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Abstract—Logs, which record valuable system runtime infor-
mation, have been widely employed in Web service management
by service providers and users. A typical log analysis based Web
service management procedure is to first parse raw log messages
because of their unstructured format; and then apply data mining
models to extract critical system behavior information, which can
assist Web service management. Most of the existing log parsing
methods focus on offline, batch processing of logs. However, as
the volume of logs increases rapidly, model training of offline
log parsing methods, which employs all existing logs after log
collection, becomes time consuming. To address this problem,
we propose an online log parsing method, namely Drain, that
can parse logs in a streaming and timely manner. To accelerate
the parsing process, Drain uses a fixed depth parse tree, which
encodes specially designed rules for parsing. We evaluate Drain
on five real-world log data sets with more than 10 million raw
log messages. The experimental results show that Drain has the
highest accuracy on four data sets, and comparable accuracy
on the remaining one. Besides, Drain obtains 51.85%∼81.47%
improvement in running time compared with the state-of-the-
art online parser. We also conduct a case study on an anomaly
detection task using Drain in the parsing step, which determines
the effectiveness of Drain in log analysis.

Index Terms—Log parsing; Online algorithm; Log analysis;
Web service management;

I. INTRODUCTION

The prevalence of cloud computing, which enables on-

demand service delivery, has made Service-oriented Architec-

ture (SOA) a dominant architectural style. Nowadays, more

and more developers leverage existing Web services to build

their own systems because of their rich functionality and

“plug-and-play” property. Although developing Web service

based system is convenient and lightweight, Web service man-

agement is a significant challenge for both service providers

and users. Specifically, service providers (e.g., Amazon EC2

[1]) are expected to provide services with no failures or SLA

(service-level agreement) violations to a large number of users.

Similarly, service users need to effectively and efficiently

manage the adopted services, which have been discussed in

many recent works (e.g., Web service monitoring [2]). In this

context, log analysis based service management techniques,

which employ service logs to achieve automatic or semi-

automatic service management, have been widely studied.

Logs are usually the only data resource available that

records service runtime information. In general, a log message

is a line of text printed by logging statements (e.g., printf(),

logging.info()) written by developers. Thus, log analysis tech-

niques, which apply data mining models to get insights of sys-

tem behaviors, are in widespread use for service management.

For service providers, there are studies in anomaly detection

[3], [4], fault diagnosis [5], [6] and performance improvement

[7]. For service users, typical examples include business model

mining [8], [9] and user behavior analysis [10], [11].

Most of the data mining models used in these log analysis

techniques require structured input (e.g., an event list or a

matrix). However, raw log messages are usually unstructured,

because developers are allowed to write free-text log messages

in source code. Thus, the first step of log analysis is log

parsing, where unstructured log messages are transformed into

structured events. An unstructured log message, as in the

following example, usually contains various forms of system

runtime information: timestamp (records the occurring time

of an event), verbosity level (indicate the severity level of

an event, e.g., INFO), and raw message content (free-text

description of a service operation).

081109 204655 556 INFO dfs.DataNode$PacketResponder
: Received block blk_3587508140051953248 of size 67
108864 from /10.251.42.84

Traditionally, log parsing relies heavily on regular expres-

sions [12], which are designed and maintained manually by

developers. However, this manual method is not suitable for

logs generated by modern services for the following three

reasons. First, the volume of logs is increasing rapidly, which

makes the manual method prohibitive. For example, a large-

scale service system can generate 50 GB logs (120∼200

million lines) per hour [13]. Second, as open-source platforms

(e.g., Github) and Web service become popular, a system often

consists of components written by hundreds of developers

globally [3]. Thus, people in charge of the regular expressions

may not know the original logging purpose, which makes

manual management even harder. Third, logging statements

in modern systems updates frequently (e.g., hundreds of new

logging statements every month [14]). In order to maintain

a correct regular expression set, developers need to check all

logging statements regularly, which is tedious and error-prone.

Log parsing is widely studied to parse the raw log messages

automatically. Most of existing log parsers focus on offline,

batch processing. For example, Xu et al. [3] design a method
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to automatically generate regular expressions based on source

code. However, source code is often inaccessible in practice

(e.g., Web service components). For general log parsing, recent

studies propose data-driven methods [4], [15], which directly

extract log templates from raw log messages. These log parsers

are offline, and limited by the memory of a single computer.

Besides, they fail to align with the log collecting manner. A

typical log collection system has a log shipper installed on

each node to forward log entries in a streaming manner to a

centralized server that contains a log parser [16]. The offline

log parsers need to employ all logs after log collection for

a certain period (e.g., 1h) for the parser training. In contrast,

an online log parser parses logs in a streaming manner, and it

does not require an offline training step. Thus, current systems

highly demand online log parsing, which is only studied in

a few preliminary works [16], [17]. However, we observe

that the parsers proposed in these works are not accurate and

efficient enough, which make them not eligible for log parsing

in modern Web service or Web service based systems.

In this paper, we propose an online log parsing method,

namely Drain, that can accurately and efficiently parse raw

log messages in a streaming manner. Drain does not require

source code or any information other than raw log messages.

Drain can automatically extract log templates from raw log

messages and split them into disjoint log groups. It employs

a parse tree with fixed depth to guide the log group search

process, which effectively avoids constructing a very deep and

unbalanced tree. Besides, specially designed parsing rules are

compactly encoded in the parse tree nodes. We evaluate Drain

on five real-world log data sets with more than 10 million

raw log messages. Drain demonstrates the highest accuracy

on four data sets, and comparable accuracy on the remaining

one. Besides, Drain obtains 51.8%∼81.47% improvement in

running time compared with the state-of-the-art online parser

[16]. We also demonstrate the effectiveness of Drain in log

analysis by tackling a real-world anomaly detection task [3].

In summary, our paper makes the following contributions:

• This paper presents the design of an online log parsing

method (Drain), which encodes specially designed pars-

ing rules in a parse tree with fixed depth.

• Extensive experiments have been conducted on five real-

world log data sets, which determine the superiority of

Drain in terms of accuracy and efficiency.

• The source code of Drain has been publicly released [18],

allowing for easy use by researchers and practitioners for

future study.

The remainder of this paper is organized as follows. Section

II presents the overview of log parsing process. Section III

describes our online log parsing method, Drain. We evaluate

the performance of Drain in Section IV. Related work is

introduced in Section V. Finally, we conclude this paper in

Section VI.

II. OVERVIEW OF LOG PARSING

The goal of log parsing is to transform raw log mes-

sages into structured log messages, as described in Figure 1.

081109 204608 Receiving block blk_3587 src: /10.251.42.84:57069 dest:                     /10.251.42.84:50010 
081109 204655 PacketResponder 0 for block blk_4003 terminating 
081109 204655 Received block blk_3587 of size 67108864 from /10.251.42.84 
 
 
blk_3587 Receiving block * src: * dest: *  
blk_4003 PacketResponder * for block * terminating 
blk_3587 Received block * of size * from * 

Log Parsing 

Fig. 1: Overview of Log Parsing

Specifically, raw log messages are unstructured data, including

timestamps and raw message contents. The raw log messages

in Figure 1 are simplified HDFS raw log messages collected

on the Amazon EC2 platform [3]. In the parsing process, a

parser distinguishes between the constant part and variable
part of each raw log message. The constant part is tokens

that describe a system operation template (i.e., log event),

such as “Receiving block * src: * dest: *” in Figure 1; while

the variable part is the remaining tokens (e.g, “blk 3587”)

that carry dynamic runtime system information. A typical

structured log message contains a matched log event and fields

of interest (e.g, the HDFS block ID “blk 3587”). Typical log

parsers [4], [15], [16], [17] regard log parsing as a clustering

problem, where they cluster raw log messages with the same

log event into a log group. The following section introduces

our proposed log parser, which clusters the raw log messages

into different log groups in a streaming manner.

III. METHODOLOGY

In this section, we briefly introduce Drain, a fixed depth

tree based online log parsing method. When a new raw log

message arrives, Drain will preprocess it by simple regular

expressions based on domain knowledge. Then we search a log

group (i.e., leaf node of the tree) by following the specially-

designed rules encoded in the internal nodes of the tree. If a

suitable log group is found, the log message will be matched

with the log event stored in that log group. Otherwise, a new

log group will be created based on the log message. In the

following, we first introduce the structure of the fixed depth

tree (i.e., parse tree). Then we explain how Drain parses raw

log messages by searching the nodes of the parse tree.

A. Overall Tree Structure

When a raw log message arrives, an online log parser needs

to search the most suitable log group for it, or create a new log

group. In this process, a simple solution is to compare the raw

log message with log event stored in each log group one by

one. However, this solution is very slow because the number

of log groups increases rapidly in parsing. To accelerate this

process, we design a parse tree with fixed depth to guide the

log group search, which effectively bounds the number of log

groups that a raw log message needs to compare with.

The parse tree is illustrated in Figure 2. The root node is

in the top layer of the parse tree; the bottom layer contains the

leaf nodes; other nodes in the tree are internal nodes. Root
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A List of Log Groups 

 . . .  

Length: 4  .  .  .  

Root 

Length: 5 Length: 10 

Send Receive Starting 

Log Event:  Receive from node * 
Log IDs:  [1, 23, 25, 46, 345, …] 

Log Group 

Root Node Internal Node Leaf Node Log Group 

* 

Fig. 2: Structure of Parse Tree in Drain (depth = 3)

node and internal nodes encode specially-designed rules to

guide the search process. They do not contain any log groups.

Each path in the parse tree ends with a leaf node, which stores

a list of log groups, and we only plot one leaf node here

for simplicity. Each log group has two parts: log event and

log IDs. Log event is the template that best describes the log

messages in this group, which consists of the constant part

of a log message. Log IDs records the IDs of log messages

in this group. One special design of the parse tree is that

the depth of all leaf nodes are the same and are fixed by

a predefined parameter depth. For example, the depth of the

leaf nodes in Figure 2 is fixed to 3. This parameter bounds

the number of nodes Drain visits during the search process,

which greatly improves its efficiency. Besides, to avoid tree

branch explosion, we employ a parameter maxChild, which

restricts the maximum number of children of a node. In the

following, for clarity, we define an n-th layer node as a node

whose depth is n. Besides, unless otherwise stated, we use the

parse tree in Figure 2 as an example in following explanation.

B. Step 1: Preprocess by Domain Knowledge

According to our previous empirical study on existing

log parsing methods [19], preprocessing can improve parsing

accuracy. Thus, before employing the parse tree, we preprocess

the raw log message when it arrives. Specifically, Drain

allows users to provide simple regular expressions based on

domain knowledge that represent commonly-used variables,

such as IP address and block ID. Then Drain will remove the

tokens matched from the raw log message by these regular

expressions. For example, block IDs in Figure 1 will be

removed by “blk [0-9]+”.

The regular expressions employed in this step are often

very simple, because they are used to match tokens instead

of log messages. Besides, a data set usually requires only a

few such regular expressions. For example, the data sets used

in our evaluation section require at most two such regular

expressions.

C. Step 2: Search by Log Message Length

In this step and step 3, we explain how we traverse the

parse tree according to the encoded rules and finally find a

leaf node.

Drain starts from the root node of the parse tree with the

preprocessed log message. The 1-st layer nodes in the parse

tree represent log groups whose log messages are of different

log message lengths. By log message length, we mean the

number of tokens in a log message. In this step, Drain selects

a path to a 1-st layer node based on the log message length of

the preprocessed log message. For example, for log message

“Receive from node 4”, Drain traverse to the internal node

“Length: 4” in Figure 2. This is based on the assumption

that log messages with the same log event will probably

have the same log message length. Although it is possible

that log messages with the same log event have different log

message lengths, it can be handled by simple postprocessing.

Besides, our experiments in Section IV-B demonstrate the

superiority of Drain in terms of parsing accuracy even without

postprocessing.

D. Step 3: Search by Preceding Tokens

In this step, Drain traverses from a 1-st layer node, which

is searched in step 2, to a leaf node. This step is based on

the assumption that tokens in the beginning positions of a log

message are more likely to be constants. Specifically, Drain

selects the next internal node by the tokens in the beginning

positions of the log message. For example, for log message

“Receive from node 4”, Drain traverses from 1-st layer node

“Length: 4” to 2-nd layer node “Receive” because the token

in the first position of the log message is “Receive”. Then

Drain will traverse to the leaf node linked with internal node

“Receive”, and go to step 4.

The number of internal nodes that Drain traverses in this

step is (depth − 2), where depth is the parse tree parameter

restricting the depth of all leaf nodes. Thus, there are (depth−
2) layers that encode the first (depth − 2) tokens in the log

messages as search rules. In the example above, we use the

parse tree in Figure 2 for simplicity, whose depth is 3, so

we search by only the token in the first position. In practice,

Drain can consider more preceding tokens with larger depth

settings. Note that if depth is 2, Drain only considers the first

layer used by step 2.

In some cases, a log message may start with a parameter, for

example, “120 bytes received”. These kinds of log messages

can lead to branch explosion in the parse tree because each

parameter (e.g., 120) will be encoded in an internal node.

To avoid branch explosion, we only consider tokens that do

not contain digits in this step. If a token contains digits, it

will match a special internal node “*”. For example, for the

log message above, Drain will traverse to the internal node

“*” instead of “120”. Besides, we also define a parameter

maxChild, which restricts the maximum number of children

of a node. If a node already has maxChild children, any

non-matched tokens will match the special internal node “*”

among all its children.
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E. Step 4: Search by Token Similarity

Before this step, Drain has traversed to a leaf node, which

contains a list of log groups. The log messages in these log

groups comply with the rules encoded in the internal nodes

along the path. For example, the log group in Figure 2 has log

event “Receive from node *”, where the log messages contain

4 tokens and start with token “Receive”.

In this step, Drain selects the most suitable log group from

the log group list. We calculate the similarity simSeq between

the log message and the log event of each log group. simSeq
is defined as following:

simSeq =

∑n
i=1 equ(seq1(i), seq2(i))

n
, (1)

where seq1 and seq2 represent the log message and the log

event respectively; seq(i) is the i-th token of the sequence; n
is the log message length of the sequences; function equ is

defined as following:

equ(t1, t2) =

{
1 if t1 = t2

0 otherwise
(2)

where t1 and t2 are two tokens. After finding the log group

with the largest simSeq, we compare it with a predefined

similarity threshold st. If simSeq ≥ st, Drain returns the

group as the most suitable log group. Otherwise, Drain returns

a flag (e.g., None in Python) to indicate no suitable log group.

F. Step 5: Update the Parse Tree

If a suitable log group is returned in step 4, Drain will add

the log ID of the current log message to the log IDs in the

returned log group. Besides, the log event in the returned log

group will be updated. Specifically, Drain scans the tokens in

the same position of the log message and the log event. If the

two tokens are the same, we do not modify the token in that

token position. Otherwise, we update the token in that token

position by wildcard (i.e., *) in the log event.

If Drain cannot find a suitable log group, it creates a new

log group based on the current log message, where log IDs

contains only the ID of the log message and log event is

exactly the log message. Then, Drain will update the parse tree

with the new log group. Intuitively, Drain traverses from the

root node to a leaf node that should contain the new log group,

and adds the missing internal nodes and leaf node accordingly

along the path. For example, assume the current parse tree

is the tree in the left-hand side of Figure 3, and a new log

message “Receive 120 bytes” arrives. Then Drain will update

the parse tree to the right-hand side tree in Figure 3. Note

that the new internal node in the 3-rd layer is encoded as “*”

because the token “120” contains digits.

IV. EVALUATION

A. Experimental Settings

1) Log Data Sets: The log data sets used in our evaluation

are summarized in Table I. These five real-world data sets

range from supercomputer logs (BGL and HPC) to distributed

Root 

Length: 3 

Send 

Log Event:  Send block 44 
Log IDs:  [1] 

Root 

Length: 3 

Receive 

* 

Send 

block block 

Log Event:  Send block 44 
Log IDs:  [1] 

Log Event:  Receive 120 bytes 
Log IDs:  [2] 

Fig. 3: Parse Tree Update Example (depth = 4)

system logs (HDFS and Zookeeper) to standalone software

logs (Proxifier). Companies rarely release their log data to

the public, because it may violates confidential clauses. We

obtained three log data sets from other researchers with their

generous support. Specifically, BGL is a log data set collected

by Lawrence Livermore National Labs (LLNL) from Blue-

Gene/L supercomputer system [20]. HPC logs are collected

from a high performance cluster, which has 49 nodes with

6,152 cores and 128GB memory per node [21]. HDFS is a

log data set collected from a 203-node cluster on Amazon

EC2 platform in [3]. We also collect two log data sets for

evaluation. One is collected from Zookeeper installed on a

32-node cluster in our lab. The other are logs of a standalone

software Proxifier.

2) Comparison: To prove the effectiveness of Drain, we

compare its performance with four existing log parsing meth-

ods in terms of accuracy, efficiency and effectiveness on

subsequent log mining tasks. Specifically, two of them are

offline log parsers, and the other two are online log parsers.

The ideas of these log parsers are briefly introduced as

following:

• LKE [4]: This is an offline log parsing method devel-

oped by Microsoft. It employs hierarchical clustering and

heuristic rules.

• IPLoM [15]: IPLoM conducts a three-step hierarchical

partitioning before template generation in an offline man-

ner.

• SHISO [17]: In this online parser, a tree with predefined

number of children in each node is used to guide log

group searching.

TABLE I: Summary of Log Data Sets

System Description #Log Messages Log Message Length #Events
BlueGene/L

Supercomputer
High Performance

Cluster
(Los Alamos)

HDFS Hadoop File System 11,175,629 8~29 29
Distributed

System Coordinator
Proxifier Proxy Client 10,108 10~27 8

80

376

HPC 433,490 6~104 105

BGL 10~1024,747,963

Zookeeper 74,380 8~27
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• Spell [16]: This method uses longest common sequence to

search log group in an online manner. It accelerates the

searching process by subsequence matching and prefix

tree.

3) Evaluation Metric and Experimental Setup: We use F-

measure [22], [23], which is a typical evaluation metric for

clustering algorithms, to evaluate the accuracy of log parsing

methods. The definition of accuracy is as the following.

Accuracy =
2 ∗ Precision ∗Recall

Precision+Recall
, (3)

where Precision and Recall are defined as follows:

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

where a true positive (TP ) decision assigns two log messages

with the same log event to the same log group; a false positive

(FP ) decision assigns two log messages with different log

events to the same log group; and a false negative (FN )

decision assigns two log messages with the same log event

to different log groups. This evaluation metric is also used in

our previous study [19] on existing log parsers.

TABLE II: Parameter Setting of Drain

BGL HPC HDFS Zookeeper Proxifier
depth 3 4 3 3 4

st 0.3 0.4 0.5 0.3 0.3

We run all experiments on a Linux server with Intel Xeon

E5-2670v2 CPU and 128GB DDR3 1600 RAM, running 64-

bit Ubuntu 14.04.2 with Linux kernel 3.16.0. We run each

experiment 10 times to avoid bias. For the preprocessing

step of Drain (step 1), we remove obvious parameters in

log messages (i.e., IP addresses in HPC&Zookeeper&HDFS,

core IDs in BGL, block IDs in HDFS and application IDs

in Proxifier). The parameter setting of Drain is shown in

Table II. Besides, we empirically set maxChild to 100 for

all experiments. The number of children of a tree node rarely

exceeds maxChild, because the encoded rules in the parse

tree can already distribute the logs evenly to different paths.

We also re-tune the parameters of other log parsers to optimize

their performance, which is not presented here because of the

space limit. We put them in our released source code [18] for

further reference.

B. Accuracy of Drain

Accuracy demonstrates how well a log parser matches

raw log messages with the correct log events. Accuracy is

important because parsing errors can degrade the performance

of subsequent log mining task. Intuitively, an offline log

parsing method could obtain higher accuracy compared with

an online one, because an offline method enjoys all raw log

messages at the beginning of parsing, while an online method

adjusts its parsing model gradually in the parsing process.

TABLE III: Parsing Accuracy of Log Parsing Methods

BGL HPC HDFS Zookeeper Proxifier

LKE 0.67 0.17 0.57 0.78 0.85
IPLoM 0.99 0.65 0.99 0.99 0.85

SHISO 0.87 0.53 0.93 0.68 0.85
Spell 0.98 0.82 0.87 0.99 0.87
Drain 0.99 0.84 0.99 0.99 0.86

Offline Log Parsers

Online Log Parsers

TABLE IV: Running Time (Sec) of Log Parsing Methods

BGL HPC HDFS Zookeeper Proxifier

LKE N/A N/A N/A N/A 8888.49
IPLoM 140.57 12.74 333.03 2.17 0.38

SHISO 10964.55 582.14 6649.23 87.61 8.41
Spell 447.14 47.28 676.45 5.27 0.87
Drain 115.96 8.76 325.7 1.81 0.27

Improvement 74.07% 81.47% 51.85% 65.65% 68.97%

Offline Log Parsers

Online Log Parsers

In this section, we evaluate the accuracy of two offline and

two online log parsing methods on the data sets described in

Table I. The evaluation results are in Table III. LKE fails to

handle the data sets except Proxifier, because its O(n2) time

complexity makes it too slow for the other data sets. Thus,

for the other four data sets, as with the existing work [19],

[24], we evaluate LKE’s accuracy on sample data sets with

2k log messages randomly extracted from the original ones,

while all parsers are evaluated on the 2k sample data sets in

our previous paper [19].

We observe that the proposed online parsing method,

namely Drain, obtains the best accuracy on four data sets,

even compared with the offline log parsing methods. For

data set Proxifier, Drain also has the second best accuracy

(i.e., 0.86), and it is comparable to Spell, which obtains the

highest accuracy (0.87) on this data set. LKE is not that

good on some data sets, because it employs an aggressive

clustering strategy, which can lead to under-partitioning.

IPLoM obtains high accuracy on most data sets because of its

specially-designed heuristic rules. SHISO uses the similarity

of characters in log messages to search the corresponding

log events. This strategy is too coarse-grained, which causes

inaccuracy. Spell is accurate, but its strategy only based on

longest common subsequence can lead to under-partitioning.

Drain has the overall best accuracy for three reasons. First,

it compounds both the log message length and the first few

tokens, which are effective and specially-designed rules, to

construct the fixed depth tree. Second, Drain only uses tokens

that do not contain digits to guide the searching process,

which effectively avoids over-partitioning. Third, the tunable

tree depth and similar threshold st allows users to conduct

fine-grained tuning on different data sets.

C. Efficiency of Drain

To evaluate the efficiency of Drain, we measure the running

time of it and four existing log parsers on five real-world log

data sets described in Table I. In Table IV, we demonstrate

the running time of these log parsers. LKE fails to handle
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four data sets in reasonable time (i.e., days or weeks), so we

mark the corresponding results as not available.

Considering online parsing methods, SHISO takes too much

time on some data sets (e.g., takes more than 3h on BGL).

This is mainly because SHISO only limits the number of

children for its tree nodes, which can cause very deep parse

tree. Spell obtains better efficiency performance, because it

employs a prefix tree structure to store all log events found,

which greatly reduces its running time. However, Spell does

not restrict the depth of its prefix tree either, and it calculates

the longest common subsequence between two log messages,

which is time consuming. Compared with the existing online

parsing methods, our proposed Drain requires the least running

time on all five data sets. Specifically, Drain only needs 2

min to parse 4m BGL log messages and 6 min to parse 10m

HDFS log messages. Drain greatly improves the running time

of existing online parsing methods. The improvements on the

five real-world data sets are at least 51.85%, and it reduce

81.47% running time on HPC. Drain also outperforms the

existing offline log parsing methods. It requires less running

time than IPLoM on all five data sets. Moreover, as an online

log parsing method, Drain is not limited by the memory of a

single computer, which is the bottleneck of most offline log

parsing methods. For example, IPLoM needs to load all log

messages into computer memory, and it will construct extra

data structures of comparable size in runtime. Thus, although

IPLoM is efficient too, it may fail to handle large-scale log

data. Drain is not limited by the memory of single computer,

because it processes the log messages one by one.

TABLE V: Log Size of Sample Datasets for Efficiency Ex-

periments

BGL 400 4k 40k 400k 4m

HPC 600 3k 15k 75k 375k

HDFS 1k 10k 100k 1m 10m

Zookeeper 4k 8k 16k 32k 64k

Proxifier 600 1200 2400 4800 9600

Because log size of modern systems is rapidly increasing, a

log parsing method is expected to handle large-scale log data.

Thus, to simulate the increasing of log size, we also measure

the running time of these log parsers on 25 sampled log data

sets with varying log size (i.e., number of log messages) as

described in Table V. The log messages in these sampled data

sets are randomly extracted from the real-world data sets in

Table I.

The evaluation results are illustrated in Figure 4, which is

in logarithmic scale. In this figure, we observe that, compared

with other methods, the running time of LKE raises faster as

the log size increases. Because the time complexity of LKE

is O(n2), and the time complexity of other methods is O(n),
while n is the number of log messages. IPLoM is comparable

to Drain, but it requires substantial amounts of memory as

explained above. Online parsing methods (i.e., SHISO, Spell,

Drain) process log message one by one, and they all use a

parse tree to accelerate the log event search process. Drain is

faster than others because of two main reasons. First, Drain

enjoys linear time complexity. The time complexity of Drain

is O( (d + cm)n ), where d is the depth of the parse tree, c
is the number of candidate log groups in the leaf node, m is

the log message length, and n is the number of log messages.

Obviously, d and m are constants. c can also be regarded as

a constant, because the quantity of candidate log groups in

each leaf node is nearly the same, and the number of log

groups is far less than that of log messages. Thus, the time

complexity of Drain is O(n). For SHISO and Spell, the depth

of the parse tree could increase during the parsing process.

Second, we use the specially-designed simSeq to calculate the

similarity between a log message and a log event candidate.

Its time complexity is O(m1 + m2), while m1 and m2 are

number of tokens in them respectively. In Drain, m1 = m2. By

comparison, SHISO and Spell calculate the longest common

subsequence between two sequences, whose time complexity

is O(m1m2).

D. Effectiveness of Drain on Real-World Anomaly Detection
Task

In previous sections, we demonstrate the superiority of

Drain in terms of accuracy and efficiency. Although high

accuracy is necessary for log parsing methods, it does not

guarantee good performance in the subsequent log mining

task. For example, because log mining could be sensitive to

some critical events, little parsing error may cause an order

of magnitude performance degradation in log mining [19]. To

evaluate the effectiveness of Drain on subsequent log mining

tasks, we conduct a case study on a real-world anomaly

detection task.

We use the HDFS log data set in this case study. Specif-

ically, raw log messages in the HDFS data set [3] records

system operations on 575,061 HDFS blocks with a total of

29 log event types. Among these blocks, 16,838 are manually

labeled as anomalies by the original authors. In the original

paper [3], the authors employ Principal Component Analysis

(PCA) to detect these anomalies. Next, we will briefly intro-

duce the anomaly detection workflow, including log parsing

and log mining. In log parsing step, all the raw log messages

are parsed into structured log messages. Each structured log

message contains the corresponding HDFS block ID and a

log event. A source code-based log parsing method is used

in the original paper, which is not discussed here because

source code is inaccessible in many cases (e.g., in third

party libraries). In log mining, we first use the structured log

messages to generate an event count matrix, where each row

represents an HDFS block; each column represents a log event

type; each cell counts the occurrence of an event on a certain

HDFS block. Then we use TF-IDF [25] to preprocess the

event count matrix. Intuitively, TF-IDF gives lower weights to

common event types, which are less likely to contribute to the

anomaly detection process. Finally, the event count matrix is

fed into PCA, which automatically marks the blocks as normal

or abnormal.

In our case study, we evaluate the performance of the

anomaly detection task with different log parsing methods
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Fig. 4: Running Time of Log Parsing Methods on Data Sets in Different Size

TABLE VI: Anomaly Detection with Different Log Parsing

Methods (16,838 True Anomalies)

Parsing Reported Detected False
Accuracy Anomaly Anomaly Alarm

IPLoM 0.99 10,998 10,720 (63%) 278 (2.5%)
SHISO 0.93 13,050 11,143 (66%) 1,907 (14.6%)
Spell 0.87 10,949 10,674 (63%) 275 (2.5%)
Drain 0.99 10,998 10,720 (63%) 278 (2.5%)

Ground truth 1.00 11,473 11,195 (66%) 278 (2.4%)

used in the parsing step. Specifically, we use different log

parsing methods to parse the HDFS raw log messages respec-

tively and, hence, we obtain different sets of structured log

messages. For example, an HDFS block ID could match with

different log events by using different log parsing methods.

Then, we generate different event count matrices, and fed them

into PCA, respectively.

The experimental results are shown in Table VI. In this

table, reported anomaly is the number of anomalies reported

by the PCA model; detected anomaly is the number of true

anomalies reported; false alarm is the number of wrongly

reported ones. We use four existing log parsing methods to

handle the parsing step of this anomaly detection task. We do

not use LKE because it cannot handle this large amount of

data. Ground truth is the experiment using exactly correct

parsed results.

We can observe that Drain obtains nearly the optimal

anomaly detection performance. It detects 10, 720 true anoma-

lies with only 278 false alarms. Although 37% of anomalies

have not been detected, it is caused by the log mining

step. Because even when all the log messages are correctly

parsed, the log mining model still leaves 34% of anomalies

at large. Note that although IPLoM demonstrates the same

anomaly detection performance as Drain, their parsing results

are different. We also observe that SHISO, although has a

high parsing accuracy (0.93), does not perform well in this

anomaly detection task. By using SHISO, we would report

1, 907 false alarms, which are 6 times worse than others.

This will largely increase the workload of developers, because

they usually need to manually check the anomalies reported.

Among the online parsing methods, Drain not only has the

highest parsing accuracy as demonstrated in Section IV-B,

but also obtains nearly optimal performance in the anomaly

detection case study.

V. RELATED WORK

Log Analysis for Service Management. Logs, which

records system runtime information, are in widespread use for

service management tasks, such as business model mining [8],

[9], user behavior analysis [10], [11], anomaly detection [3],

[4], [26], fault diagnosis [5], [6], performance improvement

[7], etc. Log parsing is a critical step to enable automated and

effective log analysis [19], because most of these techniques

require structured log messages as input. Thus, we believe our

proposed online parsing method can benefit these techniques

and future studies on log analysis.

Log Parsing. Log parsing has been widely studied in recent

years. Xu et al. [3] design a source code based log parser

that achieves high accuracy. However, source code is often

inaccessible in practice (e.g., Web service components). Some

other work proposes data-driven approaches (LKE [4], IPLoM

[15], SHISO [17], Spell [16]), in which data mining techniques

are employed to extract log templates and split raw log mes-

sages into different log groups accordingly. Specifically, LKE

and IPLoM are offline log parsers, which are studied in our

previous evaluation study on offline log parsers [19]. SHISO

and Spell are online log parsers, which parse log messages

in a streaming manner, and are not limited by the memory

of a single computer. In this paper, we propose an online log
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parser, namely Drain, that greatly outperforms existing online

log parsers in terms of both accuracy and efficiency. It even

performs better than the state-of-the-art offline parsers.

Reliability of Web Service Systems. Many recent studies

focus on enhancing the reliability of Web service systems.

Cubo et al. [27] use dynamic software product lines to

reconfigure service failures dynamically. Service selection and

recommendation are also widely studied [28], [29]. These

studies usually employ QoS (quality of service) values to

characterize the reliability of different Web services. Jurca et

al. [30] propose a reliable QoS monitoring technique based

on client feedback. Yao et al. [31] develop a model with

accountability for business and QoS compliance. Besides,

Chen et al. [32] propose a performance prediction method for

component-based applications. Our proposed online log parser

is critical for log analysis techniques, which can complement

with these methods in reliability enhancement for Web service

systems. The log analysis methods can also improve the

reliability of many existing service systems [33], [34], [35].

VI. CONCLUSION

Log parsing is critical for log analysis based Web service

management techniques. This paper proposes an online log

parsing method, namely Drain, that parses raw log messages

in a streaming manner. Drain adopts a fixed depth parse tree

to accelerate the log group search process, which encodes

specially designed rules in its tree nodes. To evaluate the

effectiveness of Drain, we conduct experiments on five real-

world log data sets. The experimental results show that Drain

greatly outperforms existing online log parsers in terms of

accuracy and efficiency. Drain even obtains better performance

than the state-of-the-art offline log parsers, which are limited

by the memory of a single computer. Besides, we conduct

a case study on a real-world anomaly detection task, which

demonstrates the effectiveness of Drain on log analysis tasks.
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