
Knowledge-aware Alert Aggregation in Large-scale
Cloud Systems: a Hybrid Approach
Jinxi Kuang§, Jinyang Liu§, Junjie Huang§, Renyi Zhong§,

Jiazhen Gu§∗, Lan Yu∥ , Rui Tan∥ , Zengyin Yang∥ , Michael R. Lyu§
§The Chinese University of Hong Kong, Hong Kong SAR, China,

{jxkuang22, jyliu, jjhuang23, ryzhong22, jiazhengu, lyu}@cse.cuhk.edu.hk
∥Computing and Networking Innovation Lab, Huawei Cloud Computing Technology Co., Ltd, China,

{yulan13, tanrui3, yangzengyin}@huawei.com

ABSTRACT
Due to the scale and complexity of cloud systems, a system fail-
ure would trigger an "alert storm", i.e., massive correlated alerts.
Although these alerts can be traced back to a few root causes, the
overwhelming number makes it infeasible for manual handling.
Alert aggregation is thus critical to help engineers concentrate on
the root cause and facilitate failure resolution. Existing methods
typically utilize semantic similarity-based methods or statistical
methods to aggregate alerts. However, semantic similarity-based
methods overlook the causal rationale of alerts, while statistical
methods can hardly handle infrequent alerts.

To tackle these limitations, we introduce leveraging external
knowledge, i.e., Standard Operation Procedure (SOP) of alerts as a
supplement. We propose COLA, a novel hybrid approach based on
correlation mining and LLM (Large Language Model) reasoning for
online alert aggregation. The correlation mining module effectively
captures the temporal and spatial relations between alerts, measur-
ing their correlations in an efficient manner. Subsequently, only
uncertain pairs with low confidence are forwarded to the LLM rea-
soning module for detailed analysis. This hybrid design harnesses
both statistical evidence for frequent alerts and the reasoning ca-
pabilities of computationally intensive LLMs, ensuring the overall
efficiency of COLA in handling large volumes of alerts in practical
scenarios. We evaluate COLA on three datasets collected from the
production environment of a large-scale cloud platform. The exper-
imental results show COLA achieves F1-scores from 0.901 to 0.930,
outperforming state-of-the-art methods and achieving comparable
efficiency. We also share our experience in deploying COLA in our
real-world cloud system, Cloud X1.

CCS CONCEPTS
• Software and its engineering → Maintaining software.

1Due to the company policy, we anonymize the name as Cloud X.
*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0501-4/24/04. . . $15.00
https://doi.org/10.1145/3639477.3639745

KEYWORDS
Alert aggregation, cloud systems, software reliability

ACM Reference Format:
Jinxi Kuang§, Jinyang Liu§, Junjie Huang§, Renyi Zhong§,, Jiazhen Gu§∗,
Lan Yu∥ , Rui Tan∥ , Zengyin Yang∥ , Michael R. Lyu§. 2024. Knowledge-aware
Alert Aggregation in Large-scale Cloud Systems: a Hybrid Approach. In
46th International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3639477.3639745

1 INTRODUCTION
Cloud systems, such as Microsoft Azure, Amazon AWS, and Google
Cloud Platform (GCP), have been providing essential services for
customers worldwide. It is crucial to ensure the reliability of these
systems in order to prevent user dissatisfaction and economic loss.
For example, the cost of downtime for Amazon in an hour on Prime
Day is up to 100 million dollars [2].

In practice, failures (e.g., unexcepted interruptions or service
level degradation) are inevitable in cloud systems [2, 4, 18]. To
detect and handle failures promptly, modern cloud systems have
configured comprehensive monitoring mechanisms to monitor the
health status of cloud services continuously, which produces moni-
toring data including KPI (key performance indicators), logs and
traces [13, 22, 23, 26, 27, 33]. When an unexpected pattern is de-
tected over these data, an alert will be triggered to notify the On-Call
Engineers (OCEs) for inspection and mitigation as demonstrated
by the red path in Figure 1. For example, when the number of failed
requests increases over a threshold, an alert “failed request number
exceeded 100 within 60 seconds” would be fired to an OCE.

When a failure happens, massive correlated alerts will be trig-
gered in a brief time period, a phenomenon typically referred to
as the notorious "alert storm" problem [39]. This issue primarily
arises from the large-scale and complex dependency of modern
cloud systems. Specifically, a cloud system can own and monitor
tens of hundreds of services [7, 8]. Furthermore, these services are
interdependent, meaning a failure in one service has the potential
to spread to others, a process known as cascading failures [15].
For instance, a failure that occurs within a database service could
potentially impact other services that depend on it such as user
authentication, transaction processing, or data analytics. In this
process, alerts are usually triggered in an uncoordinated manner,
which are overwhelming for OCEs for manual handling. To address
this issue, it is crucial to automatically aggregate these alerts that
are caused by the same failure (i.e., having the same root cause),

369

2024 IEEE/ACM 46th International Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP)

https://doi.org/10.1145/3639477.3639745
https://doi.org/10.1145/3639477.3639745
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639477.3639745&domain=pdf&date_stamp=2024-05-31

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Jinxi Kuang, et al.

Service C

Service B

Online Service System

Massive alerts

On-Call Engineers

(1) Monitoring data

Logs Traces KPIs

(2) Customer reports

Service A

Trigger

Aggregated alerts

Alert Aggregation

Mitigate Notify

Notify

Figure 1: The alert handling process

which can improve the efficiency of OCEs in resolving the failure
as depicted by the blue path in Figure 1.

Many efforts have been devoted to alert aggregation, which
can be categorized into semantic similarity-based methods and
statistical methods. Semantic similarity-based methods, such as
AlertStorm [39], LiDAR [6] and OAS [3], correlate two alerts having
similar semantics based on nature language processing technologies
(e.g., word2vec and BERT). However, correlated alerts can have dis-
tinct semantics. For example, an alert warning of a server overload
may be correlated with an alert indicating a database slowdown,
even though the semantics of these two alerts are quite different.
On the other hand, statistical methods, such as Warden [24], Li-
DAR [6] and iPACK [25], learn from the co-occurrence patterns of
two alerts to determine their relations. Nevertheless, such methods
rely on a large amount of historical data for learning, which might
be inaccurate for unseen or infrequent alerts.

To address the limitations of existing studies, motivated by the
recent successes of large language models (LLM) for challenging
reasoning tasks [1, 5, 19], we propose to leverage LLM for alert
aggregation in a large-scale cloud system. Intuitively, we aim to
perform reasoning about relations between two alerts using LLM
by learning from existing knowledge of alerts. To be specific, in
Cloud X, each alert is associated with a comprehensive document
called Standard Operating Procedure (SOP). These SOPs contain
detailed information about the alert, such as the conditions that
trigger it, severity levels, potential impacts, possible root causes,
and recommended mitigation steps. The SOPs are continually up-
dated by on-site engineers during maintenance activities, e.g., when
they observe a new potential impact. These SOPs provide insights
into the underlying rationale behind alerts, enabling us to engage
in reasoning rather than relying solely on semantic similarity com-
parisons. Furthermore, LLMs can generate interpretable results for
on-site engineers, facilitating their understanding the outcomes.

However, designing such a solution faces the following three
challenges. First, existing LLMs are not specialized for alert aggre-
gation. These models are typically trained using publicly available
general knowledge sources, such as Wikipedia and Github. Conse-
quently, they lack specific knowledge about alerts in cloud systems,
which is essential for accurately reasoning about the relationships
between alerts. Second, the SOPs typically consist of extensive tex-
tual content. Considering that LLMs often struggle to effectively
learn from lengthy input [40], performing reasoning directly on
such long text poses a significant challenge for these models. Third,

the efficiency of LLMs is low. It generally takes seconds for a typical
LLM (e.g., ChatGPT) to generate responses. In real-world deploy-
ment scenarios, this time delay is far from ideal, particularly when
a significant number of alerts are generated during a failure event.

Our work. To tackle these challenges, in this paper, we propose
COLA, a novel hybrid approach based on COrrelation mining and
LLM reasoning for online alert Aggregation. COLA is composed
of two modules, a correlation mining module and an LLM reason-
ing module. To tackle the first challenge, we propose to leverage
in-context learning (ICL) to provide domain-specific knowledge
to LLM. ICL is prompt engineering that demonstrates relevant ex-
amples to LLM to enable LLM to perform tasks by learning from
the examples, which has been proven to be effective in various
software engineer tasks [16, 41]. To address the second challenge,
we propose a multi-round prompting mechanism to summarize
long text within the SOPs progressively and extract key knowledge
for reasoning relations between alerts. For the third challenge, we
propose to incorporate a lightweight and efficient correlation min-
ing component in our framework. This component aims to filter out
correlated alert pairs with high confidence. Only those uncertain
pairs are sent to the LLM reasoning module for in-depth analysis.
To evaluate the proposed approach, we collect three datasets from
the real-world production environment of Cloud X, which contain
500,000 alerts and 3,000 SOPs. Extensive experiments demonstrate
that COLA achieves F1-scores from 0.901 to 0.930, significantly
outperforming all state-of-the-art baseline models. Furthermore,
despite utilizing computationally intensive LLM for analysis, COLA
demonstrates comparable efficiency to existing methods.

Our major contributions are as follows:
• We are the first to propose introducing detailed knowledge (e.g.,
SOPs) for alert aggregation. By leveraging this extensive knowl-
edge, we are able to effectively aggregate alerts that are semanti-
cally dissimilar or infrequent (Section 2).

• We propose COLA, a hybrid framework comprising a correlation
mining component and an LLM reasoning component, specifi-
cally designed for online alert aggregation. This hybrid approach
allows us to harness the capabilities of LLM while ensuring effi-
cient handling of a large volume of alerts in practical scenarios
(Section 3).

• We evaluate COLA on three datasets collected from the industrial
production environment. The evaluation results show that COLA
outperforms the state-of-the-art method with F1-scores from
0.901 to 0.930 and archives comparable efficiency (Section 4).

• We have deployed COLA in the production environment of Cloud
X for four months. Our practical experience is shared to benefit
the community (Section 5).

2 BACKGROUND AND MOTIVATION
In this section, we introduce background concepts in Cloud X, and
demonstrate a motivating example to elaborate our motivation.

2.1 Alerts and SOPs in Cloud X
Alert. Alerts are produced when anomalies are detected in the
monitoring data or raised by customers [39]. Alerts are used to no-
tify OCEs for timely anomaly handling and have various attributes
including alert ID, title, creation time, arrival time, mitigated time,

370

Knowledge-aware Alert Aggregation in Large-scale
Cloud Systems: a Hybrid Approach ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

SOP Title: OS_Disk_Usage_Is_High Severity: Important
Explanation: Disk usage is too high, data can not be written in. This alert can be
triggered every XX hours.
Possible Cause: Normal monitored logs accumulation
Impact on system: Interruption on normal monitoring, but no effects on service
Recommended Mitigation Steps:

(1)Apply permission on operations of master node, log in as opadmin
(2)Delete the real-time output logs
…

SOP ID: 2023062200466

Alert Title: BasicService_OS_UDPPackageError
Date: 2023/06/22 Service: BasicService-DNS
IP: 10.34.38.123 Region: North-Cityname
Creation Time: 2023/06/22 01: 44: 18 Engineer: XXX
Arrived Time: 2023/06/22 01: 44: 37
Mitigated Time: 2023/06/22 01: 54: 38

Alert ID: 1006601873

Figure 2: Example of an alert and a SOP document
owning service, region and corresponding engineer as Figure 2
shows. ID is unique for each alert, and the title can be regarded
as a summary of the alert. Creation time, arrival time, mitigated
time denote the specific time when an alert is triggered, received
by OCEs, and mitigated by OCEs, respectively. Service shows the
owning service of alert, and region indicates the physical location
of the server where the service is deployed. Engineer contains the
name and ID of the responsible OCE.
SOP. The Standard Operating Procedure (SOP) [38] documents are
alert description documents maintained by engineers in Cloud X.
The documents are written in natural language along with screen-
shots, tablets and website links to provide a reference for alert
handling. SOPs contain the ID, title, severity, explanation of the
alert, the impact on the system, possible cause, and recommended
mitigation steps as shown in Figure 2. ID is the identifier and title
briefly introduces the anomaly. Severity indicates the priority of
handling. Explanation elaborates more detail about this alert. Impact
shows the consequential results of this alert on the owning service
and the whole system. Possible cause and recommended mitigation
steps are concluded by engineers from similar historical alerts. In
addition, the domain knowledge of cloud services is also implicitly
contained in the engineer-write notes and explanations. However,
SOPs are long and unstructured. Thus it is challenging to extract the
key information automatically and further analyze the correlation.

2.2 Motivating Example
We present a real-world service failure in January 2023 with part
of the relevant alerts and SOP in Cloud X as a motivating example
shown in Table 1. The failure was originally caused by the low volt-
age on the solid-state drive (SSD in a storage server (𝑎1), leading to
the interruption of Object Storage Device (OSD) processes. Specifi-
cally, some of the I/O operations of OSDwere incomplete or blocked
(𝑎2) due to insufficient power supply in SSD. This was captured by
the OSD process monitors as an exception (𝑎3), which resulted in an
unhealthy OSD node (𝑎4). Next, the health monitor for the storage
cluster also reported such anomalies (𝑎5). Finally, at the application
layer, we observed successful connection to our Redis service is
decreased (𝑎6). In practice, a lot more alerts can be generated in a
large-scale cloud system; we only selected representative ones for
clearer demonstration.

Correlating these overwhelming alerts poses a significant chal-
lenge for OCEs, as it demands extensive experience and understand-
ing of cloud systems to interpret alerts originating from various
services across different levels of the infrastructure. In this example,
alerts 𝑎1 ∼ 𝑎6 cover hardware at the infrastructure level, nodes and
processes at the platform level, and the application level. Previous
studies rely on statistical correlation or semantic similarity to per-
form alert aggregation, which, however are suboptimal. For alerts
shown in Table 1, not all of them appear extensively to support
statistical analysis. For example, 𝑎5 and 𝑎6 are rare since they gen-
erally represent more severe problems. In addition, 𝑎1 ∼ 𝑎6 share
little semantic similarities.

We propose to perform reasoning based on knowledge (e.g.,
SOPs) of each alert for more effective alert aggregation. SOPs associ-
ated with each alert in the cloud system are detailed and comprehen-
sive, spanning approximately 3 to 4 A4 pages. For clarity, we have
provided summarized versions of these SOPs in Table 1. Inspired by
the recent success of LLM for various challenging tasks [17], we aim
to utilize LLM to comprehend these SOPs, extract key information
and aggregate correlated alerts based on reasoning. In this way,
we can link alerts based on extensive knowledge and obtain inter-
pretable results from LLM. Notably, this approach could leverage
the knowledge distributed across different services and layers of
the cloud system, and perform more effective alert aggregation.

2.3 Challenges
Although LLM is capable of extracting knowledge from natural
language and performing further reasoning tasks, there are still
three challenges of LLM that should be addressed in practice.
Challenge 1: Low efficiency. LLM is time-consuming to generate
a response in practical industrial scenarios. It takes LLM more than
10 seconds to summarize an SOP and even more time to perform
reasoning in Cloud X.When service failure happens, a large number
of alerts are triggered, making it impossible to handle the failure
timely by inputting all the alerts to LLM. To overcome the low-
efficiency challenge, we first filter the alerts with the similarity
score evaluated by the correlation mining module. Then We drop
out the alert pairs with positive similarity scores, and the LLM
module only needs to process a small scale of undetermined alerts.
Challenge 2: Long text understanding. The context understand-
ing and summarizing ability of LLM decreases as the length of the
text grows. Most of the input lengths of LLM are limited. Some
LLMs claim they support infinite input length, but they also stress
the effectiveness would decline after inputting thousands of words.
In our design, the prompt for LLM contains two alerts and SOPs,
which is usually longer than these limits. To overcome the long-text
understanding challenge, inspired by the Chain-Of-Thought (COT)
design [37], we propose a two-round interaction with LLM. In the
first round of requests, we ask LLM to extract and summarize the
knowledge in SOP; In the second round, we ask LLM to perform
analyzing and reasoning on alerts with the summarized SOP.
Challenge 3: Lack of domain knowledge. LLM is a generalized
language model that lacks of domain knowledge of online service
systems. LLM is trained using a huge amount of accessible data
on the Internet. However, the knowledge of online service system
maintenance, especially for those internal terms and descriptions, is

371

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Jinxi Kuang, et al.

Table 1: Correlated alerts and associated SOPs in Cloud X: a motivating example

Alert SOP (after manual summarization)
ID Title Impact on the system Possible causes
𝑎1 SSD voltage is lower than alarming threshold. Latency of memory processes increases SSD failure
𝑎2 OSD I/O blocking detected. Latency of disk requests increases Hardware failure or OS bugs
𝑎3 OSD process exception detected. Data reconstruction on OSD managed disks Unreadable sectors on disk
𝑎4 OSD node 19e7fb37 is unhealthy. Latency of disk requests increases or fluctuates OSD I/O not responding
𝑎5 Storage cluster a9dbc69b is abnormal. Storage pool redundancy reduction or failure OSD nodes are abnormal
𝑎6 Successful connection count to Redis is decreased. Disconnection to Redis service Hardware failure or component abnormal

Alerts SOPs

Region A

Region B

Region C

Separated by Region

2023/01/01 – 2023/05/31, training set

Time∆ = 10 𝑚𝑖𝑛𝑠

𝑇0

2023/06/01 – 2023/06/30, testing set

Divide Time Windows

𝑇0 +
1

2
∆ 𝑇0 +

2

2
∆ 𝑇0 +

3

2
∆

Figure 3: The preprocessing steps

mostly not publicly available. Thus it is difficult for LLM to generate
a reasonable answer for causal analysis of alerts. To overcome the
challenge of lacking domain knowledge, we apply two techniques
to leverage the summarized knowledge from SOP. In-Context Learn-
ing (ICL) performs a few-shot learning. A few positive and negative
examples, which contain summarized SOP and expected answers,
are inserted into the prompt. LLMs are expected to quickly pick
up the domain knowledge from those examples. Supervised Fine-
Tuning (SFT) takes historical alerts and SOPs as the training set and
learns the domain knowledge by updating the model parameters.

3 METHODOLOGY
3.1 Overview of COLA
The goal of COLA is to aggregate the alerts online by performing
correlation mining on statistic information and LLM reasoning
on semantic information. The inputs of COLA are alerts and the
corresponding SOPs. The results are the grouped alerts, where the
alerts have the same cause that each of the two alerts are correlated.
The aggregation helps to reduce the number of alerts to handle,
decreasing the workload of OCEs. In addition, compared to one
single alert, the aggregated alerts are more beneficial to the OCEs
in understanding the whole failure process. This also reduces the
time cost on locating and fixing the service failure.

Figure 4 shows the overall framework of COLA. COLA first pre-
processes the alerts obtained from the real-world scenarios. Those
alerts are separated based on different physical regions which can
be regarded as isolated systems, then are divided into time windows
according to the Arrived Time attribute. Next, the correlation min-
ing module is proposed to determine the correlation of alert pairs by
utilizing the temporal and spatial relation, and output a similarity
score of correlation analysis. The alert pairs with a positive similar-
ity score would be marked as correlated, while the alert pairs with
negative scores would be processed in the LLM reasoning module
along with the corresponding summarized SOPs. In LLM reasoning
module, two popular LLM techniques, In-Context Learning (ICL)
and Supervised Fine-Tuning (SFT), are leveraged to learn domain
knowledge and perform reasoning tasks. In the ICL method, similar
historical alerts and SOP samples are captured by FastText [20]

embedding and semantic similarity search. Those samples as well
as pre-defined reasoning rules are inserted into prompts of the cur-
rent query to provide domain knowledge and inference examples
for LLM. In the SFT method, the historical data is used for LLM
fine-tuning, which makes LLM capable of performing alert-related
reasoning with domain knowledge.

3.2 Preprocessing
In a large-scale system, services are deployed in various physical
regions, which are isolated and can be regarded as independent.
Thus we separate the alerts by regions at the first step as Figure 3
shows, which reduces the workload for correlation mining and
eliminates the error of grouping alerts from irrelevant services.

In most cases, the alerts of the same root cause are triggered
in a certain period [39]. This indicates the aggregation can focus
on a relatively short time interval (e.g. several minutes). We call
these intervals time windows. According to our practical experience
in Cloud X, the length of time windows can be set to 10 minutes.
Considering service failure can happen near the boundary of the
interval, we employ the sliding window policy. The sliding size is set
as 1

2 windows. Formally, denote𝑇0 as the start time, Δ as the length
of the time window, 𝑠 as the sliding size, then the time window
for our alert division is: [𝑇0 + 𝑘𝑠Δ, 𝑇0 + (𝑘𝑠 + 1)Δ], 𝑘 ∈ [1, 2, 3...]
With this division, we maintain the potential alert groups and also
reduce the input scale for correlation mining. Finally, we split the
training set and testing set based on the time attribute of alerts. We
further demonstrate this part in Section 4.

3.3 Correlation Mining Module
In the correlation mining module, our objective is to identify alerts
that exhibit significant statistical evidence of correlation efficiently.
In this way, when an alert storm happens, we can quickly filter out
alert pairs with high confidence and only leave uncertain pairs for
detailed analysis based on LLM.

To achieve this, the proposed correlation mining module incor-
porates both temporal relation and spatial relation for alert analysis.
For temporal relation, we consider the correlation in time windows.
It is intuitive that the frequently co-occurring alerts are more likely
to be correlated. If two alerts have the same root cause, they would
be triggered in a short period as the alert storm occurs. Thus it
can be captured and observed by the sliding windows. For spatial
relations, we consider the propagation sequences within the ser-
vice topology. If two services are not related in topology, the alerts
from these two services should be more likely irrelevant, and vice
versa. Combining the temporal and spatial relation, we obtain the
statistically correlated alert pairs in this step.

372

Knowledge-aware Alert Aggregation in Large-scale
Cloud Systems: a Hybrid Approach ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

SOPs
Knowledge Extraction

Internal LLM

Summarized SOPs

Response

Correlation Mining

Temporal
relation

Spatial
relation

Similarity Score

Positive
Similarity

Score

+

Alerts

LLM Reasoning

Internal LLM

Samples

Query

Rules

ICL Prompt

P-tuning
Parameters

SFT Training set

Samples

OCEs

Alerts

Negative
Similarity

Score

Positive
samples

Training Set

Testing Set

Pre-define

Negative
samples

Figure 4: Overview of COLA

3.3.1 Leveraging Temporal Relations. To evaluate the correlation
of alerts in time windows, we utilize conditional possibility as
our metrics for frequent pattern mining. For the alert pair which
contains alerts 𝑎1 and 𝑎2, we first collect all the time windows
where alert 𝑎1 is involved, to compute its occurrence frequency
𝑃 (𝑎1) = #𝑊𝑖𝑛𝑑𝑜𝑤𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎1

#𝐴𝑙𝑙 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
. Similarly, we obtain 𝑃 (𝑎2). Then

we find the windows where 𝑎1 and 𝑎2 appear together to get
𝑃 (𝑎1𝑎2) =

#𝑊𝑖𝑛𝑑𝑜𝑤𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎1 𝑎𝑛𝑑 𝑎2
#𝐴𝑙𝑙 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

. With these metrics, we
can calculate the occurrence frequency of 𝑎2 given that 𝑎1 has oc-
curred by 𝑃 (𝑎2 |𝑎1) =

𝑃 (𝑎1𝑎2)
𝑃 (𝑎1) and 𝑃 (𝑎1 |𝑎2) =

𝑃 (𝑎1𝑎2)
𝑃 (𝑎2) as the left

part of Figure 5 illustrates. Thus we have two conditional possibili-
ties that indicate the similarity from the temporal view denoted as
𝑇𝑎1 |𝑎2 ,𝑇𝑎2 |𝑎1 .

However, the alerts are not ensured to be correlated even if the
conditional possibility 𝑇𝑎1 |𝑎2 or 𝑇𝑎2 |𝑎1 is high. Some alerts are is-
sued regularly to act as a reminder during the normal execution
of systems. These regular alerts are regarded as noises in our task,
which cannot represent a practical co-occurrence pattern in aggre-
gation, and those alerts would further affect the performance of
correlation analysis. Thus it is significant to remove the noise alerts
in our collected dataset.

To detect the noise in alerts, we utilize the Jaccard similar-
ity to evaluate the proportion of overlapping for the two sets
of time windows. The Jaccard similarity is calculated as divid-
ing the cardinality of the intersection by the cardinality of the
union. With the notations in this section, it can be denoted as
𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =

𝑃 (𝑎1𝑎2)
𝑃 (𝑎1+𝑎2) =

𝑃 (𝑎1𝑎2)
𝑃 (𝑎1)+𝑃 (𝑎2)−𝑃 (𝑎1𝑎2) . The Noise

alert 𝑎𝑁 appear in time windows evenly, leading to 𝑃 (𝑎𝑁𝑎𝑖) ≈
𝑃 (𝑎𝑖) and 𝑃 (𝑎𝑁𝑎𝑖) ≪ 𝑃 (𝑎𝑁), for most of the non-noise alert 𝑎𝑖 .
Thus the Jaccard similarity is close to 0 as the approximate calcu-
lation shows: 𝑃 (𝑎𝑁 𝑎𝑖)

𝑃 (𝑎𝑁)+𝑃 (𝑎𝑖)−𝑃 (𝑎𝑁 𝑎𝑖) ≈ 𝑃 (𝑎𝑁 𝑎𝑖)
𝑃 (𝑎𝑁) ≈ 0. Based on this

observation, we filter out the alert pairs that have a small Jaccard
similarity to perform denoising.
3.3.2 Leveraging Spatial Relations. To measure the correlation of
alerts in service topology, we introduce the historical links between
services for correlation mining. The owning service is one of the
attributes of alerts, which can be obtained once the alert is trig-
gered. With the services and historical failures, we can construct
the topology graph of services. The nodes in this graph are services,
and edges indicate that there are correlated alert pairs from these
two services in historical records. The edge points from the service
of the earlier alert to the service of the later alert. Besides, each ser-
vice may trigger multiple alerts in one failure, which means there
are multiple alerts in each node in the graph. This also requires

a different strategy from the existing graph embedding methods
when the graph is sampled.

Inspired by node2vec [12], a novel node representation method
for graphs, we construct a two-stage service topology pattern min-
ing approach. We first sample the topology graph by an alert-aware
random walk technique, then utilize the skip-gram model for alert
embedding learning. Finally, the embedding of alerts are used for
similarity computing with the distance of alert embeddings.

In the sampling stage, we apply the random walk on the service
topology graph. The sampled results are node sequences in this
approach. However, there are multiple alerts in one single node.
Thus we randomly sample one of those alert to the sequence. The
sampling direction can be controlled in this algorithm, reaching a
balance between exploring different areas like breadth-first search
(BFS) and focusing on local neighborhoods as depth-first search
(DFS). In our scenario, we observe the failure can be propagated to
services of other components, which are far from the original node
in the topology graph. To extract the long propagation characteris-
tics, we set up the sampling direction similar to DFS.

In the embedding stage, we employ the skip-gram model [32].
The skip-gram model is first designed in natural language process-
ing tasks, to predict the missing word given the neighboring context.
It maximizes the likelihood of predicting the context nodes using
the embedding of targets. In our task, we focus on the embedding
of alerts in the sequence. The embedding of alerts contains the
topology features of their positions and neighbors in the graph,
which is useful for correlation mining. Therefore, the embeddings
are representative of the spatial relation of alerts that can be used
for similarity computing. For the alert pairs 𝑎1 and 𝑎2, we obtain
their embedding from the skip-gram model. If the alert is unseen
to the model, we compute the average embedding of the owning
service instead. Then we obtain the distance of these embeddings
as a similarity score for correlation denoted as 𝑆𝑎1𝑎2 .

3.3.3 Combining Temporal and Spatial features. We obtain the
temporal correlation metric 𝑇 by conditional possibility, and get
the spatial correlation metric 𝑆 by the distance of embeddings. To
combine the two metrics, we compute the final similarity score by
a linear combination:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =𝑚𝑎𝑥{𝑇𝑎1 |𝑎2 , 𝑇𝑎2 |𝑎1 } − 𝛼 ·
𝑆𝑎1𝑎2 − 𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

The temporal metric 𝑇 is a possibility value ranging from 0 to 1,
while the spatial metric is a positive real number that stands for
distance. To align with the temporal metric, we normalized the
spatial metric to the same interval. Notice that the larger distance

373

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Jinxi Kuang, et al.

Time windows
containing alert 𝑎2

Time windows
containing alert 𝑎1

Time windows containing
alert 𝑎1 and 𝑎2

Service

Sampled Alert
Sequences

Alert
Embeddings

Service
Dependency graph

Conditional Possibility Embedding distanceSimilarity Score

Temporal relation Spatial relation

Jaccard Similarity =
111

111+111+111

𝑃(𝑎2 𝑎1 =
111

111+111
𝑃(𝑎1 𝑎2 =

111

111+111

Figure 5: The design of correlation mining component
represents a lower similarity, thus the spatial term is negative. The
parameter 𝛼 controls the threshold for correlation. We conduct a
grid search, with 𝛼 ranging from 0 to 10 and the step size as 0.5, and
determine the optimal 𝛼 is 3.5 in our task. Finally, if the similarity
score is positive, we output the alert pairs as correlated. Otherwise,
we input the pair to the next module.

3.4 LLM Reasoning Module
In correlation mining module, we output the alert pairs with posi-
tive similarity scores. For those pairs where the similarity score is
negative, they can be irrelevant, or they are not statistically sim-
ilar but logically correlated. Statistical methods cannot get better
conclusions on their relevance. Thus we need to introduce more
knowledge for alerts, and utilize more advanced but relatively inef-
ficient techniques (e.g., LLM) for further analysis.

As section 2 mentioned, SOP documents are widely used for
service failure handling. SOP contains more key information about
alerts, including possible causes, explanations, impacts on the sys-
tem and recommended mitigation steps. Furthermore, those con-
tents contain potential domain knowledge. For example, the impacts
and mitigation steps usually describe the fact that hardware outage
may be the root cause of customer-side service failure. However,
the SOPs are written in unstructured natural language with long
lengths. It is hard to extract key information from SOP automatically.
With the capability of context understanding and reasoning, LLMs
become one of the feasible solutions to SOP processing. We design
a two-round interaction with LLM based on the COT technique.
In the first round, we summarize and store the key information.
Then in the second round, we design the prompts for the in-context
learning (ICL) method with the matched historical samples and pre-
defined rules. And we further fine-tune the LLM by the p-tuning
v2 [29] technique, a popular supervised fine-tuning (SFT) method.
With the extra model parameters trained in p-tuning v2, we can
get responses to the alert correlations accurately and clearly.

3.4.1 Knowledge Extraction. To understand and leverage the do-
main knowledge in the SOPs, we introduce LLMs for semantic
information extraction. LLMs are capable of natural language un-
derstanding, but the long text input would worsen the effectiveness
of context handling. Most of the existing LLMs limit the length
of the prompt, which is not enough for the contents and SOPs of
the alert pair along with the query instruction. To maintain the

Prompt: Please summarize the possible root cause, the explanation, the
impact on system of the following alert, and provide a concise summary
on the recommended handling steps of this alert. The information of this
alert: {Alert and SOP contents}. Please answer in the format like
“Explanation: …”

Figure 6: The prompt template for knowledge extraction

key information of documents and shorten the length of the input,
inspired by the COT technique, we interact with LLMs by rounds,
where the result of the current round would be inserted as input
for the next round. This helps LLM focus on the task of the current
round and preserves the information in previous rounds.

In particular, we perform knowledge extraction on the original
SOPs, summarize the main knowledge of these documents, and
store the output for the next round interaction as the upper row of
Figure 4 shows.We design the prompt for this step by mainly asking
LLM to summarize the information in the given SOPs, and stress
out some aspects that are useful for reasoning, such as the detailed
explanation, the consequence of the system and the handling steps.
The answers follow the instructions, containing the attributes given
in the prompt as in Figure 6.

3.4.2 In-Context Learning. With the extracted SOP information
and domain knowledge obtained in the knowledge extraction, sev-
eral approaches are proposed for LLM to take up the knowledge.
In-context learning (ICL) is one of the most popular prompting
methods. As a few-shot learning method, ICL requires a few pre-
processed samples, which is flexible on deployment in real-world
scenarios. Recent research [11] shows that the ICL method with
high-quality samples can achieve a similar performance compared
with tuning methods. Therefore, we adopt ICL as one of the meth-
ods to enhance LLM reasoning.

We construct the prompts for ICL with the three parts of samples,
query and rules as the LLM reasoning component in Figure 4 shows.
Samples of semantically similar previous alerts and SOPs provide
a reliable reference for the current handling. Thus the quality of
the samples has a significant impact on the response from LLM. To
extract the semantic features and compute the similarity directly,
we employ the FastText [20] as our embedding model. FastText is
a lightweight model that performs well on domain-specific texts,
but is more efficient in training and evaluating compared with the
generalized embedding model such as BERT [9]. We embed the
alert title and SOP documents into a 750-dimension vector. For each
alert pair in LLM reasoning module, LLM reasoning module embeds
the two alerts, respectively. Then compute the semantic similarity
with the vector distance of the current alert and all sampled alerts,
taking the top-k similar samples to be inserted into the prompt. Due
to the input length limit of LLM, we adopt the top-1 similar positive
sample and top-1 negative sample as final samples in prompts.

Query organizes the main question of the prompt. It contains
the title and summarized SOP of two alerts, and connects the infor-
mation fluently with natural language. The query part also consists
of some instructions to highlight the core problem, suggesting the
structure and format of the answer. Thus, the responses from LLM
would be in a more standard format which is efficient to evaluate.

Rules help LLM generate more stable responses. The general
knowledge implied in LLM makes it respond flexibly to some con-
cepts like "root cause" and "similar", resulting in unstable answers

374

Knowledge-aware Alert Aggregation in Large-scale
Cloud Systems: a Hybrid Approach ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Prompt:
<Samples:>

Positive samples:
Question1: {Similar alert titles and extracted SOPs}. Based on the

information above, determine the two alerts have the same root cause
or not. Answer: Based on the possible root cause, explanation and
impacts, the two alerts are related, may be caused by the same root
cause.

…
Negative samples:
…

<Query:>
According to the samples above, answer the question with the

following information: {The queried alert titles and extracted SOPs}.
<Rules:>

1. If event A triggers event B through a series of events, event B is
one of the results of event A, event A can be regarded as the root cause
of event B;

2. If the titles, explanations, impacts of two alerts are similar, the
two alerts are caused by the same reason;

3. In the absence of compliance with Rule 2, if the recommended
handling steps of two alerts are roughly the same, the two alerts are
related.

Based on the given samples, information and rules, analyze the causes
of the two alerts in query, determine whether they are related, and have
the same root cause or not.

Figure 7: The prompt template for ICL

to the same question. To improve the consistency of the responses,
we insert some pre-defined rules for reasoning as Figure 7 shows.
Rule 1 explains the propagation feature of causality to help LLM
understand the concept of root cause. Rule 2 and 3 explicitly define
the priority of different information when comparing similarity.

3.4.3 Supervised Fine-Tuning. Another method for LLM to learn
domain knowledge is to retrain the parameters in the model. How-
ever, it is impractical to fully update the billions of parameters in
LLMs due to resource constraints. Thus fine-tuning techniques are
proposed for updating a small part of the parameters, preserving
the ability of natural language processing and obtaining domain-
specific knowledge. P-tuning [29] is one of the most popular meth-
ods for LLM fine-tuning. Different from updating parameters from
LLM, p-tuning maintains another set of parameters as the lower
row in Figure 4 shows, to transform prompts into embedding. By
learning these extra parameters, p-tuningmakes LLM respondmore
consistently with prompts, and get knowledge from the training
dataset. In LLM reasoning module, we employ p-tuning v2 [28],
which provides a larger scale of parameters with new learning skills,
leading to a more efficient and effective tuning process.

To perform fine-tuning on LLM, we split part of the data from the
training set to make up the validation set. The training set covers
alerts and SOPs reported from January to May of 2023, consisting of
about 85.1% of all data. We randomly select data from the original
training set to the amount of 80% as the new training set, and the
rest 5.1% is for the validation set. We perform p-turning on GPUs
and train the model for 1800 steps. We evaluate the fine-tuned
model on the validation set and save every 300 steps. Finally, the
checkpoint with minimum validation loss is chosen for testing.

4 EVALUATION
We evaluate COLA by answering the research questions (RQs).

• RQ1: What is the effectiveness of COLA?
• RQ2: What is the impact of each component in COLA?
• RQ3: What is the time efficiency of COLA?

4.1 Datasets
The three datasets in our evaluation are collected from the industrial
production environment of Cloud X. The datasets contain alerts
from 2023/01/01 to 2023/06/30, covering over 60 services from 14
physical regions. There are around 500,000 alerts and 3,000 iden-
tical SOP documents in all three datasets. Alerts and SOPs from
2023/01/01 to 2023/05/31 are used to select parameters in corre-
lation mining, ICL samples supporting and LLM fine-tuning. The
remaining data are used for the testing of our framework.

4.2 Baselines
We compare our approaches with two traditional machine-learning
techniques and four popular recent researchmethods. FP-growth [14]
is an algorithm used for frequent pattern mining in data mining and
association rule learning. DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) [10] is a popular density-based
clustering algorithm that can discover semantic clusters with alert
title embeddings. The four state-of-the-art research methods are
introduced as follows:

AlertStorm [39]: AlertStorm conducts the first empirical study
of the alert storm and proposes a novel approach to handling alert
storms, consisting of alert storm detection and alert storm sum-
mary. The detecting part adaptively and accurately detects alert
storms based on Extreme Value Theory, while the summarizing
part proposes an alert denoising method and an alert discrimination
method. We mainly focus on its summarizing part in our evaluation.

LiDAR [6]: LiDAR (Linked Incident identification with DAta-
driven Representation) consists of a textual embedding module for
semantic information and a component representation learning
module for dependency structure. It is an integrated framework
that can effectively identify possible linked incidents. In our evalu-
ation, we managed to utilize LiDAR for identifying linked alerts by
providing similar semantic and dependency information.

OAS [3]: OAS (Online Alert Summarizing) first aggregates the
contextual information of alert words by the word frequency in
alert contents, then mines the common behavior pattern between
alerts from the alert occurrence series. Finally, it combines the above
two types of alert information and determines the correlation by a
deep learning model.

iPACK [25]: iPACK is an incident-awaremethod for aggregating
duplicate tickets, consisting of alert parsing, incident profiling and
ticket-event correlation. In particular, incident profiling filters noisy
events and links the correlated events that are caused by the same
incidents. In our evaluation, we apply incident profiling on alerts
to determine correlated alerts.

4.3 Implementation Details
We implement COLAon aWindows serverwith an Intel(R) Core(TM)
i7-10700 CPU @ 2.90GHz and 32GB RAM. The inference tasks and
fine-tuning of LLM components are done on 4 NVIDIA Tesla T4
GPUs with 12GB graphic memory for each. We set the parameters
of fine-tuning as default 𝑃𝑅𝐸_𝑆𝐸𝑄_𝐿𝐸𝑁 = 128 and 𝐿𝑅 = 2𝑒 − 2.

375

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Jinxi Kuang, et al.

Table 2: Effectiveness of experimental approaches on identifying correlated alerts

Method Dataset A Dataset B Dataset C
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

FP-Growth 0.413 0.744 0.531 0.409 0.692 0.514 0.364 0.655 0.467
DBSCAN 0.166 0.432 0.240 0.187 0.364 0.247 0.227 0.400 0.289

Alert Storm 0.328 0.662 0.438 0.356 0.604 0.448 0.338 0.639 0.442
LiDAR 0.636 0.514 0.568 0.682 0.589 0.632 0.672 0.653 0.662
OAS 0.454 0.483 0.468 0.427 0.521 0.469 0.486 0.561 0.521
iPACK 0.691 0.635 0.661 0.603 0.642 0.621 0.654 0.614 0.633

COLA w/o SFT 0.694 0.651 0.672 0.638 0.693 0.664 0.653 0.638 0.645
COLA 0.892 0.924 0.908 0.916 0.943 0.930 0.921 0.882 0.901

For the compared methods which are not open-sourced, we follow
the demonstrated techniques and given parameters to reproduce
the works and ensure their performance as well.

4.4 Metrics
The goal of our methods is to identify the correlated alerts. Some
of the compared methods score on the alert pairs to determine
the result, while the others directly give out the aggregated alert
groups by clustering methods. Thus a unified output format is re-
quired. For those clusters, we transform them into alert pairs by pair-
wised combination. In particular, for a𝑚-alert cluster 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 =

{𝑎𝑖 }, 𝑖 ∈ [1, 2, 3...,𝑚], we obtain 𝑚2 − 𝑚 alert pairs as 𝑃𝑎𝑖𝑟𝑠 =

{(𝑎𝑝 , 𝑎𝑞)}, 𝑝, 𝑞 ∈ [1, 2, 3...,𝑚], 𝑝 ≠ 𝑞. To compare the pair-wised
results with the ground-truth labels, we compute the four metrics of
the fusing matrix and obtain the final measurement: Ture Positive
(TP) stands for the correlated alerts in results which are also labeled
as related in ground truth; True Negative (TN) are for those irrele-
vant alert pairs both in results and ground truth. False Positive (FP)
are correlated alerts in our tests but are not correlated in ground
truth. False Negative (FN) means the irrelevant pairs in tests but
actually correlated in ground truth. With these four basic metrics,
we obtain the precision, recall and F1-score as the final metrics
for our evaluation, where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 , 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 ,

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 .

4.5 Evaluation Results
4.5.1 RQ1: In this RQ, we demonstrate the effectiveness of COLA
on identifying correlated alerts by comparing it with the two ma-
chine learning algorithms and four research methods. The evalua-
tion result is shown in Table 2. The highest F1-score is shown in
bold, which represents the best overall performance considering
the correctness and completeness of the result. And the second-
highest F1-score is underlined.

We implement the LLM module of COLA with ICL and SFT
independently. We evaluate the two methods and list the result in
Table 2. COLA without SFT reaches the best F1-score in Dataset A
and B, while getting the second highest in Dataset C, compared with
the existing methods. The result supports that LLM contributes to
the correlation analysis. However, the increase of F1-score is not
significant, which is 1.7% and 5.1% compared to the state-of-the-
art method on Dataset A and B, respectively. This result shows
the great potential to improve ICL on the alert aggregation task.
There are several possible reasons for the low improvement: 1)

The parameters of the internal LLM are insufficient, compared to
the commercial LLMs with over 100B parameters. 2) The given
samples in the prompt are not enough, due to the length limits of
LLM inputs. 3) The quality of samples is not satisfying, because
the sample matching is based on a simple SOP embedding. 4) The
sample response only shows the label, without giving any reasoning
steps which makes LLM hard to follow.

COLA achieves the best F1-score among all datasets, and outper-
forms the existing method by 37.3%, 47.1%, 36.1% on Dataset A, B, C,
respectively. The distinguished improvement in the F1-score indi-
cates the p-tuning parameters have learned the domain knowledge
and can be effectively utilized by LLM for inference. However, the
training set size is relatively small because the labeled correlated
alerts and SOPs are limited. Thus there is a potential overfitting
risk during the fine-tuning, and the learning steps and validation
loss should be carefully checked.

As for the baseline methods, the recall of FP-Growth, DBSCAN
and Alert Storm are significantly higher than their precision. Be-
cause those three methods output their result by clusters instead of
the identified correlated pairs, and we transform the clusters into
pairs for our evaluation. Thus the number of false-positive sam-
ples would be enlarged, resulting in a low accuracy. Both LiDAR
and OAS mine the correlation through semantic information and
co-occurrence information. However, the pattern mining part of
OAS is not so effective in our evaluation, because our data do not
contain the Type or Template attributes. Thus the performance of
OAS is lower than expected. The relation learning module in iPACK
utilizes point-wise mutual information (PMI) as the metric, which is
mathematically similar to the conditional possibility in our design.
Besides, the Kneedle algorithm of iPACK for denoising is effective
for the evenly distributed noises in our task. Thus iPACK reaches a
close performance with LiDAR and the COLA without SFT.

4.5.2 RQ2: In this RQ, we illustrate the effectiveness of each
component in COLA by removing the corresponding parts from the
framework and performing the evaluation. The full version of COLA
combines the correlation mining module, which leverages temporal
and spatial relations, with the LLM reasoning module utilizing the
SFT technique. To remove the contribution of temporal relation,
we only maintain the sequence sampling and node embedding for
spatial relation in the correlation mining module, while the LLM
module remains unchanged. And vice versa for the spatial relation.
To remove the contribution of LLM, we mark all the alert pairs with
negative similarity scores as unrelated to get the test result.

376

Knowledge-aware Alert Aggregation in Large-scale
Cloud Systems: a Hybrid Approach ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: Effectiveness of each component in COLA on identifying correlated alerts

Method Dataset A Dataset B Dataset C
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

w/o temporal relation 0.521 0.583 0.550 0.536 0.566 0.551 0.548 0.579 0.563
w/o spatial relation 0.876 0.893 0.884 0.861 0.852 0.856 0.874 0.853 0.863

w/o LLM 0.652 0.596 0.616 0.594 0.633 0.613 0.627 0.649 0.638
COLA 0.892 0.924 0.908 0.916 0.943 0.930 0.921 0.882 0.901

Table 4: Average inference time (s)

Method Dataset A Dataset B Dataset C

Alert Storm 2.14 1.67 1.64
LiDAR 1.12 0.78 0.82
OAS 0.19 0.29 0.23
iPACK 0.47 0.52 0.58

ICL 42.81 50.02 47.86
COLA 5.78 8.94 7.48

The evaluation result is shown in Table 3. The average F1-score
reduction on all datasets for removing temporal relation, spatial
relation and LLM module is 39.3%, 5.5%, 31.8%, respectively. The
contribution of spatial relation is much smaller than the other two
components. We conclude two main reasons from our historical
data for the low effectiveness: 1) Inaccuracy: We construct the
service topology graph by linking the related service nodes in
history. However, the different intensity of service connection is not
taken into consideration. Some service pairs appear more frequently
than other pairs, which indicates a closer correlation and yields a
higher contribution to spatial similarity. 2) Incompleteness: The
historical data can not cover the real-world topology, and can not
deal with the new services and alerts as the system updates from
time to time. We expect the performance of spatial relation would
be improved with high-quality topology data.

The temporal relation and LLMmodule account for the main per-
formance of COLA. For the temporal component, the distribution
of alerts in the online service system follows the temporal locality.
Thus the time widow division method is suitable and effective for
capturing the locality. Besides, the correlation analysis based on
co-occurrence pattern mining is reliable and achieves satisfying
performance in previous research on many tasks [24, 35, 36]. The
LLM component utilizes the semantic information to determine
correlation. Different from previous semantic methods based on
embeddings, LLM learns the domain knowledge from SOPs, and
stores it in local parameters. The domain knowledge helps LLM un-
derstand alerts better and makes LLM possible to infer and compare
the cause of alerts. In addition, LLM acts as the complementary
of co-occurrence mining, further improving the performance by
analyzing the statistically unrelated samples. For example, some
correlated alerts may have a large time interval between their ap-
pearances, and some may be triggered rarely or are completely new
and unseen to the model. LLM tackles these samples by summariz-
ing their SOPs and analyzing the causes, thus achieving significant
improvement over statistical methods.

4.5.3 RQ3: In this RQ, we investigate the efficiency of COLA from
the time cost of offline training and online inference. For the offline
training stage, the different components of COLA can be trained
in a paralleled way. The most time-consuming component is the

LLM. The SFT takes hours to fine-tune depending on the parameter
settings and hardware environments. In practice, the time cost of
training would not reduce the efficiency. Because the fine-tuned
model only needs to be trained once before being deployed. The time
cost of fine-tuning is about 12 hours in our evaluation. That means
if it is necessary to retrain parameters due to system updates after
a long time, the time cost is practical and acceptable. The retraining
process would not interrupt the on-work online inference.

For the time cost of online inference, the average inference time
for each alert pair is shown in Table 4. The ICL is the most time-
consuming technique and much more costly compared with other
methods, which matches the observation of the low-efficiency prob-
lem of LLM. Even worse, the long ICL prompt with samples, queries
and rules results in a longer time to wait for the LLM response.
AlertStorm and LiDAR give a result with 1.82 and 0.91 seconds
on average. The main cost for Alert Storm is the DBSCAN clus-
tering, and for LiDAR is the two types of embedding computing
with distance calculating. OAS and iPACK response in less than 1
second for all datasets. In our implementation, the co-occurrence
pattern mining part in OAS is not fully implemented because there
is no attribute for the alert type or template in our dataset. The
main technique we reproduce from iPACK, incident profiling, is a
statistic method with high efficiency. Thus the time costs of these
two methods are low. As for the COLA, the average response time is
7.4 seconds. The LLM module in COLA accounts for the most time
cost. However, COLA significantly reduces the time cost compared
with the standalone ICL method. Because many of the alerts are
filtered and denoised by the correlation mining module, which is
an efficient statistic component. LLM only handles the rest of the
alerts. Thus even with the LLM introduced in COLA, the inference
time cost is still at a similar scale to the state-of-the-art designs
which contain both statistic and semantic modules like LiDAR.

5 INDUSTRIAL EXPERIENCE
In this section, we share our experience in integrating COLA to our
SRE (site reliability engineering) platform in Cloud X. The SRE plat-
form is a centralized platform that manages the life cycle of alerts,
including alert configuration, alert reporting, assignment, mitiga-
tion and resolution. One critical object for OCEs using the platform
is to ensure a cloud problem can be quickly resolved to minimize
customer impact. However, this is usually challenging when OCEs
face overwhelming information on the platform. Especially, when
an alert storm happens, hundreds of alerts can be simultaneously
reported from multiple services. In particular, during alert storms,
numerous alerts can be simultaneously reported from multiple ser-
vices. OCEs often find it necessary to aggregate alerts stemming
from the same problem to accelerate their resolution. In our previ-
ous practice, multiple OCEs were required to manually comprehend

377

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Jinxi Kuang, et al.

Alert1 title: Redis_switch_to_backup_instance
SOP1: Internal link to detailed SOP1
Alert2 title: DCS_user_log_count_failover
SOP2: Internal link to detailed SOP2

Response from LLM: The explanation of alert 1 is
that the Redis instance on master node switches
to the backup. The possible cause of alert 2 is a
failure or instance switch of the Redis instance,
resulting in the inconsistent connection status
and concurrent operations. The instance switch
can lead to the abnormal connection counts.
Therefore, alert 1 probably causes alert 2, these
two alerts are correlated.

Alert1

Alert2

Aggregated Alert Clusters Details on Alert Linkage

Figure 8: An industrial case of alert clusters

these alerts and identify correlated instances through discussions.
This approach proved to be inefficient, labor-intensive, and heavily
reliant on the OCEs’ experience. Considering the large scale of
Cloud X, it is non-trivial for OCEs to understand these alerts and
correlate them quickly. This is primarily due to each OCE primarily
specializing in a specific component of a service, thereby limiting
their knowledge scope.

To assist OCEs in alert analysis, we have integrated COLAwithin
the SRE platform. COLA has learned from extensive knowledge
(e.g., SOPs) accumulated in the SRE platform, which covers almost
all services in Cloud X. As demonstrated in Figure 8, COLA will
present alerts in clusters to OCEs, where the link between alerts
is associated with linkage details i.e., the concrete title, associated
SOPs and response from LLM. Alerts that are not correlated do
not possess such linkages. In practice, COLA not only is capable
of predicting the relationships between two alerts for aggregation,
but it can also provide interpretable explanations based on the
knowledge it has acquired, such as summarized information from
the SOPs and its reasoning procedure. In Cloud X, we have received
positive feedback from OCEs. With the aggregation results, OCEs
can quickly obtain a comprehensive picture of a failure event and
improve the efficiency of resolving a problem. More importantly,
OCEs found it is more acceptable to interpretable results rather
than yes or no predictions. They appreciate that the adoption of
COLA has effectively bridged knowledge gaps that exist across
different services, contributing to the overall efficiency of cloud
maintenance activities.

6 THREATS TO VALIDITY
We identify the following threats to external and internal validity.
External validity. The study’s object is the primary external threat.
In the evaluation, we utilize the Standard Operation Procedure
(SOP) documents. The three datasets are all from Cloud X, because
there is no publicly available dataset containing such detailed and
complete alert descriptions as SOPs. However, Cloud X is a globally
recognized cloud provider, known for its extensive scale and lead-
ership in the industry. And the data are indiscriminately collected
from various services of diverse regions. Thus the evaluation should
be representative and convincing. Furthermore, the historical data
are maintained and accumulated regularly in commercial cloud
providers. The contents of SOPs are about necessary alert handling,
which is commonly recorded in related documents such as failure
reports of various cloud systems. Thus we believe COLA is capable
of generalizing to similar cloud systems.

Internal validity. Implementation and parameter settings are the
primary internal threats. For implementation, the compared re-
search methods are not open-sourced. Thus we reproduce the meth-
ods based on the original paper, following the detailed algorithms
and parameter settings. We utilized established libraries to imple-
ment the core components. Peer code review is employed for the
proposed and baseline methods implementations. For parameter
settings, we conduct a thorough hyperparameter tuning process,
such as grid-search, to select the optimal results.

7 RELATEDWORK
7.1 Failure Analysis
Failure analysis, such as incident management and root cause anal-
ysis, has become a popular topic as online service systems develop
rapidly nowadays [2, 4, 7]. It aims to mitigate the failure timely
to recover the service quality, and identify the root causes to di-
agnose and fix the outage thoroughly. Researchers have devoted
sustained efforts to reliable analysis based on various data sources,
such as alerts, incidents and internal failure reports. For alerts, Zhao
et al. [39] observe and name the alert storm phenomenon. They
propose a learning-based method to denoise the alerts by the iso-
lation forest, and design a clustering-based method to group the
alerts by DBSCAN. OAS [3] combines the semantic and behavior
information, and fuse the representation of two types of informa-
tion by a deep learning model. iPACK [25] mines the correlation
pattern of parsed alerts by point-wise mutual information. These
methods mainly focus on textual information and co-occurrence
patterns in time windows, while the service topology is not well uti-
lized. For incidents, LiDAR [6] proposes a textual encoding module
with TextCNN [21] for incident contents, a component embedding
module with Skip-Gram [32] for service topology, and combine
them to identify the linked incidents. COT [36] predicts the root
cause by building service correlation from incident correlation.
Groot [35] analyzes the root cause by constructing dependency and
causality graphs based on failure events. Warden [24] groups the
incidents with the same cause to perform timely incident triage. For
internal failure reports, Shetty et al. [34] from Microsoft leverage
the Troubleshooting Guides (TSG) to propose AutoTSG, for auto-
matically minimizing the manual effort of On-call engineers on
incident handling. Different from these works, we introduce the
internal Standard Operation Procedure (SOP) documents in Cloud X
and further leverage the Large Language Model (LLM) to perform
reasoning based on the alert and SOP contents.

7.2 LLM for Software Engineering
With the rapid development and promising rise of LLM in recent
years, LLM has been employed to solve various challenging prob-
lems in software engineering, including code generation, summa-
rization, testing and root cause analysis. Mastropaolo et al. [31] per-
form a study about the capability of fine-tuned text-to-text-transfer-
transformer (T5) on a series of code-related tasks. LANCE [30] gen-
erates logging statements by fine-tuning the T5 model. On online
systems, Ahmed et al. [1] do the first large-scale study to evalu-
ate the effectiveness of recommending root cause and mitigation
steps by fine-tuned GPT-3.x. RCACopilot [5] collects the runtime
diagnostic information, then predicts the root cause category of

378

Knowledge-aware Alert Aggregation in Large-scale
Cloud Systems: a Hybrid Approach ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

incidents with the collected information by LLM. OASIS [19] ag-
gregates the incidents and generates human-readable summaries
by fine-tuned GPT-3.x. Different from those methods, we introduce
the fine-tuned internal LLM to perform alert aggregation based on
domain knowledge reasoning.

8 CONCLUSION
In this paper, we present COLA, a novel hybrid approach for on-
line alert aggregation in large-scale cloud systems. By leveraging
detailed knowledge from Standard Operating Procedures (SOPs),
COLA effectively aggregates alerts that may be semantically dissim-
ilar or lack sufficient statistics for analysis. The proposed framework
combines a correlation mining component and an LLM reasoning
component, allowing for efficient handling of a large volume of
alerts in practical scenarios. Extensive evaluation on three real-
world datasets from Cloud X demonstrates that COLA outperforms
state-of-the-art methods in terms of F1-scores while maintaining
comparable efficiency. The deployment of COLA in the production
environment of Cloud X further validates its effectiveness.

9 ACKNOWLEDGMENT
The work described in this paper was supported by the Research
Grants Council of the Hong Kong Special Administrative Region,
China (No. CUHK 14206921 of the General Research Fund).

REFERENCES
[1] Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zimmermann, Xuchao

Zhang, and Saravan Rajmohan. 2023. Recommending Root-Cause and Mitiga-
tion Steps for Cloud Incidents using Large Language Models. arXiv preprint
arXiv:2301.03797 (2023).

[2] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng
Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An empirical
investigation of incident triage for online service systems. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 111–120.

[3] Jia Chen, Peng Wang, and Wei Wang. 2022. Online summarizing alerts through
semantic and behavior information. In Proceedings of the 44th International Con-
ference on Software Engineering. 1646–1657.

[4] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao,
Yu Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, et al. 2020. How incidental
are the incidents? characterizing and prioritizing incidents for large-scale online
service systems. In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering. 373–384.

[5] Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie
Cao, Xuedong Gao, Hao Fan, Ming Wen, et al. 2023. Empowering Practical Root
Cause Analysis by Large Language Models for Cloud Incidents. arXiv preprint
arXiv:2305.15778 (2023).

[6] Yujun Chen, Xian Yang, Hang Dong, Xiaoting He, Hongyu Zhang, Qingwei Lin,
Junjie Chen, Pu Zhao, Yu Kang, Feng Gao, et al. 2020. Identifying linked incidents
in large-scale online service systems. In Proceedings of the 28th ACM joint meeting
on European software engineering conference and symposium on the foundations of
software engineering. 304–314.

[7] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan
Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, et al. 2020. Towards intelligent incident
management: why we need it and how we make it. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1487–1497.

[8] Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, XueminWen, Xiao Ling,
Yongqiang Yang, and Michael R Lyu. 2021. Graph-based incident aggregation for
large-scale online service systems. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 430–442.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
kdd, Vol. 96. 226–231.

[11] Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang,
and Michael R. Lyu. 2023. What Makes Good In-context Demonstrations for Code
Intelligence Tasks with LLMs?. In Proceedings of the 38th International Conference
on Automated Software Engineering (ASE).

[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[13] Wenwei Gu, Jinyang Liu, Zhuangbin Chen, Jianping Zhang, Yuxin Su, Jiazhen
Gu, Cong Feng, Zengyin Yang, and Michael Lyu. 2023. Performance Issue Identi-
fication in Cloud Systems with Relational-Temporal Anomaly Detection. arXiv
preprint arXiv:2307.10869 (2023).

[14] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without
candidate generation. ACM sigmod record 29, 2 (2000), 1–12.

[15] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R Lyu, and
Dongmei Zhang. 2018. Identifying impactful service system problems via log
analysis. In Proceedings of the 2018 26th ACM joint meeting on European software
engineering conference and symposium on the foundations of software engineering.
60–70.

[16] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu
Luo, David Lo, John Grundy, and Haoyu Wang. 2023. Large Language Mod-
els for Software Engineering: A Systematic Literature Review. arXiv preprint
arXiv:2308.10620 (2023).

[17] Jie Huang and Kevin Chen-Chuan Chang. 2022. Towards reasoning in large
language models: A survey. arXiv preprint arXiv:2212.10403 (2022).

[18] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu
Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, et al. 2020. How to mitigate
the incident? an effective troubleshooting guide recommendation technique for
online service systems. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1410–1420.

[19] Pengxiang Jin, Shenglin Zhang, Minghua Ma, Haozhe Li, Yu Kang, Liqun Li,
Yudong Liu, Bo Qiao, Chaoyun Zhang, Pu Zhao, et al. 2023. Assess and Summarize:
Improve Outage Understanding with Large Language Models. arXiv preprint
arXiv:2305.18084 (2023).

[20] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag
of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016).

[21] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[22] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R Lyu. 2023.
Eadro: An End-to-End Troubleshooting Framework for Microservices on Multi-
source Data. arXiv preprint arXiv:2302.05092 (2023).

[23] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, Yongqiang Yang, and
Michael R Lyu. 2023. Heterogeneous anomaly detection for software systems via
semi-supervised cross-modal attention. arXiv preprint arXiv:2302.06914 (2023).

[24] Liqun Li, Xu Zhang, Xin Zhao, Hongyu Zhang, Yu Kang, Pu Zhao, Bo Qiao, Shilin
He, Pochian Lee, Jeffrey Sun, et al. 2021. Fighting the fog of war: Automated
incident detection for cloud systems. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). 131–146.

[25] Jinyang Liu, Shilin He, Zhuangbin Chen, Liqun Li, Yu Kang, Xu Zhang, Pinjia He,
Hongyu Zhang, Qingwei Lin, Zhangwei Xu, et al. 2023. Incident-aware Duplicate
Ticket Aggregation for Cloud Systems. In Proceedings of the 44th International
Conference on Software Engineering.

[26] Jinyang Liu, Junjie Huang, Yintong Huo, Zhihan Jiang, Jiazhen Gu, Zhuangbin
Chen, Cong Feng, Minzhi Yan, and Michael R Lyu. 2023. Scalable and Adap-
tive Log-based Anomaly Detection with Expert in the Loop. arXiv preprint
arXiv:2306.05032 (2023).

[27] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and Michael R
Lyu. 2019. Logzip: Extracting hidden structures via iterative clustering for log
compression. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 863–873.

[28] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie
Tang. 2022. P-tuning: Prompt tuning can be comparable to fine-tuning across
scales and tasks. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). 61–68.

[29] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang,
and Jie Tang. 2021. P-tuning v2: Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv preprint arXiv:2110.07602 (2021).

[30] Antonio Mastropaolo, Luca Pascarella, and Gabriele Bavota. 2022. Using deep
learning to generate complete log statements. In Proceedings of the 44th Interna-
tional Conference on Software Engineering. 2279–2290.

[31] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the
usage of text-to-text transfer transformer to support code-related tasks. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
336–347.

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

379

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Jinxi Kuang, et al.

[33] Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenxuan Wang, Cuiyun Gao, and
Michael R Lyu. 2022. Revisiting, benchmarking and exploring API recommen-
dation: How far are we? IEEE Transactions on Software Engineering 49, 4 (2022),
1876–1897.

[34] Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula, Arjun Radhakrishna,
and Anurag Gupta. 2022. AutoTSG: learning and synthesis for incident trou-
bleshooting. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1477–
1488.

[35] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang, Selcuk
Kopru, and Tao Xie. 2021. Groot: An event-graph-based approach for root cause
analysis in industrial settings. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 419–429.

[36] YaohuiWang, Guozheng Li, ZijianWang, Yu Kang, Yangfan Zhou, Hongyu Zhang,
Feng Gao, Jeffrey Sun, Li Yang, Pochian Lee, et al. 2021. Fast outage analysis of
large-scale production clouds with service correlation mining. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 885–896.

[37] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning

in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824–24837.

[38] Tianyi Yang, Jiacheng Shen, Yuxin Su, Xiaoxue Ren, Yongqiang Yang, and
Michael R Lyu. 2022. Characterizing and Mitigating Anti-patterns of Alerts
in Industrial Cloud Systems. In 2022 52nd Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN). IEEE, 393–401.

[39] Nengwen Zhao, Junjie Chen, Xiao Peng, Honglin Wang, Xinya Wu, Yuanzong
Zhang, Zikai Chen, Xiangzhong Zheng, Xiaohui Nie, Gang Wang, et al. 2020.
Understanding and handling alert storm for online service systems. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering: Software
Engineering in Practice. 162–171.

[40] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

[41] Zibin Zheng, Kaiwen Ning, Jiachi Chen, Yanlin Wang, Wenqing Chen, Lianghong
Guo, and Weicheng Wang. 2023. Towards an Understanding of Large Language
Models in Software Engineering Tasks. arXiv preprint arXiv:2308.11396 (2023).

380

