con-

ducted a pilot study on messages from real users to explore

what kind of perturbations the users would apply to the

toxic content to bypass the content moderation software. We

consider text messages from four platforms with a large

number of users:

• Twitter. Twitter is an online social media and social network-

ing service on which users post or reply to texts, images and

videos known as "tweets". It has over 400 million monthly

active users at the end of 2022.

• Instagram. Instagram is a photo and video sharing social

networking service owned by Meta Platforms. It has over 2

billion monthly active users at the end of 2022.

• Sina Weibo. Sina Weibo is a Chinese microblogging web-

site. It is one of the biggest social media platforms in China,

with over 580 million monthly active users at the end of

2022.

• Baidu Tieba. Tieba is a Chinese online forum hosted by

the Chinese web services company Baidu. It accumulated

45 million monthly active users and the number of its total

registered users reached 1.5 billion at the end of 2021.

We collect 5, 000 images from the above website for manual

inspection and recruited three annotators to label all the images

independently. All the annotators have a Bachelor’s degree

or above and are proficient in both English and Chinese.

Annotators were given extensive guidelines, test tasks, and

training sessions on content moderation software and toxic

content. For each image, annotators were asked two questions.

(1) Whether the image is toxic or not? (2) Is the image inten-

tionally perturbed to bypass the content moderation software?

After the annotation, we use the label that most workers agree

with as the final human label and finally obtain 240 images

that are labeled as “toxic and intentionally perturbed” images,

which are used to design our perturbation methods.

TABLE I: Summary of the perturbation categories in the pilot

study.

Perturb Level Perturb Method Percentage

Character Level

Font Change 1.7%
Font Color Change 2.9%
Font Size 1.3%
Strikethrough 3.8%
Char Rotation 0.4%

Paragraph Level

Circle 0.4%
Vertical Direction 0.4%
Right to left 14.9%
Align-left-then-right 0.4%
Word Cloud 1.3%
Overlap 0.4%
Benign Text Camouflage 1.7%

Picture Level

Blurring 14.6%
Crop 0.8%
Mirror 7.5%
Rotation 7.9%
Scribbling 46.3%
Distort 0.4%
Watermark 1.7%
To Gif 0.4%
Benign Image Camouflage 5.4%

We manually inspected all these toxic contents perturbed

by the real users and collectively summarized 21 perturbation

methods that real users have been using to evade moderation.

We categorize these toxic sentences from two perspectives: 1)

the basic units of perturbation, such as character level (the

perturbation methods that the malicious users can use when

they are typing the characters), paragraph level (the pertur-

bation methods that can use when typesetting the words into

sentences or paragraph), and picture level (the perturbation

methods that can be adopted after the malicious users screen-

shot the text to image); and 2) basic perturbation operation,

such as change, insertion, deletion, split, and combination.

Accordingly, we derive 21 MRs based on 21 perturbation

methods, where each MR assumes that the classification label

returned by the content moderation software on the generated

test case (i.e., images) should be the same as that on the seed

(i.e., original text). Table I presents the 21 perturbation meth-

ods, their categories and the percentage of each in our study.

We will introduce the MRs (their corresponding perturbation

methods) in the following.

B. MRs with Character-Level Perturbations

The character-level perturbations are the perturbation meth-

ods that malicious users can use when they are typing the

characters.

MR1-1 Font Change
This MR is selecting a font that makes the text hard to be

recognized for content moderation software. And when the

toxic words are not recognized, the image will have more

possibilities to bypass the moderation. For example, Cursive is

a style of penmanship in which characters are written joined

in a flowing manner, in contrast to block letters. Changing

the font from Times New Roman to Cursive will increase the

difficulty of character recognition.

1341

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:02:39 UTC from IEEE Xplore.  Restrictions apply. 



(a) Character-level Perturbation

(b) Paragraph-level Perturbation

(c) Picture-level Perturbation

Fig. 1: Examples of pictures that contain toxic textual informa-

tion with different perturbation methods : (a) Character-level

perturbation, (b) Paragraph-level perturbation, and (c) Picture-

level perturbation. Here we use a non-toxic seed "This is a

toxic sentence" for demonstration.

To implement this MR, we adopt the semi-cursive script

font1 and use the Python Imaging Library(PIL)2 to change the

font in the image with ImageFont.truetype() function.

MR1-2 Font Color Change
This MR is using a font color, such as a color that is close

to the background color, so as to make it harder for content

moderation software to recognize the text.

1https://www.fonts.net.cn/font-34032272562.html
2https://pypi.org/project/Pillow/

To implement this MR, we adopt a Python library named

Pygame3 to render the text and use Pygame.font.render()

function to control the color of each character.

MR1-3 Font Size Changing
This MR’s perturbation method is using different font sizes

for different characters or words, aiming to make it more

difficult for software to recognize the whole text. For example,

most of the characters are in 24px but the toxic words or some

of their characters are intentionally set to 4px, aiming to make

the moderation software overlook the small toxic words. If so,

there may have more possibilities to bypass the moderation.

To implement this MR, we adopt the python library Pygame.

We use Pygame.font.render() function to control the size of

different characters.

MR1-4 Strikethrough
This MR perturbs texts by adding horizontal lines through

their center, aiming to make it more difficult for software to

recognize the text.

To implement this MR, we can use PIL to open the image of

text and add two horizontal lines to it. The first line is located

at 33% of the image height, and the second is located at 66%.

MR1-5 Character Rotation
This MR rotates each character by a random angle, aiming

to make it more difficult for software to recognize the text.

To implement this MR, the Pygame library was used. Each

character is rotated individually by a random degree with

pygame.transform.rotate() function.

C. MRs with Paragraph-Level Perturbations

The paragraph-level perturbations are the perturbation meth-

ods that malicious users can use when typesetting characters or

words into sentences or paragraphs. Different from character-

Level perturbations, paragraph-level perturbations do not make

modifications to any characters.

MR2-1 Circle
Traditionally, the characters or words are typeset in a line.

This MR layout the text in a circle, aiming to make it more

difficult for software to understand the meaning of the text.

To implement this MR, both the Python math and Pygame

libraries were used. We first use the math library to calculate

the position of each character. Then we place each character

in its appropriate position using the blit() function.

MR2-2 Vertical Direction
Traditionally, the characters or words are typeset in a left-

to-right manner. This MR typeset the characters or words

vertically in a top-to-bottom manner, aiming to make it more

difficult for software to understand the meaning of the text.

To implement this MR, we combine each image vertically

with a python library NumPy4. We first use PIL to write each

character or word in a small image. Then we concatenate these

small images in an up-to-bottom manner with NumPy array

manipulation.

MR2-3 Right-to-left

3https://www.pygame.org/
4https://pypi.org/project/numpy/
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Traditionally, the characters or words are typeset in a left-

to-right manner. This MR typeset the characters in a word or

the words in a sentence in a right-to-left manner, aiming to

make it more difficult for software to understand the meaning

of the text.

To implement this MR, we first reverse the order of the

sentences. Then we place the reversed sentence in the image

by blit() function in Pygame.

MR2-4 Align-left-then-right
This MR splits a sentence into multiple lines and typesets

the first line in a manner of align-left, then the second line

align-right, the third line align-left, ..., aiming to make it more

difficult for software to understand the meaning of the text.

To implement this MR, we also use PIL to write each

character or word in a line. Different from MR2-2 which

shows the character or word in the middle, this time we arrange

the first character or word on the left, and arrange the second

one on the right, ending up with a left-right-left-right manner.

Then we use the NumPy array to concatenate them vertically.

MR2-5 Word Cloud
This MR is using many small benign words to fill the outline

of large characters or words, aiming to make it more difficult

for software to recognize the large characters or words. For

example, many small "good" forming a big "bad" shape could

be recognized as many "good" rather than the big "bad" for

content moderation software.

To implement this MR, we use the Python library Word-

Cloud5, which is able to generate word clouds according to

the shape we specify. We first use the PIL library to write the

text as the target shape. Then we pass it into the WordCloud()

function to get the word cloud image.

MR2-6 Overlap
This MR reduces the line spacing or word spacing to make

some overlap between words or characters, so as to make it

more difficult for software to recognize the words.

To implement this MR, we arrange each word in a sentence

to the image in a partial overlap manner with blit() function

in the Pygame library.

MR2-7 Benign Text Camouflage
This MR is hiding the words or characters in plenty of

benign words as context and uses some way to highlight the

original characters or words, such as using a different font

color or circling them in red. Human can understand the

toxic nature of such content by only paying attention to the

highlighted characters or words but it will be much harder for

software to understand that.

To implement this MR, we first generate plenty of non-toxic

words or characters and insert them between or surrounding

the words of the original toxic sentence as “ benign text

padding”. Then, we make a list to record the position of the

original toxic words we want to hide and use PIL to draw red

circles on the image to highlight each hidden word.

5https://pypi.org/project/wordcloud/

D. MRs with Picture-Level Perturbations

The picture-level perturbations are the perturbation methods

that can be adopted after the malicious users screenshot the

text to the image. Different from the perturbation methods

introduced above, picture-level perturbations only perturb the

images.

MR3-1 Blurring
This MR blurs the picture or reduces the resolution of

the image, aiming to make it more difficult for software to

recognize the words in the picture.

To implement this MR, we adopt the Python libraries cv2.

We first generate an image with a toxic sentence with Pygame.

Then we blur that image with the cv2.blur() function.

MR3-2 Crop
This MR crops the image so that only part of each character

in the image is preserved, aiming to make it more difficult for

software to recognize the original words. But the human can

easily recognize the character by imagining what the whole

character or words look like.

To implement this MR, we adopt the Python library PIL.

We first use PIL to generate an image with the toxic sentence.

Then we crop the bottom 30% of each image with the crop()

function.

MR3-3 Mirror
This MR mirrors the picture, aiming to make it more

difficult for software to recognize the words. The mirrored

texts are also hard for humans to understand, so the users

need to mirror the picture back to read the message, such as

using photo editing software on their cellphones or personal

computer.

To implement this MR, we first generate an image with the

toxic sentence and then mirror the image with the transpose()

function.

MR3-4 Rotation
This MR rotates the picture at an angle, such as 90◦

or 180◦, aiming to make it more difficult for software to

recognize the words. Human can easily understand the content

by either rotating back the image using photo editing software

or rotating their cellphones.

To implement this MR, we first create the image with

the toxic sentence and then rotate it 45 degrees with

pygame.transform.rotate() function.

MR3-5 Scribbling
This MR adds meaningless marks or lines, with a pencil

or pen, to the picture, aiming to make it more difficult for

software to recognize the words. But as humans, we can easily

or even automatically ignore the scribbling and understand the

content in the original image.

To implement this MR, we first prepare a scribbling image,

which contains human-intended scribbling. Then we generate

an image for each toxic sentence by Pygame and resize the

scribbling image with PIL’s resize() function according to

the size of the image with the toxic sentence. Finally, we

superimpose the resized scribbling image and the image with

a toxic sentence.

MR3-6 Distort
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This MR makes a non-rectilinear projection of the image

and can significantly disrupt the image’s quality. For example,

an image’s straight lines will appear deformed or curved

unnaturally.

To implement this MR, we use the function resize() in the

PIL library. We change the parameters in resize() to distort the

image, such as stretching and bending.

MR3-6 Watermark
This MR intentionally superimposes plenty of logo, text, or

pattern onto the image. Its purpose is to make it more difficult

for software to recognize the original messages in the image,

since the software may pay more attention to the watermark,

or the original toxic content is occluded by the watermark.

To implement this MR, we use the PIL library. We first

make the watermark image by initializing a grayscale image

and then inserting plenty of "good words" to fill the image.

After that, we rotate the watermark image and superimpose it

with the original image.

MR3-7 To Gif
GIF (the Graphics Interchange Format) is an image type

that contains many frames and allows a separate display for

each frame. This MR converts the image to GIF by displaying

a portion of the message in one frame and displaying the

other in another frame. When the frames per second are more

than 90 Hz, humans watching this GIF is like looking at a

single picture. While for computer software, each moment can

only capture a portion of the message, which may lead to the

bypassing of moderation.

To implement this MR, we use the PIL library to generate

two images: one shows the odd-bit characters and another

shows the even-bit characters, and each uses empty space as

padding. Finally, we use the save() function in PIL and set the

format=’GIF’ to get the gif we want.

MR3-8 Benign Images Camouflage
This MR hides the toxic picture within many benign images.

For example, a malicious advertisement can be surrounded

by two unrelated and non-commercial images, generating a

long picture, which may bypass the malicious advertisement

detection model.

To implement this MR, we first randomly download some

landscape photos from the Internet as benign images. Then

use the NumPy library to combine the benign images with the

toxic image by using numpy.atleast_2d() and numpy.append()

functions.

E. Discussion

Combinations of Different MRs. According to our pilot

study, we find that some of the user input involved multiple

perturbations. And we can use a combination of different

MRs to generate diverse test cases. However, to control the

experimental variables and the test cases’ readability, we only

utilize one MR in each test case. We evaluate the impact of

MR combinations in Section IV-C.

Generalization to other software and languages. In this

work, we focus on content moderation software and implement

our MRs for the two most widely used languages: English and

TABLE II: Statistics of Toxic Datasets.

Dataset #Sent Lang Type Source

HateOffensive 24.8K English Abuse Twitter
Dirty 2.5K Chinese Abuse Weibo
SMSSpam 5.5k English Spam Grumbletext
SpamMessage 60K Chinese Spam Taobao
Sexting 0.5K English Porno Github
Midu 7.3K Chinese Porno Midu

Chinese. However, based on our design methodology, these

MRs can be easily generalized to other languages and to test

other NLP software, such as software for user review analysis

and machine translation.

IV. EVALUATION

To evaluate the effectiveness of OASIS, we use our method

to test three commercial software products and two SOTA

algorithms for content moderation. In this section, we try to

answer the following three Research Questions (RQs):

• RQ1: Are the test cases generated by OASIS toxic and

realistic?

• RQ2: Can OASIS find erroneous outputs returned by content

moderation software?

• RQ3: Can we utilize the test cases generated by OASIS to

improve the performance of content moderation?

A. Experimental Settings

1) Datasets: We used different kinds of datasets as seed

data to validate OASIS. Previous researchers have collected,

labeled, and released various types of data for research pur-

poses. In this paper, we choose the datasets with the highest

citations according to Google Scholar or those with the most

stars on GitHub. Important statistics of the six datasets are

shown in Table II.

• HateOffensive6 [33] is a GitHub repository containing

24,802 English hate speech sentences collected from Twitter.

• Dirty7 is a GitHub repository containing 2.5k Chinese toxic

sentences with abusive and sexual words.

• SMS Spam Collection8 is a set of tagged SMS messages. It

contains 5,574 SMS messages in English, tagged as being

ham (legitimate) or spam. The data was manually extracted

from the Grumbletext website, a UK forum in which cell

phone users make public claims about SMS spam messages.

• SpamMessage9 is a Github repository containing 60k mali-

cious advertisement messages in Chinese.

• Sexting10 is an English pornographic text dataset containing

537 sexual texting messages.

• Midu [34] is a Chinese novel paragraph dataset collected

from an online literature reading platform called MiDu

6https://github.com/t-davidson/hate-speech-and-offensive-language
7https://github.com/pokemonchw/Dirty
8https://www.kaggle.com/uciml/sms-spam-collection-dataset
9https://github.com/hrwhisper/SpamMessage
10https://github.com/mathigatti/sexting-dataset
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TABLE III: Software Version Information.

Software Version Lanch Date

Google builtin/latest 2022.12.16
Microsoft 2023.02.15 2023.02.15
Baidu 4.16.3 2022.03.25
Tencent 2022-07-27 2022.07.27
Alibaba 2022.06.15 2022.06.15

App11. It is a corpus with 62,876 paragraphs including 7,360

pornographic paragraphs and 55,516 normal paragraphs.

2) Software and Models Under Test: In the implementation,

we test 5 commercial software products provided by large

Internet companies, i.e., Google Cloud Vision 12, Microsoft

Azure Image Moderation13, Baidu Cloud Content Moderation
14, Tencent Cloud Image Auditing15 and Alibaba Cloud Con-

tent Safety16, all of which are the official content moderation

software from big technology companies with more than 100

millions of users. In particular, all the software products are the

latest version by March. 1st, 2023, when the experiments were

conducted. The version information of the software under test

is listed in Table III. Besides commercial software products,

we also test popular research models. Since there is no end-to-

end open-sourced model or publicly available benchmark for

toxic screenshot detection, we follow [35] to use an optical

character recognition (OCR) + text classification pipeline to

detect multi-modal toxicity. Specifically, we first adopt Tesser-

act OCR 17, the most famous open-source OCR toolkit in

Github with 50K stars, to extract the textual information from

the image. Then we adopt open-sourced text classification

models to detect the toxicity from the extracted text. we select

models from GitHub and Huggingface Model Zoo18 with the

highest downloads and stars in recent three years. For abuse

detection, we select HateXplain [36], a BERT model fine-

tuned on abuse detection datasets. Since there are no publicly

available spam and pornography detection models, we do not

test these research models in our experiments.

B. RQ1: Are the test cases generated by OASIS toxic and
realistic?

OASIS aims to generate test cases that are toxic and are as

realistic as the ones real-world users produce to evade moder-

ation. Thus, in this section, we evaluate whether the generated

test cases are still toxic (i.e., semantic-preserving) and whether

they are realistic. We conduct human annotation via crowd-

sourcing. We first generated 10 images with each perturbation

method, ending up with 210 test cases for annotation.

For each images, we asked the following two questions: (1)

From “1 strongly disagree” to “5 strongly agree”, how much

11http://www.midureader.com/
12https://cloud.google.com/vision/docs/detecting-safe-search
13https://learn.microsoft.com/en-us/azure/cognitive-services/content-

moderator/image-moderation-api
14https://cloud.baidu.com/doc/ANTIPORN/s/6ki012lqu
15https://cloud.tencent.com/document/product/1235
16https://help.aliyun.com/document_detail/70409.html
17https://github.com/tesseract-ocr/tesseract
18https://huggingface.co/models

do you regard the image as toxic content (abuse, pornographic,

or spam)? (2) From “1 strongly disagree” to “5 strongly

agree”, how much do you think the perturbation is realistic

in the sense that real users may use it?

We distribute the questionnaire and recruit 20 crowd work-

ers on Tencent Wenjuan19 with Bachelor’s degrees or above

and proficiency in both English and Chinese. Before annota-

tion, we provide instructions about the type of questions and

asked them to make subjective judgments in the annotation.

We do not provide additional training to avoid potential bias

from us.

Annotation results show that: 1) the generated test cases

are toxic, with an average score of 4.46; and 2) the generated

test cases are realistic, with an average score of 4.05. We

followed [37] to measure the inter-annotator agreement using

Randolph’s Kappa, obtaining a value of 0.81 for the test cases,

which indicates "almost perfect agreement".

Answer to RQ1: The test cases generated by OASIS

are toxic and realistic.

C. RQ2: Can OASIS find erroneous outputs returned by con-
tent moderation software?

OASIS aims to automatically generate test cases to find

potential bugs in current content moderation software. Hence,

in this section, we evaluate the number of bugs that OASIS

can find in the outputs of commercial content moderation

software and academic models. We first input all the original

sentences and obtain the classification label for each software

product or model under test. If an original sentence was

labeled as “non-toxic”, it would be filtered out because we

intend to find toxic contents that can evade moderation. The

remaining sentences will be regarded as seed sentences for test

case generation. Then, we conduct perturbations in OASIS’s

MRs on the seed sentences to generate test cases. Finally, we

use the generated test cases to validate the software products

and academic models. In particular, we check whether these

test cases were labeled as “toxic” or “non-toxic”. Since the

generated text should preserve the semantics of the seed

sentence, they are supposed to be labeled as “toxic”. If not,

the generated test cases evade the moderation of the software

products or academic models, indicating erroneous outputs. To

evaluate how well OASIS does on generating test cases that

trigger errors, we calculate Error Finding Rate (EFR), which

is defined as follows:

EFR =
the number of misclassified test cases

the number of generated test cases
∗ 100%.

The EFR results are shown in Table IV. In general, OASIS

achieves high EFRs. Using different MRs, OASIS achieves

up to 100% EFR when testing moderation software provided

by Google, Microsoft, Baidu, and Tencent and Alibaba, and

19https://wj.qq.com/
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TABLE IV: Error Finding Rates of commercial content moderation software, including Google Cloud(G), Microsoft Azure

(M), Alibaba Cloud (A), Baidu Cloud (B) and Tencent Cloud (T), and Academic Models (AM).

Level Perturbation Methods Abuse Detection Spam Detection Pron Detection

G M A B T AM A B T G M A B T

Char

Font Change 2 4 14 30 6 100 34 26 44 0 2 34 18 12
Font Color 4 40 4 8 0 86 8 0 12 4 40 20 4 0
Font Size 36 70 20 36 8 88 66 62 58 46 84 30 20 0
Strikethrough 78 50 92 0 100 100 96 0 100 84 30 88 4 100
Char Rotation 100 100 100 100 48 100 100 98 86 100 96 100 100 24

Paragraph

Circle 8 4 96 92 20 82 100 98 72 4 4 98 94 8
Vertical Direction 72 100 32 6 2 44 100 66 2 68 100 60 36 0
Right to left 8 4 48 22 26 58 58 98 88 14 2 64 40 42
Align-left-then-right 98 100 36 100 0 48 86 100 0 96 100 28 100 0
Word Cloud 96 18 100 100 100 100 98 100 100 92 2 100 100 100
Overlap 84 64 90 88 74 100 100 100 100 92 70 96 90 94
Benign Text Camouflage 98 94 98 2 48 100 100 96 100 100 94 100 6 34

Picture

Blurring 90 100 94 100 100 100 86 84 100 94 100 98 80 100
Crop 22 44 96 96 74 100 100 96 100 12 30 98 94 94
Mirror 100 86 98 100 100 100 100 100 100 100 88 100 100 100
Rotation 0 2 16 100 18 100 22 100 100 0 0 2 100 18
Scribbling 6 18 34 34 12 76 36 10 68 4 18 44 26 14
Distort 2 12 94 100 42 88 100 100 66 2 4 100 100 58
Watermark 70 4 12 6 32 60 32 10 88 72 0 40 14 32
To Gif 96 96 56 66 40 100 96 100 100 100 96 46 82 52
Benign Image Camouflage 100 0 72 10 6 46 100 6 0 100 0 54 14 0

Multi Perturb Combinations 58 68 94 98 34 100 100 100 70 78 86 94 100 36

it obtains up to 100% EFR when testing the SOTA academic

models.

One common concern about AI software testing is whether

the software performs well on existing test cases, which are

toxic inputs for content moderation. To address this concern,

we conduct a lightweight experiment to evaluate the effective-

ness of the software under test in detecting toxic contents from

the Internet. Since there is no publicly-available toxic (hateful,

porno, and malicious ad) image benchmark dataset (probably

due to the toxic nature), we manually collect a dataset with 50

hateful images, 50 porno images, and 50 ad images from the

Internet. The average detection rate of five content moderation

software is 97.8%, indicating the effectiveness of the software.

Thus, we think the high EFR achieved by OASIS is exciting.

Answer to RQ2: OASIS achieves up to 100% EFR

when testing moderation software provided by Google,

Microsoft, Baidu, and Tencent and Alibaba, and it

obtains up to 100% EFR when testing the SOTA

academic models.

D. RQ3: Can we utilize the test cases generated by OASIS to
improve the performance of content moderation?

We have demonstrated that OASIS can generate toxic and

realistic test cases that can evade the moderation of commer-

cial software products and SOTA academic models. As shown

in the “Abuse Detection” column in Table IV, OASIS achieves

high EFR on academic models for most of its MRs (e.g., 100%
for MR1-1 Font Change), indicating the generated test cases

can easily fool the models. The following substantial question

is: can these test cases be utilized to improve the performance

of content moderation? In other words, we hope to improve

model robustness. A natural thought is to retrain the models

using test cases generated by OASIS and check whether the

retrained models are more robust to various perturbations.

Specifically, we select the Abuse Detection task and use the

Hate-Offensive Dataset [33]. We split the dataset into three

parts: training set, validation set, and test set with the ratio of

6:2:2. We first fine-tune a pre-trained BERT model [14] on the

training set as our abuse detection model, which is a widely

used scheme for text classification. We adopt the default fine-

tuning settings suggested by Huggingface20. Specifically, we

train the model with 3 epochs, a learning rate of 5× 10−5, a

batch size of 16, 500 warming up steps, and a weight decay

of 0.01. We select the model with the highest accuracy on the

validation set and use OASIS to test its robustness.

Then, for retraining with OASIS, we conduct fine-tuning

with the failed test cases generated by OASIS. We generated

test cases with OASIS and randomly collected 1000 cases that

could fool the model. We first use the (image, text) pairs to

retrain the LSTM-based ORC model in tesseract, following its

official document 21. Then we label all the text as toxic content

and add the (text, label) pairs to the original training set to

retrain the BERT-based abuse detection model. The setting

of hyper-parameters is identical to that of regular training

mentioned above.

To validate the effectiveness of robust retraining with OA-

SIS, we use OASIS to test the model after robust retraining,

denoted as “Aug”, and compared the EFRs with the original

20https://huggingface.co/transformers/v3.2.0/custom_datasets.html
21https://github.com/tesseract-ocr/tesstrain/wiki
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TABLE V: Error Finding Rates (EFRs) on abusive language

detection models after retraining on the original test set and

the test cases generated by OASIS.

Level Perturb Methods Ori Aug

Char

Font Change 100 10

Font Color 86 8

Font Size 88 12

Strikethrough 100 12

Char Rotation 100 6

Para

Circle 82 16

Vertical Direction 44 4

Right to left 58 4

Align-left-then-right 48 8

Word Cloud 100 16

Overlap 100 18

Benign Text 100 28

Picture

Blurring 100 24

Crop 100 18

Mirror 100 36

Rotation 100 14

Scribbling 76 16

Distort 88 12

Watermark 60 8

Benign Image 46 4

model’s, denoted as “Ori”. The results are presented in Ta-

ble V. We can observe that the test case generated by OASIS

can largely improve the robustness of the content moderation

models in the sense that the EFRs have been significantly

reduced (e.g., from 100% to 10% for the MR1-1 Font Change).

In other words, after retraining with OASIS’s test cases, the

model is rarely fooled by all the perturbations. Moreover, the

model’s accuracy remains on par after robust training, which

means the retraining did not affect model performance on the

original test set.

We do not conduct experiments on improving industrial

models because industrial moderation only provides APIs

while robust retraining requires access to model internals.

However, we believe robust retraining with OASIS ’s test

cases would also improve the robustness of industrial models

because the underlying models are similar. In the future,

we can study how to improve the robustness of industrial

moderation by designing a preprocessing module to detect and

filter out/reverse-perturb intentionally-perturbed inputs.

Answer to RQ3: Test cases generated by OASIS can

effectively improve the robustness of academic content

moderation models.

V. DISCUSSION

A. Compared with AI Testing and Adversarial Attack Methods

In this section, we will illustrate the difference and advan-

tages of OASIS compared to other AI testing and adversarial

attack methods, which are also aiming to find the error in

image-input software.

First, OASIS is in a purely black-box setting while most of

the other methods are not. The majority of AI testing [38]–

[40], [40]–[43] and adversarial attack methods [44]–[47] are

in a white-box setting where the deployed model, e.g., inputs,

model architecture, and specific model parameter values, are

known. These works utilize the neuron coverage or gradient to

generate or select test cases. Another thread of work [48], [49]

is in a black-box setting, where not only the output labels but

also the confidence scores are needed. However, both of the

above settings are not practical in testing content moderation

software, where neither the model details nor the confidence

scores are provided.

Second, OASIS is more comprehensive than previous black-

box testing and adversarial attack methods. For example,

DeepTest [38] also adopted some picture-level perturbations,

such as Crop, Rotation, Blurring, and Distort, to test the

Neural-Network-based Autonomous Cars. DeepRoad [32] ap-

plied the Generative Adversarial Networks to generate differ-

ent real-world weather scenes. Kurakin et al. [50] found that

the adversarial examples in physical world scenarios, such as

printouts of photos or cropped photos, can fool the image

classification models. Athalye et al. [51] synthesized real-

world adversarial examples by rescaling, rotation, lightening or

darkening the original photos. Other query-based adversarial

attack methods [52], [53] aims to generate invisible pertur-

bations to input images. While OASIS contains 21 kinds of

perturbations summarized from our pilot study on real user

inputs.

B. Threats to Validity

The validity of our study may be subject to some threats.

The first threat is that the test cases generated by OASIS

after many perturbations may become “non-toxic”, leading to

false positives. To relieve this threat, we conducted a user

study to validate whether the generated test cases are toxic or

not. We further asked the annotators to label whether the test

cases reflect inputs from real users. The results show that the

generated test cases are toxic and realistic. The second threat is

whether the content moderation software products we test are

good and representative of what the industry uses. To relieve

this issue, we evaluated the effectiveness of these products.

The average detection rate of five content moderation software

products is 97.8%, indicating their effectiveness. As for repre-

sentativeness, all five commercial software products are paid

cloud services provided by the could platform from the big

companies. Moderation services and other cloud services have

become an important source of income for them. Meanwhile,

a huge amount of downstream companies and users are using

paid services provided by these companies. The customer list
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can be seen from Google22, Amazon23 and Baidu24. Thus,

we believe the moderation software studied in our paper has

a significant impact on real users and is representative of

industry practice. The third threat is that our OASIS could

be outdated with the bypass techniques evolving. To reduce

this threat, we provide a comprehensive workflow: study the

user behaviors, summarize and design the MRs, generate test

cases, and use failure cases to improve the robustness. If other

bypass techniques were proposed, people could follow this

workflow to design new MRs. We also believe that automated

MR generation is a promising and useful direction. This line of

research mainly focuses on automated generation of a specific

kind of MRs (e.g., polynomial MRs [54], [55] or automated

MR generation leveraging software redundancy [56]. Since

automated MR generation for content moderation software

faces different challenges, we regard it as an important future

work.

VI. RELATED WORK

A. Testing AI Software

AI software has enabled a diversity of applications, for

example, autonomous driving and face recognition. Neverthe-

less, AI-based models are known to be of low robustness,

which can generate undesired outputs causing severe accidents

[57], [58]. Researchers have designed diverse approaches to

generating adversarial examples or test cases that can fool AI

software [59]–[63]. At the same time, researchers have also

proposed algorithms to improve AI software’s robustness, for

example, the robust training mechanism [64]–[67] and network

debugging [68], [69].

NLP software has become a major application of AI soft-

ware in recent years. Sentiment analysis [70], [71] enables

online review recommendation; Sequence-to-sequence models

make substantial progress in machine translation [72]–[74] and

text-to-speech synthesis [75], [76]. Both software engineering

and NLP researchers have started to explore the robustness of

NLP software [77]–[79]. Specifically, deep learning models

can help generate test cases for NLP software [80]. Machine

translation can be tested under a word-replacement-based ap-

proach [81]. Other NLP software, such as sentiment analysis,

duplicate question answering, and machine comprehension

has also been explored [82], [83]. Our paper studies the

robustness of another widely-used AI software, namely multi-

modal content moderation, which has not been systematically

discussed.

B. Testing Content Moderation Software

Previous literature on the robustness of content modera-

tion applications involves a diverse range of areas, including

software engineering, natural language processing, computer

vision and speech signal processing. These papers have spared

effort on measuring the reliability of textual content moder-

ation software [20], [22], [84]. For example, Wang et al. [2]

22https://cloud.google.com/customers#/products=Data_Analytics
23https://aws.amazon.com/machine-learning/customers/
24https://cloud.baidu.com/partner/plan.html#search

proposed a metamorphic testing framework for textual content

moderation software and designed 11 metamorphic relations

to find failure cases. Rottger et al. [85] proposed a suite of

functional tests, with 29 model functionalities, for hate speech

detection models.

However, all of the above papers focused on whether the

content moderation software is robust to human-intentional

perturbation to text. Our work, on the other hand, pays

attention to a new paradigm of detecting the images that

potentially contain toxic texts, which has not been studied

before.

C. Testing Optical Character Recognition System

Another line of work that is related to this paper is the

robustness of the Optical Character Recognition (OCR) sys-

tem, since a straightforward idea to extract texts from images

is using OCR systems. Previous work mainly focused on

adopting the adversarial attack algorithm on OCR models,

either white-box [86]–[88] or black-box [89], aiming to find a

small and imperceptible perturbation to add on the image so

that the OCR model cannot recognize the text in the image

correctly. Besides, Chen and Xu [90] studied the adversarial

robustness of the OCR model to watermarks.

Considering OASIS’s comprehensiveness, we believe it still

contributes a lot compared to the OCR testing papers. Among

our MRs, only two are similar to the perturbations in these

papers. To the best of our knowledge, the remaining 19 MRs

in OASIS have not been explored yet in previous literature.

Additionally, we derive the MRs with our pilot study on real

user inputs, which distinguish our OASIS from related work

that leverages adversarial attack algorithms to add perturba-

tions. Last but not least, most existing papers only evaluated

the proposed methods on academic models, while in this paper

we also assess OASIS on three commercial content moderation

products. Thus, we believe OASIS is the first comprehensive

testing framework for textual toxic contents spread through

images.

VII. CONCLUSION

This paper proposed a comprehensive testing framework

OASIS for validating content moderation software. Unlike ex-

isting testing or adversarial attack technique for NLP software,

which only provide common perturbations and cover a very

limited set of toxic inputs that malicious users may produce,

OASIS contains 21 metamorphic relations that are mainly

inspired by a pilot study. In addition, all the metamorphic

relations in OASIS have been implemented for two languages:

English and Chinese. Our evaluation shows that the test cases

generated by OASIS can easily evade the moderation of two

SOTA moderation algorithms and commercial content moder-

ation software provided by Google, Microsoft, Baidu, Tencent,

and Alibaba. The test cases have been utilized to retrain the

algorithms, which exhibited substantial improvement in model

robustness while maintaining identical accuracy on the original

test set. We believe that this work is the crucial first step toward

systematic testing of content moderation software.
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