
Revealing Performance Issues in Server-side
WebAssembly Runtimes via Differential Testing

Shuyao Jiang∗, Ruiying Zeng†‡, Zihao Rao†‡, Jiazhen Gu∗, Yangfan Zhou†‡, and Michael R. Lyu∗
∗ Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China

† School of Computer Science, Fudan University, Shanghai, China
‡ Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China

syjiang21@cse.cuhk.edu.hk, {ryzeng22, zhrao23}@m.fudan.edu.cn,

jiazhengu@cuhk.edu.hk, zyf@fudan.edu.cn, lyu@cse.cuhk.edu.hk

Abstract—WebAssembly (Wasm) is a bytecode format origi-
nally serving as a compilation target for Web applications. It
has recently been used increasingly on the server side, e.g.,
providing a safer, faster, and more portable alternative to Linux
containers. With the popularity of server-side Wasm applications,
it is essential to study performance issues (i.e., abnormal latency)
in Wasm runtimes, as they may cause a significant impact on
server-side applications. However, there is still a lack of attention
to performance issues in server-side Wasm runtimes. In this
paper, we design a novel differential testing approach WarpDiff
to identify performance issues in server-side Wasm runtimes.
The key insight is that in normal cases, the execution time of
the same test case on different Wasm runtimes should follow an
oracle ratio. We identify abnormal cases where the execution time
ratio significantly deviates from the oracle ratio and subsequently
locate the Wasm runtimes that cause the performance issues. We
apply WarpDiff to test five popular server-side Wasm runtimes
using 123 test cases from the LLVM test suite and demonstrate
the top 10 abnormal cases we identified. We further conduct an
in-depth analysis of these abnormal cases and summarize seven
performance issues, all of which have been confirmed by the
developers. We hope our work can inspire future investigation
on improving Wasm runtime implementation and thus promoting
the development of server-side Wasm applications.

Index Terms—WebAssembly, performance issues, differential
testing

I. INTRODUCTION

WebAssembly (abbreviated Wasm) is a static low-level

bytecode format designed as a portable compilation target for

the Web [1]–[3]. Wasm bytecodes are fast to compile and run,

portable across browsers and architectures, and provide guar-

antees of type and memory safety. Such characteristics make

Wasm to be increasingly adopted outside the Web context.

In particular, Wasm has been considered a better isolation

mechanism than containers in cloud environments [4]–[8],

since it provides a higher level of abstraction and consumes

much fewer resources than typical containers. A state-of-the-

art application is Docker+Wasm [9], a special build that makes

it possible to run Wasm containers with Docker [10] using

the WasmEdge runtime [11]. Wasm has also been used in

other server-side applications, including microcontrollers [12],

[13], trusted execution environments (TEEs) [14] and smart

contracts [15]–[17].

With the increase of server-side Wasm applications, study-

ing performance issues of Wasm on the server side becomes

highly essential. On the one hand, performance degradation

(e.g., latency) in server-side applications usually has a more

significant impact than in Web applications. A short latency

may not be easily perceived by users in Web applications.

But, in some performance-sensitive server applications, it may

lead to a decrease in service throughput and cause unexpected

economic losses. Our motivating experiment shows that the la-

tency of Wasm runtimes can significantly affect the throughput

of some services (the details will be elaborated in Section II).

On the other hand, server-side Wasm applications typically run

in a standalone runtime system (e.g., WasmEdge [11]). Unlike

major browsers (e.g., Chrome, Safari and Firefox) that have

been developed for decades and have powerful optimization

mechanisms, existing standalone Wasm runtimes are still in

the early development stage. Therefore, performance issues of

Wasm runtimes are more likely to occur on the server side

than on the Web.

However, there is still a lack of research in this area.

Existing studies on Wasm performance mainly conducted on

the Web environment [18]–[23], while the attention to the

server-side Wasm performance is still limited [24]. Moreover,

existing research only focuses on the systematic performance

gaps between Wasm and native code or JavaScript but lacks

attention to performance issues in Wasm runtimes. In particu-

lar, performance issues refer to the abnormal latency occurring

in the Wasm runtimes when running specific applications.

Such performance issues can usually reveal some inappropriate

mechanisms (e.g., code optimization, code execution strategy)

of specific Wasm runtimes. Finding performance issues in

Wasm runtimes will significantly facilitate the improvement

of runtime implementation.

To this end, this paper aims to reveal performance issues

in existing standalone Wasm runtimes. However, there are

two main challenges to this task. First, there are currently

a lot of standalone Wasm runtime implementations (more

than 30 Wasm runtimes are held on Github [25]). It is hard

to analyze each runtime individually. The second challenge

is determining the oracle of performance issues, i.e., there

is exactly a performance issue in a Wasm runtime. Unlike

semantic issues causing failure execution or wrong outputs,

there is no ground truth of the performance indicator (i.e.,
execution time of test cases). Furthermore, a longer execution

661

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00088

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

08
8

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

time does not directly indicate a performance issue because

this may be caused by the features of the test case instead of

the runtime implementation.

To address the first challenge, we adopt the idea of differ-

ential testing [26]–[29], a typical software testing technique

for detecting bugs in a series of comparable systems. The

idea is to observe the inconsistency in the outputs of these

comparable systems given the same input, which is suitable for

testing multiple Wasm runtimes. However, traditional differen-

tial testing approaches only target semantic bugs, which cannot

be directly applied to performance issues. It is infeasible to

identify performance issues simply based on the inconsistency

in execution time of the same test case since there are

systematic performance gaps among different Wasm runtimes.

Therefore, to address the second challenge, we propose a

novel differential testing approach WarpDiff (Wasm Runtime
Performance Differential Testing) for identifying performance

issues in Wasm runtimes. The idea is that in normal cases,

the execution time of the same test case on different Wasm

runtimes should follow a stable ratio, which we call oracle
ratio. The oracle ratio reflects the systematic performance

gaps among different Wasm runtimes. Thus, for each test case,

we first observe the execution time ratio on different Wasm

runtimes, then identify an abnormal case in which this ratio

significantly deviates from the oracle ratio. For the abnormal

case, we further locate which runtime causes the deviation to

identify the performance issue.

To evaluate the effectiveness of WarpDiff , we apply it to

identify performance issues in five popular standalone Wasm

runtimes (i.e., Wasmer [30], Wasmtime [31], Wasm3 [32],

WasmEdge [11], and WAMR [33]) with different settings. We

collect 123 C/C++ programs from the LLVM test suite [34]

as our test cases. We compile the test programs to Wasm

code by Emscripten [35], then run the Wasm code under each

runtime setting and collect their execution time. Based on

these data, we identify performance issues in these runtimes

by our differential testing approach. We report the top 10

abnormal cases and summarize seven performance issues in

four runtimes. We further conduct a comprehensive case

analysis of these performance issues to reveal their causes.

We report these issues to the developers of the corresponding

Wasm runtimes, all of which have been confirmed. Our code

and experiment results are all available1.

The main contributions of this paper are as follows:

• We identify the significance of performance issues in

server-side Wasm applications, and we conduct the first

study on revealing performance issues in server-side

Wasm runtimes.

• We propose a novel and effective differential testing

approach WarpDiff for identifying performance issues in

server-side Wasm runtimes, and we apply it on real-world

Wasm runtimes.

• We reveal seven unknown performance issues in four

Wasm runtimes and further explain their causes with

1https://figshare.com/s/f75ddc64d98669ea3abb

comprehensive case analysis. All the issues have been

confirmed by the developers.

The rest of this paper is organized as follows. Section II

introduces the background of server-side Wasm and illustrates

the motivation of our work. Section III describes the design

and implementation of WarpDiff . Section IV presents our

evaluation of WarpDiff and analysis of identified performance

issues. In Section V, we discuss threats to validity and future

work. We describe the related work in Section VI and finally

conclude this work in Section VII.

II. BACKGROUND AND MOTIVATION

A. Wasm on the Server Side

Wasm is a low-level bytecode language originally intended

for client-side execution in the Web [1]–[3]. It serves as the

compilation target for applications written in other program-

ming languages such as C/C++, Rust, and Go. Wasm gains

popularity in the Web since it is memory-safe, cross-platform,

and provides near-native performance [36]. Such attributes

also make Wasm to be increasingly used on the server side. In

particular, Wasm is a promising solution for running server-

side applications in cloud environments [4]–[8]. Compared

with the traditional Linux containers, Wasm runtimes are safer

since they have fewer attack surfaces. Wasm applications are

portable across operating systems and CPU architectures. They

can also achieve near-native performance by AOT (ahead-of-

time) compilation. Furthermore, Wasm consumes much less

memory and fewer resources than Linux containers. In late

2022, Docker [10] announced its support for Wasm with

WasmEdge runtime [11] called Docker+Wasm [9]. This news

means that the application of Wasm on the server side has

come into practice.

The operating mechanism of Wasm on the server side is

different from that in browsers. To deploy Wasm applications,

we first need to compile the source programs written in high-

level languages to Wasm bytecode by specific compilers. For

example, Emscripten [35] is a popular compiler that compiles

C/C++ to Wasm. For Web applications, Emscripten generates

Wasm module and JavaScript glue code. During the execution,

the JavaScript glue code would call into the browser engine

(e.g., V8 in Chrome), which would then talk to the operating

system. However, Wasm applications outside browsers need a

new way to communicate with the operating system, the We-

bAssembly System Interface (WASI) [37]. Without a browser

engine as runtime, server-side Wasm applications need to

run in a standalone runtime system with WASI support. The

standalone Wasm runtime works as a sandbox on the host

machine, making Wasm applications portable across different

platforms. Figure 1 shows the typical workflow of a server-side

Wasm application.

With the increase of server-side Wasm applications, many

standalone Wasm runtimes have been developed. Currently,

more than 30 standalone Wasm runtimes are held on

GitHub [25]. One representative runtime is Wasmer [30],

which offers exceedingly lightweight containers executable

662

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Typical workflow of a server-side Wasm application.

from cloud, desktop, or IOT devices. WasmEdge [11] is

designed by CNCF [38] and integrated with Docker. Wasm-

time [31] and WAMR [33] are two other popular runtimes

proposed by Bytecode Alliance [39]. The above runtimes all

support AOT compilation. There are also runtimes that execute

Wasm code in interpreter mode, such as Wasm3 [32].

However, existing standalone Wasm runtimes are still in

the early development stage. Unlike major browsers (e.g.,
Chrome, Safari and Firefox) developed for several decades,

standalone Wasm runtimes are far from mature and more likely

to contain issues, especially performance issues. Performance

issues are usually harder to reveal during the testing period

than semantic issues, but they can have serious adverse impacts

on the application.

B. Impact of Performance Issues

High performance is a crucial design criterion of Wasm,

and it is one of the attributes that make Wasm popular on

both the client side and the server side. However, sometimes

there may be performance issues (i.e., abnormal latency)

occurring in Wasm runtimes, which is harmful to the reliability

of the system. The impact of performance issues in Wasm

runtimes on the server side is even more significant than

that on the Web. Web applications may not be sensitive to

a short runtime latency since they usually have client-side I/O

much slower than the runtime latency. On the contrary, server-

side applications are usually more performance-sensitive. For

example, in some server-side applications with high through-

put requirements (e.g., network service), runtime latency may

affect the throughput of the application and causes unexpected

economic losses.

To study the impact of performance issues in server-

side Wasm applications, we conduct a motivating experiment

to measure the correlation between Wasm runtime latency

and service throughput. Specifically, we select a real-world

Wasm microservice [40] with MySQL database backend as

our target application. This microservice is a representative

server-side Wasm application supported by Docker+Wasm,

with WasmEdge as the standalone runtime. To simulate the

performance degradation in Wasm runtime, we insert a loop

(a) 10,000 requests (b) 50,000 requests

Fig. 2. The impact of WasmEdge runtime latency on service throughput under
different concurrency and the total number of requests.

of numerical computing into the request-handling function

of the target service. When receiving a request, the service

will execute this loop before handling the request. In this

way, we can introduce runtime latency without changing the

functionality of the target service. We can also control the

latency time by changing the number of iterations in the

loop. During the experiment, we continuously send requests

to the target service from the client machine, and we measure

the throughput of the service by ab [41], a standard HTTP

server benchmarking tool. We fully occupy the CPU during

the request handling to ensure the accuracy of the measured

throughput.

Figure 2 shows the correlation between the runtime latency

of WasmEdge and service throughput under different con-

currency and the total number of requests. To eliminate the

random error of the measurement, we perform seven replicate

experiments for each setting and show the average results.

We can find that the runtime latency will cause a severe drop

in service throughput under different settings. Specifically, a

short latency of 30ms will result in a 20% to 50% drop in

service throughput, which is disastrous for high-throughput

demanding applications.

Although performance issues can significantly affect the

reliability of server-side Wasm applications, there is still a

lack of research on performance issues in server-side Wasm

runtimes. Existing studies only focus on the systematic perfor-

mance gaps between Wasm and native code or JavaScript [18]–

[24]. To the best of knowledge, none of them has studied

performance issues. Therefore, in this work, we aim to reveal

performance issues in existing server-side standalone Wasm

runtimes and thus facilitate the improvement of Wasm runtime

implementation.

III. APPROACH

A. Overview

Finding performance issues in standalone Wasm runtimes

is a challenging task. Specifically, there are two main chal-

lenges. First, as we have mentioned above, there are many

different implementations of standalone Wasm runtimes. It is

time-consuming and labor-intensive to analyze each runtime

separately. Second, it is hard to determine the oracle of

performance issues, i.e., how to indicate the occurrence of

a performance issue. Unlike semantic issues that usually have

663

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Overall framework of WarpDiff for identifying performance issues in different standalone Wasm runtimes.

a ground truth, performance issues cannot be identified by

clear criteria. We cannot identify a performance issue simply

by observing the execution time of a test case on a Wasm

runtime, because the execution time will be affected by the

features of the test case.

Therefore, to address the two challenges, we design a

novel and effective approach WarpDiff to identify performance

issues in different standalone Wasm runtimes. We introduce

the idea of differential testing [26]–[29] to solve the first

challenge. Differential testing is a widely-used software testing

technique for detecting bugs in multiple comparable systems,

by providing the same input to these systems and observing

the inconsistency in their execution. It is a suitable solution

for our task of testing multiple Wasm runtimes. However,

existing differential testing approaches only target at semantic

bugs, which cannot be directly applied to identify performance

issues. The challenge of determining the oracle of performance

issues still needs to be resolved. To address this challenge,

we introduce a new oracle in WarpDiff , which is effective

in identifying performance issues in different Wasm runtimes.

The key insight is that, in normal cases, the execution time of

the same test case on different Wasm runtimes will follow a

stable ratio, which we call oracle ratio. Although the execution

time of a test case on different Wasm runtimes will be affected

by the features of this case and the systematic performance

gaps among different runtimes, the oracle ratio can always

be an indicator of normal performance. Therefore, we can

identify an abnormal case in which the execution time ratio on

different runtimes significantly deviates from the oracle ratio.

The abnormal cases can indicate performance issues in some

Wasm runtimes, and we further locate the specific runtime in

which the performance issues occurred.

Figure 3 illustrates the overall framework of WarpDiff for

identifying performance issues in different standalone Wasm

runtimes. Specifically, our approach can be divided into three

phases: (1) Performance data collection. We execute each test

case on multiple Wasm runtimes and collect the performance

data; (2) Abnormal case identification. We determine the

oracle ratio based on the performance data of each test case

and identify abnormal cases; (3) Performance issue location.

We analyze the performance data of the abnormal cases to

locate the Wasm runtime with performance issues. In the

following subsections, we will elaborate on the details of our

design and implementation of these three phases.

B. Performance Data Collection

In order to identify performance issues in different stan-

dalone Wasm runtimes, we first need to collect performance

data of various test cases on these runtimes. This phase can be

further divided into three sub-steps: test case selection, Wasm

code execution, and performance data recording.

For test case selection, we need to consider the types of

source programs that can be well supported by standalone

Wasm runtimes. Currently, Wasm has relatively complete

support for source programs written in C/C++ and Rust [36].

Therefore, it is appropriate to select C/C++ or Rust programs

as test cases. Furthermore, we should select test cases that

are more likely to trigger performance issues in Wasm run-

times, e.g., source programs from some benchmark suites for

performance testing.

For each test case, we compile the source program to

Wasm code and then execute it on different standalone Wasm

runtimes. In this step, we need to ensure the correctness of the

execution results of the test cases. We exclude test cases where

the execution result is incorrect or a runtime error occurs

during execution, because it is meaningless to evaluate the

performance of such cases. In order to eliminate random errors

of code execution, we execute each test case multiple times

on each runtime and record the average value of performance

data. The number of executions can be customized according

to the requirements for test efficiency.

During the execution of a test case, we need to record the

performance data of this test case on each Wasm runtime for

differential testing. In this step, we need to consider what

performance data to record. The most intuitive idea is that

for each test case, record the time of the whole process of its

Wasm code running on each runtime. But in order to better

locate and analyze the identified performance issues, we record

664

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

the performance data with finer granularity. Specifically, the

whole running process of Wasm code on a runtime consists

of three stages: runtime initialization, Wasm code loading,

and code execution. Runtime initialization is where the Wasm

runtime starts and prepares the code execution environment.

Then in the Wasm code loading stage, the runtimes in AOT

mode will first compile the Wasm code to executable binary,

while the runtimes in interpreter mode just load the Wasm

code into memory. Finally, the runtime performs code exe-

cution. Therefore, for each test case, we record the time of

these three stages when it runs on each Wasm runtime. For

implementation, we use the Linux perf tool [42] to find the

start and end positions of these three stages and record the

time stamps during the test case run. We also record the total

time of the whole running process.

C. Abnormal Case Identification

In this phase, we aim to identify abnormal test cases

based on the performance data we have collected. For the

convenience of data analysis, we only take the total time as the

performance indicator in this phase (For consistency, we refer

to “total time” as “execution time” in the following). The time

of the three running stages will be used for further analysis of

the identified performance issues.

As we have mentioned above, the key idea of identifying

abnormal cases is to observe the execution time ratio on

different Wasm runtimes for each case, and the cases where

this ratio significantly deviates from the oracle ratio are

considered abnormal cases. To this end, we need to solve two

problems: (1) represent the execution time ratio for each test

case; (2) determine the oracle ratio.

For the first problem, an appropriate solution is test case

vectorization. Specifically, for each test case, we create a

time vector to represent the execution time ratio according

to the execution time of this case on each Wasm runtime. For

example, if the execution time of case x on 3 Wasm runtimes

is 1s, 2s, and 3s respectively, the time vector of case x can be

represented as [1, 2, 3]. However, the time vectors of different

test cases cannot be directly compared since the execution time

is related to the features of the case itself. Therefore, to make

the time vectors of different test cases comparable, we need to

normalize the time vectors for all test cases. In this way, the

difference in execution time caused by different test cases can

be eliminated. Test cases with the same execution time ratio

will have the same normalized time vectors. For example, the

time vector [2, 4, 6] of case y will be the same as that of case

x after normalization.

For the second problem, the ideal solution is that we

already know the oracle ratio. Unfortunately, the oracle ratio
cannot be predicted in advance, since the normal performance

of each Wasm runtime is currently unknown. The current

optimal solution to this problem is to estimate the oracle ratio
according to the execution time ratio of the existing test cases.

Specifically, we have mapped the execution time ratio of all the

test cases to the same search space by test case vectorization

and normalization. We treat the center (i.e., mean vector) of

all the normalized time vectors as the vector of the estimated

oracle ratio. Assuming that most test cases are normal cases

where the execution time ratio is similar to the oracle ratio,

when there are enough test cases, our estimated oracle ratio
will approach the ideal oracle ratio.

Thus, for each test case, we can calculate the distance

between its normalized time vector and the vector of the

estimated oracle ratio in the search space. Although the

estimated oracle ratio will be affected by the abnormal cases,

in general, a greater distance means a higher anomaly degree

for a test case. Therefore, we rank all the test cases according

to this distance, and we identify abnormal cases from the top

of this ranking.

D. Performance Issue Location

After we find an abnormal case, we need to locate which

Wasm runtime caused this anomaly, i.e., in which runtime

a performance issue occurred. To this end, we analyze the

impact of each Wasm runtime on this anomaly respectively,

based on the execution time of this abnormal case on each

runtime. According to our strategy for identifying abnormal

cases, the time vector of an abnormal case is relatively far

from the vector of the estimated oracle ratio. This distance is

mainly caused by the abnormal execution time of this case on

some Wasm runtimes, i.e., some dimensions with an abnormal

value in the time vector. Therefore, we can evaluate the effect

of the value of each dimension on this distance separately.

Specifically, we adjust the value of one dimension to make the

time vector closest to the vector of the estimated oracle ratio.

We repeat this operation for each dimension and record the

value that needs to be adjusted, which we call deviation degree.

This deviation degree reflects the impact of the corresponding

Wasm runtime on this abnormal case. The larger deviation
degree means that this anomaly is more likely to be caused

by this runtime. Thus, we treat the Wasm runtime with the

largest deviation degree as the issue-related runtime.

Hence, for each abnormal case, we can locate the Wasm

runtime in which the performance issue occurred by the above

solution. It is worth noting that WarpDiff is only a heuristic

approach, and there may be other solutions for this problem.

We just propose a feasible solution and hope our work can

inspire more refined approaches in the future. We will show

the effectiveness of WarpDiff in the next section.

IV. EVALUATION AND ANALYSIS

To evaluate the effectiveness of WarpDiff , we apply it on

several real-world standalone Wasm runtimes. In this section,

we aim to answer the following research questions:

• RQ1: How does WarpDiff perform in identifying perfor-

mance issues in real-world standalone Wasm runtimes?

• RQ2: What are the causes of the identified performance

issues, and how can we verify them?

• RQ3: What is the computational overhead of differential

testing in WarpDiff ?

665

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

TABLE I
INFORMATION OF OUR TEST CASES FROM THE LLVM TEST SUITE.

Benchmark #Program #LOC* Benchmark #Program #LOC*

Adobe-C++ 6 1,615 Misc-C++ 7 1,322
BenchmarkGame 8 486 Misc-C++-EH 1 16,817
CoyoteBench 4 1,471 Polybench 30 4,364
Dhrystone 2 642 Shootout 14 573
Linpack 1 693 Shootout-C++ 25 783
McGill 4 956 SmallPT 1 96
Misc 27 5,052 Stanford 11 1,135

Total 141 36,005

* LOC: lines of code.

A. Experiment Settings

Test Case Selection. As described in Section III, it is

appropriate to select test cases written in source languages that

are well supported by Wasm and that are more likely to trigger

performance issues. Therefore, we select 141 C/C++ programs

with a total of over 30,000 lines of code from the LLVM

test suite [34], which contains various benchmark programs

for evaluating LLVM compilation performance. We select the

test cases from the SingleSource/Benchmarks/ directory of the

test suite, since the programs in this directory can be directly

compiled to Wasm code without modification. Table I shows

the information of our selected test cases, consisting of 14

benchmarks. One of the benchmarks is Polybench [43], which

is a widely-used benchmark suite for Wasm performance

evaluation in previous studies [18], [19], [24]. We compile

the source programs to Wasm code by Emscripten (version

3.1.24) with the optimization level of O2. We exclude those

test cases that cannot be compiled successfully or a runtime

error occurs during execution. Finally, we collect the results

on the remaining 123 test cases.

Wasm Runtime Selection. Although there are many server-

side standalone Wasm runtimes, it is better to select some

representative Wasm runtimes as test targets. Since most

standalone Wasm runtimes are open source on GitHub, we

select target runtimes based on their popularity and activity on

Github. For popularity, we select runtimes with the top number

of Github stars. For activity, we exclude those unmaintained

runtimes, i.e., the last commit was more than one year ago. Fi-

nally, we select five representative standalone Wasm runtimes:

Wasmer [30], Wasmtime [31], Wasm3 [32], WasmEdge [11],

and WebAssembly Micro Runtime (WAMR) [33]. Table II

shows the information of these Wasm runtimes. We select

the latest version of each runtime for testing. For Wasmer,

Wasmtime, and WasmEdge, we test them under AOT mode.

Although WasmEdge also provides interpreter mode, the per-

formance is extremely poor, so we only test WasmEdge with

AOT mode. For Wasm3, we test it on the default interpreter

mode and another setting with –compile option, where the lazy

optimization of Wasm code will be disabled. For WAMR, we

test it on both the interpreter mode and AOT mode. Hence,

we finally have seven runtime settings.

Experiment Environment. All our experiments are running

on a server with an Intel(R) Core(TM) i5-9500T 2.20GHz

TABLE II
INFORMATION OF WASM RUNTIMES FOR TESTING.

Runtime #GitHub Stars* Test Version Execution Mode

Wasmer 15.1k 3.2.0 AOT
Wasmtime 12.1k cli 8.0.0 AOT
Wasm3 6k v0.5.0 Interpreter
WasmEdge 5.9k 0.12.0 AOT
WAMR 3.7k 1.1.2 Interpreter/AOT

* Statistics of Github stars is by April 2023.

CPU and 32GB DDR4 memory. The operating system of the

server is 64-bit Ubuntu 20.04.1 SMP with Linux kernel version

of 5.15.0-56-generic.

B. RQ1: Results of Identifying Performance Issues

We run each test case 10 times under each runtime setting

and collect the performance data averaged over the 10 runs.

Then we apply WarpDiff on all runtime settings and obtain

the results. According to our approach, we identify abnormal

cases and then locate performance issues in specific Wasm

runtimes based on their deviation degree in each case. The

larger deviation degree indicates that the case performance

on the corresponding runtime is with the higher anomaly.

Therefore, we rank the identified abnormal cases based on the

descending order of the deviation degree of the issue-related

runtime. Table III shows the results of the top 10 abnormal

cases. We only report the top 10 abnormal cases since we just

rank the cases without setting a specific threshold for abnormal

cases. We design this strategy because our goal is to reveal

some unknown performance issues in existing standalone

Wasm runtimes, instead of finding all the performance issues.

Actually, it is impossible to find all the performance issues,

because there is currently no ground truth of performance

issues that can be verified.

The values in Table III represent the deviation degree of

each Wasm runtime setting on the top 10 abnormal cases. A

positive value means that the execution time of this case on

this Wasm runtime is higher than the expected value according

to the oracle ratio, while a negative value means that the

execution time is lower than the expected value. Since we

aim to identify performance issues (i.e., the execution time

is abnormally higher than expected), we only focus on the

deviation degree with positive values. For each abnormal case,

the issue-related runtime is marked with a gray background

in the table. We can observe that among the 10 abnormal

cases, four cases are caused by WAMR with interpreter mode,

and the other six cases are caused by Wasmer, Wasmtime and

WasmEdge (two cases on each runtime). There are also other

abnormal cases caused by Wasm3, which are not shown in the

table.

The results indicate that performance issues are common in

existing popular standalone Wasm runtimes, which need our

attention. We will further conduct a detailed case analysis to

reveal the causes of these performance issues.

666

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

TABLE III
Deviation degree OF EACH RUNTIME SETTING ON THE TOP 10 ABNORMAL CASES.

Case Wasmer Wasmtime Wasm3 Wasm3 compile WasmEdge WAMR WAMR AOT

BenchmarkGame/fasta.c 0.702 0.113 -0.248 -0.244 0.082 -0.270 0.081

Shootout/methcall.c -0.051 -0.028 -0.164 -0.164 0.502 0.044 -0.014

Shootout-C++/methcall.cpp -0.036 -0.031 -0.126 -0.128 0.415 0.072 -0.009

Shootout/random.c 0.075 0.315 -0.060 -0.060 0.079 -0.026 0.101

Shootout-C++/random.cpp 0.096 0.309 -0.063 -0.063 0.098 -0.036 0.121

Polybench/2mm.c -0.038 -0.039 -0.151 -0.149 -0.035 0.268 0.003

Polybench/gemm.c -0.038 -0.041 -0.145 -0.153 -0.036 0.267 0.007

Polybench/3mm.c -0.037 -0.040 -0.145 -0.140 -0.034 0.261 0.005

Misc/flops-8.c -0.019 0.012 -0.142 -0.142 -0.009 0.251 0.015

Misc/flops-4.c 0.234 -0.003 -0.127 -0.127 -0.019 0.168 0.001

C. RQ2: Case Analysis

In order to verify the identified performance issues and

further facilitate the improvement of Wasm runtime implemen-

tation, it is critical to analyze the causes of these performance

issues. Unfortunately, since the performance issues we iden-

tified are all unknown issues, there are no ground truths that

can be directly used for verification. Therefore, we conduct

a manual analysis of these abnormal cases. Specifically, we

analyze each case in three steps: abnormal stage location, fine-
grained cause location, and cause verification.

In the first step, we locate the running stage where the

abnormal latency occurs. As mentioned in Section III, we

have collected the time of the three running stages (runtime

initialization, Wasm code loading, and code execution) for

each test case. Thus, we can locate the abnormal stage based

on these performance data. Similarly, we apply WarpDiff on

the data of these three stages respectively and identify the

abnormal stage where the issue-related runtime (e.g., for case

fasta.c, the issue-related runtime is Wasmer) holds the

largest deviation degree. We find that in all 10 abnormal

cases, the abnormal latency occurs in the code execution stage.

This means that the performance issues we identified are all

caused by the code execution mechanism of the corresponding

runtimes.

This finding indicates that we can locate fine-grained causes

of the performance issues by analyzing the source code of

the abnormal cases. Therefore, in the second step, we aim to

find out which part of the code is executing with an abnormal

latency. To this end, for each abnormal case, we make a series

of case reduction, and we rerun the reduced cases on all the

Wasm runtimes to observe the changes in the execution time

ratio. Specifically, we generate a reduced case by deleting

a code snippet (e.g., a statement, a loop, or a branch). If

the execution time ratio of the reduced case changes to the

normal level (i.e., close to the oracle ratio), it means that the

performance issue is likely to be caused by the deleted code

snippet, which we call issue-related code snippet.
To verify the causes of the performance issues, we further

create some new test cases that contain the same function as

the issue-related code snippet. We run the new test cases on

(a) Issue-related code snippet of fasta.c.

(b) A new test case that can reproduce Issue #3784.

Fig. 4. Test cases related to Issue #3784 of Wasmer.

all the Wasm runtimes and observe whether the performance

issues will be reproduced. If the performance issues can be

reproduced, it means that the causes we found can be verified.

Finally, we report the performance issues and their causes to

the developers of the corresponding Wasm runtimes.

Overall, we summarize 7 performance issues for the 10

abnormal cases, all of which have been confirmed by the

developers. Table IV shows the summary of these performance

issues. Next, we will explain the performance issues of each

Wasm runtime separately.

Wasmer. In Issue #3784, we find that the core function in

the abnormal case fasta.c is repeat_fasta, as shown

in Figure 4(a). This function prints the characters of the string

s repeatedly, and it stops when the total number of characters

667

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
SUMMARY OF PERFORMANCE ISSUES RELATED TO THE 10 ABNORMAL CASES.

Case Related Runtime Issue ID Cause of Performance Issue Status

BenchmarkGame/fasta.c Wasmer #3784 Improper implementation of fd_write Confirmed
Misc/flops-4.c Wasmer #3821 Version issue of the Cranelift code generator Confirmed

Shootout/methcall.c WasmEdge #2444 Improper handling when invoking function pointer Confirmed
Shootout-C++/methcall.cpp WasmEdge #2442 Improper handling of virtual function Confirmed

Shootout/random.c Wasmtime
#6287 Insufficient optimization for division and modulo Confirmed

Shootout-C++/random.cpp Wasmtime

Polybench/2mm.c WAMR
#2175 Insufficient optimization for matrix multiplications ConfirmedPolybench/gemm.c WAMR

Polybench/3mm.c WAMR
Misc/flops-8.c WAMR #2167 Insufficient optimization for complex arithmetic expressions Confirmed

printed is count. We further locate the issue-related code snip-
pet, which accounts for the majority of the case execution time

at lines 55-56 by case reduction. Here the program invokes two

C standard I/O functions fwrite and putchar in a loop.

When we delete these two lines of code, the execution time

of this case on Wasmer will go back to normal. Therefore,

this performance issue is probably caused by improper I/O

implementation of Wasmer. To verify this cause, we create

a new test case that also includes a standard I/O function

printf in a loop, as shown in Figure 4(b). We find that

the performance issue of Wasmer can be reproduced in this

case. Then, we check the source code of I/O implementation

in Wasmer (in wasmer/lib/wasi/src/syscalls/wasi/fd write.rs),

delete the code snippet of setting written size and rebuild

Wasmer. We find that the performance issue will not occur

after rebuilding. Therefore, the cause of improper I/O imple-

mentation in Wasmer can be verified.

In Issue #3821, the abnormal case flops-4.c is a

program that calculates the integral of cos(x) using the trape-

zoidal method. We find that the issue-related code snippet of

this case is a statement that performs arithmetic operations.

Thus, the performance issue may be related to Wasmer’s

improper handling of such operations. Specifically, Wasm

runtimes in AOT mode will generate executable machine code

for the input Wasm code before execution. The default code

generator of Wasmer is Cranelift [44]. When we change the

code generator to the LLVM backend and rerun this case

on Wasmer, the performance is back to normal. However,

Wasmtime also uses Cranelift as the default code generator

but no performance issue occurs, which indicates that the issue

is caused by the current version of Cranelift in Wasmer.

These two performance issues of Wasmer have been con-

firmed by the developers and marked as milestones for the

development of the next version.

WasmEdge. In Issue #2444, the abnormal case

methcall.c defines a structure named Toggle, and it

invokes a function to activate the toggle repeatedly. For the

convenience of explaining the issue, we create a simplified

methcall.c, as shown in Figure 5. In this case, we locate

the issue-related code snippet at line 20, where the program

Fig. 5. Simplified methcall.c related to Issue #2444 of WasmEdge.

invokes the function toggle_activate via the function

pointer activate defined in the structure Toggle. However,

when we remove the code of this line and invoke the function

toggle_activate directly (as shown in line 21), the

performance issue of WasmEdge will not show up again. The

results indicate that this performance issue is caused by the

improper handling of WasmEdge when invoking a function

pointer.

The abnormal case methcall.cpp in Issue #2442 im-

plements the same function as methcall.c, but written

in C++. Due to differences in syntax of C and C++, the

function pointer activate in methcall.c is defined as a

virtual function reference virtual bool& activate()
in methcall.cpp. The performance issue in this case also

occurs when invoking activate. Therefore, we find that

WasmEdge also has improper handling of a virtual function.

These two performance issues are also confirmed by the

developers of WasmEdge.

Wasmtime. The abnormal cases random.c and

random.cpp reveal the same performance issue #6287
of Wasmtime. The core functions of the two programs are

generating a random number by some compound operations,

668

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

(a) Issue-related code snippet of random.c.

(b) A new test case that can reproduce Issue #6287.

Fig. 6. Test cases related to Issue #6287 of Wasmtime.

Fig. 7. Issue-related code snippet of 2mm.c in Issue #2175 of WAMR.

as shown in Figure 6(a). We locate the issue-related code
snippet at lines 19-20, which means that Wasmtime may

handle such compound operations improperly. We then

create another test case with a similar function, as shown

in Figure 6(b), and find that the performance issue will

be reproduced. We further create more test cases that

contain different compound operations, and we find that this

performance issue of Wasmtime only occurs when division

and modulo are included. We report this performance issue

to the developers of Wasmtime. They confirm this issue

and admit that the optimization of division and modulo is

currently not well supported by Wasmtime.

WAMR. The three abnormal cases 2mm.c, gemm.c, and

3mm.c from Polybench reflect the same performance issue

#2175 of WAMR in interpreter mode. The functions of these

three programs are all matrix multiplication. Figure 7 shows

the core computations in 2mm.c, where the program performs

the operation alpha∗A∗B∗C+beta∗D on matrices A, B, C,

D. We locate the issue-related code snippet at lines 97, 102,

and 104, which are the statements of matrix multiplication. We

also obtain similar results on gemm.c and 3mm.c. In particu-

lar, the execution time of these cases on WAMR is more than

2× slower than that in Wasm3 (another Wasm interpreter),

while WAMR can achieve comparable performance to Wasm3

on other normal cases. This indicates that WAMR may not

optimize the matrix multiplication operation well enough in

interpreter mode.

In Issue #2167, the abnormal case flops-8.c calculates

Fig. 8. Issue-related code snippet of flops-8.c in Issue #2167 of WAMR.

TABLE V
COMPUTATIONAL OVERHEAD OF DIFFERENTIAL TESTING UNDER

DIFFERENT NUMBERS OF RUNTIME SETTINGS.

#Runtime 2 3 4 5 6 7

Avg. Overhead (s) 0.330 0.476 0.604 0.735 0.845 0.966
Std. Deviation 0.026 0.039 0.047 0.058 0.044 0.037

integral of sin(x) ∗ cos(x) ∗ cos(x) from 0 to PI/3. The

issue-related code snippet is shown in Figure 8. We find

that the abnormal latency of WAMR occurs when handling

complex arithmetic expressions in a loop, like the code at

lines 249-250. We also observe this phenomenon in some

other similar programs of flops-8.c. Therefore, WAMR

in interpreter mode may also not have sufficient runtime

optimization for such complex arithmetic expressions. We

have received confirmation for these two issues.

D. RQ3: Computational Overhead

The efficiency of WarpDiff is important for its usability

in practice. Therefore, we also evaluate the computational

overhead of differential testing in WarpDiff . Specifically, we

measure the running time of the differential testing part

(abnormal case identification and performance issue location)

in WarpDiff , with different numbers of runtime settings. We

exclude the time of performance data collection because this

part of the time is determined by test case execution and

should not be counted in the overhead of differential testing.

For each number of runtime settings, we perform differential

testing on all possible runtime setting combinations 10 times

and calculate the average running time.

The results are shown in Table V. We can find that as the

number of runtime settings grows, the computational overhead

of differential testing increases steadily, but all within one

second. In our experiments, the time spent on performance

data collection for a single execution of all the test cases is

about two hours. It means that the computational overhead of

differential testing only accounts for less than 0.01% of the

whole process. The results indicate that WarpDiff is highly

efficient, which provides good usability for its practice.

V. DISCUSSION

A. Threats to Validity

There are some threats to validity of our work, including test

case selection, Wasm runtime selection, and the sufficiency of

case analysis.

669

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

First, we select 123 C/C++ programs from the LLVM test

suite as our test cases, which may not be very large-scale.

However, the test cases are representative benchmark programs

for performance testing and are well-suited as the source

programs of Wasm. Our test cases include Polybench [43], a

popular benchmark that is widely used for Wasm performance

evaluation in previous studies [18], [19], [24]. Furthermore,

the goal of our work is to reveal some unknown performance

issues in server-side Wasm runtimes instead of finding all the

performance issues (actually, it is impossible). Our evaluation

has shown the effectiveness of the selected test cases in

achieving our goal.

Second, we select five server-side standalone Wasm run-

times as our test targets. We select the Wasm runtimes ac-

cording to their popularity and activity, thereby ensuring the

representativeness of the selected runtimes. Also, the number

of runtime settings may affect the testing results, as the

abnormal cases are identified based on the execution time ratio

on these runtime settings. We conduct a series of experiments

with different numbers of runtime settings, and we find that

those abnormal cases with high deviation degree on the issue-

related runtime can always be identified.

Third, we only report the top 10 abnormal cases in this

paper, as it is inappropriate to set a threshold for abnormal

case identification. We report the 10 abnormal cases since

they are with the top anomaly degree and worthy of attention.

We conduct an in-depth case analysis to reveal the causes

of the performance issues. We also report these issues to

the developers of the corresponding Wasm runtimes to get

their confirmation. The results indicate the effectiveness of

our differential testing approach.

B. Future Work

In this work, we propose a novel differential testing ap-

proach to identify performance issues in server-side standalone

Wasm runtimes. Based on our approach, we can collect more

performance issues in existing popular standalone Wasm run-

times, then build a comprehensive benchmark suite for testing

the performance issues in Wasm runtimes. This benchmark

suite can facilitate future work on performance issue testing

for Wasm runtimes.

Also, our work can facilitate the improvement of existing

standalone Wasm runtime implementation. In the future, we

aim to further improve the internal mechanisms related to the

performance issues in existing Wasm runtimes. We can also

design a new Wasm runtime implementation with a better

optimization strategy and execution mechanism.

VI. RELATED WORK

Server-side Wasm. WebAssembly (Wasm) is a low-level

bytecode language originally designed for client-side exe-

cution in Web browsers [1]. Wasm’s sandboxing execution

mechanism brings safety, higher-performance, lightweight, and

portability natures, making it suitable for server-side applica-

tions as well [45]–[47]. Cloud applications built with Wasm

have become increasingly popular in recent years [4]–[8]. For

example, FASSM [4] introduces a new isolation abstraction

based on Wasm for high performance serverless computing.

Wasm is also suggested to enable computational offloading in

cloud environments [48]–[51]. Nomad [49] provides a cross-

platform computational offloading and migration mechanism

in Femtoclouds using Wasm. WIPROG [50] proposes an edge-

centric approach to IoT application programming based on

Wasm. Besides cloud environments, Wasm is also used in

microcontrollers [12], [13], Trusted Execution Environments

(TEEs) [14] and smart contracts [15]–[17].

Wasm Performance. High performance is an important

design consideration of Wasm. Wasm attempts to provide near-

native execution speed both in browsers and server-side appli-

cations [1], [36]. Extensive work studies Wasm performance

over the browsers [2], [18]–[23]. Jangda et al. [18], [19]

build BROWSIX-Wasm to run unmodified Wasm-compiled

Unix applications directly inside the browser. Then they use

BROWSIX-Wasm to conduct the first large-scale evaluation

of the performance of Wasm in comparison with native code.

They point out a substantial performance gap between the

two. Wang [20] investigates how Chrome optimizes Wasm

execution in comparison to JavaScript. Yan et al. [21] extend

this study to more browser engines (Chrome, Firefox, and

Edge). They find that JIT optimization significantly impacts

JavaScript speed but has little effect on Wasm speed. Also,

Wasm uses much more memory than JavaScript. Regard-

ing the server-side Wasm performance, there are relatively

fewer studies. Spies et al. [24] conduct an evaluation of

Wasm performance in non-Web environments. The evaluation

demonstrates that Wasm is generally faster than JavaScript and

can approach native code performance in some cases. To sum

up, existing studies simply compare the performance of Wasm

with other codes. There is still a lack of research on how to

test performance issues in Wasm runtimes.

Differential Testing. Differential testing is a popular soft-

ware testing technique for detecting bugs in two or more

comparable systems or different implementations of the same

application [26]–[29]. The idea is to provide the same input

to these comparable systems, and observe the inconsistency in

their execution. If the results differ, it indicates that some of

the systems may contain a bug. Differential testing has been

widely used to detect semantic bugs in diverse domains, such

as C compilers [52]–[55], JVM implementations [56]–[59],

SSL/TLS implementations [60]–[62], and even deep learning

systems [63]–[65]. Existing differential testing approaches

can be divided into two categories, unguided and guided,

based on the way of input generation. Unguided differential

testing approaches generate test inputs independently with-

out considering information from past inputs. An example

is Frankencerts [60], which tests for semantic violations of

SSL/TLS certificate validation across multiple implementa-

tions. Guided differential testing approaches aim to minimize

the number of inputs by considering program behavior in-

formation for past inputs, making the testing process more

efficient. For example, classfuzz [56] is a coverage-guided

fuzzing approach for differential testing of JVMs’ startup

670

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

processes. Existing differential testing approaches only focus

on semantic or logic bugs in software systems. In this work, we

first extend differential testing to performance issue detection,

which is one of our contributions.

VII. CONCLUSION

Performance issues are critical for server-side Wasm appli-

cations, but research in this area is lacking. In this work, we

conduct the first study on performance issues in server-side

standalone Wasm runtimes. We propose a novel differential

testing approach WarpDiff to identify performance issues in

standalone Wasm runtimes, and we apply it to five popular

real-world Wasm runtimes with 123 test cases. We further

conduct a comprehensive case analysis of the top 10 identified

abnormal cases, and summarize seven performance issues in

four popular Wasm runtimes. All issues are confirmed by

developers. The results indicate the effectiveness of WarpDiff ,

which provide inspiration for future work on improving server-

side Wasm runtime implementation.

ACKNOWLEDGMENT

This work was supported by the Natural Science Foun-

dation of Shanghai (No. 22ZR1407900), the Key-Area Re-

search and Development Program of Guangdong Province

(No. 2020B010165002) and the Key Program of Fundamental

Research from Shenzhen Science and Technology Innovation

Commission (No. JCYJ20200109113403826). It was also sup-

ported by the Research Grants Council of the Hong Kong

Special Administrative Region, China (No. CUHK 14206921

of the General Research Fund).

REFERENCES

[1] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up
to speed with webassembly,” in Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2017, pp. 185–200.

[2] M. Reiser and L. Bläser, “Accelerate javascript applications by cross-
compiling to webassembly,” in Proceedings of the 9th ACM SIGPLAN
International Workshop on Virtual Machines and Intermediate Lan-
guages, 2017, pp. 10–17.

[3] L. Wagner, “A webassembly milestone: Experimental support in multiple
browsers,” Mozilla Hacks (14 March 2016)., 2017.

[4] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient
stateful serverless computing,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20), 2020, pp. 419–433.

[5] P. Gackstatter, P. A. Frangoudis, and S. Dustdar, “Pushing serverless to
the edge with webassembly runtimes,” in 2022 22nd IEEE International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE,
2022, pp. 140–149.

[6] F. Eriksson and S. Grunditz, “Containerizing webassembly: Considering
webassembly containers on iot devices as edge solution,” 2021.

[7] S. M. Jain and S. M. Jain, “Extending istio with webassembly,”
WebAssembly for Cloud: A Basic Guide for Wasm-Based Cloud Apps,
pp. 151–160, 2022.

[8] J. Long, H.-Y. Tai, S.-T. Hsieh, and M. J. Yuan, “A lightweight design
for serverless function as a service,” IEEE Software, vol. 38, no. 1, pp.
75–80, 2020.

[9] Announcing Docker+Wasm Technical Preview,
https://www.docker.com/blog/announcing-dockerwasm-technical-
preview/.

[10] I. Docker, “Docker,” lınea].[Junio de 2017]. Disponible en: https://www.
docker. com/what-docker, 2020.

[11] WasmEdge, https://github.com/WasmEdge/WasmEdge.

[12] R. Gurdeep Singh and C. Scholliers, “Warduino: a dynamic webassem-
bly virtual machine for programming microcontrollers,” in Proceedings
of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes, 2019, pp. 27–36.

[13] K. Zandberg and E. Baccelli, “Femto-containers: Devops on micro-
controllers with lightweight virtualization & isolation for iot software
modules,” arXiv preprint arXiv:2106.12553, 2021.

[14] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “Twine: An embedded
trusted runtime for webassembly,” in 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 2021, pp. 205–216.

[15] S. Zheng, H. Wang, L. Wu, G. Huang, and X. Liu, “Vm matters: A
comparison of wasm vms and evms in the performance of blockchain
smart contracts,” arXiv preprint arXiv:2012.01032, 2020.

[16] D. Wang, B. Jiang, and W. Chan, “Wana: Symbolic execution of wasm
bytecode for cross-platform smart contract vulnerability detection,”
arXiv preprint arXiv:2007.15510, 2020.

[17] W. Chen, Z. Sun, H. Wang, X. Luo, H. Cai, and L. Wu, “Wasai:
uncovering vulnerabilities in wasm smart contracts,” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2022, pp. 703–715.

[18] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not so fast:
Analyzing the performance of {WebAssembly} vs. native code,” in 2019
USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp.
107–120.

[19] A. Jangda, B. Powers, A. Guha, and E. Berger, “Mind the gap:
Analyzing the performance of webassembly vs. native code,” arXiv
preprint arXiv:1901.09056, 2019.

[20] W. Wang, “Empowering web applications with webassembly: Are we
there yet?” in 2021 36th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2021, pp. 1301–1305.

[21] Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang, “Understanding the
performance of webassembly applications,” in Proceedings of the 21st
ACM Internet Measurement Conference, 2021, pp. 533–549.

[22] J. De Macedo, R. Abreu, R. Pereira, and J. Saraiva, “Webassembly ver-
sus javascript: Energy and runtime performance,” in 2022 International
Conference on ICT for Sustainability (ICT4S). IEEE, 2022, pp. 24–34.

[23] ——, “On the runtime and energy performance of webassembly: Is
webassembly superior to javascript yet?” in 2021 36th IEEE/ACM In-
ternational Conference on Automated Software Engineering Workshops
(ASEW). IEEE, 2021, pp. 255–262.

[24] B. Spies and M. Mock, “An evaluation of webassembly in non-web
environments,” in 2021 XLVII Latin American Computing Conference
(CLEI). IEEE, 2021, pp. 1–10.

[25] Awesome WebAssembly Runtimes, https://github.com/appcypher/awesome-
wasm-runtimes.

[26] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[27] J. S. Carlson and K. H. Wiedl, “Toward a differential testing approach:
Testing-the-limits employing the raven matrices,” Intelligence, vol. 3,
no. 4, pp. 323–344, 1979.

[28] R. B. Evans and A. Savoia, “Differential testing: a new approach to
change detection,” in The 6th Joint Meeting on European software
engineering conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering: Companion Papers, 2007, pp.
549–552.

[29] A. Groce, G. Holzmann, and R. Joshi, “Randomized differential testing
as a prelude to formal verification,” in 29th International Conference on
Software Engineering (ICSE’07). IEEE, 2007, pp. 621–631.

[30] Wasmer, https://github.com/wasmerio/wasmer.
[31] Wasmtime, https://github.com/bytecodealliance/wasmtime.
[32] Wasm3, https://github.com/wasm3/wasm3.
[33] WebAssembly Micro Runtime, https://github.com/bytecodealliance/wasm-

micro-runtime.
[34] test-suite Guide, https://llvm.org/docs/TestSuiteGuide.html.
[35] A. Zakai, “Emscripten: an llvm-to-javascript compiler,” in Proceedings

of the ACM international conference companion on Object oriented
programming systems languages and applications companion, 2011, pp.
301–312.

[36] A. Hilbig, D. Lehmann, and M. Pradel, “An empirical study of real-
world webassembly binaries: Security, languages, use cases,” in Pro-
ceedings of the Web Conference 2021, 2021, pp. 2696–2708.

[37] L. Clark, “Standardizing wasi: A system interface to run webassembly
outside the web,” Mozilla Hacks–the Web developer blog, 2019.

[38] Cloud Native Computing Foundation, https://www.cncf.io/.
[39] Bytecode Alliance, https://bytecodealliance.org/.

671

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

[40] Secure & lightweight microservice with a database backend,
https://github.com/second-state/microservice-rust-mysql.

[41] ab - Apache HTTP server benchmarking tool,
https://httpd.apache.org/docs/2.4/programs/ab.html.

[42] perf: Linux profiling with performance counters,
https://perf.wiki.kernel.org/index.php/Main Page.

[43] PolyBench/C - the Polyhedral Benchmark suite, https://web.cse.ohio-
state.edu/ pouchet.2/software/polybench/.

[44] Cranelift Code Generator, https://github.com/bytecodealliance/wasmtime/
tree/main/cranelift.

[45] P. Mendki, “Evaluating webassembly enabled serverless approach for
edge computing,” in 2020 IEEE Cloud Summit. IEEE, 2020, pp. 161–
166.

[46] N. Mäkitalo, T. Mikkonen, C. Pautasso, V. Bankowski, P. Daubaris,
R. Mikkola, and O. Beletski, “Webassembly modules as lightweight
containers for liquid iot applications,” in Web Engineering: 21st Inter-
national Conference, ICWE 2021, Biarritz, France, May 18–21, 2021,
Proceedings. Springer, 2021, pp. 328–336.

[47] V. Kjorveziroski, S. Filiposka, and A. Mishev, “Evaluating webassembly
for orchestrated deployment of serverless functions,” in 2022 30th
Telecommunications Forum (TELFOR). IEEE, 2022, pp. 1–4.

[48] W. Huang and M. Paradies, “An evaluation of webassembly and ebpf as
offloading mechanisms in the context of computational storage,” arXiv
preprint arXiv:2111.01947, 2021.

[49] M. Nurul-Hoque and K. A. Harras, “Nomad: Cross-platform compu-
tational offloading and migration in femtoclouds using webassembly,”
in 2021 IEEE International Conference on Cloud Engineering (IC2E).
IEEE, 2021, pp. 168–178.

[50] B. Li, W. Dong, and Y. Gao, “Wiprog: A webassembly-based approach
to integrated iot programming,” in IEEE INFOCOM 2021-IEEE Con-
ference on Computer Communications. IEEE, 2021, pp. 1–10.

[51] E. Wen and G. Weber, “Wasmachine: Bring iot up to speed with a
webassembly os,” in 2020 IEEE International Conference on Perva-
sive Computing and Communications Workshops (PerCom Workshops).
IEEE, 2020, pp. 1–4.

[52] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” in Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation, 2011,
pp. 283–294.

[53] G. Barany, “Finding missed compiler optimizations by differential
testing,” in Proceedings of the 27th international conference on compiler
construction, 2018, pp. 82–92.

[54] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie, “An
empirical comparison of compiler testing techniques,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp.
180–190.

[55] C. Kästner, “Differential testing for variational analyses: Experience
from developing kconfigreader,” arXiv preprint arXiv:1706.09357, 2017.

[56] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of jvm implementations,” in proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2016, pp. 85–99.

[57] Y. Chen, T. Su, and Z. Su, “Deep differential testing of jvm implemen-
tations,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 1257–1268.

[58] Y. Zhao, Z. Wang, J. Chen, M. Liu, M. Wu, Y. Zhang, and L. Zhang,
“History-driven test program synthesis for jvm testing,” in Proceedings
of the 44th International Conference on Software Engineering, 2022,
pp. 1133–1144.

[59] T. Brennan, S. Saha, and T. Bultan, “Jvm fuzzing for jit-induced side-
channel detection,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 1011–1023.

[60] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using
frankencerts for automated adversarial testing of certificate validation
in ssl/tls implementations,” in 2014 IEEE Symposium on Security and
Privacy. IEEE, 2014, pp. 114–129.

[61] Y. Chen and Z. Su, “Guided differential testing of certificate validation in
ssl/tls implementations,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015, pp. 793–804.

[62] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana, “Nezha:
Efficient domain-independent differential testing,” in 2017 IEEE Sym-
posium on security and privacy (SP). IEEE, 2017, pp. 615–632.

[63] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in proceedings of the 26th Symposium
on Operating Systems Principles, 2017, pp. 1–18.

[64] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differential
fuzzing testing of deep learning systems,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp.
739–743.

[65] J. Guo, Y. Zhao, H. Song, and Y. Jiang, “Coverage guided differential
adversarial testing of deep learning systems,” IEEE Transactions on
Network Science and Engineering, vol. 8, no. 2, pp. 933–942, 2020.

672

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:37 UTC from IEEE Xplore. Restrictions apply.

