
Incident-aware Duplicate Ticket Aggregation
for Cloud Systems

Jinyang Liu∗, Shilin He†, Zhuangbin Chen∗, Liqun Li†, Yu Kang†, Xu Zhang†, Pinjia He‡,
Hongyu Zhang§, Qingwei Lin†∗∗, Zhangwei Xu¶, Saravan Rajmohan‖, Dongmei Zhang†, Michael R. Lyu∗

∗The Chinese University of Hong Kong, Hong Kong SAR, China, {jyliu, zbchen, lyu}@cse.cuhk.edu.hk
†Microsoft Research, Beijing, China, {shilin.he, liqli, kay, xuzhang2, qlin, dongmeiz}@microsoft.com

‡The Chinese University of Hong Kong, Shenzhen, China, hepinjia@cuhk.edu.cn
§Chongqing University, Chongqing, China, hyzhang@cqu.edu.cn
¶Microsoft Azure, Redmond, USA, zhangxu@microsoft.com

‖Microsoft 365, Redmond, USA, saravanakumarrajmohan@outlook.com

Abstract—In cloud systems, incidents are potential threats to
customer satisfaction and business revenue. When customers
are affected by incidents, they often request customer support
service (CSS) from the cloud provider by submitting a support
ticket. Many tickets could be duplicate as they are reported
in a distributed and uncoordinated manner. Thus, aggregating
such duplicate tickets is essential for efficient ticket management.
Previous studies mainly rely on tickets’ textual similarity to
detect duplication; however, duplicate tickets in a cloud system
could carry semantically different descriptions due to the complex
service dependency of the cloud system. To tackle this problem,
we propose iPACK, an incident-aware method for aggregating
duplicate tickets by fusing the failure information between the
customer side (i.e., tickets) and the cloud side (i.e., incidents). We
extensively evaluate iPACK on three datasets collected from the
production environment of a large-scale cloud platform, Azure.
The experimental results show that iPACK can precisely and
comprehensively aggregate duplicate tickets, achieving an F1
score of 0.871∼0.935 and outperforming state-of-the-art methods
by 12.4%∼31.2%.

Index Terms—duplicate tickets, incidents, cloud systems, reli-
ability

I. INTRODUCTION

In the era of Cloud Computing, cloud platforms such as

Amazon AWS, Microsoft Azure, and Google Cloud Platform

serve millions of users worldwide. When customers encounter

a technical problem with the platform; they often resort to

cloud providers for help by submitting a support ticket (ticket

for short), which consists of a textual issue description and

some basic attributes (e.g., date and product name). From the

cloud provider’s perspective, once a ticket is received, it is

essential to provide timely assistance to customers to avoid

user dissatisfaction and financial loss [1][2].

In practice, incidents (i.e., unexpected service interruptions)

are inevitable for large-scale cloud platforms [3][4]. Though

much effort has been devoted to ensure the reliability of

cloud systems [5][6][7], customers could still be impacted by

incidents. For a large-scale cloud platform serving millions of

customers, incidents could trigger a large number of tickets,

∗∗Qingwei Lin is the corresponding author.

among which many could be duplicate as the tickets are

reported in a distributed and uncoordinated manner. To reduce

the burden of support engineers, it is essential to precisely
and comprehensively aggregate the tickets, i.e., clustering the
duplicate tickets caused by the same incident. By doing this,

the support team can resolve the tickets more efficiently.

To aggregate the tickets caused by the same incident, a

common practice is to check if multiple tickets with similar

symptom descriptions are reported within a short period.

The intuition behind this is that customers using the same

functionalities or services tend to encounter similar problems if

they are caused by the same incident (e.g., service unavailabil-

ity). Most existing studies on duplicate issue report detection

measure the semantic similarity between two reports based on

their textual descriptions, using natural language processing

techniques such as word frequency [8][9][10], word embed-

ding [11][12], topic modeling [13], and pretrained model [14].

Such semantic similarity-based approaches work well for

traditional software systems (e.g., NetBeans [15], Eclipse and

Firefox [16]). However, they are sub-optimal for aggregating

duplicate tickets in cloud systems due to the large-scale

and heterogeneous architecture of cloud systems [4][17][18].

The main reason is that customers of cloud systems could

encounter distinct issues (with distinct symptoms) caused by

the same incident. On the one hand, customers using the same

service may experience different issues due to various usage

scenarios. For example, when the control plane of the virtual

machine (VM) service is problematic, the customers could

complain about various problems related to VM creation,

upgrade or deletion, depending on their particular scenarios.

On the other hand, multiple services can be impacted by

the same incident due to the notorious failure propagation

problem [5][18][19] in cloud systems. For example, when an

infrastructure-level service (e.g., a storage service) is inter-

rupted, other services depending on it (e.g., VM and Web

application) can be impacted too. As a result, customers

using different services may observe different symptoms and

submit tickets with dissimilar descriptions. Consequently, it is

2299

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00193

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
01

93

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

insufficient to tackle this problem by solely utilizing textual

descriptions of tickets.

To address existing studies’ limitations, we propose intro-

ducing cloud-side runtime information, i.e., alerts, to facilitate

ticket aggregation in cloud systems. Modern cloud systems

widely adopt monitors to continuously detect anomalies (un-

expected behaviors) of cloud systems [20][21][22]. Once an

anomaly is detected, an alert describing the anomaly will be

fired to notify on-call engineers for inspection promptly. The

services (and their internal components) are interdependent

in cloud systems [17][18]; therefore, when an incident im-

pacts multiple components or services, multiple alerts will be

triggered within a short period [6][23], that is, these alerts

are correlated with each other (i.e., alert-alert relation).

According to our study in Azure, the correlated alerts caused

by most (93%) incidents are fired within four hours. On the

other hand, a particular issue of a component (e.g., problem-

atic API for VM allocation) in cloud systems can reflect a

particular customer-side issue (e.g., cannot create a VM). So,

it is possible to find a responsible alert within the component

that captures the issue resulting in the ticket (i.e., ticket-alert
relation). In Azure, we find that for 92% of customer tickets;

the alert system has already fired responsible alerts that cause

these tickets before the tickets are submitted.

Motivated by these two kinds of relations, we propose to

formulate the ticket aggregation problem in cloud systems as

a two-stage linking problem, i.e., alert-alert linking and ticket-

alert linking. Intuitively, if the same incident triggers multiple

inter-linked alerts and these alerts are further linked to different

tickets, then we consider these tickets should be aggregated

(i.e., caused by the same incident). In doing this, it is possible

to aggregate semantically different tickets via alert-alert links.

However, designing such a framework mainly faces two

challenges originating from the large scale and complexity of

cloud systems: First, alerts are massive and noisy. The main

reason is that cloud systems consist of a large number of

interdependent services. Each service adopts comprehensive

monitors to capture any abnormal patterns to ensure its reli-

ability [24]. These monitors could be sensitive. As a result,

various alerts are continuously fired every second [5], so it

is challenging to correctly identify and link alerts that are

relevant to the ongoing incident. Second, features of both alerts

and tickets have high cardinality, which means each of their

features consists of too many unique values. When considering

linking alerts and tickets, the number of feature combinations

grows exponentially due to the high cardinality. Consequently,

it is hard to identify effective feature combinations between

them and conduct correct correlation.

In this paper, we propose iPACK to address these chal-

lenges. Specifically, iPACK mainly consists of three steps, i.e.,

alert parsing, incident profiling and ticket-event correlation.

The first two steps address the first challenge, and the third

step addresses the second challenge. In the alert parsing step,

we preprocess (parse) alerts as more coarse-grained events to

reduce redundant alerts. Next, in the incident profiling step, we

propose GIP (graph-based incident profiling) to automatically

Fig. 1. An example of an alert and its resultant ticket.

filter noisy events and link events caused by the same incident.

As a result, each incident is represented as an event graph

by considering alert-alert relations. Afterward, in theticket-
event correlation step, we propose AIN (attentive interaction

network) to correlate a ticket to a responsible event by

considering ticket-alert relations. Finally, we aggregate these

tickets that are linked to the events within the same event graph

(i.e., incident), which are provided to CSS (customer support

service) team to accelerate processing the tickets.

This work makes the following major contributions:

• We are the first to propose to introduce cloud runtime

information (i.e., alerts) to aggregate duplicate tickets. We

propose iPACK to leverage the alert-alert relations and

ticket-alert relations to achieve this goal.

• We evaluate iPACK on three datasets collected from the

production environment of Azure. The evaluation results

show that iPACK outperforms state-of-the-art methods by

12.4%∼31.2%, which confirm the effectiveness of iPACK.

We also share our industrial experience of applying iPACK

in a large-scale cloud platform, Azure.

II. BACKGROUND AND MOTIVATING EXAMPLE

A. Background

a) Alert: Alerts are fired by monitors that continuously

detect anomalies in cloud systems, which automatically notify

on-call engineers for investigation [17][25][23]. An alert has

many attributes as presented in Fig. 1 (top), includingalert ID,

title, creation time, region, owning service, owning component,

severity, monitor ID, etc. The title is generated by following

a template pre-defined by engineers. The severityindicates

how serious the issue is, which has three levels, i.e., low,

medium and high. A service (owning service) consists of many

components (owning component), where each component has

its own functionality or feature.

b) Support Ticket: As presented in Fig. 1 (bottom), a

support ticket usually contains attributes such asticket ID,

creation time, summary, region, product name, andcategory.

The summary is free text written by customers in natural

language. The region is where the customer’s product is

deployed. The category is a coarse-to-fine text description

initially selected by the customer, which facilitates triaging

a ticket to a proper support engineer. In addition, a ticket may

also include a long detailed description (hidden in the figure).

Modern cloud platforms adopt similar schemes of alerts and

support tickets described above. For example, CloudWatch of

AWS [20], Alerting of GCP [22] and Azure Monitor [21] share

2300

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

(a) The number of services im-
pacted by incidents

(b) Distribution of max alert dura-
tion of incidents

Fig. 2. Statistics of alert and incident data in Azure.

Fig. 3. Time interval between alerts
and resultant tickets

Fig. 4. Ticket number trend during
an incident

similar alerting mechanisms, and their alerts carry similar

attributes. Besides, their ticket management systems require

similar attributes from customers as in Fig. 1, i.e., AWS Sup-

port [26], Google Support Hub [27], and Azure Support [27].

In this work, we only leverage the common features that all

these popular cloud platforms own to ensure generalizability.

B. Alert-Alert Relation

The alert-alert relation denotes that two alerts could be

correlated if they are caused by the same incident. The relation

originates from the hierarchical structures of modern cloud

systems that consist of inter-dependent components or ser-

vices [24]. When an incident happens, multiple components or

services could be impacted due to failure propagation [18][23],

which will fire alerts within a short period associated with

the same incident. During the diagnosis of an incident, in

Azure, on-call engineers will manually mark these alerts and

assess the severity of the incident according to the number

of customers impacted. According to the diagnosis history in

Azure from 2020/01/01 to 2022/06/01, as shown in Fig. 2(a),

we found incidents with a higher severity tend to affect more

services. Especially, 70% of high-severity incidents affect

more than one service. We studied the resultant alerts of

historical incidents. We calculated the max alert duration of the

incidents (i.e., the time interval between the earliest and the lat-

est alerts triggered by the incident). As shown in Fig. 2(b), we

found that the max alert duration of 93% of incidents is within

four hours. This serves as evidence to automatically identify

the correlated alerts within an incident (in Section III-C).

C. Ticket-Alert Relation

The ticket-alert relation denotes that a ticket can correlate

with a responsible alert inside the cloud systems. When a

particular type of issue happens inside the cloud system

(alerts are also fired), the customer could experience particular

problems. Fig. 1 presents an example. If the API PUT (for con-

tainer allocation) in the Kubernetes services is degraded, the

TABLE I
TERMINOLOGY DEFINITION

Terminology Definition

Alert
An alert is triggered when abnormal behavior of
a component is detected.

Ticket
A request raised by a customer to ask the cloud vendor
for help.

Incident
Unexpected interruptions affecting services’ availability
or performance, which usually trigger a series of alerts.

Alert-Alert
Relation

Two alerts are correlated if they are caused by the
same incident. (Section II-B)

Ticket-Alert
Relation

A ticket is correlated with an alert if the former is
caused by the latter. (Section II-C)

customer can experience an error when deploying a container.

In Azure, if a ticket is related to a cloud-side issue, the support

engineers are required to annotate the responsible alert ID after

diagnosis. Based on the annotated alert-ticket pairs collected

from 2020/01/01 to 2022/06/01, we study the time interval

between alert generation and ticket submission. Fig. 3 shows

the results, where a negative time interval indicates that an

alert is fired before the ticket is submitted. We found around

92% of tickets have responsible alerts fired before customers

submit the tickets. This allows us to correlate responsible alerts

for most tickets in runtime (in Section III-D).

For clarification, we summarize these important terminolo-

gies (i.e., alert, ticket, incident, alert-alert relation and ticket-

alert relation) in Table I for reference.

D. A Motivating Example

We present a real-world incident in July 2021 in Azure

(the public link describing the incident is anonymized) and

its resultant tickets as a motivating example. The impact of

the incident started at 05:08 AM (UTC). It was caused by

the availability loss of the DiskRP (disk resource provider)

service that provides a control plane service for managed

disks. Since its gateway queue was full, a large proportion of

incoming requests were rejected. As a consequence, services

relying on DiskRP experienced interruptions. On-call engi-

neers’ diagnosis confirmed that three services were impacted,

i.e., virtual machine (VM), Databricks, and Kubernetes (K8S).

Customers using these services were affected, which led to

overwhelming tickets. As shown in Fig. 4, the ticket numbers

of the services simultaneously increased right after the impact

started, which implies the three services could be impacted

by the same incident concurrently. In particular, the CSS team

received around four times the number of tickets than usual

within a short period and assigned twice the number of support

engineers to handle these tickets. We list some samples of

alerts and tickets related to this incident in Table II. These

tickets (t1 ∼ t8) carry dissimilar semantics due to different

use scenarios and services for different customers. Therefore,

it is hard to know that these tickets are actually caused by the

same incident, rendering the difficulty for support engineers

to group them and handle the burst of tickets efficiently.

2301

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ALERTS CAUSED BY THE SAME INCIDENT AND THE RESULTANT TICKETS (SOME FEATURES ARE OMITTED DUE TO SPACE LIMITATION.)

Service Tickets Alerts
Category Summary Component Title

VM
VM/Scale Update t1: Virtual machine scale sets resize issue. Resource

Provider
a1 : VMStart Failures exceed 300 times.

VM/VM Start t2: Server did not start on time.

Databricks
Databricks/Job Issue t3: Unable to open cluster of Databricks. Control

Plane
a2 : Databricks cluster creation fails.

Databricks/Cluster Launch t4: Unable to provision clusters.

K8S
K8S/Cluster Update t5: Unable to autoscale. Resource

Scheduler

a3 : The PUT operation success rate <80%.

K8S/Cluster Update t6: Cannot upgrade node pool, stuck. a4 : CPU utilization exceeds 90%.

We propose to aggregate these tickets by simultaneously

leveraging the aforementioned alert-alert relations and ticket-

alert relations. We take Table II as an example to elaborate

our intuition. First, we need to know what alerts are triggered

by an incident, i.e., profiling the incident. In this example, we

link the alerts a1−a2−a3 via capturing the alert-alert relations

(i.e., they are caused by the same incident). Second, we need to

know what tickets are caused by these alerts, namely, linking

a1 − (t1, t2), a2 − (t3, t4), and a3 − (t5, t6). Finally, because

the alerts a1 ∼ a3 are linked as an incident and t1 ∼ t6 are

further linked to these alerts, we can aggregate t1 ∼ t6 as the

same cluster even though they possess dissimilar semantics.

Challenges. To achieve this, iPACK should address the fol-

lowing two challenges originated from the large scale and

complicated architecture of cloud systems [5][18][24].

Challenge 1: Massive and noisy alerts. Cloud systems could

contain thousands of interdependent services. These services

are closely monitored from various aspects to capture any

unexpected behaviors. For example, there could be hundreds,

even thousands of high-severity alerts reported in Azure per

day. Some alerts are regular alerts that are reported frequently

(due to sensitive monitoring rules) and periodically (due to

periodical monitoring). These regular alerts are generally not

related to a particular cloud incident and only report usual

system runtime status such as CPU/memory usage rate (e.g.,

a4 in Table II). In contrast, indicative alerts are caused by

an actual problem of cloud systems. For example, the alerts

a1 ∼ a3 in Table II are indicative alerts. It is challenging to

identify the indicative alerts and correctly link them among

massive and noisy alerts.

Challenge 2: High feature cardinality. High feature car-

dinality refers to a situation where a feature has a large

number of unique values. For example, the feature category
of a ticket has more than 3,000 options, and the features

component and monitor ID of alerts have more than 2,000

and 10,000 options, respectively. Using traditional one-hot

encoding [28] methods to process these features would lead

to a high-dimensional feature space, resulting in the curse

of dimensionality [29]. Additionally, linking alerts to tickets

requires the consideration of various combinations of features

between them. However, due to the high feature cardinality, the

number of possible combinations grows exponentially, making

it difficult to identify the most effective combinations that

accurately reflect the correlation between alerts and tickets.

This constitutes a significant challenge in our work.

III. METHODOLOGY

A. Overview of iPACK

The goal of iPACK is to aggregate duplicate tickets that are

caused by the same cloud incident among all tickets. Due to

the large scale and heterogeneous architecture [4][17][18] of

cloud systems, it is insufficient to solely consider the textual

similarity of tickets to achieve this goal. To address this

problem, we introduce cloud run-time information (i.e., alerts)

and formulate it as a two-stage linking problem. Intuitively,

iPACK first finds links between alerts by leveraging alert-

alert relations. These inter-linked alerts constitute a graph to

represent an incident. Then iPACK identifies the tickets that

are caused by these alerts according to ticket-alert relations.

The tickets linked to the alerts within the same graph (i.e.,

incident) are aggregated. Thus, we can aggregate the tickets

with dissimilar semantics via the bridge of alert-alert links.

As shown in Fig. 5, iPACK consists of three steps: alert
parsing, incident profiling and ticket-event correlation. In the

alert parsing step, we parse alerts as more coarse-grained

events to reduce redundant alerts. Next, in the incident pro-
filing step, we propose a graph-based incident profiling (GIP)

method to remove the regular events (i.e., parsed regular alerts)

and link correlated indicative events. Then, in the ticket-event
correlation, we propose an attentive interaction network (AIN)

to correlate a ticket to an event. Finally, if two tickets are

correlated to the events within the same event graph (i.e.,

the same incident), we aggregate the tickets as the same

cluster. The results of the ticket aggregation are presented to

the CSS (Customer Support Services) team to streamline the

ticket processing process and improve efficiency. This allows

support engineers to send out batch notifications to potentially

affected customers and provide quick guidance for service

recovery. Additionally, the results can aid on-call engineers in

conducting impact assessments, including identifying affected

services and determining the extent of customer impact caused

by the incident (e.g., number of affected customers).

B. Alert Parsing

The title of an alert is generated following an engineer-

specified template. Monitors may be triggered multiple times

during an incident causing massive redundant alerts. To reduce

the volume of alerts and avoid redundancy, we parse each alert

to its corresponding template and aggregate the alerts sharing

the same template as an event. Take a1 in Table II as an

example; multiple similar alerts can fire concurrently such as

2302

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. The overall framework of iPACK.

“VMStart Failures exceed 100/150/200/250 times”, which are

aggregated as “VMStart Failures exceed ∗ times”.

We formulate this problem as the well-studied log parsing

problem [30] following [18]. We propose to customize a

widely-adopted log parsing algorithm, Drain [31] to parse the

alerts into templates (events). Drain works by extracting the

common parts of alert titles from each group of alerts, where

the group is determined by calculating the overlap of words.

To enhance Drain in our scenario, we observe that if two

alerts are reported by different monitors or belong to different

components, the two alerts must have distinct templates.

Therefore, we first divide all alerts into different partitions

according to both monitor ID and owning component. We

then apply Drain in each partition to extract the templates.

In this way, we can reduce the noises in each partition and

also accelerate the processing by parallel computing. Finally,

each alert is parsed as an event, which introduces two features,

i.e., event template and event ID (a hash value of its template).

Within a fixed time window (Section III-C), for events sharing

the same template, we reserve the latest event and discard the

rest of the events to reduce its volume. The following steps

are applied to events instead of raw alerts.

C. Incident Profiling

The goal of this step is to represent an incident via linking
the correlated events that are caused by the same incidents.

In doing this, the linked events can then be used to bridge

semantically different tickets in the next step (Section III-D).

To learn relations between events, some existing solutions

leverage manual annotations [24][32], which are not practical

because such labels are hard to obtain and usually insufficient

in real-world practice. While there are unsupervised solu-

tions [6][19], they require prior knowledge (e.g., the precise

topology of cloud services) to estimate alert relations. How-

ever, such prior knowledge is usually inaccurate and requires

extensive efforts to collect, update and validate [17][19][24].

We propose an unsupervised approach, i.e., Graph-based

Incident Profiling (GIP), which does not rely on prior knowl-

edge. The input is a series of events within a time window, and

the output is one or multiple graphs of the events. Each graph

profiles an incident containing indicative events related to the

incident. GIP has a static event relation learning step and a dy-
namic event graph construction step. Intuitively, if two events

are correlated, these events are more likely to be triggered

within a short period frequently in the history [19][24]. We

model such frequent patterns in the first static event relation
learning step. Then, in the dynamic event graph construction
step, we dynamically link the events possessing the learned

frequent patterns and remove regular events in the runtime.
1) Static Event Relation Learning: In this step, we assign

a static score to each event pair weighing how likely they

co-occur in history. To this end, we first collect a series of

historical events in chronological order. Then we apply a

four-hour-long sliding time window on these events with a

step size of one hour. We adopt four hours as the window

length because it can cover most alerts within an incident

according to our study in Section II-B. The one-hour step

size allows us to introduce enough new events for learning

the static event relations and avoid separating co-occurred

events into two different windows. Each window wi contain

multiple events, i.e., wi = [e1, e2, e3, ...]. If two events appear

in the same window, we count it as a co-occurrence. Based on

these windows, we compute the point-wise mutual information

(PMI) score [33] for each event pair, which is a popular metric

to measure co-occurrence associations [34][35]. Formally, the

PMI value for the event pair (ei, ej) is :

PMI(ei, ej) = log
p(ei, ej)

p(ei)p(ej)
, (1)

where p(ei, ej) =
C(ei,ej)

M , p(ei) = C(ei)
M . C(ei, ej) denotes

the number of windows that contain both ei and ej , and C(ei)
is the number of windows that contain ei. M is the total

number of windows. A higher PMI value indicates two events

are more likely to co-occur in history, and a positive PMI

value indicates they are more likely to co-occur than appear

individually. We use d(ei, ej) to denote the pre-computed PMI

value for the event pair (ei, ej).
2) Dynamic Event Graph Construction: We then dynam-

ically construct event graphs in the runtime by utilizing the

learned static PMI values. The input to this step is the events

collected within the latest four-hour-long time window. The

output is one or more event graphs, each of which contains

correlated events caused by the incident.

Intuitively, we aim to link the events with high PMI values

because they are possibly caused by the same ongoing incident

in the runtime, considering they frequently co-occur in history.

However, regular (noisy) events tend to co-occur with various

types of events because they frequently appear regardless of

whether there is an incident. In contrast, indicative events

only frequently co-occur with only a small portion of events.

Based on the difference between regular events and indicative

events, we propose a novel algorithm to prune the regular

events automatically, and the remaining indicative events are

correlated. The pseudocode of the algorithm is shown in

Algorithm 1. First, we link every pair of events with positive

2303

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Dynamic Event Graph Construction

Input: Pre-computed PMI values in d, a window of latest
events wj = [e1, e2, e3, ...], hyper-parameter μ ∈[0,1]

Output: go = {g1, g2, ...}
Init: g ← Empty undirected graph; r ← Empty list

1 for i← 1 to l do
2 for j ← i to l do
3 if d(ei, ej) > 0 then
4 g.AddWeightedEdge((ei, ej), weight=d(ei, ej))
5 end
6 end
7 end
8 for each node ei ∈ g do
9 W = GetWeightsOfOutEdges(ei)

10 AscendingSort(W)
11 γ = SearchKneePoint(W) // Kneedle algorithm
12 if γ < μ then
13 g.RemoveNode(ei)
14 end
15 end
16 go ← GetSubGraphs(g)

PMI values constituting a single initial event graph g with

the PMI values as weights of edges (line 1 ∼ 7). Then, for

each node, we calculate a knee point (i.e., γ in Algorithm 1)

based on the PMI values of all its out edges, i.e., W (line

9 ∼ 11). Specifically, we adopt the Kneedle algorithm [36] to

calculate γ. A small γ for a node denotes that most PMI values

of its linked neighbors are large, namely, the node frequently

co-occurs with many neighbors (events). This implies that the

node is more likely to be a regular event. Therefore, we remove

the node if its γ is less than a threshold μ (line 12 ∼ 14). As

revealed by previous studies [6][37], regular events make up

a large portion of all events. Therefore, we empirically set

μ = 0.8 to remove most events aggressively, which turns out

to be effective in our scenario (Section IV-C3). Finally, we

extract subgraphs (i.e., connected component [38]) from the

the pruned graph g (line 16).

D. Ticket-Event Correlation

After profiling incidents as several event graphs (i.e., event-

event linking), we correlate each ticket to the event that

captures the internal cloud issue resulting in the ticket (i.e.,

event-ticket linking). If two tickets are correlated to inter-

linked events (i.e., they are caused by the same incident), we

can then aggregate them as the same cluster.

We mainly address the challenge caused by the high cardi-

nality of features of tickets and events (Section II-D). Inspired

by factorization machine [39] in the field of recommendation

systems, we propose an attentive interaction network (AIN),

which decomposes feature combinations as Hadamard prod-

ucts of low-dimension feature embeddings. In this way, we

bypass directly encoding the exponentially-growing feature

combinations with high-dimension feature vectors. The input

of AIN is a ticket-event pair and the output is a probability

representing how likely the input pair is correlated. Fig. 6

shows the overall framework of AIN composed of three

layers, i.e., embedding layer, attentive interaction layer, and

prediction layer, which are elaborated as follows.

Embedding Layer. The embedding layer represents all

features (fi for a ticket feature and f̂i for an event feature) as

trainable vectors (i.e., embeddings) denoted as vi ∈ R
k, where

k is a user-defined hyper-parameter. For summary of tickets

and event template of events (denoted as f1 and f̂1 in Fig. 6),

we resort to the power of pretrained model BERT (Bidirec-

tional Encoder Representations from Transformers) [40] to

embed their semantics as vectors. We exclude the detailed

ticket description since it potentially introduces noises, and

the summary already provides the essential part [11][14][41].

The remaining features are initialized as random vectors.

Attentive Interaction Layer. After each feature is asso-

ciated with an embedding vector, the attentive interaction

layer models the feature combination of two features as the

Hadamard product (i.e., element-wise product denoted as �)

of their corresponding embedding vectors. For u = x � y
we have ui = xiyi. The attentive interaction layer models

combinations of features across a ticket and an event, formally,

z =
n∑

i

m∑

j

aij(vi � vj), (2)

where n and m are the numbers of ticket and event features,

respectively. To identify the effective feature combinations

for different ticket-event pairs, AIN computes an importance

score aij for each combination result vi � vj in Equation (2).

Afterwards, these feature combinations are summarized as a

single representation z ∈ R
k by computing their weighted

average. The importance weight aij is calculated as follows:

âij = hTφ(W(vi � vj) + b), (3)

aij =
eâij

∑n
i

∑m
j eâij

, (4)

Equation (3) denotes a fully-connected (FC) neural net-

work that takes the combination of two features as input

and outputs their (unnormalized) importance weight. where

φ(x) = max(0, x) is the ReLU activation function. hT ∈ R
r,

W ∈ R
(r×k) and b ∈ R

r are trainable parameters. r is

a hyper-parameter that denotes the size of the hidden layer.

Equation (4) normalizes the importance weights to [0, 1]. The

importance weights control how much each feature combina-

tion contributes for prediction. For example, in Equation (2),

for aij close to 1, its corresponding feature combination

will dominate the summarized vector z. This means that the

prediction mostly depends on the feature combination of vi

and vj. In addition, the weights are automatically learned by

the FC in Equation 3, we actually force AIN to select the

effective feature combinations when learning from the data.

Prediction Layer. We formulate ticket-event correlation as

a binary classification problem. Particularly, to calculate the

correlation probability p, an FC neural network is applied

on z, i.e., p = σ(wT
o z + bo), where wo ∈ R

k and bo ∈ R

are trainable parameters, and σ(x) = 1
1+e−x is the Sigmoid

function producing a probability within the range of [0, 1]. To

update all trainable parameters, we utilize the popular Adam

2304

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. The overall framework of AIN.

optimizer [42] to minimize the following binary cross-entropy

loss LBCE via fitting training data with N ticket-event pairs.

LBCE = −
N∑

i

(
yilog(pi) + (1− yi)log(1− pi)

)
, (5)

where yi = 1 for positive (i.e., correlated) ticket-event pairs

and yi = 0 for negative (i.e., unrelated) pairs. The positive

samples are collected by extracting the responsible alert ID of

a ticket from its resolution text written by support engineers

(Section II-C). So, such data is gradually accumulated during

the daily work routine of support engineers, which does not

incur additional manual effort for data labeling. We then

randomly sample the same number of negative pairs. The

features used are event template, event ID, severity, monitor
ID, owning service, owning component for events, and product
name, category, summary for tickets.

E. Deployment

iPACK consists of offline parts (pre-computed) and online

parts (serving online continuously) for deployment in the could

systems. The offline parts include alert parsing, static event

relations learning and AIN training. The online parts conduct

alert parsing, dynamic event graph construction, and ticket-

event correlation utilizing the trained AIN. The details are as

follows.

1) Offline Parts: Intuitively, the offline parts leverage the

historical data to prepare intermediate data (e.g., PMI values)

or model (e.g., AIN) for online use. Specifically, iPACK

parse all collected alerts to events (Section III-B). Then, static

event relations learning is conducted (Section III-C1), which

computes PMI values for all event pairs. The PMI values are

then stored in a Redis database for reference. After that, AIN is

trained using historical ticket-event pairs. Azure continuously

collects the alert and ticket data; in order to capture the latest

system update (e.g., new alerts), the offline parts are executed

periodically (e.g., once every month).

2) Online Parts: In the online deployment, iPACK is pe-

riodically executed (e.g., every five minutes) and pushes its

latest analysis results to the CSS team. Support engineers

can also manually trigger iPACK when needed (e.g., a large

volume of tickets are received). Considering cloud services and

customers are physically isolated in different regions, iPACK is

applied separately in different regions. Once executed, iPACK

collects the latest alerts and tickets within the latest four-

hour-long time window to analyze. We can reduce the great

volume of ticket-event pairs by filtering with region and time.

The tickets and alerts in the same time window and region

constitute a chunk.
In each chunk, after parsing alerts as events, GIP is applied

to link events as event graphs (i.e., incidents). Then, we

apply AIN to link each ticket to one of the events. For

each ticket, AIN recommends a list of events ranked by

the associated correlation probabilities. Note that we exclude

the tickets whose largest probability in the ranked list is

smaller than a confidence threshold θ = 0.8, because they are

more likely caused by a customer-side issue (e.g., incorrect

configurations). Next, tickets that are correlated to the events

within the same event graph are aggregated as a cluster.

Based on the aggregation results, on the one hand, on-call

engineers can conduct impact assessment (i.e., how many

customers are impacted) for an incident; on the other hand,

the CSS team can avoid duplicate manual inspection and make

batched communication to customers. (e.g., provide the latest

mitigation progress of the internal incident).

IV. EXPERIMENTS

We answer the following research questions (RQs) to eval-

uate the performance of iPACK:
• RQ1: How effective is iPACK in aggregating duplicate

tickets caused by the same incident?

• RQ2: How effective is AIN in correlating a ticket to the

responsible event?

• RQ3: How does graph-based incident profiling (GIP) impact

the effectiveness of iPACK?

A. Experimental Setting
1) Dataset: We collect the datasets from the production

environment of Azure from 2020/01/01 to 2022/06/01. To

evaluate the generality of iPACK, we collect three datasets

from different physically isolated regions (i.e., A, B, and

C), which cover 81 services serving different numbers of

customers. Each dataset is collected from tens of services

and includes hundreds of incidents and hundreds of thousands

of alerts. For each incident, the datasets contain tens of to

hundreds of resulting tickets. Note that we hide the specific

figures of the dataset statistics due to the confidential policy

of Azure. We use the data before 2022/01/01 to compute PMI

values (Section III-C) and train AIN (Section III-D). The data

after the date is used for evaluation.
2) Comparative solutions: Recent studies have been work-

ing on user feedback analysis such as duplicate bug re-

port detection [41][43][44][13][45] and emerging issue de-

tection [46][10][47]. We select the following state-of-the-art

approaches as our comparative solutions:
Categorization. We aggregate tickets by referring to their

feature category (Section II-A), i.e., if two tickets share the

same category, then they are aggregated into the same cluster.
iFeedback. iFeedback is proposed and adopted by WeChat

in their production environment [10], which targets aggre-

gating similar user feedback by identifying frequent word

2305

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

combinations (and groups of combinations). For example, if

the word combination of “pay” and “fail” bursts, an issue may

happen to the payment feature of the product.

LWE. LWE [13] is a method integrating Latent Dirichlet

Allocation (LDA) and word embeddings to leverage the advan-

tages of both techniques. LWE first utilizes LDA to represent

all tickets and roughly identify candidates of duplicated tickets.

Then, the candidates are represented using word embeddings

to conduct more fine-grained clustering.

BERT. BERT [40] is a popular pretraining model in natural

language processing and has shown its power in capturing

the semantics of user feedback in recent studies [14][48][49].

Because these studies do not directly aggregate user feedback,

in this work, we adopt BERT to first represent the tickets

as dense vectors, based on which we use agglomerative

hierarchical clustering [50] to aggregate tickets.

LinkCM. LinkCM [51] is proposed to facilitate the triage of

a customer-reported alert by matching it with an alert of cloud

systems. LinkCM learns the correlation by purely fusing the

titles between the report and alert via a decomposable attention

mechanism and transfer learning. In our scenario, if two tickets

are correlated to the same event by LinkCM, they are grouped

together. LinkCM can also link a ticket to an event as AIN

does, so we combine GIP with LinkCM (i.e., LinkCM w/
GIP) as a strong baseline for comparison.

3) Implementation Details: We have implemented iPACK

with approximately 3000 lines of Python code and packaged

it as a serverless function [17] for ease of use in Azure. The

iPACK system is deployed on a CentOS Linux server with

60GB of RAM and an Intel(R) Core(TM) i7-5930K CPU

@ 3.50GHz. The AIN component of iPACK is trained and

tested with the GPU acceleration of an NVIDIA GeForce

GTX TITAN X. We have set the default hyper-parameters of

the AIN as k=128 and r=256, and the model is trained until

its training loss stops decreasing for ten continuous epochs,

using an early stopping approach. As for the comparative

solutions, as they are not open-sourced, we have followed

the implementation in their respective papers and leveraged

well-established libraries to ensure accuracy. For example, we

have used AllenNLP [52] for LinkCM, scikit-learn [53] and

gensim [54] for LWE, and HuggingFace [55] for BERT.

B. Evaluation Metrics

Metrics for evaluating ticket aggregation (RQ1 and
RQ3). Given a sequence of tickets, our approach assigns a

unique cluster ID, denoted as ”incident-number” to tickets

that are caused by the same incident. Tickets that are not

related to a cloud-side issue are marked with the cluster

ID ”non-incident”. To evaluate the accuracy of our ticket

aggregation, we use the widely accepted Rand Index [56],

[57], [58] for pair-wise comparison in clustering. We conduct

pair-wise comparisons between the ground-truth cluster ID and

the predicted cluster ID for all tickets. The results are used to

calculate the following metrics: True Positives (TP), which are

pairs of duplicate tickets correctly predicted to have the same

cluster label; True Negatives (TN), which are pairs of non-

duplicate tickets correctly predicted to have different cluster

labels; False Positives (FP), which are pairs of non-duplicate

tickets wrongly predicted to have the same cluster label; and

False Negatives (FN), which are pairs of duplicate tickets

wrongly predicted to have different cluster labels. Based on

the results, we use the following metrics to evaluate the

aggregation results: precision = TP
TP+FP , recall = TP

TP+FN ,

and F1 score = 2 · precision · recall
precision + recall .

Metrics for evaluating ticket-event correlation (RQ2).
The correlation of tickets with an event, referred to as AIN

in Section III-D, is a crucial component of iPACK. This

component generates a ranked list of potential responsible

events for a given ticket based on the probability scores

(as determined by AIN’s output) in descending order. To

assess the accuracy of this step, we use the metric Acc@K

(accuracy@K). For each ticket, if the actual ground-truth event

appears within the top-K positions of the list, we consider

the ticket to be a ”hit”. The Acc@K metric is calculated as

the ratio of the number of hit tickets to the total number

of tickets, represented as Acc@K = # of hit tickets
of all tickets . In our

evaluation, we consider three values of K (i.e., 1, 2, and 3)

and also compute the average of these three metrics to provide

a comprehensive assessment.

C. Experimental Details

1) RQ1 The Effectiveness of iPACK: In this RQ, we aim

to evaluate how accurately iPACK can aggregate the duplicate

tickets by comparing it with all comparative solutions (Sec-

tion IV-A2). The evaluation is conducted using datasets A, B
and C and the results are reported in terms of precision, recall,

and F1 score. Precision reflects the degree of correctness in the

clustering results, while recall represents the completeness of

the results. The F1 score is a balance between precision and

recall and provides a comprehensive measure of the overall

performance of the approach. The results are presented in

Table III. The highest F1 score is emphasized in bold, and

the second-best score is underlined.

We can make the following observations: (1) iPACK

achieves the best F1 score across all three datasets, i.e.,

0.935, 0.871, and 0.894, outperforming the second-best meth-

ods by 31.2%, 12.4% and 18.4% in dataset A, B and C,

respectively. (2) Categorization can achieve the highest pre-

cision (0.930∼0.943) although its recall is considerably low

(0.205∼0.373). The reason is that the ticket feature category
is defined in a fine-grained manner by support engineers in

Azure. Therefore, it tends to aggressively split the complete

set of duplicate tickets into many small groups, leading to

a low recall score. However, tickets in each such small

group share precisely similar semantics as evidenced by the

high precision. (3) iFeedback, LWE, and BERT show lower

precision but higher recall than Categorization. The reason is

that these methods can capture more coarse-grained semantic

similarity between tickets. Consequently, they can generate

larger clusters (higher recall) but introduce additional noises

(lower precision) (4) LinkCM can achieve a higher precision

2306

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

TABLE III

EFFECTIVENESS OF AGGREGATING DUPLICATE TICKETS CAUSED BY THE SAME CLOUD INCIDENT.

Methods
Dataset A Dataset B Dataset C

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

Categorization 0.930 0.205 0.336 0.943 0.373 0.535 0.925 0.207 0.338

iFeedback 0.901 0.590 0.713 0.876 0.473 0.614 0.886 0.626 0.733

LWE 0.862 0.453 0.594 0.824 0.515 0.634 0.861 0.672 0.755

BERT 0.884 0.587 0.705 0.854 0.710 0.775 0.843 0.629 0.720

LinkCM 0.931 0.507 0.657 0.892 0.538 0.671 0.901 0.628 0.740

LinkCM w/ GIP 0.900 0.685 0.778 0.886 0.756 0.816 0.899 0.809 0.852

iPACK 0.912 0.960 0.935 0.882 0.861 0.871 0.899 0.888 0.894

among all baseline methods except Categorization. Moreover,

after combining with GIP, LinkCM w/ GIP can increase its

recall because more tickets are aggregated together through

event-event linking. However, it still under-performs iPACK in

terms of the overall F1 score because LinkCM cannot correlate

a ticket to an event as accurately as iPACK does (will show in

RQ2). For instance, LinkCM may associate a cluster of similar

tickets with the wrong event. Therefore, even though related

events are linked together, similar tickets are separated into

different clusters, resulting in high precision but low recall.

Answer to RQ1. iPACK achieves the best F1 score among

all state-of-the-art baselines across three datasets collected

from different regions. iPACK slightly sacrifices precision

compared with the Categorization method but achieves the

highest F1 score 0.871∼0.935, outperforming state-of-the-

art methods by 12.4%∼31.2%.

2) RQ2 The Effectiveness of ticket-event correlation: In

this RQ, the focus is on evaluating the accuracy of the

ticket-event correlation step of iPACK, i.e., the proposed

attentive interaction Network (AIN). The performance of AIN

is compared with LinkCM [51] and four popular machine

learning algorithms: LR (logistic regression), SVM (support

vector machine), RF (random forest), and LightGBM (light

gradient boosting machine). Additionally, the contribution of

the attentive feature interaction component to AIN is studied.

To ensure a fair comparison, categorical features are repre-

sented as one-hot vectors, which are then concatenated with

the representation of textual features extracted using BERT.

This allows for a consistent input feature representation for

all models compared. A variant of AIN is also developed by

removing its attentive feature interaction component (referred

to as ”AIN w/o atten.” in Table IV). This variant instead

concatenates all feature embeddings into a single feature

vector as the input for the prediction layer, as illustrated in

Fig. 6. For clarity, this experiment is conducted using all pairs

of ticket-event data from datasets A, B and C. We compare

AIN with the baselines and its variant in terms of Acc@1,

Acc@2, Acc@3 and the average of these metrics.

We can make the following observations in the results

shown in Table IV: (1) The proposed AIN model outperforms

TABLE IV
EFFECTIVENESS OF CORRELATING A TICKET TO AN EVENT.

Models Acc@1 Acc@2 Acc@3 Average

LR 0.519 0.657 0.733 0.636
SVM 0.332 0.409 0.493 0.411
RF 0.563 0.684 0.761 0.669

LightGBM 0.658 0.723 0.832 0.712
LinkCM 0.743 0.769 0.882 0.798

AIN w/o atten. 0.673 0.762 0.824 0.753
AIN 0.817 0.907 0.936 0.887
Δ(%) +21.4% +19.0% +13.6% +17.8%

all baseline models in terms of all four evaluation metrics.

Notably, AIN achieves the highest Acc@1 score of 0.817,

indicating its superior ability in accurately linking tickets to

events and facilitating more effective ticket aggregation. (2)

The introduction of the attentive feature interaction component

results in significant improvements in AIN’s performance, with

a 21.4% increase in Acc@1 and a 17.8% increase in the

average accuracy. This demonstrates that the component plays

a crucial role in identifying effective feature combinations for

accurate ticket-event linking. (3) Interestingly, AIN w/o atten.

underperforms LinkCM and achieves similar performance as

LightGBM. The reason is that AIN w/o atten. adopts simple

concatenation of feature embedding, which fails to capture

effective feature combinations. (4) LinkCM can outperform

other baseline methods since its decomposable attention mech-

anism is able to capture the semantic matching between tickets

and events. On the other hand, the relatively low Acc@1 scores

of LR, SVM, RF and LightGBM may be due to the sparsity

and high dimensionality of the input features. However, RF

and LightGBM exhibit improved accuracy over LR and SVM,

as they alleviate these problems through feature selection.

Answer to RQ2. AIN outperforms all other baseline meth-

ods by a large margin in correlating a ticket to the event

that causes it. The proposed attentive feature combination

is the key to achieve the performance, which improves the

average accuracy of AIN by 17.8%.

3) RQ3 The impact of graph-based incident profiling (GIP)
of iPACK: We propose GIP to reduce regular events (noisy

2307

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. The Effectiveness of Graph-based Profiling (GIP)

events) and link correlated indicative events to profile an

incident, which bridges the tickets linked to the events even

though they are semantically different. We evaluate its impact

on iPACK using the union of all three datasets as in RQ2. We

conduct the evaluation from the following two aspects:

(1) The ratio of events reduced. GIP builds a fully-connected

event graph (link every two events with positive PMI values)

and then prunes this graph via Algorithm 1. We measure the

effectiveness of GIP with the ratio of nodes and edges that are

pruned (reduced). Fig. 7 (left) presents the ratio of nodes and

edges in the event graph without or with GIP (we normalize

the ratio for better presentation). We can observe that only 2%

of nodes and 0.2% of edges remain after using GIP, which

shows GIP can reduce the large volume of events effectively.

(2) The impact on the overall performance in aggregating
duplicate tickets. Though GIP can reduce the number of

events, we aim to further evaluate whether it can accurately

remove the regular events and link the correlated events as

expected. To achieve this, we compare the ticket aggregation

performance of iPACK with or without GIP. After removing

GIP, we regard those tickets linked to the same event by AIN

as belonging to the same cluster. The results are shown in

Fig. 7 (right). We can observe that after applying GIP, its

precision drops slightly, but the recall is largely improved. As

a result, the overall F1 score is improved by 18.9%, from 0.743

to 0.884. This indicates that only a small portion of events

are not correctly linked; however, more duplicate tickets are

accurately aggregated via event-event linking.

Answer to RQ3. GIP can greatly boost the overall perfor-

mance of iPACK. On the one hand, GIP reserves only 2%

nodes and 0.2% edges in the pruned event graph. On the

other hand, GIP accurately reserves and links the indicative

events and improves the F1 score from 0.743 to 0.884.

V. INDUSTRIAL EXPERIENCE

In this section, we share our industrial experience by pre-

senting a success case and a failure case from the real-world

deployment of iPACK in Azure.

A. A success case

In September 2021, a datacenter maintenance activity re-

sulted in the accidental shutdown of a water tower pump,

which is a critical component of cooling systems. To prevent

overheating and potential damage to users’ data, the main-

tenance personnel had to shut down the downstream storage

Fig. 8. A success case of iPACK in Azure

hardware. This caused a storage service disruption, leading to

cascading impacts on several dependent services such as the

SQL DB and Workflow App, and triggering alerts.

The CSS team received a substantial number of tickets

describing a wide range of issues in response to these events.

To assist with the situation, iPACK continuously collected

and analyzed the generated alerts and tickets. The partial

output of iPACK’s analysis is presented in Fig. 8. iPACK

successfully linked the storage alert with corresponding alerts

from SQL DB and Workflow App, as demonstrated by the

red arrows in Fig. 8. Additionally, the tickets caused by these

events were linked to their respective root cause events, as

depicted by the blue arrows. This allowed the tickets to be

aggregated, despite their semantic differences, and the results

were pushed to the support engineers. With the information

provided by iPACK, support engineers were able to initiate

batch communications with potentially impacted customers

and avoid duplicative manual inspections. Throughout the

resolution process, the customers were continuously informed

of the mitigation progress of the incident.

B. A failure case

iPACK could sometimes fail when it cannot find responsible

alerts in the cloud systems for a ticket. In August 2021,

the CSS team received multiple tickets complaining of 503

(service unavailable) errors when the customers were using

Web Services. Though the tickets were suspected to be caused

by an internal issue due to their similar symptoms, iPACK did

not correlate them with any alert. Only around five hours after

the first ticket had been received, a related alert was fired and

correlated by iPACK. According to the after-the-fact analysis

of on-call engineers, the root cause of this incident turned out

to be bad configurations of a Canary (gray) release for a few

tenants. The developers did not configure a specific monitor for

each of the tenants but monitored all tenants as a whole. As a

result, the monitor was not sensitive enough and only triggered

when most of the tenants’ requests failed. Nevertheless, iPACK

continuously runs and could still correlate the alert with the

resultant tickets after the alert was finally fired. In this way,

iPACK can potentially discover such under-monitoring cases

and guide the configuration of monitors to improve system

reliability [59]. Fortunately, such cases (tickets submissions

before alerts) are rare in Azure with comprehensive monitoring

according to our study (Section II-C).

2308

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

VI. RELATED WORK

A. Incident Analysis

Researchers have devoted sustained efforts on empirical

studies [60], [61], [3], [4], [23] of cloud incidents in the last

few years. Gunawi et al. [60] discussed why outages still take

place in cloud environments by analysing headline news and

public postmortem reports of 32 popular Internet services.

Huang et al. [61] discussed their experiences with gray failure

in production cloud-scale systems and demonstrated its broad

scope and consequences. Chen et al. [23] presented a com-

prehensive study on how alerts and incidents are managed in

large-scale public cloud. Cloud alerts are notoriously blamed

for its great volume. In general, there are two threads of

studies proposed towards resolving the challenge. The major

thread aims to correlate alerts that are caused by the same

incident [18][51][6]. Given a large number of alerts happening,

Chen et al. [37] empirically found that only a small portion

of alerts matters and proposed to prioritize alerts based on

historical data. Chen et al. [32][62] proposed to predict the

link between two alerts by combining alert textual information

and the topology information among alerts (i.e., the topology

of components that generate these alerts). These studies either

require experts’ manual annotations [24][32] or precise system

topology [6][19]. Differently, we propose GIP, which does

not require such labels or prior knowledge to identify alert-

alert relations. We further leverage the alert-alert relations to

aggregate tickets for efficient processing and management.

B. Issue Report Analysis

Issue reports, including app reviews, user feedback, bug

reports, test reports, GitHub issues, support tickets, etc.,

are crucial for service providers to gain a better under-

standing of their customers’ experiences. A large body of

research has been devoted to the analysis of issue re-

ports, covering topics such as duplicate bug reports detec-

tion [41][43][44][13], emerging issue detection [46] [10][47]

bug reproduction [63][64], bug report summarization [65][66]

and empirical studies [67][68][69].

Most existing studies focus on natural language text in-

formation such as titles and descriptions. In addition, some

latest attempts [70][71][72] proposed to jointly consider multi-

modality features, e.g., text and images (e.g., app screenshots),

which has become a recent hot trend in the research direction.

Different from these studies that purely focus on the customer-

side issue report information, in this work, we also consider

ongoing alerts and incidents in the complex cloud system. We

aim to bridge the cloud alerts with cloud users’ tickets to

facilitate efficient ticket processing.

VII. THREATS TO VALIDITY

External Validity. The study’s object is the primary external

threat. The data was collected from Azure, as there is no

publicly available dataset containing customer tickets and a

large number of alerts. However, Azure is a world-leading

cloud provider with a vast scale. The data covers a broad range

of services from various regions (Section IV-A1). Hence, the

evaluation in Azure should be representative and convincing.

Furthermore, iPACK leverages the common features provided

by the most popular cloud vendors (Section II-A), making it

capable of generalizing to similar cloud systems, potentially

benefiting cloud customers globally.
Internal Validity. Implementation and parameter setting

are the main internal threats to validity. For implementation,

the baseline approaches are not open-sourced, so we re-

implemented them by following the original papers closely.

To reduce the implementation threat, we leveraged several

mature libraries for implementing the core algorithms (Sec-

tion IV-A2). Both the proposed and baseline methods under-

went peer code review. For parameter setting, we tuned all

methods through grid-search and chose the best results.

VIII. CONCLUSION

This paper tackles the problem of aggregating duplicate

customer support tickets for cloud systems. Previous solutions

that mainly rely on customer-side information (i.e., textual

similarity between tickets) are sub-optimal for tickets of large-

scale cloud systems. The main cause is the complexity of cloud

systems that consist of many inter-dependent services, where

the customers may experience distinct issues even though they

are affected by the same incident. To overcome this limitation,

we propose iPACK to leverage alerts of cloud systems to

facilitate ticket aggregation. Specifically, we propose graph-

based incident profiling (GIP) to model alert-alert relations

and attentive interaction network (AIN) to model alert-ticket

relations, respectively. In this way, we can aggregate the tickets

that are linked to the same incident (linked alerts) even though

they carry dissimilar semantics. We evaluate iPACK based

on three datasets collected from the real-world production

environment in a large-scale cloud vendor, Azure. iPACK

achieves the F1 score of 0.871∼0.935 and outperforms state-

of-the-art methods by 12.4%∼31.2% across the three datasets.
For future work, we will deploy iPACK to more services in

Azure and conduct rigorous user studies among the support

engineers to understand the usefulness in accelerating support

tickets. In addition, we plan to extend iPACK with the ability

to conduct root cause analysis based on the correlated alerts.

IX. DATA AVAILABILITY

The ticket data used in this work is collected from a real-

world cloud vendor, which is highly confidential and contains

a lot of personally identifiable information (PII). To protect

customers’ privacy, we decide not to release the original

dataset. However, to facilitate the community to benefit from

our work, we release the source code of iPACK together with

some synthetic data samples on Github (https://github.com/

OpsPAI/iPACK.git).

X. ACKNOWLEDGEMENT

The work described in this paper was supported by the

Research Grants Council of the Hong Kong Special Admin-

istrative Region, China (No. CUHK 14206921 of the General

Research Fund) and Australian Research Council (ARC) Dis-

covery Projects (DP200102940, DP220103044).

2309

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Aws support plan comparison.” [Online]. Available: https:
//aws.amazon.com/premiumsupport/plans/

[2] “Support scope and responsiveness.” [Online]. Available: https:
//azure.microsoft.com/en-us/support/plans/response/

[3] H. Liu, S. Lu, M. Musuvathi, and S. Nath, “What bugs cause production
cloud incidents?” in Proceedings of the Workshop on Hot Topics in
Operating Systems (HotOS), 2019, pp. 155–162.

[4] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti,
“How bad can a bug get? an empirical analysis of software failures in
the openstack cloud computing platform,” in Proceedings of the 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2019, pp. 200–211.

[5] L. Li, X. Zhang, X. Zhao, H. Zhang, Y. Kang, P. Zhao, B. Qiao, S. He,
P. Lee, J. Sun et al., “Fighting the fog of war: Automated incident
detection for cloud systems,” in Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), 2021, pp. 131–146.

[6] N. Zhao, J. Chen, X. Peng, H. Wang, X. Wu, Y. Zhang, Z. Chen,
X. Zheng, X. Nie, G. Wang et al., “Understanding and handling alert
storm for online service systems,” in Proceedings of the 42nd Inter-
national Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), 2020, pp. 162–171.

[7] M. A. Shahid, N. Islam, M. M. Alam, M. M. Su’ud, and S. Musa,
“Towards resilient method: An exhaustive survey of fault tolerance
methods in the cloud computing environment,” Comput. Sci. Rev.,
vol. 40, p. 100398, 2021.

[8] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Pro-
ceedings of the 32nd International Conference on Software Engineering
(ICSE), 2010, pp. 45–54.

[9] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate re-
trieval of duplicate bug reports,” in Proceedings of the 26th International
Conference on Automated Software Engineering (ASE), 2011, pp. 253–
262.

[10] W. Zheng, H. Lu, Y. Zhou, J. Liang, H. Zheng, and Y. Deng, “ifeed-
back: exploiting user feedback for real-time issue detection in large-
scale online service systems,” in Proceedings of the 34th International
Conference on Automated Software Engineering (ASE), 2019, pp. 352–
363.

[11] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining word embed-
ding with information retrieval to recommend similar bug reports,” in
Proceedings of the 27th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2016, pp. 127–137.

[12] A. Budhiraja, K. Dutta, R. Reddy, and M. Shrivastava, “Dwen: deep
word embedding network for duplicate bug report detection in software
repositories,” in Proceedings of the 40th International Conference on
Software Engineering: companion proceeedings (ICSE-C), 2018, pp.
193–194.

[13] A. Budhiraja, R. Reddy, and M. Shrivastava, “Lwe: Lda refined word
embeddings for duplicate bug report detection,” in Proceedings of the
40th International Conference on Software Engineering: companion
proceeedings (ICSE-C), 2018, pp. 165–166.

[14] M. Haering, C. Stanik, and W. Maalej, “Automatically matching bug re-
ports with related app reviews,” in Proceedings of the 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 970–981.

[15] A. Lazar, S. Ritchey, and B. Sharif, “Generating duplicate bug datasets,”
in Proceedings of the 11th working conference on mining software
repositories (MSR), 2014, pp. 392–395.

[16] A. Lamkanfi, J. Pérez, and S. Demeyer, “The eclipse and mozilla
defect tracking dataset: a genuine dataset for mining bug information,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories (MSR), 2013, pp. 203–206.

[17] T. Yang, J. Shen, Y. Su, X. Ling, Y. Yang, and M. R. Lyu, “Aid:
Efficient prediction of aggregated intensity of dependency in large-scale
cloud systems,” in Proceedings of the 36th International Conference on
Automated Software Engineering (ASE), 2021, pp. 653–665.

[18] Y. Wang, G. Li, Z. Wang, Y. Kang, Y. Zhou, H. Zhang, F. Gao, J. Sun,
L. Yang, P. Lee et al., “Fast outage analysis of large-scale production
clouds with service correlation mining,” in Proceedings of the 43rd
International Conference on Software Engineering (ICSE), 2021, pp.
885–896.

[19] Z. Chen, J. Liu, Y. Su, H. Zhang, X. Wen, X. Ling, Y. Yang, and
M. R. Lyu, “Graph-based incident aggregation for large-scale online
service systems,” in Proceedings of the 36th International Conference
on Automated Software Engineering (ASE), 2021, pp. 430–442.

[20] “Amazon cloudwatch documentation.” [Online]. Available: https:
//docs.aws.amazon.com/cloudwatch/index.html

[21] “Overview of azure monitor alerts - azure monitor.” [Online].
Available: https://docs.microsoft.com/en-us/azure/azure-monitor/alerts/
alerts-overview

[22] “Introduction to alerting.” [Online]. Available: https://cloud.google.com/
monitoring/alerts

[23] Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu, Y. Zhou, L. Yang,
J. Sun, Z. Xu et al., “Towards intelligent incident management: why
we need it and how we make it,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2020, pp.
1487–1497.

[24] J. Chen, P. Wang, and W. Wang, “Online summarizing alerts through
semantic and behavior information,” in Proceedings of the 44th Inter-
national Conference on Software Engineering (ICSE), 2022, pp. 1646–
1657.

[25] T. Yang, J. Shen, Y. Su, X. Ren, Y. Yang, and M. R. Lyu, “Characterizing
and mitigating anti-patterns of alerts in industrial cloud systems,” in
Proceedings of the 52st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2022.

[26] “Aws support.” [Online]. Available: https://aws.amazon.com/
premiumsupport/

[27] “Google support hub.” [Online]. Available: https://cloud.google.com/
support-hub

[28] Z. Li, H. Li, T.-H. Chen, and W. Shang, “Deeplv: Suggesting log
levels using ordinal based neural networks,” in Proceedings of the 43rd
International Conference on Software Engineering (ICSE), 2021, pp.
1461–1472.

[29] Wikipedia, “Curse of dimensionality.” [Online]. Available: http:
//en.wikipedia.org/w/index.php?title=Curseofdimensionality

[30] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu,
“Tools and benchmarks for automated log parsing,” in Proceedings of
the 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), 2019, pp. 121–130.

[31] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log
parsing approach with fixed depth tree,” in Proceedings of the IEEE
International Conference on Web Services (ICWS). IEEE, 2017, pp.
33–40.

[32] Y. Chen, X. Yang, H. Dong, X. He, H. Zhang, Q. Lin, J. Chen, P. Zhao,
Y. Kang, F. Gao et al., “Identifying linked incidents in large-scale
online service systems,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2020, pp. 304–314.

[33] Wikipedia, “Pointwise mutual information.” [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Pointwisemutualinformation

[34] H. Qin, Y. Tian, and Y. Song, “Relation extraction with word graphs
from n-grams,” in Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2021, pp. 2860–2868.

[35] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text
classification,” in Proceedings of the AAAI conference on artificial
intelligence (AAAI), 2019, pp. 7370–7377.

[36] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a” kneedle”
in a haystack: Detecting knee points in system behavior,” in 2011 31st
international conference on distributed computing systems workshops.
IEEE, 2011, pp. 166–171.

[37] J. Chen, S. Zhang, X. He, Q. Lin, H. Zhang, D. Hao, Y. Kang, F. Gao,
Z. Xu, Y. Dang et al., “How incidental are the incidents? characterizing
and prioritizing incidents for large-scale online service systems,” in Pro-
ceedings of the 35th International Conference on Automated Software
Engineering (ASE), 2020, pp. 373–384.

[38] Wikipedia, “Component (graph theory).” [Online]. Available: http:
//en.wikipedia.org/w/index.php?title=Component(graphtheory)

[39] S. Rendle, “Factorization machines,” in 2010 IEEE International con-
ference on data mining. IEEE, 2010, pp. 995–1000.

[40] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Pro-
ceedings of the 2019 Conference of (NAACL-HLT). Association for
Computational Linguistics, 2019, pp. 4171–4186.

2310

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

[41] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international Conference on
Software Engineering (ICSE), 2008, pp. 461–470.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations (ICLR), 2015.

[43] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information
retrieval and topic modeling,” in Proceedings of the 27th International
Conference on Automated Software Engineering (ASE), 2012, pp. 70–79.

[44] J. Zhou and H. Zhang, “Learning to rank duplicate bug reports,” in
Proceedings of the 21st ACM International Conference on Information
and Knowledge Management (CIKM), 2012, pp. 852–861.

[45] O. Chaparro, J. M. Florez, U. Singh, and A. Marcus, “Reformulating
queries for duplicate bug report detection,” in Proceedings of the
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2019, pp. 218–229.

[46] C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review analysis for
identifying emerging issues,” in Proceedings of the 40th International
Conference on Software Engineering (ICSE), 2018, pp. 48–58.

[47] C. Gao, W. Zheng, Y. Deng, D. Lo, J. Zeng, M. R. Lyu, and I. King,
“Emerging app issue identification from user feedback: Experience
on wechat,” in Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP),
2019, pp. 279–288.

[48] H. Liu, M. Shen, J. Jin, and Y. Jiang, “Automated classification of
actions in bug reports of mobile apps,” in Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2020, pp. 128–140.

[49] H. Wu, W. Deng, X. Niu, and C. Nie, “Identifying key features from
app user reviews,” in Proceedings of the 43rd International Conference
on Software Engineering (ICSE), 2021, pp. 922–932.

[50] Wikipedia, “Hierarchical Clustering.” [Online]. Available: https:
//en.wikipedia.org/wiki/Hierarchical clustering

[51] J. Gu, J. Wen, Z. Wang, P. Zhao, C. Luo, Y. Kang, Y. Zhou, L. Yang,
J. Sun, Z. Xu et al., “Efficient customer incident triage via linking
with system incidents,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2020, pp. 1296–
1307.

[52] “Allennlp.” [Online]. Available: https://allenai.org/allennlp
[53] “Scikit-learn.” [Online]. Available: https://scikit-learn.org/
[54] “Gensim.” [Online]. Available: https://radimrehurek.com/gensim/
[55] “Huggingface.” [Online]. Available: https://github.com/huggingface/

transformers
[56] W. M. Rand, “Objective criteria for the evaluation of clustering meth-

ods,” Journal of the American Statistical association, vol. 66, no. 336,
pp. 846–850, 1971.

[57] E. Achtert, S. Goldhofer, H.-P. Kriegel, E. Schubert, and A. Zimek,
“Evaluation of clusterings–metrics and visual support,” in Proceedings
of the 28th International Conference on Data Engineering (ICDE), 2012,
pp. 1285–1288.

[58] A. J. Gates and Y.-Y. Ahn, “The impact of random models on clustering

similarity,” Journal of Machine Learning Research (JMLR), vol. 18, pp.
1–28, 2017.

[59] Y. Li, X. Zhang, S. He, Z. Chen, Y. Kang, J. Liu, L. Li, Y. Dang,
F. Gao, Z. Xu et al., “An intelligent framework for timely, accurate,
and comprehensive cloud incident detection,” ACM SIGOPS Operating
Systems Review, vol. 56, no. 1, pp. 1–7, 2022.

[60] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why does the cloud stop computing?
lessons from hundreds of service outages,” in Proceedings of the Seventh
ACM Symposium on Cloud Computing (SOCC), 2016, pp. 1–16.

[61] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, “Gray failure: The achilles’ heel of cloud-scale systems,” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems
(HotOS), 2017, pp. 150–155.

[62] Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu, Y. Dang, D. Zhang,
H. Dong, Y. Xu et al., “Outage prediction and diagnosis for cloud
service systems,” in Proceedings of the 28th World Wide Web Conference
(WWW), 2019, pp. 2659–2665.

[63] Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and W. G. Halfond,
“Recdroid: automatically reproducing android application crashes from
bug reports,” in Proceedings of the 41st International Conference on
Software Engineering (ICSE), 2019, pp. 128–139.

[64] Y. Cao, H. Zhang, and S. Ding, “Symcrash: Selective recording for re-
producing crashes,” in Proceedings of the 29th International Conference
on Automated software engineering (ASE), 2014, pp. 791–802.

[65] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization of
bug reports,” IEEE Transactions on Software Engineering (TSE), vol. 40,
no. 4, pp. 366–380, 2014.

[66] X. Li, H. Jiang, D. Liu, Z. Ren, and G. Li, “Unsupervised deep
bug report summarization,” in Proceedings of the 26th International
Conference on Program Comprehension (ICPC). IEEE, 2018, pp. 144–
14 411.

[67] B. Kucuk and E. Tuzun, “Characterizing duplicate bugs: An empirical
analysis,” in Proceedings of the International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2021, pp. 661–
668.

[68] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu, “How practitioners
perceive automated bug report management techniques,” IEEE Transac-
tions on Software Engineering (TSE), vol. 46, no. 8, pp. 836–862, 2018.

[69] W. Ma, L. Chen, X. Zhang, Y. Zhou, and B. Xu, “How do developers
fix cross-project correlated bugs? a case study on the github scientific
python ecosystem,” in Proceedings of the 39th International Conference
on Software Engineering (ICSE), 2017, pp. 381–392.

[70] J. He, L. Xu, M. Yan, X. Xia, and Y. Lei, “Duplicate bug report detection
using dual-channel convolutional neural networks,” in Proceedings of
the 28th International Conference on Program Comprehension (ICPC),
2020, pp. 117–127.

[71] D. Liu, Y. Feng, X. Zhang, J. Jones, and Z. Chen, “Clustering crowd-
sourced test reports of mobile applications using image understanding,”
IEEE Transactions on Software Engineering (TSE), 2020.

[72] N. Cooper, C. Bernal-Cárdenas, O. Chaparro, K. Moran, and D. Poshy-
vanyk, “It takes two to tango: Combining visual and textual information
for detecting duplicate video-based bug reports,” in Proceedings of the
43rd International Conference on Software Engineering (ICSE), 2021,
pp. 957–969.

2311

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:23 UTC from IEEE Xplore. Restrictions apply.

