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Abstract of thesis entitled:

Teaching Machines to Ask and Answer Questions:

Knowledge Assessment and Information Acquisition in Read-

ing Comprehension

Submitted by GAO, Yifan

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in September 2021

The capacity to use complex language to communicate and

maintain our social world has been a trademark of humanity.

Among different goals of language usage, questions and answers

play significant roles in our day-to-day communications. We

ask questions to explore unknown information from our side,

and we answer questions to fill the information gap of others.

As core skills to pass the Turing test, teaching machines to

ask and answer questions are fundamental while challenging

natural language processing tasks and have long been associated

with artificial intelligence. In this thesis, we teach machines

to ask and answer reading comprehension questions towards

a passage of text. We focus on two crucial goals in question

asking and answering: knowledge assessment and information

acquisition. On the one hand, asking questions in reading

comprehension passages is the key step to generate knowledge

assessment exercises for educational purposes. On the other

hand, many high-level questions are inherently underspecified

in our day-to-day conversations. The machine needs to keep
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asking clarification questions until it gathers enough information

to answer those high-level questions. The contributions of this

thesis are grouped into five parts. As described in the following,

the former three focus on question generation for knowledge

assessment while the latter two investigate asking and answering

questions for information acquisition.

First, we investigate the difficulty levels of questions in

reading comprehension and propose a new question genera-

tion setting, named Difficulty-controllable Question Generation

(DQG). Taking as input a sentence in the reading comprehension

paragraph and some of its text fragments (i.e., answers) that we

want to ask questions about, a DQG method needs to generate

questions under the control of specified difficulty labels. We

propose an end-to-end framework with difficulty-aware proxim-

ity hints and a difficulty-controllable question decoder. On our

prepared first dataset of reading comprehension questions with

difficulty labels, the results show that the question generated by

our framework not only have better quality under the metrics

like BLEU but also comply with the specified difficulty labels.

Second, we investigate the task of distractor generation

for multiple-choice reading comprehension questions from real

examinations. Taking a reading comprehension article, a pair

of question and its correct option as input, our goal is to

generate several distractors which are somehow related to the

answer, consistent with the semantic context of the question

and have some trace in the article. We propose a hierarchical

encoder-decoder framework with static and dynamic attention

mechanisms to tackle this task. The proposed framework out-

performs several strong baselines on the first prepared distractor

generation dataset of real reading comprehension questions.
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Third, we study the problem of generating interconnected

questions in question-answering style conversations. In a coher-

ent conversation, questions are highly conversational and have

smooth transitions between turns. We propose an end-to-end

neural model with coreference alignment and conversation flow

modeling. Automatic and human evaluations show that our

system outperforms several baselines and can generate highly

conversational questions.

Fourth, we focus on conversational machine reading. Ma-

chines can take the initiative to ask users questions that help

to solve their problems instead of jumping to a conclusion hur-

riedly. We present a new framework of conversational machine

reading that comprises a novel Explicit Memory Tracker (EMT)

to track whether conditions listed in the rule text have already

been satisfied to make a decision. Moreover, our framework

generates clarification questions by adopting a coarse-to-fine

reasoning strategy. EMT outperforms existing methods as well

as gains interpretability by visualizing the entailment-oriented

reasoning process as the conversation flows.

Finally, we propose Discern, a discourse-aware entailment

reasoning network to strengthen the connection and enhance the

understanding of both document and dialog in conversational

machine reading. Specifically, we split the document into

clause-like elementary discourse units (EDU) using a pre-trained

discourse segmentation model. Then we train our model in a

weakly supervised manner to predict whether the user feedback

in a conversation entails each EDU. Based on the learned EDU

and entailment representations, we either reply to the user

our final decision “yes/no/irrelevant” of the initial question

or generate a follow-up question to inquiry more information.
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Discern achieves state-of-the-art performance in conversational

machine reading.
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論文題目：教機器提問和回答問題：閱讀理解中
的知識評估與信息獲取 
 
作者：高一帆 
 
學校：香港中文大學 
 
學系：計算機科學與工程學系 
 
修讀學位：哲學博士 
 
摘要： 
 
使用複雜語言來交流和維護我們的社交世界的能
力一直是人類的標誌。在語言使用的不同目標
中，問答在我們的日常交流中扮演著重要的角
色。我們提問是為了探索我們身邊的未知信息，
我們回答問題是為了填補他人的信息空白。作為
通過圖靈測試的核心技能，教機器提問和回答問
題是基礎但充滿挑戰的自然語言處理任務，並且
長期以來一直與人工智能相關聯。在本論文中，
我們教機器針對一段文本提出和回答閱讀理解問
題。我們專注於提問和回答的兩個關鍵目標：知
識評估和信息獲取。一方面，在閱讀理解文章中
提出問題是為教育目的生成知識評估練習的關鍵
步驟。另一方面，在我們的日常對話中，許多問



題具有模糊性。機器需要不斷提出澄清問題，直
到它收集到足夠的信息來回答這些問題。本論文
的貢獻分為五個部分。如下所述，前三者側重於
知識評估中的問題生成，而後兩者則研究信息獲
取中的提問和回答問題。 
 
首先，我們調查了閱讀理解問題的難度級別，並
提出了一種新的問題生成設定，稱為難度可控問
題生成（DQG）。將閱讀理解段落中的一個句子
及其一些我們想要提問的文本片段（即答案）作
為輸入，DQG 方法需要在指定難度標籤的控制下
生成問題。我們提出了一個端到端框架，該框架
具有難度感知鄰近提示和難度可控問題解碼器。
在我們準備的帶有難度標籤的閱讀理解問題的第
一個數據集上，結果表明，我們的框架生成的問
題不僅在 BLEU 等指標下具有更好的質量，而且
符合指定的難度標籤。 
 
其次，我們研究了真實考試中多項選擇閱讀理解
問題的干擾項生成任務。以一篇閱讀理解文章、
一對問題及其正確選項作為輸入，我們的目標是
生成幾個乾擾項，這些干擾項與答案有某種關
係，與問題的語義上下文一致，並在文章中有一
些痕跡。我們提出了一個具有靜態和動態注意機
制的分層編碼器-解碼器框架來解決這個任務。



所提出的框架在第一個準備好的真實閱讀理解問
題的干擾生成數據集上優於幾個強大的基線。 
 
第三，我們研究了在問答式對話中產生相互關聯
的問題的問題。在連貫的對話中，問題是高度對
話的，並且在輪次之間有平滑的過渡。我們提出
了一種具有共指對齊和對話流建模的端到端神經
模型。自動和人工評估表明，我們的系統優於多
個基線，並且可以生成高度對話的問題。 
 
第四，我們專注於會話式機器閱讀。機器可以主
動向用戶提出有助於解決用戶問題的澄清問題，
而不是倉促下結論。我們提出了一種新的對話機
器閱讀框架，該框架包括一個新穎的顯式內存跟
踪器（EMT），用於跟踪是否已經滿足規則文本
中列出的條件以做出決定。此外，我們的框架通
過採用從粗到精的推理策略來生成澄清問題。 
EMT優於現有方法，並通過在對話流中可視化面
向蘊涵的推理過程來獲得可解釋性。 
 
最後，我們提出了 Discern，這是一個話語感知
的蘊涵推理網絡，以加強連接並增強對會話機器
閱讀中文檔和對話的理解。具體來說，我們使用
預訓練的話語分割模型將文檔拆分為類似子句的
基本話語單元（EDU）。然後我們以弱監督的方



式訓練我們的模型，以預測對話中的用戶反饋是
否需要每個 EDU。基於學習到的 EDU和蘊含表
示，我們要么回復用戶我們對初始問題的最終決
定“是/否/不相關”，要么生成後續問題以查詢
更多信息。 Discern在對話式機器閱讀方面達到
了最先進的性能。 
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Chapter 1

Introduction

1.1 Motivation

The capacity to use complex language to communicate and

maintain our social world has been a trademark of humanity.

Among different goals of language usage, questions and answers

play significant roles in our day-to-day communications. We

ask questions to explore unknown information from our side,

and we answer questions to fill the information gap of others.

As core skills to pass the Turing test, teaching machines to ask

and answer questions has been studied for decades in Natural

Language Processing (NLP) and Artificial Intelligence (AI)

[75, 57, 4, 17]. Successful attempts bring us intelligent personal

assistants such as Apple Siri, Microsoft Cortana, and Amazon

Alexa. Moreover, asking and answering questions are becoming

an essential part of existing major search engines such as Google

conversational search and Alexa shopping in Amazon.

In natural language processing, question answering (QA) is

defined as finding answers to natural language questions using

certain knowledge sources. The knowledge source can be either

1



CHAPTER 1. INTRODUCTION 2

structured such as a knowledge base, or unstructed such as a

collection of natural language documents. Early attempts use

some rule-based methods towards some specific domains, e.g.,

the LUNAR system developed in 1971 was able to answer 90% of

the questions about the geological analysis of rocks returned by

the Apollo moon missions. Then techniques evolve to statistical

machine learning methods to answer questions in a probabilistic

manner. In 2011, the IBM Watson question answering system

competed in two exhibition matches of Jeopardy! against

human beings by a significant margin. More recently, deep

neural networks with billions of parameters have led to huge

breakthroughs, outperforming human performance on several

question answering benchmarks.

On the other hand, question asking (or question generation1)

is the reverse task of question answering. It aims to generate

natural language questions using certain knowledge sources.

Back to the late 1960s, SHRDLU was developed to simulate the

operation of a robot in a toy world, and it offered the possibility

of asking the robot questions about the state of the world using

some rule-based methods. In recent years, proactively asking

questions has been adopted in modern task-oriented chatbots in

e-commerce, online banking, and government websites. There

are two main reasons to enable machines to ask questions:

• Knowledge Assessment: Asking questions is an effective

approach to assess the knowledge understanding of users to-

wards a specific topic. As shown in Figure 1.1, the machine

asks several questions about a Wikipedia passage ”Super

Bowl 50” to test the user’s knowledge understanding of this
1We use “question asking” and “question generation” interchangeably throughout this

thesis.
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Passage: Super Bowl 50 was an American football game to determine the

champion of the National Football League (NFL) for the 2015 season. The

American Football Conference (AFC) champion Denver Broncos defeated the

National Football Conference (NFC) champion Carolina Panthers 24–10 to

earn their third Super Bowl title. The game was played on February 7, 2016,

at Levi’s Stadium in the San Francisco Bay Area at Santa Clara, California. As

this was the 50th Super Bowl, the league emphasized the ”golden anniversary”

with various gold-themed initiatives, as well as temporarily suspending the

tradition of naming each Super Bowl game with Roman numerals (under which

the game would have been known as ”Super Bowl L”), so that the logo could

prominently feature the Arabic numerals 50.

Q1: Which NFL team represented the AFC at Super Bowl 50?

A1: Denver Broncos

Q2: Which NFL team represented the NFC at Super Bowl 50?

A2: Carolina Panthers

Q3: Where did Super Bowl 50 take place?

A3: Santa Clara, California

Q4: Which NFL team won Super Bowl 50?

A4: Denver Broncos

Figure 1.1: Sample question-answer pairs about Super Bowl 50. Questions

are asked for the purpose of knowledge testing with applications like

intelligent e-tutor systems.

passage. Automatic question generation can be applied in

the education domain such as intelligence tutor systems.

Moreover, manually labelling question-answering pairs is

laborious and requires some domain knowledge. Generating

question-answer pairs is an essential data augmentation

approach for training question answering models.

• Information Acquisition: If the user’s original question

is ambiguous or vague, machines have to first ask clari-

fication questions before answering the original question.

In dialogue systems, machines need to ask questions to

gather information from users. As exemplified in Figure 1.2,
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Rule Text 1: SBA provides loans to businesses - not individuals - so the

requirements of eligibility are based on aspects of the business, not the owners.

All businesses that are considered for financing under SBA’s 7(a) loan program

must: meet SBA size standards, be for-profit, not already have the

internal resources (business or personal) to provide the financing,

and be able to demonstrate repayment.

Rule Text 2: You’ll need a statement of National Insurance you’ve paid in

the UK to get these benefits - unless you’re claiming Winter Fuel Payments.

Rule Text 3: 7(a) loans are the most basic and most used type loan of

the Small Business Administration’s (SBA) business loan programs. It’s name

comes from section 7(a) of the Small Business Act, which authorizes the agency

to provide business loans to American small businesses. The loan program

is designed to assist for-profit businesses that are not able to get other

financing from other resources.

User Scenario: I am a 34 year old man from the United States who owns

their own business. We are an American small business.

User Question: Is the 7(a) loan program for me?

Follow-up Q1: Are you a for-profit business?

Follow-up A1: Yes.

Follow-up Q2: Are you able to get financing from other resources?

Follow-up A2: No.

Final Answer: Yes. (You can apply the loan.)

Figure 1.2: An example to show the machine answers the user question

by searching for relevant rule texts, reading rule texts, interpreting the

user scenario, and keeping asking follow-up questions to clarify the user’s

background until it concludes a final answer.

the user asks whether he is eligible for the loan program.

Before answering the question, the machine must gather

relevant information from the user to evaluate his eligibility.

Hence, asking clarification follow-up questions is helpful in

conversation question answering.

As we can see, both asking and answering questions are

essential to intelligent systems. In this thesis, we study question

answering and asking in the reading comprehension scenario:
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the knowledge source comes from a passage of text called a

reading comprehension passage. Similar to how we evaluate

a student’s understanding of the reading comprehension text,

we teach machines to ask and answer reading comprehension

questions to evaluate its language understanding and its degree

of AI. Under different goals of knowledge assessment and infor-

mation acquisition, the contributions of this thesis consist of two

parts:

• Knowledge Assessment: Question Asking in Reading

Comprehension

Given a passage of text, we teach machines to ask reading

comprehension questions like “Which NFL team repre-

sented the NFC at Super Bowl 50?” to test human’s

understanding of the passage. In particular, we focus on

1) how to ask questions with different levels of difficulty,

2) how to generate distractors in multiple-choice questions,

and 3) how to ask questions in a conversation to enhance

the interactiveness and persistence of the knowledge testing

process.

• Information Acquisition: Question Asking and Answer-

ing in Conversational Machine Reading

Many questions cannot be answered directly in our day-

to-day communications because we do not have enough

background knowledge to give a concrete answer. Instead,

we first ask questions to make clarifications or gather

further information. In the second part of this thesis,

we focus on teaching machines to ask questions when

the original question requires additional information before

responding.
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1.2 Contributions

As previously mentioned, this dissertation will be mainly fo-

cused on question asking and answering for knowledge assess-

ment and information acquisition. In the first part of this

dissertation, we contribute to question asking from the knowl-

edge assessment perspective. Our contributions can make the

generated question difficulty controllable, make the generated

options in multiple-choice questions more distracting, and make

the question asking process more conversational:

• Difficulty Controllable Question Generation

We investigate the difficulty levels of questions in read-

ing comprehension datasets and propose a new question

generation setting, named Difficulty-controllable Question

Generation (DQG). Taking as input a sentence in the

reading comprehension paragraph and some of its text

fragments (i.e., answers) that we want to ask questions

about, a DQG method needs to generate questions un-

der the control of specified difficulty labels—the output

questions should satisfy the specified difficulty as much as

possible. To solve this task, we propose an end-to-end

framework to generate questions of designated difficulty

levels by exploring a few important intuitions. Specifically,

we explore a few intuitions: (i) In the input sentences, the

nearer a word is to the answer fragment, the more likely it is

used in the question; (ii) The easier a question is, the nearer

its words are to the answer fragment in the sentence; (iii)

Performing difficulty control could be regarded as a problem

of sentence generation towards a specified attribute or style,

namely difficulty level. For evaluation, we prepared the first
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dataset of reading comprehension questions with difficulty

labels. The results show that the question generated by our

framework not only have better quality under the metrics

like BLEU, but also comply with the specified difficulty

labels.

• Distractor Generation for Multiple Choice Ques-

tions

We investigate the task of distractor generation for multiple-

choice reading comprehension questions from examinations.

In contrast to all previous works, we do not aim at

preparing words or short phrases distractors. Instead, we

endeavor to generate longer and semantic-rich distractors

which are closer to distractors in real reading comprehen-

sion from examinations. Taking a reading comprehen-

sion article, a pair of question and its correct option as

input, our goal is to generate several distractors which

are somehow related to the answer, consistent with the

semantic context of the question and have some trace in

the article. We propose a hierarchical encoder-decoder

framework with static and dynamic attention mechanisms

to tackle this task. Specifically, the dynamic attention

can combine sentence-level and word-level attention varying

at each recurrent time step to generate a more readable

sequence. The static attention modulates the dynamic

attention not to focus on question irrelevant sentences or

sentences which contribute to the correct option. Our

proposed framework outperforms several strong baselines

on the first prepared distractor generation dataset of real

reading comprehension questions. For human evaluation,

compared with those distractors generated by baselines,
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our generated distractors are more functional to confuse

the annotators.

• Conversational Question Generation

We study the problem of generating interconnected ques-

tions in question-answering style conversations. Compared

with previous works which generate questions based on a

single sentence (or paragraph), this setting is different in

two major aspects: (1) Questions are highly conversational.

Almost half of them refer back to conversation history using

coreferences. (2) In a coherent conversation, questions have

smooth transitions between turns. We propose an end-to-

end neural model with coreference alignment and conver-

sation flow modeling. The coreference alignment modeling

explicitly aligns coreferent mentions in conversation history

with corresponding pronominal references in generated

questions, making generated questions interconnected to

conversation history. The conversation flow modeling

builds a coherent conversation by starting questioning the

first few sentences in a text passage and smoothly shifting

the focus to later parts. Extensive experiments show that

our system outperforms several baselines and can generate

highly conversational questions.

In the second part of this thesis, we focus on asking questions

for information acquisition. One typical scenario is conver-

sational machine reading, in which machines need to answer

some high-level questions by asking some clarification follow-up

questions first. We propose two complementary approaches to

this problem:

• Explicit Memory Tracker with Course-to-Fine Rea-
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soning

The goal of conversational machine reading is to answer

user questions given a knowledge base text which may

require asking clarification questions. Existing approaches

are limited in their decision-making due to struggles in

extracting question-related rules and reasoning about them.

We present a new framework of conversational machine

reading that comprises a novel Explicit Memory Tracker

(EMT) to track whether conditions listed in the rule text

have already been satisfied to make a decision. Moreover,

our framework generates clarification questions by adopt-

ing a coarse-to-fine reasoning strategy, utilizing sentence-

level entailment scores to weight token-level distributions.

On the ShARC benchmark (blind, held-out) test set,

EMT achieves new state-of-the-art results of 74.6% micro-

averaged decision accuracy and 49.5 BLEU4. We also

show that EMT is more interpretable by visualizing the

entailment-oriented reasoning process as the conversation

flows.

• Discourse-Aware Entailment Reasoning Network

Document interpretation and dialog understanding are the

two major challenges for conversational machine reading.

In this chapter, we propose Discern, a discourse-aware

entailment reasoning network, to strengthen the connection

and enhance the understanding for both document and

dialog. Specifically, we split the document into clause-

like elementary discourse units (EDU) using a pre-trained

discourse segmentation model. We train our model in

a weakly supervised manner to predict whether the user

feedback in a conversation entails each EDU. Based on



CHAPTER 1. INTRODUCTION 10

the learned EDU and entailment representations, we either

reply to the user our final decision “yes/no/irrelevant” of

the initial question or generate a follow-up question to

inquiry more information. Our experiments on the ShARC

benchmark (blind, held-out test set) show that Discern

achieves state-of-the-art results of 78.3% macro-averaged

accuracy on decision making and 64.0 BLEU1 on follow-up

question generation.

1.3 Thesis Outline

We focus on teaching machines to ask and answer questions in

this thesis. The remaining parts of this thesis can be divided

into two main parts: 1) Knowledge Assessment in Reading

Comprehension; 2) Information Acquisition in Conversational

Machine Reading.

In the first part of this thesis, we focus on generating

reading comprehension questions to test the knowledge under-

standing of humans towards a passage of text. Specifically,

we investigate the difficulty levels of questions and propose a

new question generation setting, named Difficulty-controllable

Question Generation (DQG) in Chapter 3. In Chapter 4, we

investigate the task of distractor generation for multiple-choice

questions from real examinations. After gaining the capability

of generating questions more difficulty controllable and more

distracting, we focus on making the question-answering process

more interactiveness and persistence: we study the problem of

conversational question generation in Chapter 5.

For the second part of this thesis, we start from the informa-
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tion acquisition perspective of our day-to-day communications.

Specifically, we teach machines to answer high-level questions by

firstly asking questions to gather information and answering the

high-level question until enough clarifications have been made.

Chapter 6 presents a new framework of conversational machine

reading that comprises a novel Explicit Memory Tracker (EMT)

to track whether conditions listed in the rule text have already

been satisfied to make a decision. Chapter 7 proposes a

discourse-aware entailment reasoning network to strengthen the

connection and enhance the understanding for both document

and dialog.

Finally, we conclude in Chapter 8 and list several potential

future directions that deserve further exploration.

2 End of chapter.



Chapter 2

Background Review

In this chapter, we review background knowledge and related

work of this thesis. We firstly review fundmantals of deep

learning for natural language processing (NLP) in Section 2.1,

including language models and representations, sequence-to-

sequence models, and evaluation metrics. In Section 2.2,

we present a literature review in Question Generation (QG).

We examine the corpora, methodologies, and show how our

contributions are related to these existing works. In Section 2.3,

we survey machine reading comprehension and elaborate how

question asking (generation) can help in question answering.

Finally, we briefly introduce other tasks in question answering

including Knowledge Base Question Answering (KBQA) and

Community Question Answering (CQA) in Section 2.4. The

taxonomy of question answering and where our contribution

exists is shown in Figure 2.1.

12
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Question Answering (QA)

Structured Knowledge

Machine Reading 
Comprehension (MRC)

Question Generation

Knowledge Base QA

Unstructured Knowledge

Community QA

Dialogue MRC

Question Matching

QA Ranking & Retrieval

Textual MRC

Textual QG

Dialogue QG

Difficulty QG
(Chapter 3)

Distractor Generation 
(Chapter 4)

Conversational QG
(Chapter 5)

Clarification QG
(Chapter 6,7)

Explicit Memory Tracker
(Chapter 6)

helps

Knowledge 
Assessment

Information 
Acquisition

Taxonomy Our Contribution

Entailment Reasoning
(Chapter 7)

Figure 2.1: Taxonomy of existing question asking and answering tasks,

methods, and our contributions.

2.1 Deep Learning Basics for NLP

With rapid progress in natural language processing, deep learn-

ing has been dominant in most NLP tasks and even outper-

formed human performance in some tasks. In this section, we

will briefly introduce the major breakthrough of deep learning

in natural language processing. The background knowledge

described in this section is fundamental to our contributions in

this thesis. We firstly introduce language models and language

representations using recurrent neural network (RNN). We will

then introduce the sequence-to-sequence learning framework for
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language generation tasks. Thirdly, we describe a new network

architecture called Transformer which has been vastly used

in the past three years as well as the language pretraining

approaches based on the Transformer architecture. Finally, we

talk about evaluation metrics in natural language processing

tasks.

2.1.1 RNN and Language Models

Given a natural language sentence, language models compute

the probability of the occurrence of the sentence in that par-

ticular word order. The probability of all m words in that

particular sequence is denoted as P (w1, w2, ..., wm), where wi is

the i-th word in the sentence. The language model gives a score

to represent the goodness of the sentence. For example, He is

walking home after school will receive a higher score than He is

home walking after school because the former sentence is gram-

matically correct. In existing machine translation and dialogue

systems, the system will predict several plausible outputs. Then

language model can give a goodness score for every prediction

and the system will take the best one. Moreover, language

models can suggest the next words given the partial observed

sentence by computing P (wi|w1, ..., wi−1). This is vastly used in

the decoding process of conditional language models.

In accordance with the appearance order of words in the sen-

tence, P (w1, w2, ..., wm) can be factorized as the multiplication of

the probability of all words, conditioned on the partial observed

sequence:

P (w1, w2, ..., wm) =
m∏
i=1

P (wi|w1, ..., wi−1). (2.1)
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The condiditional probability P (wi|w1, ..., wi−1) can be modeled

by Recurrent Neutal Network (RNN). Firstly, each word w in

the sentence is mapped to its distributed word representation

w ∈ Rd, which is a vectorized representation learned in training.

Given a sentence with m words, the RNN are operated in m

times to encode the seuqence, sequentially taking one word at

a time. At time step t, RNN takes two inputs: the output

of previous step ht−1 (called hidden state) and the vectorized

representation of word wt. Then it performs a linear matrix

operation on its inputs followed by a non-linear operation to

predict the probability of the next word P (wt+1|w1, ..., wt):

ht = sigmoid(W1ht−1 + W2wt), (2.2)

P (wt+1|w1, ..., wt) = softmax(W3ht), (2.3)

where W1,W2,W3 are learnable parameters.

Recurrent neural network works perfectly to encode all the

previous tokens for language modeling, which is infeasible for

non-neural-network approaches. However, RNN has gradient

vanishing issue that limits its modeling capability to short

sentences. Long Short Term Memory (LSTM) [27] units and

Gated Recurrent Units (GRU) [7] are proposed to address this

issue.

2.1.2 Sequence-to-Sequence Models

Language models can either give a goodness score for a sentence

or predict the next word based on the partial observed sentence.

However, many NLP tasks require mapping one sequence of

words to another sequence of words. For example, machine

translation systems translate a sentence from the source lan-
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guage to a sentence in the target language; summarization

systems summarize a long passage of text to a short but concise

sentence. Dialogue systems generate a response conditioned

on the received utterance. All these tasks can be taken as a

sequence-to-sequence learning problem. Conditional language

models are proposed to achieve the mapping between two

sequences.

The sequence-to-sequence model [82] is proposed to firstly

used in neural machine translation. Then it is applied to

all NLP tasks for conditional language modeling. In essence,

sequence-to-sequence model is made up with two recurrent

neural networks (RNN). Given a source sentence of m words

ws
1, ..., w

s
m, the encoder RNN encode the input sentence to its

vectorized representation hs1, ...,h
s
m:

hst = RNN1(h
s
t-1,w

s
t ). (2.4)

Given the encoded input sequence hs1, ...,h
s
m, the second decoder

RNN generates the output sentence step-by-step. At time step

t, it takes the previously predicted word wo
t−1 (its vector wo

t−1)

and the hidden state of the decoder RNN hot−1 to compute the

hidden state for the current step,

hot = RNN2(h
o
t−1,w

o
t−1). (2.5)

In addition, the decoder adopts an attention mechanism to

derive a context vector that captures relevant input-side infor-

mation to help predict the current target word:

αi,t =
exp(hotW1h

s
i )∑

j exp(hotW1hsj)
, (2.6)

ct =
∑
i

αi,th
s
i . (2.7)
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Then the decoder will predict the distribution of the next word

based on the context vector ct and the decoder hidden state hot :

P (wo
t |ws

1,...,m, w
o
1,...,t-1) = softmax(W2tanh(W3[ht; ct])). (2.8)

2.1.3 Transformer and Pretraining

Transformer [88] is a prominent deep learning model which was

initially proposed for neural machine translation. It outperforms

all RNN-based models on neural machine translation and is

adopted to various natural language processing tasks. Later

works show that Transformer-based pretrained language models

can boost the performance of many natural language under-

standing and generation tasks [11, 38].

The vanilla Transformer model is a sequence-to-sequence

model that includes an encoder part and a decoder part. Both

encoder and decoder contains L layers of Transformer blocks.

The Transformer block contains a multi-head self-attention

module and a position-wise feed-forward network module. The

multi-head self-attention module takes the query q ∈ Rd, keys

K ∈ Rm×d and values V ∈ Rm×d (encoded from the source

sequence) to perform the the scaled dot-product attention:

Attention(q,K,V) = softmax(
qK>√
d

)V, (2.9)

where m denotes the input sequence length, d denotes the

dimension of vectors. Instead of applying the attention a single

time, Transformer applies multi-head attention to practice it

multiple times. Each attention head will learn part of the

semantic for the input sentence. Then the position-wise feed-

forward network concatenates all attention vectors together and
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then pass to a linear layer to get the final representation.

The remaining part of Transformer follows the same encoding

and decoding process with RNN-based sequence-to-sequence

modeling. Besides sequence-to-sequence modeling, the Trans-

former encoder and decoder can be separately used for language

understanding tasks and language modeling tasks.

Different from recurrent neural network that inherently intro-

duces the inductive bias locally, Transformer has no assumption

over the structure of the input sequence in its self-attention.

Because of this, Transformer can capture dependencies in the

input sequence at any range. This capability makes Trans-

former learn universal language representation from large-scale

pretraining. The inductive bias learned from large corpora is

extremely powerful to various downstream tasks [11]. During

the pretraining stage, Transformer is trained on some self-

supervised loss. For example, one kind of self-supervised loss

named masked language modeling loss is designed to make

the model predict a masked word given its context. After

pretraining, the pretrained model can be finetuned with a small-

scale downstream data. There are three major styles for using

Transformer in pretraining:

• Encoder Only: Pretraining with Transformer is firstly

successful by adopting its encoder part only in BERT [11].

BERT has a masked language modeling loss and a next

sentence prediction loss to train the Transformer encoder.

Then it can be finetuned for many language understanding

tasks, such as text classification, reading comprehension,

and textual entailment.

• Decoder Only: The Generative Pretrained Transformer
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(GPT) [65] is the first model trained using Transformer

decoder. The trained Transformer decoder can be used for

language modeling related tasks.

• Encoder-Decoder: To make large-scale pretraining work for

sequence-to-sequence tasks, researchers propose to to train

the encoder-decoder Transformer model directly. BART

[38] extends the denoising objective of BERT to encoder-

decoder architecture. In addition to performing conditional

language generation tasks, the encoder-decoder pretrained

model can also perform language understanding tasks.

2.1.4 Evaluation Metrics

In natural language processing, many tasks have unique evalu-

ation metrics to assess the language understanding/generation

performance. We categorize them into three primary evaluation

metrics: classification tasks, span extraction tasks, and language

generation tasks.

Classification Tasks. Many language understanding tasks can

be formulated as a classification problem. For example, senti-

ment analysis requires taking a sentence and predicting several

levels of sentiment ranging from positive to negative. For these

classification tasks, classical evaluation metrics are used such as

precision, recall, F-score, and accuracy.

Span Extraction Tasks. In natural language processing, some-

times the output is a text span inside the input sentence.

For example, keyphrase extraction requires predicting several

spans inside the sentence as keyphrase; reading comprehension
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requires predicting a span within the text as the answer to the

input question. In this case, span extraction tasks have their

own evaluation metric: Exact Match (EM) and F1. EM treats

the prediction correct if and only if the predicted span is exactly

the same as the ground truth span, while F1 takes partial match

into account by computing the F-score between the predicted

phrase (multiple words) and the gold phrase. Then we take the

average performance of all predicted samples as the final EM/F1

score.

Generation Tasks. The outputs of natural language generation

tasks are sentences, making these tasks hard to evaluate be-

cause we need to measure the semantic similarity between the

predicted and gold sentences. Nevertheless, there are some

evaluation metrics developed for machine translation and text

summarization:

• BLEU: BiLingual Evaluation Understudy [59] is an al-

gorithm for evaluating the machine translation systems.

It compares the n-grams accuracy between the machine-

translated sentence with several reference sentences (gold

sentences) with a penalty for predictions that are shorter

than the references. BLEU is the first metric to claim a

high correlation with human judgments of quality.

• ROUGE: Recall-Oriented Understudy for Gisting Evalu-

ation [45] is a set of metrics for evaluating text summa-

rization systems. Unlike BLEU, ROUGE focuses on the

precision of the predicted sentence and takes recall into

account since text summarization requires summarizing

text within a predefined length.
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The outputs for BLEU and ROUGE are always a number

between 0 and 1. This value indicates how similar the candidate

text is to the reference texts, with values closer to 1 representing

more similar texts.

In addition to the automatic evaluation using BLEU and

ROUGE, manual evaluation is necessary for other language

generation tasks such as dialogue generation, question gener-

ation, and story generation. Since people can express the same

meaning in a completely different utterance, the matching-based

metrics are likely to fail to evaluate the correctness of predictions

in the open-ended language generation tasks.

2.2 Question Generation

Question Generation (QG) aims to generate natural and human-

like questions from a range of data sources, such as image [58],

knowledge base [73, 78], and free text [15]. Besides constructing

SQuAD-like dataset [66] for data augmentation in reading com-

prehension, QG is also helpful for the intelligent tutor system:

The instructor can actively ask the learner questions according

to reading comprehension materials [25] or particular knowledge

[10]. For example, Figure 2.2 gives one question from SQuAD,

the goal of question generation is to generate such questions.

2.2.1 Textual QG

QG for reading comprehension is a challenging task because the

generation should follow the syntactic structure of questions and

ask questions to the point, i.e., having a specified aspect as its

answer. Some template-based approaches [87, 53, 47, 2, 25] were
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Sentence: The daily mean temperature in January, the area’s coldest

month, is 32.6 ◦F (0.3 ◦C); however, temperatures usually drop to 10 ◦F

(-12 ◦C) several times per winter and reach 50 ◦F (10 ◦C) several days

each winter month.

Reference Question: What is New York City ’s daily January mean

temperature in degrees celsius ?

Figure 2.2: An example SQuAD question. The answer (“0.3 ◦C”) is

highlighted.

proposed initially. They manually design some question tem-

plates and transform the declarative sentences to interrogative

questions [53, 34, 47, 25]. These Rule-based approaches need

extensive human labor to design question templates and usually

can only ask annotators to evaluate the generated questions.

With the rise of data-driven learning approach and se-

quence to sequence (seq2seq) framework [82], some researchers

formulated QG as a seq2seq problem [15]: The question is

regarded as the decoding target from the encoded information

of its corresponding input sentence. However, different from

existing seq2seq learning tasks such as machine translation and

summarization which could be loosely regarded as learning a

one-to-one mapping, for question generation, various aspects

of the given descriptive sentence can be asked. Hence, the

generated questions could be significantly different. Several

recent works tried to tackle this problem by incorporating the

answer information to indicate what to ask about, which helps

the models generate more accurate questions [29, 76, 108]. Some

researchers focus on how to utilize the answer information better

to generate questions to the point [108, 81] and how to effectively

use the contexts in paragraphs to generate questions that cover

context beyond a single sentence [105, 14].
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Passage: Incumbent Democratic President Bill Clinton was ineligible to serve a

third term due to term limitations in the 22nd Amendment of the Constitution,

and Vice President Gore was able to secure the Democratic nomination with

relative ease. Bush was seen as the early favorite for the Republican nomination

and, despite a contentious primary battle with Senator John McCain and other

candidates, secured the nomination by Super Tuesday. Bush chose ...

Q1: What political party is Clinton a member of? A1: Democratic

Q2: What was he ineligible to serve? A2: third term

Q3: Why? A3: term limitations

Q4: Based on what amendment? A4: 22nd

Q5: Of what document? A5: Constitution

Q6: Who was his vice president? A6: Gore

Q7: Who was the early Republican favorite for A7: Bush

the nomination?

Q8: Who was the primary battle with? A8: John McCain

Q9: What is his title? A9: Senator

Q10: When did Bush secure the nomination by? A10: Tuesday

Figure 2.3: An example for conversational question generation from a

conversational question answering dataset CoQA [67]. Each turn contains

a question Qi and an answer Ai.

2.2.2 Dialogue QG

Different from formalizing question generation for knowledge

testing as a standalone interaction [104, 76], it is a more

natural way for human beings to test knowledge or seek in-

formation through conversations involving a series of intercon-

nected questions [67]. As shown in Figure 2.3, the machine

starts a conversation with the student, and asks a series of

conversational questions to test his understanding of the textual

passage. Different from the standalone interaction in Figure

2.2, questions in Figure 2.3 are highly conversational. The

inability for virtual assistants to ask questions based on previous

discussions often leads to better user experiences. Starting from

this motivation, some researchers recently investigate question
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generation in dialogue systems. [41] show that asking questions

through interactions can receive useful feedbacks to reach the

correct answer. [93] consider asking questions in open-domain

conversational systems with typed decoders to enhance the

interactiveness and persistence of conversations.

Our Contributions. Under the same goal for knowledge assess-

ment, our contributions are following:

• Textual QG: First, we propose to model the difficulty of

questions in question generation. Then we propose to

generate questions under the predefined difficulty. Second,

we propose a new framework to generate distractors (wrong

options) for multiple choice questions in reading compre-

hension.

• Dialogue QG: We propose to generate interconnected ques-

tions in a question-answering style conversation. The new

dialogue-based interaction style can enhance the interac-

tiveness and persistence of knowledge assessment.

2.3 Machine Reading Comprehension

Machine Reading Comprehension (MRC) is a long-standing goal

in natural language understanding with various applications in

question answering and dialogue systems. The task formulation

of machine reading comprehension is as follows: Given a textual

passage P and a question Q over the content of the passage, a

MRC system predicts an answer A which could be a text span

within the textual passage P . Besides the span-based answers,

MRC can also be formulated to predict a masked entity within
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the passage (cloze-style MRC), or select a option within multiple

provided choices (multi-choice MRC), or generate free form

answers that may or may not appear in the passage (generative

MRC). However, span-extraction style MRC is the most popular

task because of the well-defined target and convenience for

evaluation.

2.3.1 Textual MRC

Textual Machine Reading Comprehension keeps the simplest

setting. SQuAD [66] is a representative task in textual MRC

which includes 100,000 question-passage pairs. The passages

are collected from Wikipedia while the questions are generated

by crowd workers. The answer for the SQuAD task is in the

format of text span inside the passage.

There are two major architecture for textual machine reading

comprehension task: traditional RNN-based matching model

[72] and pretrained transformer-based model [11, 49]. Tradi-

tional RNN-based matching models adopt RNN as a feature

encoder to encode the question and passage separately. Then a

question-passage attention mechanism is designed for matching

interaction. Finally, start and end indices are predicted for the

answer span. Pretrained transformer-based models rely heavily

on the language representations learned in the pretraining stage.

They concatenate the passage with the question into a sequence

and feed it for pretrained models. The multi-head self-attention

of transformers can replace RNN encoding and complicated

question-passage matching. A simple linear layer is added on

top of pretrained models to predict the start and end position

for the answer span.
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2.3.2 Dialogue MRC

In conversational machine reading (CMR) comprehension, ma-

chines can take the initiative to ask users questions that help

to solve their problems, instead of jumping into a conclusion

hurriedly [69]. In this case, machines need to understand the

knowledge base (KB) text, evaluate and keep track of the user

scenario, ask clarification questions, and then make a final

decision. This interactive behavior between users and machines

has gained more attention recently because in practice users

are unaware of the KB text, thus they cannot provide all the

information needed in a single turn.

For instance, consider the example in Figure 2.4 taken from

the ShARC dataset for CMR [69]. A user posts her scenario

and asks a question on whether her employer can take money

from her final pay. Since she does not know the relevant rule

text, the provided scenario and the initial question(s) from her

are often too underspecified for a machine to make a certain

decision. Therefore, a machine has to read the rule text and

ask a series of clarification questions until it can conclude the

conversation with a certain answer.

Most existing approaches [107, 89] formalize the CMR prob-

lem into two sub-tasks. The first is to make a decision

among Yes, No, Irrelevant, and Inquire at each dialog turn

given a rule text, a user scenario, an initial question and the

current dialog history. If one of Yes, No, or Irrelevant is

selected, it implies that a final decision (Yes/No) can be made

in response to the user’s initial question, or stating the user’s

initial question is unanswerable (Irrelevant) according to the

rule text. If the decision at the current turn is Inquire, it will
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Statutory Maternity Pay
To qualify for SMP you must:

* earn on average at least £113 a week
* give the correct notice
* give proof you’re pregnant

Do I qualify for SMP?

I've been old enough to get my pension. 

Do you earn on average at least 
£113 a week?

Yes

No

Rule 
Text

User 
Scenario

Initial 
Question

Turn 1

Turn 2

Turn 3

Yes No Irrelevant Inquire

Did you give the correct notice?

Decision:

Yes No Irrelevant InquireDecision:

Yes No Irrelevant InquireDecision:

No

## Taking more leave than the entitlement
If a worker has taken more leave than they’re
entitled to, their employer must not take money from
their final pay unless it’s been agreed beforehand in
writing. The rules in this situation should be outlined
in the employment contract, company handbook or
intranet site.

Can my employer take money from 
my final pay?

I have questions regarding my employer …

Did you take more leave than 
they ’re entitled to?

Yes

Yes

Rule 
Text

User 
Scenario

Initial 
Question

Turn 1

Turn 2

Turn 3

Yes No Irrelevant Inquire

Did you agree to it beforehand?

Decision:

Yes No Irrelevant InquireDecision:

Yes No Irrelevant InquireDecision:

Yes

Figure 2.4: Example of Conversational Machine Reading tasks from the

ShARC dataset [69]. At each turn, given the rule text, a user scenario, an

initial user question, and previous interactions, a machine can give a certain

final answer such as Yes or No to the initial question. If the machine cannot

give a certain answer because of missing information from the user, it will ask

a clarification question to fill in the information gap. Clarification questions

and their corresponding rules are marked in the same colors.
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then trigger the second task for follow-up question generation,

which extracts an underspecified rule span from the rule text

and generates a follow-up question accordingly. On the ShARC

CMR challenge [69], [37] propose an end-to-end bidirectional

sequence generation approach with mixed decision making and

question generation stages. [69] split it into sub-tasks and

combines hand-designed sub-models for decision classification,

entailment and question generation. [107] propose to extract

all possible rule text spans, assign each of them an entailment

score, and edit the span with the highest score into a follow-up

question. However, they do not use these entailment scores for

decision making. [89] study patterns of the dataset and include

additional embeddings from dialog history and user scenario as

rule markers to help decision making.

Conversational Machine Reading [69] differs from conversa-

tional question answering [8, 67] and conversational question

generation [19] in that 1) machines are required to formulate

follow-up questions to fill the information gap, and 2) machines

have to interpret a set of complex decision rules and make a

question-related conclusion, instead of extracting the answer

from the text. CMR can be viewed as a special type of task-

oriented dialog systems [95, 106, 97] to help users achieve their

goals. However, it does not rely on predefined slot and ontology

information but natural language rules.

Our Contributions. We focus on the dialogue machine reading

comprehension in this thesis. Different from previous works

which aim to achieve better question answering performance

in dialogue MRC, we aim to change the interaction style in

dialogue MRC in which the machine can not only passively
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answer questions but also proactively ask clarification questions.

The new interaction style can improve the overall MRC system

performance. Specifically, our contributions are as follows:

• We propose an explicit memory tracker to track the ac-

quired knowledge in the dialogue. The machine can ask

questions accordingly when there is any knowledge under-

specified.

• We propose to adopt discourse parsing to understand

the passage and entailment reasoning to understand the

dialogue. The enhanced understanding of both the passage

and the text leads to better QA performance.

2.4 Other QA Tasks

2.4.1 Knowledge-Based Question Answering

Knowledge-Based Question Answering (KBQA) aims to answer

questions with the help of knowledge bases. Unlike machine

reading comprehension which has a passage for reference before

answering the question, KBQA only provides the same knowl-

edge source for answering all questions. Knowledge sources in

KBQA can be categorized into structured knowledge base and

unstructured knowledge base. Structured knowledge base is in

the format of KB triple. For example, given the question ”How

tall is Yao Ming?”, the model will find the KB triple ((Yao Ming,

height, 2.26m) and take ”2.26m” as the answer. Unstructured

knowledge base is free text knowledge such as Wikipedia. For

the same question on Yao Ming’s height, the model needs to

retrieve the key sentence ”During his final season, he was the
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tallest active player in the NBA, at 2.29 m (7 ft 6 in).” in

Wikipedia and predict the answer accordingly.

Approaches for KBQA can be divided into two classes:

information retrieval-based and neural semantic parsing-based.

Information-retrieval based methods [3, 24, 80] firstly retrieve

a large set of candidate answers from the knowledge base

according to the matching score between the question and

answers. Then these candidate answers are reranked and sorted

to select the final prediction. Some IR-based methods [36]

have the iterative retrieve-read mechanism to perform multi-hop

reasoning to handle complex questions. However, these methods

are lack of interpretability and cannot tackle complex questions

requiring constraint inference.

Different from IR-based methods that directly encode the

question into a vectorized representation, semantic parsing-

based methods aim to convert the natural language query into

an executable language query. These methods [68, 102, 50, 36]

usually convert the natural language question into logical forms

such as query graphs and trees and further translate them into

SPARQL queries. Recently, some researchers also investigate

encoder-decoder based approaches [12, 98] to leverage trees or

high-level programming languages to represent natural language

questions.

2.4.2 Community Question Answering

Community Question Answering (CQA) is a dominaint ap-

proach for online information seeking, where users can ask and

answer questions on web forums such as Yahoo! Answers1, Stack

1https://answers.yahoo.com/

https://answers.yahoo.com/
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Overflow2, Quora3. Usually, these forums have multiple domain

experts to provide answers or opinions to user-posted questions.

Different from machine reading comprehension and knowledge-

based QA, community question answering is different in the

following aspects:

• Question Type: Community question answering have multi-

sentence questions while other QA tasks aim to answer

single sentence factoid questions.

• Source of Answers: Community question answering has

user-generated long and comprehensive answers while an-

swers in other QA tasks are mostly extracted from the

context passage or knowledge base.

• Meta Data: Different from the simple formulation of QA,

community question answering evolves social computing

research. One major characteristic of CQA is that users

can upvote/downvote answers to select the best answer.

Because of the above difference, community question an-

swering has a different research focus. For a reliable online

QA forum, there are two major tasks in community question

answering: 1) Question Matching, and 2) QA Ranking &

Retrieval.

Question Matching. In an online forum, users repeatedly ask

questions that share the same meanings. This is called the

question duplication problem. Solving question duplication

will lead to less redundancy for experts so that they do not

2https://www.stackoverflow.com/
3https://www.quora.com/

https://www.stackoverflow.com/
https://www.quora.com/
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need to answer similar questions again and again. Moreover,

it is easier for users to find existing answers when they post

questions. The task is to match the new question to all questions

in the database. Traditional methods like BM25 evaluate the

similarity between questions by matching tokens. In the era

of deep learning, some neural network-based methods [60] are

developed. Questions are encoded via RNN or pretrained

language models, and then the two question representations

are concatenated, and a dense layer is applied to generate the

prediction.

QA Ranking & Retrieval. Given a list of user-generated an-

swers, it is essential to rank and retrieve the best response within

them. Similar to the question matching task, QA ranking &

retrieval can utilize convolutional neural network [16], recurrent

neural network [85], or pretrained language models to encode the

vectorized representation of the question and candidate answers.

Then the questions and answer vectors are trained under the

log-likelihood loss by predicting the answer is relevant to the

question or not. Moreover, some researchers propose to model

the token-level interaction between the question and candidate

answers through attention mechanism [62]. The proposed

approach receives better performance for answer relevance while

sacrificing computation efficiency.

2 End of chapter.



Chapter 3

Difficulty Controllable Question

Generation

In this chapter, we investigate the difficulty levels of questions in

reading comprehension datasets such as SQuAD, and propose a

new question generation setting, named Difficulty-controllable

Question Generation (DQG). We first give an introduction

in Section 3.1. In Section 3.2, we define our proposed new

task – difficulty controllable question generation. Section 3.3

describes our protocol to label the difficulty levels of questions.

In Section 3.4, we introduce our proposed end-to-end framework

to generate questions of designated difficulty levels by exploring

a few important intuitions. Section 3.5 presents our experiment

results. Finally, we give a summary of this chapter in Section

3.6.

3.1 Introduction

Question Generation (QG) aims to generate natural and human-

like questions from a range of data sources, such as image

[58], knowledge base [73, 78], and free text [15]. Besides for

33
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S2: It is a member of the chalcogen group on the periodic table and is a 
highly reactive nonmetal and oxidizing agent that readily forms compounds 
(notably oxides) with most elements. 
Q2: (Easy) Of what group in the periodic table is oxygen a member?
A2: chalcogen
S3: The electric guitar is often emphasised, used with distortion and other 
effects, both as a rhythm instrument using repetitive riffs with a varying 
degree of complexity, and as a solo lead instrument. 
Q3: (Hard) What instrument is usually at the center of a hard rock sound?
A3: The electric guitar

S1: Oxygen is a chemical element with symbol O and atomic number 8. 
Q1: (Easy) What is the atomic number of the element oxygen? 
A1: 8

Figure 3.1: Example questions from SQuAD. The answers of Q1 and Q2 are

facts described in the sentences, thus they are easy to answer. But it is not

straightforward to answer Q3.

constructing SQuAD-like dataset [66], QG is also helpful for the

intelligent tutor system: The instructor can actively ask the

learner questions according to reading comprehension materials

[25] or particular knowledge [10]. In this chapter, we focus on

QG for reading comprehension text. For example, Figure 3.1

gives three questions from SQuAD. Our goal is to generate such

questions.

QG for reading comprehension is a challenging task because

the generation should not only follow the syntactic structure

of questions, but also ask questions to the point, i.e., having a

specified aspect as its answer. Some template-based approaches

[87, 53, 47, 2, 25] were proposed initially, where well-designed

rules and heavy human labor are required for declarative-to-

interrogative sentence transformation. With the rise of data-

driven learning approach and sequence to sequence (seq2seq)
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framework [82], some researchers formulated QG as a seq2seq

problem [15]: The question is regarded as the decoding target

from the encoded information of its corresponding input sen-

tence. However, different from existing seq2seq learning tasks

such as machine translation and summarization which could be

loosely regarded as learning a one-to-one mapping, for question

generation, different aspects of the given descriptive sentence

can be asked, and hence the generated questions could be

significantly different. Several recent works tried to tackle this

problem by incorporating the answer information to indicate

what to ask about, which helps the models generate more

accurate questions [29, 76, 108]. In our work, we also focus

on the answer-aware QG problem, which assumes the answer is

given. Similar problems have been addressed in, e.g., [105, 81]

In this chapter, we investigate a new setting of QG, namely

Difficulty controllable Question Generation (DQG). In this

setting, given a sentence in the reading comprehension para-

graph, the text fragments (i.e., answers) that we want to ask

questions about, and the specified difficulty levels, a framework

needs to generate questions that are asked about the specified

answers and satisfy the difficulty levels as much as possible. For

example, given the sentence S3 and the answer “the electric

guitar” in Figure 3.1, the system should be capable of asking

both a hard question like Q3 and an easy one such as “What

is often emphasised as a rhythm instrument?”. DQG has rich

application scenarios. For instance, when instructors prepare

learning materials for students, they may want to balance the

numbers of hard questions and easy questions. Besides, the

generated questions can be used to test how a QA system works

for questions with diverse difficulty levels.
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Generating questions with designated difficulty levels is a

more challenging task. First, no existing large-scale QA dataset

has difficulty labels for questions for training reliable neural

network models. Second, for a single sentence and answer pair,

we want to generate questions with diverse difficulty levels.

However, the current datasets like SQuAD only have one given

question for each sentence and answer pair. Finally, there is

no metric to evaluate the difficulty of questions. To overcome

the first issue, we prepare a dataset of reading comprehension

questions with difficulty labels. Specifically, we design a method

to automatically label SQuAD questions with multiple difficulty

levels, and obtain 76K questions with difficulty labels.

To overcome the second issue, we propose a framework that

can learn to generate questions complying with the specified

difficulty levels by exploring the following intuitions. To answer

a SQuAD question, one needs to locate a text fragment in the

input sentence as its answer. Thus, if a question has more hints

that can help locate the answer fragment, it would be easier

to answer. For the examples in Figure 3.1, the hint “atomic

number” in Q1 is very helpful, because, in the corresponding

sentence, it is just next to the answer “8”, while for Q3, the

hint “instrument” is far from the answer “The electric guitar”.

The second intuition is inspired by the recent research on

style-guided text generation, which incorporates a latent style

representation (e.g., sentiment label or review rating score) as an

input of the generator [74, 44]. Similarly, performing difficulty

control can be regarded as a problem of sentence generation

towards a specified attribute or style. On top of the typical

seq2seq architecture, our framework has two tailor-made designs

to explore the above intuitions: (1) Position embeddings are
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learned to capture the proximity hint of the answer in the

input sentence; (2) Global difficulty variables are learned to

control the overall “difficulty” of the questions. For the last

issue, we propose to employ the existing reading comprehension

(RC) systems to evaluate the difficulty of generated questions.

Intuitively, questions which cannot be answered by RC systems

are more difficult than these correctly answered ones.

In the quantitative evaluation, we compare our DQG model

with state-of-the-art models and ablation baselines. The results

show that our model not only generates questions of better

quality under the metrics like BLEU and ROUGE, but also

has the capability of generating questions complying with the

specified difficulty labels. The manual evaluation finds that

the language quality of our generated questions is better, and

our model can indeed control the question difficulty. We plan

to release the prepared dataset and the code of our model for

further research.

3.2 Task Definition

In the DQG task, our goal is to generate SQuAD-like questions

of diverse difficulty levels for a given sentence. Note that the

answers of SQuAD questions are text spans in the input sen-

tence, and they are significantly different from RACE questions

[35] such as “What do you learn from the story?” Considering

their different emphases, SQuAD questions are more suitable for

our task, while the difficulty of RACE questions mostly comes

from the understanding of the story but not from the way how

the question is asked. Thereby, we assume that the answers for

asking questions are given, and they appear as text fragments
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in the input sentences by following the paradigm of SQuAD.

We propose an end-to-end framework to handle DQG. For-

mally, let a denote the answer for asking question, and let s

denote the sentence containing a from a reading comprehension

paragraph. Given a, s, and a specified difficulty level d as input,

the DQG task is to generate a question q which has a as its

answer, and meanwhile should have d as its difficulty level.

3.3 The Protocol of Difficulty Labeling

SQuAD [66] is a reading comprehension dataset containing

100,000+ questions on Wikipedia articles. The answer of each

question is a text fragment from the corresponding input pas-

sage. We employ SQuAD questions to prepare our experimental

dataset.

The difficulty level is a subjective notion and can be ad-

dressed in many ways, e.g., syntax complexity, coreference

resolution and elaboration [79]. To avoid the ambiguity of the

“question difficulty” in this preliminary study, we design the

following automatic labeling protocol and study the correlation

between automatically labelled difficulty with human difficulty.

We first define two difficulty levels, Hard and Easy, in this

preliminary dataset for the sake of simplicity and practicality.

We employ two RC systems, namely R-Net [92] 1 and BiDAF

[72] 2, to automatically assess the difficulty of the questions

. The labeling protocol is: A question would be labelled with

Easy if both R-Net and BiDAF answer it correctly under the

exact match metric, and labelled with Hard if both systems

1https://github.com/HKUST-KnowComp/R-Net
2https://github.com/allenai/bi-att-flow

https://github.com/HKUST-KnowComp/R-Net
https://github.com/allenai/bi-att-flow
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fail to answer it. The remaining questions are eliminated for

suppressing the ambiguity.

Note that we cannot directly employ the original data split of

SQuAD to train a model of R-Net or BiDAF, and use the model

to assess all questions. Such assessment does not make sense,

because some questions (i.e., training and validation questions)

are already shown to the model in the training. To avoid this

problem, we re-split the original SQuAD questions into 9 splits

and adopt a 9-fold strategy. To label every single split (the

current split), 7 splits are used as the training data, and the

last split is used as the validation data. Then the trained model

is used to assess the difficulty of questions in the current split.

This way guarantees that the model is never shown with the

questions for automatic labeling. Finally, we obtain 44,723 easy

questions and 31,332 hard questions.

To verify the reasonability of our labeling protocol, we

evaluate its consistency with human being’s judgment. We

sample 100 Easy questions and 100 Hard questions, and hire

3 annotators to rate the difficulty level of all these questions

on a 1-3 scale (3 for the most difficult). The result shows that

average difficulty rating for the Easy questions is 1.90 while it

is 2.52 for the Hard ones.

3.4 Framework Description

Given an input sentence s = (w1, w2, ..., wm), a text fragment a

in s, and a difficulty level d, our task is to generated a question

q, which is asked with s as its background information, takes

a as its answer, and has d as its difficulty. The architecture
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Figure 3.2: Overview of our DQG framework (better viewed in color).

of our difficulty-controllable question generator is depicted in

Figure 3.2. The encoder takes two types of inputs, namely,

the word embeddings and the relative position embeddings

(capturing the proximity hints) of sentence words (including the

answer words). Bidirectional LSTMs are employed to encode the

input into contextualized representations. Besides two standard

elements, namely attention and copy, the decoder contains a

special initialization to control the difficulty of the generated

question. Specifically, we map the difficulty label d into a global

difficulty variable with a lookup table, and combine the variable

with the last hidden state of the encoder to initialize the decoder.
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Table 3.1: Distance statistics for non-stop words.

Easy Hard All

Avg. distance of question words 7.67 9.71 8.43

Avg. distance of all sentence words 11.23 11.16 11.20

3.4.1 Exploring Proximity Hints

Recall that our first intuition tells that the proximity hints

are helpful for answering the SQuAD-like questions. Before

introducing our design for implementing the intuition, we quan-

titatively verify it by showing some statistics. Specifically, we

examine the average distance of those nonstop question words

that also appear in the input sentence to the answer fragment.

For example, for Q1 in Figure 3.1 and its corresponding input

sentence “Oxygen is a chemical element with symbol O and

atomic number 8”, we calculate the word-level average distance

of words “atomic”, “number”, “element”, and “oxygen” to the

answer “8”. The statistics are given in Table 3.1. In contrast,

the average distance of all nonstop sentence words to the answer

is also given in the bottom line. If we only count those nonstop

question words, we find that their distance to the answer

fragment is much smaller than the sentence words, namely

8.43 vs. 11.20. We call this Question Word Proximity Hint

(QWPH). More importantly, the distance for hard questions

is significantly larger than that for easy questions, namely 9.71

vs. 7.67, which well verifies our intuition that if a question has

more obvious proximity hints (i.e., containing more words that

are near the answer in the corresponding sentence), it would be

easier to solve. We model QWPH for easy questions and hard

questions separately and call this Difficulty Level Proximity Hint
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(DLPH).

To implement the QWPH intuition, our model learns a

lookup table which maps the distance of each sentence word to

the answer fragment, i.e., 0 (for answer words), 1, 2, etc., into

a position embedding: (p0,p1,p2, ...,pL), where pi ∈ Rdp and

dp is the dimension. L is the maximum distance we consider.

Different from QWPH, the DLPH intuition additionally explores

the information of question difficulty levels. Therefore, we define

two lookup tables: (pe0,p
e
1,p

e
2, ...,p

e
L) for the Easy label, and

(ph0 ,p
h
1 ,p

h
2 , ...,p

h
L) for the Hard label. Note that the above

position embeddings not only carry the information of sentence

word position, but also let our model know which aspect (i.e.,

answer) to ask with the embeddings of position 0.

3.4.2 Characteristic-rich Encoder

The characteristic-rich encoder incorporates several features into

a contextualized representation. For each sentence word w, an

embedding lookup table is firstly used to map tokens in the

sentence into dense vectors: (w1, w2, ...,wm), where wi ∈ Rdw

of dw dimensions. Then we concatenate its word embedding and

position embedding (proximity hints) to derive a characteristic-

rich embedding: x = [w; p]. We use bidirectional LSTMs

to encode the sequence (x1,x2, ...,xm) to get a contextualized

representation for each token:

−→
h i =

−−−−→
LSTM(

−→
h i−1,xi),

←−
h i =

←−−−−
LSTM(

←−
h i+1,xi),

where
−→
h i and

←−
h i are the hidden states at the i-th time step of

the forward and the backward LSTMs. We concatenate them

together as hi = [
−→
h i;
←−
h i].
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3.4.3 Difficulty-controllable Decoder

We use another LSTM as the decoder to generate the question.

We employ the difficulty label d to initialize the hidden state of

the decoder. During the decoding, we incorporate the attention

and copy mechanisms to enhance the performance.

Global Difficulty Control. We regard the generation

of difficulty-controllable questions as a problem of sentence

generation towards a specified style, i.e., easy or hard. To

do so, we introduce a global difficulty variable to control the

generation. We follow the recent works for the task of style

transfer that apply the control variable globally, i.e., using the

style variable to initialize the decoder [44]. Specifically, for the

specified difficulty level d, we first map it to its corresponding

difficulty variable d ∈ Rdd, where dd is the dimension of a

difficulty variable. Then we use the concatenation of d with

the final hidden state hm of the encoder to initialize the decoder

hidden state u0 = [hm; d]. Note that in the training stage, we

feed the model the ground truth difficulty labels, while in the

testing stage, our model can take any specified difficulty labels,

i.e., difficulty-controllable, for question generation. We have also

tried some variations by adding this variable to other places such

as every encoder or decoder input in the model but it does not

work.

Decoder with Attention & Copy. The decoder predicts

the word probability distribution at each decoding timestep to

generate the question. At the t-th timestep, it reads the word

embedding wt and the hidden state ut−1 of the previous timestep

to generate the current hidden state ut = LSTM(ut−1,wt).

Then the decoder employs the attention mechanism [51] and
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copy mechanism [71] to generate the question by copying

words in the sentence or generating words from a predefined

vocabulary.

3.4.4 Training and Inference

In the training, our model minimizes the following negative log-

likelihood of all training instances:

L = −
∑
q∈Q

log P(q|a, s, d), (3.1)

where Q includes all training data points, and log P(q|a, s, d) is

the conditional log-likelihood of q. For testing, we can generate

questions of diverse difficulty levels di ∈ D (predefined difficulty

levels) by maximizing:

q = arg max
q

log P(q|a, s, di). (3.2)

3.5 Experiments

3.5.1 Experimental Settings

Dataset. Our prepared dataset is split according to articles of

the SQuAD data, and Table 3.2 provides the detailed statistics.

Across the training, validation and test sets, the splitting ratio

is around 7:1:1, and the easy sample ratio is around 58% for all

three.

Baselines and Ablation Tests. We only employ neural network

based methods as our baselines, since they perform better than

non-neural methods as shown in recent works [15, 108]. The first
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Table 3.2: The statistics of our dataset.

Train Dev Test

# easy questions 34,813 4,973 4,937

# hard questions 24,317 3,573 3,442

Easy ratio 58.88% 58.19% 58.92%

baseline models the question generation as a seq2seq problem

incorporating the attention mechanism, and we refer to it as

L2A [15]. The second baseline Ans adds answer indicator

embedding to the seq2seq model, similar to [108]. Two ablations

that only employ the question word proximity hint or the

difficulty level proximity hint are referred to as QWPH and

DLPH. Moreover, we examine the effectiveness of the global

difficulty control (GDC) combined with QWPH and DLPH,

refer to them as QWPH-GDC and DLPH-GDC. All these

methods are enhanced by the copy mechanism.

Model Details and Parameter Settings. The embedding dimen-

sions for the position embedding and the global difficulty

variable, i.e. dp and dd, are set to 50 and 10 respectively.

We use the maximum relative distance L = 20 in the position

embedding. We adopt teacher-forcing in the encoder-decoder

training and use the ground truth difficulty labels. In the testing

procedure, we select the model with the lowest perplexity and

beam search with size 3 is employed for question generation. All

important hyper-parameters, such as dp and dd, are selected on

the validation dataset.
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Table 3.3: Difficulty of the generated questions, measured with R-Net and

BiDAF. For easy questions, higher score indicates better difficulty-control,

while for hard questions, lower indicates better.

Easy Questions Set Hard Questions Set

R-Net BiDAF R-Net BiDAF

EM F1 EM F1 EM F1 EM F1

Ans 82.16 87.22 75.43 83.17 34.15 60.07 29.36 55.89

QWPH 82.66 87.37 76.10 83.90 33.35 59.50 28.40 55.21

QWPH-GDC 84.35 88.86 77.23 84.78 31.60 57.88 26.68 54.31

DLPH 85.49 89.50 78.35 85.34 28.05 54.21 24.89 51.25

DLPH-GDC 85.82 89.69 79.09 85.72 26.71 53.40 24.47 51.20

3.5.2 Difficulty Control Results

We run R-Net and BiDAF to assess the difficulty of our

generated hard and easy questions. Here the R-Net and

BiDAF systems are trained using the same train/validation

splits as shown in Table 3.2, and we report their performance

under the standard reading comprehension measures for SQuAD

questions, i.e., Exact Match (EM) and macro-averaged F1 score

(F1), on the easy and hard question sets respectively. For

all experiments, we firstly show the performance of difficulty-

controllable question generation by feeding ground truth dif-

ficulty labels, then we feed the reverse difficulty labels to

demonstrate our model can control the difficulty of generated

questions.

Recall that the generated questions can be split into an easy

set and a hard set according to the difficulty labels. Here we

evaluate the generated questions from the perspective that a

reading comprehension system (e.g., R-Net and BiDAF) should

perform better on the generated questions in the easy set, and

perform worse on the hard question set. If a pipeline does not
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use the answer information, its generated questions are likely not

about the answers, thus both BiDAF and R-Net cannot work

well no matter for easy or hard questions. Therefore, we do not

use L2A here.

As shown in Table 3.3, for the easy set, the questions

generated by the methods using the difficulty label “Easy” are

easier to answer. Specifically, compared with Ans and QWPH

which cannot control the difficulty, QWPH-GDC, DLPH, and

DLPH-GDC generate easier questions, showing that they have

the capability of generating difficulty-controllable questions.

One instant doubt is that a model can simply produce trivial

questions by having them contain the answer words. In fact, our

models do not have this behaviour, because it will increase the

training loss. To further verify this, we calculate the occurrence

rate of answer words in the generated questions. The result

shows that only 0.09% answer words appear in the questions

generated by our models.

For the hard set, we can draw the same conclusion by keeping

in mind that a lower score indicates the corresponding method

performs better in generating difficulty-controllable questions.

(Note that questions irrelevant to the answer can also yield

lower scores, and we have more discussion about this issue

in Section 3.5.3 for the human evaluation.) This observation

shows that incorporating the difficulty information locally by the

two position embeddings or globally by the difficulty-controlled

initialization indeed guides the generator to generate easier or

harder questions. Comparing DLPH and QWPH-GDC, we find

that the local difficulty control by the position embedding is

more effective. DLPH-GDC performs the best by combining

the local and global difficulty control signals.
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Table 3.4: The results of controlling difficulty, measured with R-Net and

BiDAF. The scores are performance gap between questions generated with

original difficulty label and questions generated with reverse difficulty label.

Easy Questions Set Hard Questions Set

R-Net BiDAF R-Net BiDAF

EM F1 EM F1 EM F1 EM F1

QWPH-GDC 7.41 5.72 7.13 5.88 6.45 5.47 6.13 5.10

DLPH 12.41 9.51 11.28 8.49 12.01 10.45 10.51 9.37

DLPH-GDC 12.91 9.95 12.40 9.23 12.68 10.76 11.22 9.97

Moreover, we find that QWPH achieves slightly better per-

formance than Ans baseline. A large performance gap between

QWPH-GDC and QWPH again validates the effectiveness of

the global difficulty control. Meanwhile, the improvement from

QWPH to DLPH shows that the local difficulty level proximity

hint can stress the question difficulty at each time step to

perform better.

On the other hand, another way to validate our model is

testing whether our model can control the difficulty by feeding

the reversed difficulty labels. For example, for a question in

the easy set, if we feed the “Hard” label together with the

input sentence and answer of this question into our model, we

expect the generated question should be harder than feeding

the “Easy” label. Concretely, if a method has the better

capability in controlling the difficulty, on two sets of questions

generated with this method by taking the true label and the

reversed label, the performance gap of a reading comprehension

system should be larger. The results of this experiment are

given in Table 3.4. We only compare models which have

difficulty control capability. The model combining local and

global difficulty signals, i.e., DLPH-GDC, achieves the largest
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Table 3.5: Human evaluation results for generated questions. Fluency(F)

and Difficulty(D) take values from {1, 2, 3} (3 means the top fluency or

difficulty), while Relevance(R) takes a binary value, i.e., 1 or 0.

Easy Question Set Hard Question Set

F D R F D R

Ans 2.91 2.02 0.74 2.87 2.12 0.58

DLPH-GDC 2.94 1.84 0.76 2.87 2.26 0.64

gap, which again shows that: (1) DLPH-GDC has the strongest

capability of generating difficulty-controllable questions; (2) The

local difficulty control (i.e. DLPH) is more effective than the

global (i.e. QWPH-GDC).

3.5.3 Manual Evaluation

We hire 3 annotators to rate the model generated questions.

We randomly sampled 100 questions with “Easy“ labels and

100 with “Hard“ labels from the test set, and let each anno-

tator annotate these 200 cases. During the annotation, each

data point contains a sentence, an answer, and the questions

generated by different models, without showing the difficulty

labels. We consider three metrics: Fluency(F), Difficulty(D)

and Relevance(R). The annotators are first asked to read the

generated questions to evaluate their grammatical correctness

and fluency. Then, all annotators are required to rate the

difficulty of each generated question by considering the corre-

sponding sentence and answer. Finally, for relevance, we ask the

annotators to judge if the question is asking about the answer.

Fluency and Difficulty take values from {1, 2, 3} (3 means

the top fluency or difficulty), while Relevance takes a binary
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value (1 or 0).

Table 3.5 shows the results of the manual evaluation. We

compare our best model DLPH-GDC with the Ans baseline. We

separate the Easy questions and Hard questions for statistics.

For both question sets, both models achieve high scores on

Fluency, owing to the strong language modeling capability of

neural models. For Difficulty, we can find that DLPH-GDC

can generate easier or harder questions than Ans by feeding the

true difficulty labels. Another observation is that, for the Ans

baseline, questions generated in the Easy set are easier than

those in the Hard set, which validates our difficulty labelling

protocol from another perspective. Note that for human beings,

all SQuAD-like questions are not really difficult, therefore, the

difference of Difficulty values between the easy set and the

hard set is not large.

Furthermore, we can observe our model can generate more

relevant questions compared with the Ans baseline. The reason

could be that our position embedding can not only tell where the

answer words are, but also indicate the distance of the context

words to the answer. Thus, it provides more information to the

model for asking to the point questions. Ans only differentiates

the answer token and non-answer token, and treats all non-

answer tokens equally.

Recall that we had the concern regarding Table 3.3 that the

generated hard questions by our difficulty-controlling models

say DLPH-GDC may simply be irrelevant to the answer, which

makes DLPH-GDC achieves lower EM/F1 scores than the Ans

baseline. By comparing the Relevance scores in Table 3.5

and EM/F1 scores in Table 3.3 for Hard Question Set, we find

that the questions generated by DLPH-GDC are more relevant
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Table 3.6: Automatic evaluation for question quality.

B1 B2 B3 B4 MET R-L

L2A 36.01 21.61 14.97 10.88 15.99 38.06

Ans 43.51 29.06 21.35 16.22 20.53 45.66

QWPH 43.75 29.28 21.61 16.46 20.70 46.02

QWPH-GDC 43.99 29.60 21.86 16.63 20.87 46.26

DLPH 44.11 29.64 21.89 16.68 20.94 46.22

DLPH-GDC 43.85 29.48 21.77 16.56 20.79 46.16

(as shown in Table 3.5) and more difficult (as shown in both

Tables 3.3 and 3.5) than those generated by the Ans baseline.

This observation resolves our doubt on the irrelevance issue

and supports the conclusion that our DLPH-GDC does generate

more difficult and relevant questions which can fail the two RC

pipelines.

3.5.4 Automatic Evaluation of Question Quality

Here we evaluate the similarity of generated questions with

the ground truth. Since our dataset is not parallel (i.e., for a

sentence and answer pair, our dataset only has one question with

the “easy” or “hard” label), here we only evaluate the question

quality by feeding the ground truth difficulty labels. We employ

BLEU (B), METEOR (MET) and ROUGE-L (R-L) scores by

following [15]. BLEU evaluates the average N-gram precision

on a set of reference sentences, with a penalty for overly long

sentences. ROUGE-L is commonly employed to evaluate the

recall of the longest common subsequences, with a penalty for

short sentences.

Table 3.6 shows the quality of generated questions. Com-
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paring the first three methods, we can find that the answer and

position information helps a lot for asking to the point questions,

i.e., more similar to the ground truth. Moreover, QWPH

performs better than Ans, indicating that further distinguishing

the different distance of the non-answer words to the answer

provides richer information for the model to generate better

questions. The results in the lower half show that, given the

ground truth difficulty labels, these three methods with the

capability of difficulty control are better than the first three

methods. These three models achieve comparable performance,

and DLPH-GDC sacrifices a little in N-gram based performance

here while achieving the best difficulty control capability (refer

to Tables 3.3 & 3.4).

3.5.5 Case Study

Figure 3.3 provides some examples of generated questions (with

answers marked in red). The number after the model is the

average distance of the overlapped nonstop words between the

question and the input sentence to the answer fragment. The

average distance corresponds to the our intuition proximity hints

well. Compared with questions generated by Ans baseline,

our model can give more hints (shorter distance) when asking

easier questions and give less hints (longer distance) when asking

harder questions.

For the first example, we observe that the ground truth

question generated by Human is quite easy, just replacing the

answer “bodhi” with “what”. Among the three systems, Ans

asks a question that is not about the answer. While both DLPH-

GDC and DLPH-GDC (reverse) are able to generate to the point
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Input 1: prajñā is the wisdom that is able to extinguish afflictions and 
bring about bodhi . (Easy Question)
Human: (4.5) prajna is the wisom that is able to extinguish afflictions and 
bring about what ? 
Ans: (13.0) what is prajñā ?
DLPH-GDC: (6.2) prajñā is able to extinguish afflictions and bring about 
what ?
DLPH-GDC (reverse): (7.3) what is prajñā able to bring ?

Input 2: the electric guitar is often emphasised , used with distortion and 
other effects , both as a rhythm instrument using repetitive riffs with a 
varying degree of complexity , and as a solo lead instrument . (Hard 
Question)
Human: (16.0) what instrument is usually at the center of a hard rock 
sound ?
Ans: (5.5) what is often emphasised with distortion and other effects ?
DLPH-GDC: (25.7) what is a solo lead instrument ?
DLPH-GDC (reverse): (2.5) what is often emphasised ?

Figure 3.3: Example questions (with answers marked in red). The human

question for Input 2 uses some information (“hard rock”) in preceding

sentences which are not shown here.
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questions. Specifically, by taking the “Easy” label, DLPH-GDC

tends to use more words from the input sentence, while DLPH-

GDC (reverse) uses less and its generated question is relatively

difficult. For the second example, we find our system is also

applicable to the question with “Hard” label.

3.6 Summary

In this chapter, we present a novel setting, namely difficulty-

controllable question generation for reading comprehension,

which to the best of our knowledge has never been studied be-

fore. We propose an end-to-end approach to learn the question

generation with designated difficulty levels. We also prepared

the first dataset for this task, and extensive experiments show

that our framework can solve this task reasonably well. One

interesting future direction is to explore generating multiple

questions for different aspects in one sentence.

2 End of chapter.



Chapter 4

Distractor Generation for

Multiple Choice Questions

In this chapter, we investigate the task of distractor genera-

tion for multiple-choice reading comprehension questions from

examinations. In contrast to all previous works, we do not

aim at preparing words or short phrases distractors. Instead,

we endeavor to generate longer and semantic-rich distractors

which are closer to distractors in real reading comprehension

from examinations. We first give an introduction and describe

the preliminary in Section 4.1. In Section 4.2, we define the

distractor generation task and propose a hierarchical encoder-

decoder framework with static and dynamic attention mecha-

nisms to tackle this task. Section 4.3 and Section 4.4 describe

our experimental setting and results. Finally, we give a summary

of this chapter in Section 4.5.

4.1 Introduction

Reading comprehension (RC) is regarded as an avant-garde

task in NLP research for practising the capability of language

55
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understanding. Models with recent advances of deep learning

techniques are even capable of exceeding human performance in

some RC tasks, such as for questions with span-based answers

[103]. However, it is not the case when directly applying the

state-of-the-art models to multiple choice questions (MCQs)

in RACE dataset [35], elaborately designed by human experts

for real examinations, where the task is to select the correct

answer from a few given options after reading the article.

The performance gap between the state-of-the-art deep models

(53.3%) [86] and ceiling (95%) [35] is significant. One possible

reason is that in MCQs, besides the question and the correct

answer option, there are a few distractors (wrong options) to

distract humans or machines from the correct answer. Most

distractors are somehow related to the answer and consistent

with the semantic context of the question, and all of them have

correct grammar [21, 42]. Furthermore, most of the distractors

have some trace in the article, which fails the state-of-the-art

models utilizing context matching only to yield decent results.

The MCQs in the RACE dataset are collected from the

English exams for Chinese students from grade 7 to 12. Con-

structing RACE-like MCQ dataset is important and nontriv-

ial, because poor distractor options can make the questions

almost trivial to solve [94] and reasonable distractors are time-

consuming to design. In this chapter, we investigate the task

of automatic distractor generation (DG) . The task aims to

generate reasonable distractors for RACE-like MCQs, given a

reading comprehension article, and a pair of question and its

correct answer originated from the article. Figure 4.1 shows

an example multiple choice question with four options. We

can find that all options are grammatically coherent with the
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Article:
. . .

The Yanomami live along the rivers of the rainforest in the

north of Brazil. They have lived in the rainforest for about

10,000 years and they use more than 2,000 different plants for

food and for medicine. But in 1988, someone found gold in

their forest, and suddenly 45,000 people came to the forest and

began looking for gold. They cut down the forest to make

roads. They made more than a hundred airports. The

Yanomami people lost land and food. Many died because new

diseases came to the forest with the strangers.

. . .

In 1987, they closed fifteen roads for eight months. No one cut

down any trees during that time. In Panama, the Kuna people

saved their forest. They made a forest park which tourists pay

to visit. The Gavioes people of Brazil use the forest, but they

protect it as well. They find and sell the Brazil nuts which grow

on the forest trees.

Question: 

Those people built roads and airports in order to   _  .

A. carry away the gold conveniently (Answer)

B. make people there live a better life (Distractor)

C. stop spreading the new diseases (Distractor)

D. develop the tourism  there (Distractor)

Figure 4.1: Sample multiple choice question along with the corresponding

article. The question, options and their relevant sentences in the article are

marked with the same color.
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question, and semantically relevant to the article. Distractor

generation is of great significance in a few aspects. It can aid

the preparation of MCQ reading comprehension datasets. With

large datasets prepared, it is expectable that the performance of

reading comprehension systems for MCQs will be boosted, as we

have observed such improvements [100] by applying generated

question-answer pairs to train models to solve SQuAD questions.

It could also be helpful to alleviate instructors’ workload in

designing MCQs for students.

Automatic DG is different from previous distractor prepa-

ration works, which basically follow an extraction-selection

manner. First, a distractor candidate set is extracted from

multiple sources, such as GloVe vocabulary [61], noun phrases

from textbooks [94] and articles [1]. Then similarity based

[22, 77, 33, 56] or learning based [42, 70, 43] algorithms are

employed to select the distractors. Another manner is to apply

some pre-defined rules to prepare distractors by changing the

surface form of some words or phrases [5]. Automatic DG for

RACE-like MCQs is a challenging task. First, different from

previous works that prepare word or short phrase distractors

(1.46 tokens on average in SciQ [94]), we here endeavor to

generate longer and semantic-rich distractors. Specifically, the

average length of the distractors in our experimental dataset is

8.1. Furthermore, the generated distractors should semantically

related to the reading comprehension question, since it is trivial

to identify a distractor having no connection with the article or

question. Moreover, the distractors should not be paraphrases

of the correct answer option. Finally, the generated distractors

should be grammatically consistent with the question, especially

for questions with a blank in the end, as shown in Figure 4.1.
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Previous works following the extraction-selection manner cannot

meet these requirements.

We formulate the task of automatic distractor generation as

a sequence-to-sequence learning problem that directly generates

the distractors given the article, and a pair of question and

its correct answer. We design our framework to explicitly

tackle the above mentioned challenges by using a data-driven

approach to learn to meet these requirements automatically.

More specifically, we employ the hierarchical encoder-decoder

network, which has already shown potentials to tackle long

sequential input [84, 48], as the base model for building our

framework. On top of the hierarchical encoding structure, we

propose the dynamic attention mechanism to combine sentence-

level and word-level attentions varying at each recurrent time

step to generate a more readable sequence. Furthermore, a static

attention mechanism is designed to modulate the dynamic at-

tention not to focus on question-irrelevant sentences or sentences

which contribute to the correct answer option. Finally, we use

a question-based initializer as the start point to generate the

distractor, which makes the distractor grammatically consistent

with the question. In the generation stage, we use the beam

search to generate three diverse distractors by controlling their

distance.

In the evaluations, we conduct experiments on a distractor

generation dataset prepared from RACE using n-gram based

automatic evaluation metrics such as BLEU and ROUGE. The

results show that our proposed model beats several baselines and

ablations. Human evaluations show that distractors generated

by our model are more likely to confuse the examinees, which

demonstrates the functionality of our generated distractors in
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real examinations.

4.2 Framework Description

4.2.1 Task Definition

In the task of automatic Distractor Generation (DG), given an

article, a pair of question and its correct option originated from

the article, our goal is to generate context and question related,

grammatically consistent wrong options, i.e. distractor, for the

question.

Formally, let P denote the input article containing multiple

sentences: s1, s2, ..., sn, q and a denote the question and its

correct answer, respectively. The DG task is defined as finding

the distractor d, such that:

d = arg max
d

log P(d|P, a, q), (4.1)

where log P(d|P, a, q) is the conditional log-likelihood of the

predicted distractor d, give P , a and q.

4.2.2 Framework Overview

A straightforward strategy for distractor generation is to employ

the standard sequence-to-sequence learning network [82] to learn

the mapping from the article to the distractor. Unfortunately,

an article can be too long as the input, which cannot receive

decent results. Here we advocate the hierarchical encoder-

decoder framework to model such long sequential input. The

architecture of our overall framework is depicted in Figure 4.2.
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First, we employ the hierarchical encoder to obtain hierarchi-

cal contextualized representations for the whole article, namely,

word-level representation and sentence-level representation. Be-

fore decoding the encoded information, we design a static atten-

tion mechanism to model the global sentence importance consid-

ering the fact that the distractor should be semantically related

to the question and should not share the same semantic meaning

with the correct answer. The static attention distribution is used

in the decoder as a soft gate to modulate the dynamic attention.

For the decoder part, we first employ a language model to

compress the question information into a fixed length vector to

initialize the decoder state, making the distractor grammatically

consistent with the question. During each decoding step, the

dynamic hierarchical attention combines the sentence-level and

word-level information to attend different part at each decoding

time step. With the combined architecture, our model can

generate grammatically consistent, context and question related

wrong options (distractors) in an end-to-end manner.

4.2.3 Hierarchical Encoder

Word Embedding. An embedding lookup table is firstly used

to map tokens in each sentence si in the article P into word

dense vectors (wi,1,wi,2, ...,wi,m), where wi,j ∈ Rdw having dw
dimensions.

Word Encoder. For each sentence si, the word encoder takes

its word vectors (wi,1,wi,2, ...,wi,m) as input. Specifically,

we use bidirectional LSTMs to encode the sequence to get a
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contextualized representation for each word:

−→
hei,j =

−−−−→
LSTM(

−−−→
hei,j−1,wi,j),

←−
hei,j =

←−−−−
LSTM(

←−−−
hei,j+1,wi,j),

where
−→
hei,j and

←−
hei,j are the hidden states at the j-th time step

of the forward and the backward LSTMs. We concatenate them

together as hei,j = [
−→
hei,j;
←−
hei,j].

Sentence Encoder. On top of the word encoding layer, we

combine the final hidden state of the forward LSTM and the

first hidden state of the backward LSTM of each sentence as

the sentence representation and employ another bidirectional

LSTMs to learn the contextual connection of sentences. We de-

note the contextualized representation of the sentence sequence

as (u1,u2, ...,un).

4.2.4 Static Attention Mechanism

Recall that the generated distractors should be semantically

relevant to the question, but must not share the same semantic

meaning with the answer. To achieve this goal, here we intro-

duce a static attention mechanism which learns an importance

distribution (γ1, γ2, ..., γn) of the sentences (s1, s2, ..., sn) in the

article. Here we use the answer a and the question q as queries

to interact with all sentences to learn such distribution.

Encoding Layer. In the encoding layer, we transform the answer

a, the question q and all sentences (s1, s2, ..., sn) into fixed length

vector representations. Specifically, two individual bidirectional

LSTM networks are employed to encode a and q separately

to derive the contextualized representation for each token in
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them and obtain (a1, a2, ..., ak) and (q1,q2, ...,ql), respectively.

Then an average pooling layer is employed to acquire the

representation for the question and answer:

a =
1

k

k∑
t=1

at,q =
1

l

l∑
t=1

qt. (4.2)

For the sentence representation, we do not reuse the sentence

representation ui from the sentence encoder since ui is respon-

sible for learning the semantic information for a whole sentence,

while here we only want to learn the importance distribution

of sentences according to the query (i.e. a pair of question and

answer). Therefore, we only reuse the word-level contextualized

representations hei,j learned in the hierarchical encoder and

employ the same average pooling layer to get the representation

of each sentence:

si =
1

m

m∑
t=1

hei,t. (4.3)

Matching Layer. For generating non-trivial distractors, we should

emphasize the sentences that are relevant to the question, and

suppress the sentences relevant to the answer. For this reason,

we learn a score oi for si that combines the above two aspects

with bilinear transformation:

oi = λqs
>
i Wmq− λas>i Wma + bm, (4.4)

where Wm and bm are learnable parameters.

Normalization Layer. Before feeding the raw sentence impor-

tance score oi into the Softmax function to compute the final
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static attention distribution, we use the question to learn a

temperature τ ∈ (0, 1):

τ = sigmoid(wq
>q + bq), (4.5)

where wq and bq are learnable parameters. Then, we derive the

static attention distribution as:

γi = softmax(oi/τ). (4.6)

The intuition behind using the temperature τ is that if a

question asks for some specific details in the article, it is only

relevant to one or two sentences. While if a question requires

summarizing or reasoning, it could be relevant to many sentences

in the article. Therefore, we propose the above data-driven

approach to learn the temperature τ according to the property

of the question. If τ is close to 0, then it works together with

oi to yield a peaked distribution γ which simulates the case of

detailed questions. Otherwise, if τ is close to 1, it will not peak

any sentence attention score γi.

4.2.5 Distractor Decoder

We use another LSTMs as the decoder to generate the dis-

tractor. Instead of using the last hidden state of the encoder

to initialize the decoder, we design a special question-based

initializer to make the distractor grammatically consistent with

the question. During the decoding, we introduce the dynamic

attention mechanisms to combine the sentence-level and word-

level attentions varying at each recurrent time step to generate

a more readable sequence. We also incorporate the static

attention here to modulate the dynamic attention to ensure the

semantic relevance of the generated distractors.
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Question-based Initializer. We design a question-based initial-

izer to initialize the initial state of the decoder. Specifically, we

use a question LSTM to encode the question, and use the last

time step information of the LSTM in the following manner:

• Instead of using BOS (i.e. the Begin of Sentence indicator),

we use the last token in the question (qlast) as the initial

input of the decoder.

• Other than using the final state of the hierarchical encoder

to initialize the decoder, we here use the final cell state and

hidden state of the question LSTM to initialize the decoder.

Dynamic Hierarchical Attention Mechanism. The standard at-

tention mechanism treats an article as a long sequence and

compares the hidden state of the current decoding time step to

all encoder hidden states. This approach is not suitable for long

input sequences for the following reasons. First, the standard

LSTM cannot model such long inputs (on average, 343.9 words

per article in our training set). Second, we will lose the sentence

structure if we treat the tokens of different sentences equally.

Last but not least, usually a question or a distractor is only

related to a small number of sentences in the article, we should

only use the related sentences to generate the distractor, but the

standard attention has no emphasis on difference sentences.

Given the above reasons, we employ the dynamic hierarchical

attention to only focus on important sentences during each

decoding time step. We call it dynamic because both word-level

and sentence-level attention distributions change at each time

step. When generating a word at the time step t, the decoder

reads the word embedding dt−1 and the hidden state hdt−1 of



CHAPTER 4. DISTRACTOR GENERATION 67

the previous time step to generate the current hidden state

hdt = LSTM(hdt−1,dt−1). Then it calculates both the sentence-

level attention βi and the word-level attention αi,j at the same

time:

βi = u>i Wd1h
d
t , αi,j = hei,j

>Wd2h
d
t , (4.7)

where Wd1 and Wd2 are trainable parameters. The sentence-

level attention determines how much each sentence should

contribute to the generation at the current time step, while the

word-level attention determines how to distribute the attention

over words in each sentence.

Finally, we use the static attention γi to modulate the

dynamic hierarchical attention βi and αi,j by simple scalar mul-

tiplication and renormalization. Thus, the combined attention

for each token in the article is:

α̃i,j =
αi,jβiγi∑
i,j αi,jβiγi

. (4.8)

Then the context vector ct is derived as a combination of all

article token representations reweighted by the final combined

attention α̃i,j:

ct =
∑
i,j

α̃i,jh
e
i,j. (4.9)

And the attentional vector is calculated as:

h̃dt = tanh(Wh̃[hdt ; ct]). (4.10)

Then, the predicted probability distribution over the vocabulary

V at the current step is computed as:

PV = softmax(WV h̃dt + bV ), (4.11)

where Wh̃, WV and bV are learnable parameters.
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4.2.6 Training and Inference

Given the training corpus Q in which each data sample contains

a distractor d, an article P , a question q and an answer a, we

minimize the negative log-likelihood with respect to all learnable

parameters Θ for training:

L = −
∑
d∈Q

log P(d|P, a, q; Θ). (4.12)

During generation, if UNK (i.e. unknown words) is decoded at

any time step, we replace it with the word having the largest

attention weight in the article.

Since there are several diverse distractors (2.4 on average

according to Table 4.1) corresponding to the same question

in our dataset, we use beam search with beam size k in the

testing stage and receive k candidate distractors with decreasing

likelihood. The ultimate goal is to generate several diverse

distractors, however, usually the successive output sequences

from beam search would be similar. Therefore we design the

following protocol to generate three diverse distractors. Firstly,

we select the distractor with the maximum likelihood as dg1.

Then we select dg2 among the remaining candidate distractors

along the decreasing order of the likelihood, restricting that the

Jaccard distance between dg1 and dg2 is larger than 0.5. Finally,

dg3 is selected in a similar way where its distances to both of dg1
and dg2 are restricted.

4.3 Experimental Settings
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Table 4.1: The statistics of our dataset.

# Train Samples 96501

# Dev Samples 12089

# Test Samples 12284

Avg. article length (tokens) 347.0

Avg. distractor length 8.5

Avg. question length 9.9

Avg. answer length 8.7

Avg. # distractors per question 2.1

4.3.1 Dataset

We evaluate our framework on a distractor generation dataset

prepared with the RACE [35] dataset. RACE contains 27,933

articles with 97,687 questions from English examinations of

Chinese students from grade 7 to 12. We first extract each data

sample as a quadruple of article, question, answer and distractor

from RACE, followed by some simple preprocessing steps, such

as tokenization, sentence splitting, and lower-casing.

After some investigation on the RACE dataset, we observe

that some distractors have no semantic relevance with the

article, which can be easily excluded in the examination and also

do not make sense for the task of distractor generation since our

goal is to generate confusing distractors. Hence, we first filter

out such irrelevant distractors by simply counting meaningful

tokens in individual distractors. We define a token meaningful

if it is not a stop word and has a POS tag from {‘JJ’, ‘JJR’,

‘JJS’, ‘NN’, ‘NNP’, ‘NNPS’, ‘NNS’, ‘RB’, ‘RBR’, ‘RBS’, ‘VB’,

‘VBD’, ‘VBG’, ‘VBN’, ‘VBP’, ‘VBZ’}. Then, we prune the

dataset based on the following constraint: For those meaningful

tokens in a distractor that also appear in the article, if their

total weighted frequency is no less than 5, the distractor will
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be kept. Here the weighted frequency of a meaningful token

means the multiplication of its frequency in the distractor and

its frequency in the article. Moreover, we remove the questions

which need to fill in the options at the beginning or in the

middle of the questions. Table 4.1 reports the statistics of the

processed dataset. We randomly divide the dataset into the

training (80%), validation (10%) and testing sets (10%).

4.3.2 Implementation Details

We keep the most frequent 50k tokens in the entire training

corpus as the vocabulary, and use the GloVe.840B.300d word

embeddings [61] for initialization and finetune them in the

training. Both source and target sides of our model share the

same word embedding. All other tokens outside the vocabulary

or cannot found in GloVe are replaced by the UNK symbol. We

set the number of layers of LSTMs to 1 for the hierarchical

encoder (for both word encoder and sentence encoder) and

the static attention encoder, and 2 for the decoder. The

bidirectional LSTMs hidden unit size is set to 500 (250 for each

direction). For the LSTM used in the question-based initialier,

we use 2 layers unidirectional LSTMs with hidden size 500. The

hyperparameters λq and λa in static attention are initialized

as 1.0 and 1.5 respectively. We use dropout with probability

p = 0.3. All trainable parameters, except word embeddings,

are randomly initialized with U(−0.1, 0.1). For optimization in

the training, we use stochastic gradient descent (SGD) as the

optimizer with a minibatch size of 32 and the initial learning

rate 1.0 for all baselines and our model. We train the model

for 100k steps and start halving the learning rate at step 50k,
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then we halve the learning rate every 10k steps till ending. We

set the gradient norm upper bound to 5 during the training.

We employ the teacher-forcing training, and in the generating

stage, we set the maximum length for output sequence as 15 and

block unigram repeated token, the beam size k is set to 50. All

hyperparameters and models are selected on the validation set

based on the lowest perplexity and the results are reported on

the test set.

4.3.3 Baselines and Ablations

We compare our framework with the following baselines and

ablations. Seq2Seq: the basic encoder-decoder learning frame-

work [82] with attention mechanism [51]. Here we adopt

the global attention with general score function. The hidden

size of LSTMs for both encoder and decoder is 500. We

select the model with the lowest perplexity on the validation

set. HRED: the HieRarchical Encoder-Decoder (HRED) with

hierarchical attention mechanism. This architecture has been

proven effective in several NLP tasks including summarization

[48], headline generation [84], and text generation [40]. Here

we keep the LSTMs size as 500 for fairness and set the number

of the word encoder and sentence encoder layers as 1 and the

decoder layer as 2. We employ the question-based initializer for

all baselines to generate grammatically coherent distractors. In

the generation stage, we follow the same policy and beam size

for baselines and ablations during the inference stage to generate

three distractors.



CHAPTER 4. DISTRACTOR GENERATION 72

T
ab

le
4.

2:
A

u
to

m
at

ic
ev

al
u
at

io
n

re
su

lt
s

on
al

l
sy

st
em

s
b
y

B
L

E
U

an
d

R
O

U
G

E
.

1s
t,

2n
d

an
d

3r
d

d
is

tr
ac

to
rs

ar
e

ge
n
er

at
ed

u
n
d
er

th
e

sa
m

e
p

ol
ic

y.
T

h
e

b
es

t
p

er
fo

rm
in

g
sy

st
em

fo
r

ea
ch

co
m

p
ou

n
d

ro
w

is
h
ig

h
li
gh

te
d

in
b

ol
d
fa

ce
.

B
L

E
U

1
B

L
E

U
2

B
L

E
U

3
B

L
E

U
4

R
O

U
G

E
1

R
O

U
G

E
2

R
O

U
G

E
L

1s
t

D
is

tr
ac

to
r

S
eq

2S
eq

25
.2

8
12

.4
3

7.
12

4.
51

14
.1

2
3.

3
5

13
.5

8

H
R

E
D

26
.1

0
13

.9
6

8.
83

6.
21

14
.8

3
4
.0

7
14

.3
0

O
u

r
M

o
d

el
2
7
.3

2
1
4
.6

9
9
.2

9
6
.4

7
1
5
.6

9
4
.4

2
1
5
.1

2

2n
d

D
is

tr
ac

to
r

S
eq

2S
eq

25
.1

3
12

.0
2

6.
56

3.
93

13
.7

2
3.

0
9

13
.2

0

H
R

E
D

25
.1

8
12

.2
1

6.
94

4.
40

13
.9

4
3
.1

1
13

.4
0

O
u

r
M

o
d

el
2
6
.5

6
1
3
.1

4
7
.5

8
4
.8

5
1
4
.7

2
3
.5

2
1
4
.1

5

3r
d

D
is

tr
ac

to
r

S
eq

2S
eq

25
.3

4
11

.5
3

5.
94

3.
33

13
.7

8
2.

8
2

13
.2

3

H
R

E
D

25
.0

6
11

.6
9

6.
26

3.
71

13
.6

5
2
.8

4
13

.0
4

O
u

r
M

o
d

el
2
6
.9

2
1
2
.8

8
7
.1

2
4
.3

2
1
4
.9

7
3
.4

1
1
4
.3

6

A
v
g.

P
er

fo
rm

an
ce

S
eq

2S
eq

25
.2

5
11

.9
9

6.
54

3.
92

13
.8

7
3.

0
9

13
.3

4

H
R

E
D

25
.4

5
12

.6
2

7.
34

4.
77

14
.1

4
3
.3

4
13

.5
8

O
u

r
M

o
d

el
2
6
.9

3
1
3
.5

7
8
.0

0
5
.2

1
1
5
.1

3
3
.7

8
1
4
.5

4



CHAPTER 4. DISTRACTOR GENERATION 73

4.4 Results and Analysis

4.4.1 Automatic Evaluation

Here we evaluate the similarity of generated distractors with the

ground truth. We employ BLEU (1-4) [59] and ROUGE (R1,

R2, R-L) [45] scores to evaluate the similarity. BLEU evaluates

average n-gram precision on a set of reference sentences, with

a penalty for overly long sentences. ROUGE1 and ROUGE2 is

the recall of unigrams and bigrams while ROUGEL is the recall

of longest common subsequences.

Table 4.2 shows the automatic evaluation results of all

systems. Our model with static and dynamic attentions achieve

the best performance across all metrics. We can observe a large

performance gap between Seq2Seq and models with hierarchical

architectures (HRED and our model), which reveals the hierar-

chical structure is useful for modeling the long sequential input.

Another reason could be that some distractors can be generated

only use information in several sentences, and sentence-level

attentions (both static and dynamic) are useful to emphasize

several sentences in the article. Moreover, our model with static

attention achieves better performance than its ablation HRED,

which shows the static attention can play the role of a soft gate

to mask some irrelevant sentences and modulate the dynamic

attention.

By comparing the three distractors generated by beam search

with a predefined Jaccard distance, we find that the performance

drops a little for the second and third distractors. The reason

can be two-folds: 1) The second and third distractors have lower

likelihood; 2) We set a Jaccard distance threshold as 0.5 to select
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Table 4.3: Human evaluation results. Note that we allow annotators to

choose more than one options if the generated outputs are accidentally the

same or very semantically similar, therefore, the total number of selected

options (552) is larger than the total number of annotated questions (540).

Annotator 1 Annotator 2 Annotator 3 # Selected

Seq2Seq 31 35 30 96

HRED 33 40 35 108

Our Model 43 45 36 124

Human 75 70 79 224

the second and third distractors, thus they are forced to use some

words different from those in the first distractor which is likely

to be the best generation.

It is worth to mention that another automatic evaluation

method can be applying a state-of-the-art reading comprehen-

sion pipeline for RACE to test its performance on our generated

distractors. However, the current best performance of such

reading comprehension pipeline is only 53.3% [90, 109, 99, 86],

which means half questions in the dataset cannot be answered

correctly. Therefore, we do not employ such reading comprehen-

sion pipeline to evaluate our generated distractors, instead we

hire human annotators to conduct a reliable evaluation, given

in the next section.

4.4.2 Human Evaluation

We conduct a human evaluation to investigate if the generated

distractors can confuse the examinees in the real human test.

We employ three annotators with good English background

(at least holding a bachelor degree) to answer the MCQs with

the generated distractors from different methods. Specifically,
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for each MCQ, we give 4 distractors as its options: One is a

sample from the ground truth, the other three are generated by

Seq2Seq, HRED, and our model respectively. Note that we did

not give the correct answer option to the annotators, because

the current human ceiling performance on RACE dataset is

about 95% [35]. Thus, we need to do a huge amount of

annotation for collecting enough questions that are answered

wrongly. During the annotation, we told the annotators to

select the most suitable option without considering whether

there exists a correct option.

For comparison, we count how many times of individual

pipelines (the ground truth and three compared methods) are

successful in confusing the annotators, i.e. their distractors are

selected as answers. We give each annotator 60 articles, and 3

questions per article. In total, we annotated 540 questions, and

the results are given in Table 4.3. We find that the ground truth

distractors (i.e. by “Human”) have the strongest capability

to confuse the annotators. Among the compared automatic

methods, our model performs the best, while Seq2Seq performs

the worst, which is a consistent conclusion as drawn from the

previous section.

4.4.3 Case Study

In Figure 4.3, we present some sample distractors generated by

human instructors, the Seq2Seq baseline, HRED and our model.

To validate the effectiveness of the static attention, we show the

static attention distributions over the sentences of the article for

the two example questions. The correct options of the questions

are marked in red.
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Question 1 asks a detailed aspect in the article, which can be

directly answered according to the 9th sentence. Since our static

attention mechanism suppresses the sentences which contain the

answer information, we can see the score for the 9th sentence

is relatively smaller than others. The distractor outputs also

justify our intuitions. Specifically, the first distractor by HRED

is semantically identical to the correct option, thus it is not an

appropriate distractor. With the help of the static attention,

our model does not generate distractors like this. Another

effect of the static attention is that it highlights the sentences

that are relevant to the question, such as 11th, 13th, and 14th

sentences, so that our model can generate better distractors. We

can see the distractors generated by our model are semantically

relevant to these highlighted sentences. Last but not least, we

find that the distractors generated by Seq2Seq baseline either

focus on some frequent words in the article such as publish

and write, or contain some completely irrelevant words such

as mistake and newspaper. HRED and our model do not

have this problem, because the dynamic hierarchical attention

can modulate the word-level attention distribution with the

sentence-level attention.

By looking at Question 2, we can also find that the distractors

generated by our system are more appropriate and relevant.

Because Question 2 requires some inference, it is thus relevant to

several sentences across the article. The static attention distri-

bution yields the same conclusion. Specifically, the distribution

shows that the 5th to 13th sentences are all relevant to the

question, while the 14th sentence which is relevant to the answer

option is suppressed. The generated distractors from our system

are also semantically relevant to the 5th to 13th sentences.
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4.5 Summary

In this chapter, we present a data-driven approach to generate

distractors from multiple choice questions in reading compre-

hension from real examinations. We propose a hierarchical

encoder-decoder framework with dynamic and static attention

mechanisms to generate the context relevant distractors satis-

fying several constraints. We also prepare the first dataset for

this new setting, and our model achieves the best performance

in both automatic evaluation and human evaluation. For

the future work, one interesting direction is to transform this

one-to-many mapping problem into one-one mapping problem

to better leverage the capability of the sequence-to-sequence

framework. Another promising direction could be explicitly

adding supervision signals to train the static attention. From

the perspective of RACE-like reading comprehension tasks with

multiple choice questions, although the performance of existing

reading comprehension methods are still quite unsatisfactory,

by introducing the distractor generation task, it might open

another door for improving the performance, i.e. making

adversarial approaches for solving this reading comprehension

task possible.

2 End of chapter.



Chapter 5

Conversational Question

Generation

In this chapter, We study the problem of generating inter-

connected questions in question-answering style conversations.

Compared with previous works which generate questions based

on a single sentence (or paragraph), this setting is different in

two major aspects: (1) Questions are highly conversational.

Almost half of them refer back to conversation history using

coreferences. (2) In a coherent conversation, questions have

smooth transitions between turns. We first give an introduction

in Section 5.1. Then we define the task of conversational

question generation in Section 5.2. In Section 5.3, we propose

an end-to-end neural model with coreference alignment and

conversation flow modeling to tackle this task. Section 5.4

and Section 5.5 describe our experimental setting and results.

Finally, we give a summary of this chapter in Section 5.6.

79
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Passage: Incumbent Democratic President Bill Clinton was ineligible to serve a

third term due to term limitations in the 22nd Amendment of the Constitution,

and Vice President Gore was able to secure the Democratic nomination with

relative ease. Bush was seen as the early favorite for the Republican nomination

and, despite a contentious primary battle with Senator John McCain and other

candidates, secured the nomination by Super Tuesday. Bush chose ...

Q1: What political party is Clinton a member of? A1: Democratic

Q2: What was he ineligible to serve? A2: third term

Q3: Why? A3: term limitations

Q4: Based on what amendment? A4: 22nd

Q5: Of what document? A5: Constitution

Q6: Who was his vice president? A6: Gore

Q7: Who was the early Republican favorite for A7: Bush

the nomination?

Q8: Who was the primary battle with? A8: John McCain

Q9: What is his title? A9: Senator

Q10: When did Bush secure the nomination by? A10: Tuesday

Figure 5.1: An example for conversational question generation from a

conversational question answering dataset CoQA [67]. Each turn contains

a question Qi and an answer Ai.

5.1 Introduction

Question Generation (QG) aims to create human-like questions

from a range of inputs, such as natural language text [25],

knowledge base [73] and image [58]. QG is helpful for the knowl-

edge testing in education, i.e., the intelligence tutor system,

where an instructor can actively ask questions to students given

reading comprehension materials [25, 15]. Besides, raising good

questions in a conversational can enhance the interactiveness

and persistence of human-machine interactions [93].

Recent works on question generation for knowledge testing

are mostly formalized as a standalone interaction [104, 76], while

it is a more natural way for human beings to test knowledge

or seek information through conversations involving a series of
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Figure 5.2: Passage chunks of interest for each turn chunks. Each row

contains 10 bands distinguished by different colors. Each band represents a

passage chunk. The width of a passage chunk indicates the concentration of

conversation in that turn. The y-axis indicates turn chunk number. Same

passage chunks share the same color across different turn chunks. (Best

viewed in color)

interconnected questions [67]. Furthermore, the inability for

virtual assistants to ask questions based on previous discussions

often leads to unsatisfying user experiences. In this chap-

ter, we consider a new setting called Conversational Question

Generation (CQG). In this scenario, a system needs to ask a

series of interconnected questions grounded in a passage through

a question-answering style conversation. Table 5.1 provides an

example under this scenario. In this dialogue, a questioner and

an answerer chat about the above passage. Every question after

the first turn is dependent on the conversation history.

Considering that the goal of the task is to generate intercon-

nected questions in conversational question answering, CQG is

challenging in a few aspects. Firstly, a model should learn to

generate conversational interconnected questions depending on

the conversation so far. As shown in Table 5.1, Q3 is a single

word ‘Why?’, which should be ‘Why was he ineligible to serve

a third term?’ in a standalone interaction. Moreover, many

questions in this conversation refer back to the conversation
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history using coreferences (e.g., Q2, Q6, Q9), which is the nature

of questions in a human conversation. Secondly, a coherent

conversation must have smooth transitions between turns (each

turn contains a question-answer pair). We expect the narrative

structure of passages can influence the conversation flow of our

interconnected questions. We further investigate this point

by conducting an analysis on our experiment dataset CoQA

[67]. We first split passages and turns of QA pairs into 10

uniform chunks and identify passage chunks of interest for each

turn chunk. Figure 5.2 portrays the conversation flow between

passage chunks and turn chunks. We see that in Figure 5.2,

a question-answering style conversation usually starts focusing

on the first few chunks in the passage and as the conversation

advances, the focus shifts to the later passage chunks.

Previous works on question generation employ attentional

sequence-to-sequence models on the crowd-sourced machine

reading comprehension dataset SQuAD [66]. They mainly

focus on generating questions based on a single sentence (or

paragraph) and an answer phrase [15, 81, 105], while in our

setting, our model needs to not only ask a question on the given

passage (paragraph) but also make the questions conversational

by considering the conversation history. Meanwhile, some

researchers study question generation in dialogue systems to

either achieve the correct answer through interactions [41] or

enhance the interactiveness and persistence of conversations [93].

Although questions in our setting are conversational, our work

is different from these because our conversations are grounded

in the given passages rather than open-domain dialogues.

We propose a framework based on the attentional encoder-

decoder model [51] to address this task. To generate conver-
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sational questions (first challenge), we propose a multi-source

encoder to jointly encode the passage and the conversation so

far. At each decoding timestep, our model can learn to focus

more on the passage to generate content words or on the con-

versation history to make the question succinct. Furthermore,

our coreference alignment modeling explicitly aligns coreferent

mentions in conversation history (e.g. Clinton in Q1 Table

5.1) with corresponding pronominal references in generated

questions (e.g. he in Q2), which makes generated questions

interconnected to conversation history. The coreference align-

ment is implemented by adding extra supervision to bias the

attention probabilities through a loss function. The loss function

explicitly guides our model to resolve to the correct non-

pronominal coreferent mentions in the attention distribution and

generate the correct pronominal references in target questions.

To make the conversations coherent (second challenge), we

propose to model the conversation flow to transit focus inside

the passage smoothly across turns. The conversation flow

modeling achieves this goal via a flow embedding and a flow loss.

The flow embedding conveys the correlations between number

of turns and narrative structure of passages. The flow loss

explicitly encourages our model to focus on sentences contain

key information to generate the current turn question and ignore

sentences questioned several turns ago.

In evaluations on a conversational question answering dataset

CoQA [67], we find that our proposed framework outperforms

several baselines in both automatic and human evaluations.

Moreover, the coreference alignment can greatly improve the

precision and recall of generated pronominal references. The

conversation flow modeling can learn the smooth transition of
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conversation flow across turns.

5.2 Problem Setting

In this section, we define the Conversation Question Generation

(CQG) task. Given a passage P , a conversation history Ci−1 =

{(Q1, A1), ..., (Qi−1, Ai−1)} and the aspect to ask (the current

answer Ai), the task of CQG is to generate a question Qi for the

next turn:

Qi = arg max
Qi

Prob(Qi|P,Ai, Ci−1), (5.1)

in which the generated question should be as conversational as

possible.

Note that we formalize this setting as an answer-aware QG

problem [105], which assumes answer phrases are given before

generating questions. Moreover, answer phrases are shown

as text fragments in passages. Similar problems have been

addressed in [14, 105, 81]. Our problem setting can also be

generalized to the answer-ignorant case. Models can identify

which answers to ask first by combining question-worthy phrases

extraction methods [14, 91].

5.3 Model Description

As shown in Figure 5.3, our framework consists of four com-

ponents: (1) multi-source encoder; (2) decoder with copy

mechanism; (3) coreference alignment; (4) conversation flow

modeling.
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5.3.1 Multi-Source Encoder

Since a conversational question is dependent on a certain aspect

of the passage P and the conversation context Ci−1 so far,

we jointly encode information from two sources via a passage

encoder and a conversation encoder.

Passage Encoder. The passage encoder is a bidirectional-LSTM

(bi-LSTM) [27], which takes the concatenation of word embed-

dings w and answer position embeddings a as input xi = [wi; ai].

We denote the answer span using the typical BIO tagging scheme

and map each token in the paragraph into the corresponding

answer position embedding (i.e., B ANS, I ANS, O). Then the

whole passage can be represented using the hidden states of

the bi-LSTM encoder, i.e., (hp1, ...,h
p
m), where m is the sequence

length.

Conversation Encoder. The conversation history Ci−1 is a se-

quence of question-answer pairs {(Q1, A1), ..., (Qi−1, Ai−1)}. We

use segmenters <q><a>to concatenate each question answer

pair (Q,A) into a sequence of tokens (<q>, q1, ..., qm; <a>,

a1, ..., am). We design a hierarchical structure to conduct

conversation history modeling. We first employ a token level bi-

LSTM to get contextualized representation of question-answer

pairs (hwi−k,1, ...,h
w
i−k,m), where i − k is the turn number and

k ∈ [1, i). To model the dependencies across turns in the

conversation history, we adopt a context level bi-LSTM to learn

the contextual dependency (hc1, ...,h
c
i−1) across different turns

(denoted in the subscript 1, ..., i− 1) of question-answer pairs.
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5.3.2 Decoder with Attention & Copy

The decoder is another LSTM to predict the word probability

distribution. At each decoding timestep t, it reads the word

embedding wt and the hidden state of previous timestep hdt−1 to

generate the current hidden state hdt = LSTM(wt,h
d
t−1).

To generate a conversational question grounded in the pas-

sage, the decoder itself should decide to focus more on passage

hidden states hpj or the hidden states of conversation history

hwi−k,j at each decoding timestep. Therefore, we flat token level

conversation hidden states hwi,j and aggregate the passage hidden

states hpj with token level conversation hidden states hwi,j into a

unified memory: (hp1, ...,h
p
m; hw1,1, ...,h

w
1,m; ... ; hwi−1,1, ...,h

w
i−1,m),

where hwi,j denotes the j -th token of the i -th turn in token level

conversation hidden states. Then we attend the unified memory

with the standard attention mechanism [51] for the passage

attention (α1, ..., αm) and the hierarchical attention mechanism

for the conversation attention (β1,1, ..., β1,m; ...; βi−1,1, ..., βi−1,m):

epj = hpj
>
Wph

d
t , (5.2)

ewi−k,j = hwi−k,j
>Wwhdt , (5.3)

eci−k = hci−k
>Wch

d
t , (5.4)

αj =
epj
etotal

, βi−k,j =
ewi−k,j ∗ eci−k

etotal
, (5.5)

where etotal = Σje
p
j + Σk,je

w
i−k,j ∗ eci−k and Wp, Ww, Wc are

learnable weights.

Finally, we derive the context vector ct and the final vocab-

ulary distribution PV :

ct = Σjαjh
p
j + Σj,kβi−k,jh

w
i−k,j,

PV = softmax(Wv(tanh(Wa[h
d
t ; ct]) + bv),
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where Wv, Wa are learnable weights. Please refer to [71] for

more details on the copy mechanism.

5.3.3 Coreference Alignment

Using coreferences to refer back is an essential property of

conversational questions. Almost half of the questions contains

explicit coreference markers such as he, she, it in CoQA [67].

Therefore, we propose the coreference alignment to enable our

model such ability. Take Q2 in Table 5.1 as an example, tra-

ditional question generation system can only generate question

like “What was Clinton ineligible to serve?”, while our system

with coreference alignment can align the name “Clinton” to its

pronominal reference “he” and generate a more conversational

question “What was he ineligible to serve?”.

The coreference alignment modeling tells the decoder to

look at the correct non-pronominal coreferent mention in the

conversation attention distribution to produce the pronominal

reference word. We achieve this via two stages. In the pre-

processing stage, given the conversation history Ci−1 and the

question Qi which has a pronominal reference (e.g., he for

Q2 in Table 5.1), we first run a coreference resolution system

[9] to find its coreferent mention (wc
1, ...w

c
m) (e.g. Clinton) in

the conversation history Ci−1, where the superscript c denotes

tokens identified as the coreferent mention. During training,

we introduce a novel loss function built on the conversation

attention of coreferent mentions βci and the output word proba-

bility of its pronominal reference word pcoref ∈ PV . As shown in

Figure 5.3, when our model need to refer back to the coreferent

mention, we ask the model focus correctly on the antecedent
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(e.g. Clinton) and maximize the probability of its pronominal

reference (e.g. he) pcoref in the output vocabulary distribution

PV ,

Lcoref = −(λ1log
Σjβ

c
j

Σk,jβi−k,j
+ λ2logpcoref) ∗ sc,

where λ1, λ2 are hyperparameters, sc is the confidence score be-

tween the non-pronominal coreferent mention and the pronoun

obtained during the pre-processing stage.

5.3.4 Conversation Flow Modeling

Another key challenge in CQG is that a coherent conversation

must have smooth transitions between turns. As illustrated in

Figure 5.2, we find that as the conversations go on, most of the

questioners transit their focus from the beginning of passages

to the end. Following this direction, we model the conversation

flow to learn smooth transitions across turns of the conversation.

Flow Embedding. As shown in Figure 5.3, we feed our model

with the current turn number indicator in the conversation

and the relative position for each token in the passage, which,

intuitively, are useful for modeling the conversation flow. We

achieve this goal via two additional embeddings. The turn

number embedding is a learned lookup table [t1, ..., tn] to map

the turn number i into its feature embedding space, where n

is the maximum turn we consider. For encoding the relative

position of each token, we split the passage into L uniform

chunks. Each token in the passage is mapped to its corre-

sponding chunk embedding [c1, ..., cL]. The final input to the

passage encoder is the concatenation of word embedding, answer
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position embedding (introduced in Section 5.3.1) and these two

additional embeddings: xi = [wi; ai; ti; ci].

We further add a gated self-attention modeling mechanism

[105] in the passage encoder. Motivating our use of self-

attention we consider two desiderata. One is self-attention

with answer position embedding can aggregate answer-relevant

information from the whole passage for question generation.

Another is we want to learn the latent alignment between the

turn number embedding and the chunk embedding for better

modeling the conversation flow. We first match the rich-feature

enhanced passage representation Hp = [hp1; ...; h
p
m] with itself

hpj to compute the self-matching representation upj , and then

combine it with the original representation hpj :

apj = softmax(Hp>Wsh
p
j), upj = Hpapj (5.6)

fpj = tanh(Wf [h
p
j ; u

p
j ]), (5.7)

The final representation h̃pj is derived via a gated summation

through a learnable gate vector gpj ,

gpt = sigmoid(Wg[h
p
j ; u

p
j ]) (5.8)

h̃pj = gpt � fpj + (1− gpt )� hpj (5.9)

where Ws, Wf , Wg are learnable weights, � is the element-

wise multiplication. Self matching enhanced representation h̃pj
takes the place of the passage representation hpj for calculating

the passage attention.

Flow Loss. In Section 5.3.1, our answer position embedding can

help model the conversation flow by showing the position of

answer fragments inside the passage. However, it is still helpful

to tell the model explicitly which sentences around the answer
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are of high informativity to generate the current turn question.

The flow loss is designed to help our model to locate the evidence

sentences correctly. Firstly, we define two kinds of sentences in

the passage. If a sentence is informative to the current question,

we call it Current Evidence Sentence (CES). If a sentence

is informative to questions in the conversation history and

irrelevant to the current question, we call it History Evidence

Sentence (HES). Then our model is taught to focus on current

evidence sentences and ignore the history evidence sentences in

the passage attention αj via the following flow loss:

Lflow = −λ3log
Σj:wj∈CESαj

Σjαj
+ λ4

Σj:wj∈HESαj

Σjαj

where λ3, λ4 are hyperparameters, and wj ∈ CES/HES indicates

the token wj is inside the sentence with a CES/HES label.

5.3.5 Joint Training

Considering all the aforementioned components, we define a

joint loss function as:

L = Lnll + Lcoref + Lflow, (5.10)

in which Lnll = −log Prob(Qi|P,Ai, Ci−1) is the the negative

log-likelihood loss in the sequence to sequence learning [82].

5.4 Experiments

5.4.1 Dataset Preparation

We conduct experiments on the CoQA dataset [67]. It is a large-

scale conversational question answering dataset for measuring
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the ability of machines to participate in a question-answering

style conversation. The authors employ Amazon Mechanical

Turk to collect 8k conversations with 127k QA pairs. Specifi-

cally, they pair two crowd-workers: a questioner and an answerer

to chat about a passage. The answerers are asked to firstly

highlight extractive spans in the passage as rationales and then

write the free-form answers. We first extract each data sample

as a quadruple of passage, question, answer and conversation

history (previous n turns of QA pairs) from CoQA. Then we

filter out QA pairs with yes, no or unknown as answers (28.7%

of total QA pairs) because there is too little information to

generate the question to the point. Finally, we randomly split

the dataset into a training set (80%, 66298 samples), a validation

set (10%, 8409 samples) and a testing set (10%, 8360 samples).

The average passage, question and answer lengths are 332.9, 6.3

and 3.2 tokens respectively.

5.4.2 Implementation Details

Locating Extractive Answer Spans. As studied by [101], abstrac-

tive answers in CoQA are mostly small modifications to spans

occurring in the context. The maximum achievable performance

by a model that predicts spans from the context is 97.8 F1 score.

Therefore, we find the extractive spans from the passage which

have the maximum F1 score with answers and treat them as

answers for our answer position embedding.

Number of Turns in Conversation History. [67] find that in

CoQA dataset, most questions in a conversation have a limited

dependency within a bound of two turns. Therefore, we
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choose the number of history turns as n = 3 to ensure the

target questions have enough conversation history information

to generate and avoid introducing too much noise from all turns

of QA pairs.

Labeling Evidence Sentences. As mentioned in Section 5.4.1,

the crowd-workers label the extractive spans in the passage as

rationales for actual answers. We treat sentences containing the

rationale as Current Evidence Sentence.

Model Settings. We employ the teacher-forcing training, and

in the generating stage, we set the maximum length for output

sequence as 15 and block unigram repeated token, the beam size

k is set to 5. All hyperparameters and models are selected on

the validation set and the results are reported on the test set.

5.4.3 Baselines and Ablations

We compare with the state-of-the-art baselines and conduct ab-

lations as follows: PGNet is the pointer-generator network [71].

We concatenate the passage P , the conversation history Ci−1

and the current answer Ai as a sequence for the input. NQG

[14] is similar to the previous one but it takes current answer

features concatenated with the word embeddings during encod-

ing. MSNet is our base model Multi-Source encoder decoder

network (Section 5.3.1 & 5.3.2). CorefNet is our proposed

Coreference alignment model (Section 5.3.3). FlowNet is our

proposed conversation Flow model (Section 5.3.4). CFNet

is the model with both the Coreference alignment and the

conversation Flow modeling.
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Table 5.1: Main results of baselines and our models. t-test is conducted

between our CFNet and baselines/ablations. (underline: p-value <0.05, *:

p-value <0.01).

B1 B2 B3 R-L

PGNet 28.84* 13.74* 8.16* 39.18*

NQG 35.56* 21.14* 14.84* 45.58*

MSNet 36.27* 21.92* 15.51* 46.01*

CorefNet 36.89 22.28 15.77 46.53

FlowNet 36.87 22.49 15.98 46.64

CFNet 37.38 22.81 16.25 46.90

5.5 Results and Analysis

5.5.1 Main Results

Since the average length of questions is 6.3 tokens only, we

employ BLEU (1-3) [59] and ROUGE-L (R-L) [45] scores to

evaluate n-gram similarity between the generated questions with

the ground truth. We evaluate baselines and our models by

predicting the current question given a passage, the current

answer, and the ground truth conversation history.

Table 5.1 shows the main results, and we have the following

observations:

• NQG outperforms PGNet by a large margin. The improve-

ment shows that the answer position embedding [108] is

helpful for asking questions to the point.

• Our base model MSNet outperforms NQG, which reveals

that the hierarchical encoding and the hierarchical attention

to conversation history can model the dependency across

different turns in conversations.

• Both our CorefNet and FlowNet outperform our base model.
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Table 5.2: Evaluation results on the coreference test set. Precision (P), Recall

(R) and F-score (F) of predicted pronouns are also reported. Significant

tests with t-test are conducted between CorefNet and models without the

coreference alignment. (underline: p-value <0.05, *: p-value <0.01).

B1 B2 B3 R-L P R F

PGNet 27.66* 13.82* 8.96* 38.40* 26.87* 25.17* 25.68*

NQG 34.75* 21.52* 15.96* 45.04* 34.46* 32.97* 33.25*

MSNet 36.31* 22.92 17.07 45.97* 35.34* 33.80* 34.07*

CorefNet 37.51 24.14 18.44 47.45 42.09 40.35 40.64

We will analyze the effectiveness of our coreference alignment

and conversation flow modeling in the following two sections

respectively.

• Our CFNet is significantly better than two baselines (PGNet,

NQG), our MSNet, and our CorefNet. However, the difference

between our CFNet and our FlowNet is not significant. This

is because the conversation flow modeling improves all test

samples while the coreference alignment contributes only to

questions containing pronominal references.

5.5.2 Coreference Alignment Analysis

As we discussed in Section 5.3.3, it is the nature of conver-

sational questions to use coreferences to refer back. In order

to demonstrate the effectiveness of the proposed coreference

alignment, we evaluate models on a subset of the test set called

coreference set. Each sample in the coreference set requires a

pronoun resolution between the conversation history and the

current question (e.g., Q2, Q6, Q9 in Table 5.1). In additional

to the BLEU(1-3) and ROUGE-L metrics, we also calculate the

Precision (P), Recall (R) and F-score (F) of pronouns in the
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Passage: … however , mccain has a very different life story . he grew up 
in a navy family and was a pilot during the vietnam war in the 1960s …
Conversation History:

<q> what war was mccain in ?
0.0000 0.0001 0.0049 0.0138 0.7710 0.0055 0.0069

<a> vietnam war
0.0000 0.0140 0.0095

<q> was he in the army ?
0.0000 0.0045 0.1303 0.0005 0.0139 0.0001 0.0250

<a> no
0.0000 0.0000

Question (Human): what was his job ?
Question (Our Model): what was his job ?
Passage: … incumbent democratic president bill clinton was ineligible to 
serve a third term due to term limitations in the 22nd amendment of the 
constitution …
Conversation History:

<q> what political party is clinton a
0.0000 0.0000 0.0002 0.0063 0.0045 0.9260 0.0430
member of ? <a> democratic
0.0008 0.0006 0.0026 0.0000 0.0160

Question (Human): what was he ineligible to serve ?
Question (Our Model): what was he ineligible for ?

Figure 5.4: Examples for the coreference alignment model. We show

the attention probability (renormalize to 1) when the CorefNet predicts a

pronoun (red color in Question). The current answers are underlined in the

passages. (Best viewed in color)

generated questions with regard to pronouns in the ground truth

questions.

The results are depicted in Table 5.2. With the help

of the coreference alignment, CorefNet significantly improves

the precision, recall, and f-score of the predicted pronouns.
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Moreover, the performance on n-gram overlapping metrics is

also boosted. To gain more insights into how the coreference

alignment model influence the generation process, in Figure

5.4, we visualize the conversation attention distribution βj at

the timestep the model predicts a pronoun. The conversation

history distribution βj is renormalized to Σjβj = 1. All

two examples show that our model put the highest attention

probability on the coreferent mentions (i.e. McCain/Clinton)

when it generates the pronominal references (his/he). We can

conclude that our coreference alignment model can align correct

coreferent mentions to generate corresponding pronouns.

5.5.3 Conversation Flow Modeling Analysis

As discussed in Section 5.3.4, a coherent conversation should

have smooth transitions between turns, and we design our model

to follow the narrative structure of the passage. Figure 5.5

shows an example illustrating the transition of passage attention

distribution aj (normalize to 1) during first 11 turns of a

conversation. We see that the model transits its focus smoothly

across the first 11 turns from the first sentence in the passage to

later parts. Sometimes the model drills down with two questions

for the same sentence such as turn 2 & 3, 4 & 5 and 10 & 11.

To quantitatively validate the effectiveness of our conversa-

tion flow modeling, we study the alignment between passage

attention αj and sentences of interest in the passage. Ideally,

a successful model should focus on sentences of interest (i.e.,

Current Evidence Sentence) and ignore sentences questioned

several turns ago (i.e., History Evidence Sentence). We validate

this intuition by calculating Σj:wj∈CESαj and Σj:wj∈HESαj for
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all examples in test set. Results show that Σj:wj∈CESαj and

Σj:wj∈HESαj for our model with conversation flow modeling are

0.9966 and 0.0010 on average, which demonstrates that our

conversation flow modeling can locate the current evidence

sentences precisely and ignore the history evidence sentence. For

the model without the flow modeling (CorefNet), Σj:wj∈CESαj =

0.4093, Σj:wj∈HESαj = 0.1778, which proves our intuition in

Section 5.3.4 that the answer position embedding cannot have

comparable effects on the conversation flow modeling.

5.5.4 Human Evaluation

We randomly sample 93 questions with the associated passage

and conversation history to conduct human evaluation. We

hire 5 workers to evaluate the questions generated by PGNet,

MSNet, and our CFNet. All models are evaluated in terms

of following 3 metrics: “Grammaticality”, “Answerability” and

“Interconnectedness”. “Grammaticality” measures the gram-

matical correctness and fluency of the generated questions.

“Answerability” evaluates whether the generated question can

be answered by the current answer. “Interconnectedness”

measures whether the generated questions are conversational

or not. If a question refers back to the conversation history

using coreference or is dependent on the conversation history

such as incomplete questions ‘Why?’, ‘Of what?’, we define it as

a conversational question. All metrics are rated on a 1-3 scale

(3 for the best).

The results are shown in Table 5.3. All models achieve

high scores on “Grammaticality”, owing to the strong language

modeling capability of neural models. MSNet and our CFNet
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Table 5.3: Manual evaluation results. All metrics are rated on a 1-3 scale (3

for the best). Two-tailed t-test results are shown for our CFNet compared

to PGNet/MSNet. * indicates p-value <0.01.

Grammaticality Answerability Interconnectedness

PGNet 2.74 1.39 1.59

MSNet 2.85 2.39 1.74

CFNet 2.89 2.74* 2.67*

perform well on “Answerability” while PGNet does not. This

demonstrates our base model MSNet and our CFNet can ask

questions to the point. Finally, our CFNet outperforms the

other two models in terms of “Interconnectedness” by a large

gap, which proves that the proposed coreference alignment

and conversation flow modeling can effectively make questions

conversational.

5.6 Summary

In this chapter, we study the problem of question-answering

style Conversational Question Generation (CQG), which has

never been investigated before. We propose an end-to-end

neural model with coreference alignment and conversation flow

modeling to solve this problem. Experiments show that our

proposed framework achieves the best performance in automatic

and human evaluations.

2 End of chapter.



Chapter 6

Explicit Memory Tracker for

Conversational Machine

Reading

The goal of conversational machine reading is to answer user

questions given a knowledge base text which may require asking

clarification questions. Existing approaches are limited in

their decision making due to struggles in extracting question-

related rules and reasoning about them. In this chapter, we

present a new framework of conversational machine reading that

comprises a novel Explicit Memory Tracker (EMT) to track

whether conditions listed in the rule text have already been

satisfied to make a decision. We first give an introduction in

Section 6.1. Then we describe our proposed EMT model in

Section 6.2. Section 6.3 describe our experimental setting and

results. Finally, we give a summary of this chapter in Section

6.4.

101
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6.1 Introduction

In conversational machine reading (CMR), machines can take

the initiative to ask users questions that help to solve their

problems, instead of jumping into a conclusion hurriedly [69].

In this case, machines need to understand the knowledge base

(KB) text, evaluate and keep track of the user scenario, ask

clarification questions, and then make a final decision. This

interactive behavior between users and machines has gained

more attention recently because in practice users are unaware

of the KB text, thus they cannot provide all the information

needed in a single turn.

For instance, consider the example in Figure 6.1 taken from

the ShARC dataset for CMR [69]. A user posts her scenario

and asks a question on whether her employer can take money

from her final pay. Since she does not know the relevant rule

text, the provided scenario and the initial question(s) from her

are often too underspecified for a machine to make a certain

decision. Therefore, a machine has to read the rule text and

ask a series of clarification questions until it can conclude the

conversation with a certain answer.

Most existing approaches [107, 89] formalize the CMR prob-

lem into two sub-tasks. The first is to make a decision among

Yes, No, Irrelevant, and Inquire at each dialog turn given

a rule text, a user scenario, an initial question and the current

dialog history. If one of Yes, No, or Irrelevant is selected, it

implies that a final decision (Yes/No) can be made in response

to the user’s initial question, or stating the user’s initial question

is unanswerable (Irrelevant) according to the rule text. If the

decision at the current turn is Inquire, it will then trigger the



CHAPTER 6. EMT FOR CONVERSATIONAL MACHINE READING103

Statutory Maternity Pay
To qualify for SMP you must:

* earn on average at least £113 a week
* give the correct notice
* give proof you’re pregnant

Do I qualify for SMP?

I've been old enough to get my pension. 

Do you earn on average at least 
£113 a week?

Yes

No

Rule 
Text

User 
Scenario

Initial 
Question

Turn 1

Turn 2

Turn 3

Yes No Irrelevant Inquire

Did you give the correct notice?

Decision:

Yes No Irrelevant InquireDecision:

Yes No Irrelevant InquireDecision:

No

## Taking more leave than the entitlement
If a worker has taken more leave than they’re
entitled to, their employer must not take money from
their final pay unless it’s been agreed beforehand in
writing. The rules in this situation should be outlined
in the employment contract, company handbook or
intranet site.

Can my employer take money from 
my final pay?

I have questions regarding my employer …

Did you take more leave than 
they ’re entitled to?

Yes

Yes

Rule 
Text

User 
Scenario

Initial 
Question

Turn 1

Turn 2

Turn 3

Yes No Irrelevant Inquire

Did you agree to it beforehand?

Decision:

Yes No Irrelevant InquireDecision:

Yes No Irrelevant InquireDecision:

Yes

Figure 6.1: Example of Conversational Machine Reading tasks from the

ShARC dataset [69]. At each turn, given the rule text, a user scenario, an

initial user question, and previous interactions, a machine can give a certain

final answer such as Yes or No to the initial question. If the machine cannot

give a certain answer because of missing information from the user, it will ask

a clarification question to fill in the information gap. Clarification questions

and their corresponding rules are marked in the same colors.
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second task for follow-up question generation, which extracts

an underspecified rule span from the rule text and generates a

follow-up question accordingly.

However, there are two main drawbacks to the existing

methods. First, with respect to the reasoning of the rule text,

existing methods do not explicitly track whether a condition

listed in the rule has already been satisfied as the conversation

flows so that it can make a better decision. Second, with

respect to the extraction of question-related rules, it is difficult

in the current approach to extract the most relevant text span

to generate the next question. For example, the state-of-the-

art E3 model [107] has only 60.6% F1 for question-related span

extraction.

To address these issues, we propose a new framework of

conversational machine reading with a novel Explicit Memory

Tracker (EMT), which explicitly tracks each rule sentence to

make decisions and generate follow-up questions. Specifically,

EMT first segments the rule text into several rule sentences

and allocates them into its memory. Then the initial question,

user scenario, and dialog history are fed into EMT sequentially

to update each memory module separately. At each dialog

turn, EMT predicts the entailment states (satisfaction or not)

for every rule sentence, and makes a decision based on the

current memory status. If the decision is Inquire, EMT

extracts a rule span to generate a follow-up question by adopting

a coarse-to-fine reasoning strategy (i.e., weighting token-level

span distributions with its sentence-level entailment scores).

Compared to previous methods which only consider entailment-

oriented reasoning for decision making or follow-up question

generation, EMT utilizes its updated memory modules to reason
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out these two tasks in a unified manner.

We compare EMT with the existing approaches on the

ShARC dataset [69]. Our results show that explicitly tracking

rules with external memories boosts both the decision accuracy

and the quality of generated follow-up questions. In particular,

EMT outperforms the previous best model E3 by 1.3 in macro-

averaged decision accuracy and 10.8 in BLEU4 for follow-up

question generation. In addition to the performance improve-

ment, EMT yields interpretability by explicitly tracking rules,

which is visualized to show the entailment-oriented reasoning

process of our model.

6.2 Method

As illustrated in Figure 6.2, our proposed method consists of the

following four main modules.

(1) The Encoding module uses BERT [11] to encode the

concatenation of the rule text, initial question, scenario and

dialog history into contextualized representations.

(2) The Explicit Memory Tracking module sequentially reads

the initial question, user scenario, multi-turn dialog history,

and updates the entailment state of each rule sentence.

(3) The Decision Making module does entailment-oriented

reasoning based on the updated states of rule sentences

and makes a decision among Yes, No, Irrelevant, and

Inquire.

(4) If the decision is Inquire, the Question Generation mod-

ule is activated, which reuses the updated states of rule

sentences to identify the underspecified rule sentence and



CHAPTER 6. EMT FOR CONVERSATIONAL MACHINE READING106

[C
L

S]
T

o
k

1
T

o
k

2
T

o
k

n
…

[C
L

S]
T

o
k

1
T

o
k

2
T

o
k

n
…

[C
L

S]
T

o
k

1
T

o
k

2
T

o
k

n
…

[C
L

S]
T

o
k

1
…

[C
L

S]
T

o
k

1
…

[C
L

S]
T

o
k

1
…

[C
L

S]
T

o
k

1
…

R
u

le
Se

n
te

n
ce

1
R

u
le

Se
n

te
n

ce
2

R
u

le
Se

n
te

n
ce

3
In

it
ia

lQ
u

es
ti

o
n

Sc
en

ar
io

Q
1

,A
1

Q
2

,A
2

R
u

le
Te

xt
D

ia
lo

g
H

is
to

ry

B
E

R
T

T
ra

n
sf

o
rm

er
E

n
co

d
er

k
1

u
1

,1
u

1
,2

u
1

,n
…

k
2

u
2

,1
u

2
,2

u
2

,n
…

k
3

u
3

,1
u

3
,2

u
3

,n
…

s Q
…

…
s S

…
…

s 1
…

…
s 2

…
…

R
u

le
Se

n
t.

 1
k

1
v 1

,0

R
u

le
Se

n
t.

 2

R
u

le
Se

n
t.

 3

k
2

v 2
,0

k
3

v 3
,0

k
1

v 1
,1

k
2

v 2
,1

k
3

v 3
,1

k
1

v 1
,2

k
2

v 2
,2

k
3

v 3
,2

k
1

v 1
,3

k
2

v 2
,3

k
3

v 3
,3

k
1

v 1
,4

k
2

v 2
,4

k
3

v 3
,4

s S
s Q

s 1
s 2

D
ec

is
io

n
 

C
la

ss
if

ie
r

In
q

u
ir

e

Y
es N
o

Ir
re

le
va

n
t

st
ar

t
en

d

1
. E

n
co

d
in

g

2
. E

xp
li

ci
t 

M
em

o
ry

 
T

ra
ck

in
g

3
. D

ec
is

io
n

 M
ak

in
g

to
k

en
 s

co
re

 
(𝛾

𝑖,
𝑗
,δ

𝑖,
𝑗
)

ru
le

 s
en

t.
 s

co
re

 fo
r 

d
ec

is
io

n

en
ta

il
m

en
t 

sc
o

re
 𝜁

𝑖

O
ve

ra
ll

 P
ro

ce
ss

:
2

. E
xp

li
ci

t 
M

em
o

ry
 T

ra
ck

in
g

3
. D

ec
is

io
n

 M
ak

in
g

0
.1

0
.7

0
.2

4
. Q

u
es

ti
o

n
 G

en
er

at
io

n

R
u

le
T

ex
t

Sp
an

4
. Q

u
es

ti
o

n
 G

en
er

at
io

n

U
n

iL
M

F
o

ll
o

w
-u

p
Q

u
es

ti
o

n

C
o

ar
se

-t
o

-F
in

e 
R

ea
so

n
in

g 
fo

r 
Sp

an
 E

xt
ra

ct
io

n

E
xt

ra
ct

ed
Sp

an

0
.2

0
.7

0
.1

If ‘Inquire’ 

1
. E

n
co

d
in

g

rule sent. feature

0
.2

0
.7

0
.1

𝜁 𝑖 𝛼
𝑖

en
ta

il
m

en
t 

sc
o

re
 f

o
r 

ex
tr

ac
ti

o
n

E
C

U

E
C

U

E
C

U

E
n

ta
il

m
en

t 
P

re
d

ic
ti

o
n

: E
n

ta
il

m
en

t

: C
o

n
tr

ad
ic

ti
o

n

: U
n

k
n

o
w

n

E C U

F
ig

u
re

6.
2:

T
h
e

E
x
p
li
ci

t
M

em
or

y
T

ra
ck

er
w

it
h

C
oa

rs
e-

to
-F

in
e

R
ea

so
n
in

g
fo

r
C

on
ve

rs
at

io
n
al

M
ac

h
in

e
R

ea
d
in

g
(C

M
R

).

T
h
e

C
M

R
p
ro

ce
ss

in
cl

u
d
es

(1
)

B
E

R
T

en
co

d
in

g,
(2

)
E

x
p
li
ci

t
M

em
or

y
T

ra
ck

in
g

fo
r

en
ta

il
m

en
t

st
at

e
of

ea
ch

ru
le

se
n
te

n
ce

,
(3

)
D

ec
is

io
n

M
ak

in
g

on
u
p

d
at

ed
en

ta
il
m

en
t

st
at

es
of

al
l

ru
le

se
n
te

n
ce

s,
(4

)
Q

u
es

ti
on

G
en

er
at

io
n

v
ia

sp
an

ex
tr

ac
ti

on
w

it
h

co
ar

se
-t

o-
fi
n
e

re
as

on
in

g
an

d
q
u
es

ti
on

re
p
h
ra

si
n
g

of
th

e
ex

tr
ac

te
d

sp
an

.
(B

es
t

vi
ew

ed
in

co
lo

r)



CHAPTER 6. EMT FOR CONVERSATIONAL MACHINE READING107

extract the most informative span within it in a coarse-to-

fine manner. Then it rephrases the extracted span into a

well-formed follow-up question.

6.2.1 Encoding

Let xR, xQ, xS, [xH,1, xH,2, ..., xH,P ] denote the input of rule text,

initial question, user scenario, and P turns of dialog history,

each of which is a sequence of tokens. We first split the rule

text xR into several rule sentences [xR,1, xR,2, ..., xR,M ] according

to sentence boundary or bullet points, insert [CLS] tokens at the

start of each sentence, and concatenate them into one sequence:

[[CLS], xR,1; ... ; [CLS], xR,M ; [CLS], xQ; [CLS], xS; [CLS],

xH,1; ... ; [CLS], xH,P ]. Then we use BERT [11], a pre-

trained Vaswani-2017-AttentionIA encoder [88] to encode the

sequence into a sequence of vectors with the same length. We

treat each [CLS] representation as feature representation of

the sentence that follows it. In this way, we receive both

token-level representation and sentence-level representation for

each sentence. We denote sentence-level representation of the

rule sentences as k1, ...,kM and their token-level representation

as [(u1,1, ...,u1,n1), ..., (uM,1, ...,uM,nM )], where ni is number of

tokens for rule sentence i. Similarly, we denote the sentence-

level representation of the initial question, user scenario, and

P turns of dialog history as sQ, sS, and s1, ..., sP , respectively.

All these vectorized representations are of d dimensions (768 for

BERT-base).
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6.2.2 Explicit Memory Tracking

Given the rule sentences k1, ...,kM and the user provided

information including the initial question sQ, scenario sS, and P

turns of dialog history s1, ..., sP , our goal is to find implications

between the rule sentences and the user provided information.

Inspired by Recurrent Entity Network [26] which tracks the

world state given a sequence of textual statements, we pro-

pose the Explicit Memory Tracker (EMT), a gated recurrent

memory-augmented neural network which explicitly tracks the

states of rule sentences by sequentially reading the user provided

information.

As shown in Figure 6.2, EMT explicitly takes rule sentences

k1, ...,kM as keys, and assigns a state vi to each key to save

the most updated entailment information (whether this rule has

been entailed from the user provided information). Each value

state vi is initialized with the same value of its corresponding

rule sentence: vi,0 = ki. Then EMT sequentially reads user

provided information sQ, sS, s1, ..., sP . At time step t, the value

state vi,t for i-th rule sentence is updated by incorporating the

user provided information st ∈ {sQ, sS, s1, ..., sP},

ṽi,t = ReLU(Wkki + Wvvi,t + Wsst), (6.1)

gi = σ(s>t ki + s>t vi,t) ∈ [0, 1], (6.2)

vi,t = vi,t + gi � ṽi,t ∈ Rd,vi,t =
vi,t
‖vi,t‖

, (6.3)

where Wk,Wv,Ws ∈ Rd×d, σ represents a sigmoid function,

and � is scalar product. As the user background input st
may only be relevant to parts of the rule sentences, the gating

function in Equation 6.2 matches st to the memory. Then EMT

updates state vi,t only in a gated manner. Finally, the normal-
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ization allows EMT to forget previous information, if necessary.

After EMT sequentially reads all user provided information (the

initial question, scenario, and P turns of history dialog) and

finishes entailment-oriented reasoning, keys and final states of

rule sentences are denoted as (k1,v1), ..., (kM ,vM), which will be

used in the decision making module (Section 6.2.3) and question

generation module (Section 6.2.4).

The key difference between our Explicit Memory Tracker

and Recurrent Entity Network (REN) [26] is that each key ki
in our case has an explicit meaning (the corresponding rule

sentence) and thus it changes according to different rule texts

while in REN, the underlined meaning of keys are learned

through training and they are fixed throughout all textual

inputs. Moreover, the number of keys is dynamic in our case

(according to the number of sentences parsed from the rule text)

while that is predefined in REN.

6.2.3 Decision Making

Based on the most up-to-date key-value states of rule sen-

tences (k1,v1), ..., (kM ,vM) from the EMT, the decision making

module predicts a decision among Yes, No, Irrelevant, and

Inquire. First, we use self-attention to compute a summary

vector c for the overall state:

αi = w>α [ki; vi] + bα ∈ R1, (6.4)

α̃i = softmax(α)i ∈ [0, 1], (6.5)

c =
∑
i

α̃i[ki; vi] ∈ Rd, (6.6)

where [ki; vi] denotes the concatenation of the vectors ki and

vi, and αi is the attention weight for the rule sentence ki
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that determines the likelihood that ki is entailed from the user

provided information.

Then the final decision is made through a linear transformation

of the summary vector c:

z = Wzc + bz ∈ R4, (6.7)

where z ∈ R4 contains the model’s score for all four possible

classes. Let l indicate the correct decision, the decision making

module is trained with the following cross entropy loss:

Ldec = − log softmax(z)l. (6.8)

In order to explicitly track whether a condition listed in

the rule has already been satisfied or not, we add a subtask

to predict the entailment states for each rule sentence. The

possible entailment labels are Entailment, Contradiction and

Unknown; details of acquiring such labels are described in Section

6.3.1. With this intermediate supervision, the model can make

better decisions based on the correct entailment state of each

rule sentence. The entailment prediction is made through a

linear transformation of the most up-to-date key-value state

[ki; vi] from the EMT module:

ei = We[ki; vi] + be ∈ R3. (6.9)

where ei ∈ R3 contains scores of three entailment states

[βentailment,i, βcontradiction,i, βunknown,i] for the i-th rule sentence.

Let r indicate the correct entailment state. The entailment

prediction subtask is trained with the following cross entropy

loss, normalized by the number of rule sentences M :

Lentail = − 1

M

M∑
i=1

log softmax(ei)r. (6.10)
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6.2.4 Follow-up Question Generation

When the decision making module predicts Inquire, a follow-

up question is required for further clarification from the user.

In the same spirit of previous studies [107, 89], we decompose

this problem into two stages. First, we extract a span inside

the rule text which contains the underspecified user information

(we name it as underspecified span hereafter). Second, we

rephrase the extracted underspecified span into a follow-up

question. We propose a coarse-to-fine approach to extract

the underspecified span for the first stage, and finetune the

pretrained language model UniLM [13] for the follow-up question

rephrasing, as we describe below.

Coarse-to-Fine Reasoning for Underspecified Span Extraction.

[107] extract the underspecified span by extracting several spans

and retrieving the most likely one. The disadvantage of their

approach is that extracting multiple rule spans is a challenging

task, and it will propagate errors to the retrieval stage. Instead

of extracting multiple spans from the rule text, we propose

a coarse-to-fine reasoning approach to directly identify the

underspecified span. For this, we reuse the Unknown scores

βunknown,i from the entailment prediction subtask (Eqn. 6.9),

and normalize it (over the rule sentences) with a softmax to

determine how likely that the i-th rule sentence contains the

underspecified span:

ζi = softmax(βunknown)i ∈ [0, 1], (6.11)

Knowing how likely a rule sentence is underspecified greatly

reduces the difficulty to extract the underspecified span within
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it. We adopt a soft selection approach to modulate span

extraction (i.e., predicting the start and end points of a span)

score by rule sentence identification score ζi. We follow the

BERTQA approach [11] to learn a start vector ws ∈ Rd and an

end vector we ∈ Rd to locate the start and end positions from

the whole rule text. The probability of j-th word in i-th rule

sentence ui,j being the start/end of the span is computed as a

dot product between ws and ui,j, modulated by its rule sentence

score ζi:

γi,j = w>s ui,j ∗ ζi, δi,j = w>e ui,j ∗ ζi. (6.12)

We extract the span with the highest span score γ ∗ δ under

the restriction that the start and end positions must belong to

the same rule sentence. Let s and e be the ground truth start

and end position of the span. The underspecified span extraction

loss is computed as the pointing loss

Lspan,s = −1l=inquire log softmax(γ)s, (6.13)

Lspan,e = −1l=inquire log softmax(δ)e. (6.14)

The overall loss is the sum of the decision loss, entailment

prediction loss and span extraction loss

L = Ldec + λ1Lentail + λ2Lspan (6.15)

where λ1 and λ2 are tunable hyperparameters.

Question Rephrasing. The underspecified span extracted in the

previous stage is fed into the question rephrasing model to

generate a follow-up question. We finetune the UniLM [13]

to achieve this goal. UniLM is a pretrained language model



CHAPTER 6. EMT FOR CONVERSATIONAL MACHINE READING113

which demonstrates its effectiveness in both natural language

understanding and generation tasks. Specifically, it outperforms

previous methods by a large margin on the SQuAD question

generation task [14].

As shown in Figure 6.2, UniLM takes the concatenation

of rule text and the extracted rule span as input, separated

by the sentinel tokens:[CLS] rule-text [SEP] extracted-span

[SEP]. The training target is the follow-up question we want

to generate. Please refer to [13] for details on finetuning UniLM

and doing inference with it.

6.3 Experiments

6.3.1 Experimental Setup

Dataset. We conduct experiments on the ShARC CMR dataset

[69]. It contains 948 dialog trees, which are flattened into

32,436 examples by considering all possible nodes in the trees.

Each example is a quintuple of (rule text, initial question, user

scenario, dialog history, decision), where decision is either one

of {Yes, No, Irrelevant} or a follow-up question. The train,

development, and test dataset sizes are 21890, 2270, and 8276,

respectively.1

End-to-End Evaluation. Organizers of the ShARC competition

evaluate model performance as an end-to-end task. They first

evaluate the micro- and macro-accuracy for the decision making

task. If both the ground truth decision and the predicted

decision are Inquire, then they evaluate the generated follow-

1Leaderboard: https://sharc-data.github.io/leaderboard.html

https://sharc-data.github.io/leaderboard.html
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up question using BLEU score [59]. However, this way of

evaluating follow-up questions has one issue. If two models

have different Inquire predictions, the follow-up questions for

evaluation will be different, making the comparison unfair. For

example, a model could classify only one example as Inquire in

the whole test set and generate the follow-up question correctly,

achieving a 100% BLEU score. Therefore, we also propose to

evaluate the follow-up question generation performance in an

oracle evaluation setup as described below.

Oracle Question Generation Evaluation. In this evaluation, we

ask the models to generate follow-up questions whenever the

ground truth decision is Inquire, and compute the BLEU score

for the generated questions accordingly. In this setup, there are

6804 examples for training and 562 examples for evaluation.

Data Augmentation. In the annotation process of the ShARC

dataset, the scenario is manually constructed from a part of

the dialog history, and that excerpt of the dialog is not shown

as input to the model. Instead, it is treated as the evidence

which should be entailed from the scenario. To effectively utilize

this additional signal, we construct more examples by replacing

the scenario with the evidence. This leads to additional 5800

training instances. We use this augmented dataset for the EMT

model and its ablations in our experiments.

Labeling Underspecified Spans. To supervise the process of

coarse-to-fine reasoning, we follow [107] to label the rule spans.

We first trim the follow-up questions in the conversation by

removing question words “do, does, did, is, was, are, have” and
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the question mark “?”. For each trimmed question, we find

the shortest span inside the rule text which has the minimum

edit distance from the trimmed question, and treat it as an

underspecified span.

Acquiring Labels for Entailment. To supervise the subtask of

entailment prediction for each rule sentence, we use a heuristic

to automatically label its entailment state. For each rule

sentence, we first find if it contains any underspecified span

for the questions in the dialog history (and evidence text), and

use the corresponding Yes/No answers to label the rule text

as Entailment/Contradiction. The rule text without any

underspecified span is labeled as Unknown.

Implementation Details. We tokenize all text inputs with spaCy

[28]. The EMT model and the follow-up question generation

model UniLM are trained separately and pipelined together at

test time. For EMT, we use the uncased BERT base model [96]

for encoding. We train EMT with Adam [32] optimizer with a

learning rate of 5e-5, a warm-up rate of 0.1 and a dropout rate

of 0.35. The loss weights λ1 and λ2 in Eq. 6.15 are set to 10

and 0.6 respectively, based on the development set results. For

UniLM, we fine-tuning it with a batch size of 16 and a learning

rate of 2e-5, and we use a beam size of 10 for inference.

To reduce the variance of our experimental results, all ex-

periments reported on the development set are repeated 5 times

with different random seeds. We report the average results along

with their standard deviations.
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Table 6.1: Performance on the blind, held-out test set of ShARC end-to-end

task.

Models
End-to-End Task (Leaderboard Performance)

Micro Acc. Macro Acc. BLEU1 BLEU4

Seq2Seq [69] 44.8 42.8 34.0 7.8

Pipeline [69] 61.9 68.9 54.4 34.4

BERTQA [107] 63.6 70.8 46.2 36.3

UrcaNet [89] 65.1 71.2 60.5 46.1

BiSon [37] 66.9 71.6 58.8 44.3

E3 [107] 67.6 73.3 54.1 38.7

EMT (our single model) 69.1 74.6 63.9 49.5

Table 6.2: Class-wise decision prediction accuracy on the development set

(*: reported in the paper).

Models Yes No Inquire Irrelevant

BERTQA 61.2 61.0 62.6 96.4

E3 65.9 70.6 60.5 96.4

UrcaNet* 63.3 68.4 58.9 95.7

EMT 70.5 73.2 70.8 98.6

6.3.2 Results

End-to-End Task. The end-to-end performance on the held-

out test set is shown in Table 6.1. EMT outperforms the

existing state-of-the-art model E3 on decision classification in

both micro- and macro-accuracy. Although the BLEU scores are

not directly comparable among different models, EMT achieves

competitive BLEU1 and BLEU4 scores on the examples it

makes an Inquire decision. The results show that EMT has

strong capability in both decision making and follow-up question

generation tasks. Table 6.2 presents the class-wise accuracy on

the four decision types. EMT improves on the Inquire decision

significantly. It is because EMT can explicitly track the states
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Table 6.3: Performance on Oracle Question Generation Task. We show

both results on the development set and 10-fold cross validation. E3+UniLM

replaces the editor of E3 to our finetuned UniLM.

Models

Oracle Question Generation Task

Development Set Cross Validation

BLEU1 BLEU4 BLEU1 BLEU4

E3 52.79±2.87 37.31±2.35 51.75 35.94

E3+UniLM 57.09±1.70 41.05±1.80 56.94 42.87

EMT 62.32±1.62 47.89±1.58 64.48 52.40

of all rule sentences; it has a macro accuracy of 80% on the

entailment state prediction task.

Oracle Question Generation Task. To establish a concrete ques-

tion generation evaluation, we conduct experiments on our pro-

posed oracle question generation task. We compare our model

EMT with E3 and an extension E3+UniLM; implementations for

other methods are not publicly available. E3+UniLM replaces

the editor of E3 with our finetuned UniLM. The results on the

development set and 10-fold cross validation are shown in Table

6.3.

Firstly, E3+UniLM performs better than E3, validating the

effectiveness of our follow-up question rephrasing module: fine-

tuned UniLM. More importantly, EMT consistently outperforms

E3 and E3+UniLM on both the development set and the cross

validation by a large margin. Although there is no ground

truth label for span extraction, we can infer from the question

generation results that our coarse-to-fine reasoning approach

extracts better spans than the extraction and retrieval modules

of E3. This is because E3 propagates error from the span

extraction module to the span retrieval module while our coarse-
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to-fine approach avoids this problem through weighting token-

level span distributions with its sentence-level entailment scores.

6.3.3 Ablation Study

We conduct an ablation study on the development set for both

the end-to-end evaluation task and oracle question generation

evaluation task. We consider four ablations of our EMT model:

(1) EMT (w/o data aug.) trains the model on the original

ShARC training set and do not use any augmented data

using the evidence.

(2) EMT (w/o c2f) extracts the rule span without weighted by

the entailment score ζ in Eqn. 6.12.

(3) EMT (w/o Lentail) removes the entailment state prediction

subtask in decision making, and thus there is no entailment

score ζ for underspecified span extraction in Eqn. 6.12.

(4) EMT (w/o tracker) that removes the explicit memory

tracking module. Instead, it treats the [CLS] token for

each rule sentence as the state for decision making and

span extraction.

Results of the ablations are shown in Table 6.4, and we have

the following observations:

• With the help of data augmentation, EMT boosts the perfor-

mance slightly on the end-to-end task, especially for the question

generation task which originally has only 6804 training exam-

ples. The augmented training instances boosts the performance

even though the augmentation method does not produce any

new question. This implies that the size of the ShARC dataset

is a bottleneck for an effective end-to-end neural models.
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• Without the coarse-to-fine reasoning for span extraction,

EMT (w/o c2f) drops by 1.53 on BLEU4, which implies that it is

necessary for the question generation task. The reason is that, as

a classification task, entailment state prediction can be trained

reasonably well (80% macro accuracy) with a limited amount of

data (6804 training examples). Therefore, the Unknown scores in

the entailment state prediction can guide the span extraction via

a soft modulation (Equation 6.12). On the other hand, one-step

span extraction method does not utilize the entailment states

of the rule sentences from EMT, meaning it does not learn to

extract the underspecified part of the rule text.

• With the guidance of explicit entailment supervision, EMT

outperforms EMT (w/o Lentail) by a large margin. Intuitively,

knowing the entailment states of the rule sentences makes the

decision making process easier for complex tasks that require

logical reasoning on conjunctions of conditions or disjunctions

of conditions. It also helps span extraction through the coarse-

to-fine approach.

• Without the explicit memory tracker described in Section

6.2.2, EMT (w/o tracker) performs poorly on the decision

making task. Although there exist interactions between rule

sentences and user information in BERT-encoded representa-

tions through multi-head self-attentions, it is not adequate to

learn whether conditions listed in the rule text have already

been satisfied or not.
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6.3.4 Interpretability

To get better insights into the underlying entailment-oriented

reasoning process of EMT, we examine the entailment states

of the rule sentences as the conversation flows. Two example

cases are provided in Figure 6.3. Given a rule text containing

several rule sentences (S1, S2, S3, ...), we show the transition of

predicted entailment states [βentailment, βcontradiction, βunknown] over

multiple turns in the dialogue.

Rules in Bullet Points. Figure 6.3 (a) shows an example in

which the rule text is expressed in the conjunction of four bullet-

point conditions. On the first turn, EMT reads “Scenario”

and “Initial Question” and they only imply that the question

from the user is relevant to the rule text. Thus the entailment

states for all the rule sentences are Unknown, and EMT makes

an Inquire decision, and asks a question. Once a positive

answer is received from the user part for the first turn, EMT

transits the entailment state for rule sentence S3 from Unknown

to Entailment, but it still cannot conclude the dialogue, so it

asks a second follow-up question. Then we see that the user

response for the second question is negative, which makes EMT

conclude a final decision No in the third turn.

Rules in Plain Text. Figure 6.3 (b) presents a more challenging

case where the rules are in plain text. Therefore, it is not

possible to put the whole sentence into a clarification question

as EMT in Figure 6.3(a) does. In this case, both the decision

making module and span extraction module contribute to help-

ing the user. The span extraction module locates the correct
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spans inside S2, and EMT concludes a correct answer “No” after

knowing the user does not fulfill the condition listed in S2.

6.3.5 Error Analysis

We analyze some errors of EMT predictions on the ShARC

development set, as described below.

Decision Making Error. Out of 2270 examples in the develop-

ment set, our EMT produces incorrect decisions on 608 cases.

We manually analyze 104 error cases. In 40 of these cases,

EMT fails to derive the correct entailment states for each rule

sentence, while in 23 cases, the model predicts the correct entail-

ment states but cannot predict correct decisions based on that.

These errors suggest that explicitly modeling the logic reasoning

process is a promising direction. Another challenge comes from

extracting useful information from the user scenarios. In 24

cases, the model fails to make the correct decision because it

could not infer necessary user information from the scenarios.

Last but not least, parsing the rule text into rule sentences

is also a challenge. As shown in Figure 6.3(b), the plain text

usually contains complicated clauses for rule conditions, which

is difficult to disentangle them into separate conditions. In

17 cases, one single rule sentence contains multiple conditions,

which makes the model fail to conduct the entailment reasoning

correctly.

Question Generation Error. Out of 562 question generation

examples in the development set, our EMT locates the under-

specified span poorly in 115 cases (span extraction F1 score
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≤ 0.5). We manually analyze 52 wrong question generation

cases. Out of 29 cases of them, EMT fails to predict correct

entailment states for rule sentences, and thus does not locate

the span within the ground truth rule sentence, while in 9

cases, it finds the correct rule sentence but extracts a different

span. Another challenge comes from the one-to-many problem

in sequence generation. When there are multiple underspecified

rule sentences, the model asks about one of these underspecified

rule sentences which is different from the ground truth one.

This suggests that new evaluation metrics could be proposed

by taking this into consideration.

6.4 Summary

In this chapter, we have proposed a new framework for conver-

sational machine reading (CMR) that comprises a novel explicit

memory tracker (EMT) to track entailment states of the rule

sentences explicitly within its memory module. The updated

states are utilized for decision making and coarse-to-fine follow-

up question generation in a unified manner. EMT achieved a

new state-of-the-art result on the ShARC CMR challenge. EMT

also gives interpretability by showing the entailment-oriented

reasoning process as the conversation flows. While we conducted

experiments on the ShARC dataset, we believe the proposed

methodology could be extended to other kinds of CMR tasks.

2 End of chapter.



Chapter 7

Discourse-Aware Entailment

Reasoning Network

Document interpretation and dialog understanding are the two

major challenges for conversational machine reading. In this

chapter, we propose Discern, a discourse-aware entailment

reasoning network to strengthen the connection and enhance

the understanding for both document and dialog. We first

give an introduction in Section 7.1. Then we describe our

proposed Discern Discern in Section 7.2. Section 7.3 describe

our experimental setting and results. Finally, we give a summary

of this chapter in Section 7.4.

7.1 Introduction

Conversational Machine Reading (CMR) is challenging because

the rule text may not contain the literal answer, but provide a

procedure to derive it through interactions [69]. In this case, the

machine needs to read the rule text, interpret the user scenario,

clarify the unknown user’s background by asking questions, and

derive the final answer. Taking Figure 7.1 as an example, to

125
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Rule Text: 7(a) loans are the most basic and most used type loan of the Small

Business Administration’s (SBA) business loan programs. It’s name comes

from section 7(a) of the Small Business Act, which authorizes the agency to

provide business loans to American small businesses. The loan program

is designed to assist for-profit businesses that are not able to get other

financing from other resources.

User Scenario: I am a 34 year old man from the United States who owns

their own business. We are an American small business.

User Question: Is the 7(a) loan program for me?

Follow-up Q1: Are you a for-profit business?

Follow-up A1: Yes.

Follow-up Q2: Are you able to get financing from other resources?

Follow-up A2: No.

Final Answer: Yes. (You can apply the loan.)

Figure 7.1: An example dialog from the ShARC [69] dataset. The machine

answers the user question by reading the rule text, interpreting the user sce-

nario, and keeping asking follow-up questions to clarify the user’s background

until it concludes a final answer. Requirements in the rule text are bold.

answer the user whether he is suitable for the loan program, the

machine needs to interpret the rule text to know what are the

requirements, understand he meets “American small business”

from the user scenario, ask follow-up clarification questions

about “for-profit business” and “not get financing from other

resources”, and finally it concludes the answer “Yes” to the

user’s initial question.

Existing approaches [107, 89, 20] decompose this problem

into two sub-tasks. Given the rule text, user question, user

scenario, and dialog history (if any), the first sub-task is to make

a decision among “Yes”, “No”, “Inquire” and “Irrelevant”. The

“Yes/No” directly answers the user question and “Irrelevant”

means the user question is unanswerable by the rule text. If

the user-provided information (user scenario, previous dialogs)
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are not enough to determine his fulfillment or eligibility, an

“Inquire” decision is made and the second sub-task is activated.

The second sub-task is to capture the underspecified condition

from the rule text and generate a follow-up question to clarify it.

[107] adopt BERT [11] to reason out the decision, and propose an

entailment-driven extracting and editing framework to extract

a span from the rule text and edit it into the follow-up question.

The current state-of-the-art model EMT [20] uses a Recurrent

Entity Network [26] with explicit memory to track the fulfillment

of rules at each dialog turn for decision making and question

generation.

In this problem, document interpretation requires identi-

fication of conditions and determination of logical structures

because rules can appear in the format of bullet points, in-

line conditions, conjunctions, disjunctions, etc. Hence, correctly

interpreting rules is the first step towards decision making.

Another challenge is dialog understanding. The model needs

to evaluate the user’s fulfillment over the conditions, and jointly

consider the fulfillment states and the logical structure of rules

for decision making. For example, disjunctions and conjunctions

of conditions have completely different requirements over the

user’s fulfillment states. However, existing methods have not

considered condition-level understanding and reasoning.

In this chapter, we propose Discern: Discourse-Aware

Entailment Reasoning Network . To better understand the

logical structure of a rule text and to extract conditions from

it, we first segment the rule text into clause-like elementary dis-

course units (EDUs) using a pre-trained discourse segmentation

model [39]. Each EDU is treated as a condition of the rule text,

and our model estimates its entailment confidence scores over
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three states: Entailment, Contradiction or Neutral by

reading the user scenario description and existing dialog. Then

we map the scores to an entailment vector for each condition,

and reason out the decision based on the entailment vectors and

the logical structure of rules. Compared to previous methods

that do little entailment reasoning [107] or use it as multi-task

learning [20], Discern is the first method to explicitly build

the dependency between entailment states and decisions at each

dialog turn.

Discern achieves new state-of-the-art results on the blind,

held out test set of ShARC [69]. In particular, Discern

outperforms the previous best model EMT [20] by 3.8% in

micro-averaged decision accuracy and 3.5% in macro-averaged

decision accuracy. Specifically, Discern performs well on

simple in-line conditions and conjunctions of rules while still

needing improvements on understanding disjunctions. Finally,

we conduct comprehensive analyses to unveil the limitation of

Discern and current challenges for the ShARC benchmark.

We find one of the biggest bottlenecks is the user scenario

interpretation, in which various types of reasoning are required.

7.2 Discern Model

Discern answers the user question through a three-step process

shown in Figure 7.2:

1. First, Discern segments the rule text into individual condi-

tions using discourse segmentation.

2. Taking the user-provided information including the user

question, user scenario and dialog history as inputs, Discern
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predicts the entailment state and maps it to an entailment

vector for each segmented condition. Then it reasons out the

decision by considering the logical structure of the rule text

and the fulfillment of each condition.

3. Finally, if the decision is “Inquire”, Discern generates a

follow-up question to clarify the underspecified condition in

the rule text.

7.2.1 Rule Segmentation

The goal of rule segmentation is to understand the logical

structure of the rule text and parse it into individual conditions

for the ease of entailment reasoning. Ideally, each segmented

unit should contain at most one condition. Otherwise, it

will be ambiguous to determine the entailment state for that

unit. Determining conditions is easy when they appear as

bullet points, but in most cases (65% samples in the ShARC

dataset), one rule sentence may contain several in-line conditions

as exemplified in Figure 7.2. To extract these in-line conditions,

we find discourse segmentation in discourse parsing to be useful.

In the Rhetorical Structure Theory or RST [52] of discourse

parsing, texts are first split into a sequence of clause-like units

called elementary discourse units (EDUs). We utilize an off-

the-shelf discourse segmenter [39] to break the rule text into

a sequence of EDUs. The segmenter uses a pointer network

and achieves 92.2% F-score with Glove vectors and 95.55% F-

score with ELMo embeddings on the standard RST benchmark

testset, which is close to human agreement of 98.3% F-score

[30, 46]. As exemplified in Figure 7.2 Step 1○, the rule sentence
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is broken into three EDUs, in which two conditions (“If a worker

has taken more leave than they’re entitled to”, “unless it’s

been agreed beforehand in writing”) and the outcome (“their

employer must not take money from their final pay”) are split

out precisely. For rule texts which contain bullet points, we

directly treat these bullet points as conditions.

7.2.2 Decision Making via Entailment Reasoning

Encoding. As shown in Figure 7.2 Step 2○, inputs to Discern

include the segmented conditions (EDUs) in the rule text, user

question, user scenario, and follow-up question-answer pairs

in dialog history, each of which is a sequence of tokens. In

order to get the sentence-level representations for all individual

sequences, we insert an external [CLS] symbol at the start of

each sequence, and add a [SEP] symbol at the end of every type

of inputs. Then, Discern concatenates all sequences together,

and uses RoBERTa [49] to encode the concatenated sequence.

The encoded [CLS] token represents the sequence that follows

it. In this way, we extract sentence-level representations of

conditions (EDUs) as e1, e2, ..., eN , and also the representations

of the user question uQ, user scenario uS, and M turns of dialog

history u1, ...,uM . All these vectorized representations are of d

dimensions (768 for RoBERTa-base).

Entailment Prediction. In order to reason out the correct de-

cision for the user question, it is necessary to figure out the

fulfillment of conditions in the rule text. We propose to formu-

late the fulfillment prediction of conditions into a multi-sentence

entailment task. Given a sequence of conditions (premises) and
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a sequence of user-provided information (hypotheses), a system

should output Entailment, Contradiction or Neutral for

each condition listed in the rule text. In this context, Neutral

indicates that the condition has not been mentioned from the

user information.

We utilize an inter-sentence transformer encoder [88] to

predict the entailment states for all conditions simultaneously.

Taking all sentence-level representations [e1; e2; ...; eN ; uQ; uS;

u1; ...; uM ] as inputs, the L-layer transformer encoder makes

each condition attend to all the user-provided information to

predict whether the condition is entailed or not. We also allow

all conditions can attend to each other to understand the logical

structure of the rule text.

Let the transformer encoder output of the i-th condition as

ẽi, we use a linear transformation to predict its entailment state:

ci = Wcẽi + bc ∈ R3, (7.1)

where ci = [cE,i, cC,i, cN,i] ∈ R3 contains confidence scores of

three entailment states Entailment, Contradiction, Neu-

tral for the i-th condition in the rule text.

Since there are no ground truth entailment labels for indi-

vidual conditions, we adopt a heuristic approach similar to [20]

to get the noisy supervision signals. Given the rule text, we

first collect all associated follow-up questions in the dataset.

Each follow-up question is matched to a segmented condition

(EDU) in the rule text which has the minimum edit distance.

For conditions in the rule text which are mentioned by follow-up

questions in the dialogue history, we label the entailment state

of a condition as Entailment if the answer for its mentioned

follow-up question is Yes, and label the state of this condition
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as Contradiction if the answer is No. The remaining conditions

not covered by any follow-up question are labeled as Neutral.

Let r indicate the correct entailment state. The entailment

prediction is weakly supervised by the following cross entropy

loss, normalized by total number of K conditions in a batch:

Lentail = − 1

K

K∑
i=1

log softmax(ci)r. (7.2)

Decision Making. After knowing the entailment state for each

condition in the rule text, the remaining challenge for de-

cision making is to perform logical reasoning over different

rule types such as disjunction, conjunction, and conjunction of

disjunctions. To achieve this, we first design three d-dimension

entailment vectors VE (Entailment), VC (Contradiction), VN

(Neutral), and map the predicted entailment confidence scores

of each condition to its vectorized entailment representation:

VEDU,i =
∑

k∈[E,C,N]

ck,iVk ∈ Rd, (7.3)

These entailment vectors are randomly initialized and then

learned during training. Finally, Discern jointly considers the

logical structure of rules ẽi and the entailment representations

VEDU,i of conditions to make a decision:

αi = w>α [VEDU,i; ẽi] + bα ∈ R1, (7.4)

α̃i = softmax(α)i ∈ [0, 1], (7.5)

g =
∑
i

α̃i[VEDU,i; ẽi] ∈ R2d, (7.6)

z = Wzg + bz ∈ R4, (7.7)
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where [VEDU,i; ẽi] denotes the vector concatenation, αi is the

attention weight for the i-th condition that determines whether

the i-th condition should be taken into consideration for the

final decision. z ∈ R4 contains the predicted scores for all four

possible decisions “Yes”, “No”, “Inquire” and “Irrelevant”. Let

l indicate the correct decision, z is supervised by the following

cross entropy loss:

Ldec = − log softmax(z)l. (7.8)

The overall loss for the Step 2○ decision making is the weighted-

sum of decision loss and entailment prediction loss:

L = Ldec + λLentail. (7.9)

7.2.3 Follow-up Question Generation

If the predicted decision is “Inquire”, the follow-up question

generation model is activated, as shown in Step 3○ of Figure

7.2. It extracts an underspecified span from the rule text which

is uncovered from the user’s feedback, and rephrases it into a

well-formed question. Existing approaches put huge efforts in

extracting the underspecified span, such as entailment-driven

extracting and ranking [107] or coarse-to-fine reasoning [20].

However, we find that such sophisticated modelings may not

be necessary, and we propose a simple but effective approach

here.

We split the rule text into sentences and concatenate the

rule sentences and user-provided information into a sequence.

Then we use RoBERTa to encode them into vectors grounded

to tokens, as here we want to predict the position of a span

within the rule text. Let [t1,1, ..., t1,s1; t2,1, ..., t2,s2; ...; tN,1, ...,



CHAPTER 7. ENTAILMENT REASONING NETWORK 135

tN,sN ] be the encoded vectors for tokens from N rule sentences,

we follow the BERTQA approach [11] to learn a start vector

ws ∈ Rd and an end vector we ∈ Rd to locate the start and end

positions, under the restriction that the start and end positions

must belong to the same rule sentence:

Span = arg max
i,j,k

(w>s tk,i + w>e tk,j), (7.10)

where i, j denote the start and end positions of the selected span,

and k is the sentence which the span belongs to. The training

objective is the sum of the log-likelihoods of the correct start

and end positions. To supervise the span extraction process,

the noisy supervision of spans are generated by selecting the

span which has the minimum edit distance with the to-be-asked

question. Lastly, following [20], we concatenate the rule text

and span as the input sequence, and finetune UniLM [13], a

pre-trained language model to rephrase it into a question.

7.3 Experiments

7.3.1 Experimental Setup

Dataset. ShARC [69] dataset is the current benchmark to test

entailment reasoning in conversational machine reading 1. The

dataset contains 948 rule texts clawed from 10 government

websites, in which 65% of them are plain text with in-line

conditions while the rest 35% contain bullet-point conditions.

Each rule text is associated with a dialog tree (follow-up

QAs) that considers all possible fulfillment combinations of

conditions. In the data annotation stage, parts of the dialogs are

1Leaderboard: https://sharc-data.github.io/leaderboard.html

https://sharc-data.github.io/leaderboard.html
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paraphrased into the user scenario. These parts of dialogs are

marked as evidence which should be extracted (entailed) from

the user scenario, and are not provided as inputs for evaluation.

The inputs to the system are the rule text, user question, user

scenario, and dialog history (if any). The output is the answer

among Yes, No, Irrelevant, or a follow-up question. The train,

development, and test dataset sizes are 21890, 2270, and 8276,

respectively.

Evaluation Metrics. The decision making sub-task uses macro-

and micro- accuracy of four classes “Yes”, “No”, “Irrelevant”,

“Inquire” as metrics. For the question generation sub-task, we

evaluate models under both the official end-to-end setting [69]

and the recently proposed oracle setting [20]. In the official

setting, the BLEU score [59] is calculated only when both the

ground truth decision and the predicted decision are “Inquire”,

which makes the score dependent on the model’s “Inquire”

predictions. For the oracle question generation setting, models

are asked to generate a question when the ground truth decision

is “Inquire”.

Implementation Details. For the decision making sub-task, we

finetune RoBERTa-base model [96] with Adam optimizer for 5

epochs with a learning rate of 5e-5, a warm-up rate of 0.1, a

batch size of 16, and a dropout rate of 0.35. The number of

inter-sentence transformer layers L and the loss weight λ for

entailment prediction are hyperparameters. We try 1,2,3 for L

and 1.0, 2.0, 3.0, 4.0, 5.0 for λ, and find the best combination

is L = 2, λ = 3.0, based on the development set results. For the

question generation sub-task, we train a RoBERTa-base model
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Table 7.1: Performance on the blind, held-out test set of ShARC end-to-end

task.

Models
End-to-End Task (Leaderboard Performance)

Micro Acc. Macro Acc. BLEU1 BLEU4

Seq2Seq [69] 44.8 42.8 34.0 7.8

Pipeline [69] 61.9 68.9 54.4 34.4

BERTQA [107] 63.6 70.8 46.2 36.3

UrcaNet [89] 65.1 71.2 60.5 46.1

BiSon [37] 66.9 71.6 58.8 44.3

E3 [107] 67.6 73.3 54.1 38.7

EMT [20] 69.4 74.8 60.9 46.0

EMT+entailment [20] 69.1 74.6 63.9 49.5

Discern (our single model) 73.2 78.3 64.0 49.1

to extract spans under the same training scheme above, and

finetune UniLM [13] 20 epochs for question rephrasing with a

batch size of 16, a learning rate of 2e-5, and a beam size 10 for

decoding in the inference stage. We repeat 5 times with different

random seeds for all experiments on the development set and

report the average results along with their standard deviations.

It takes two hours for training on a 4-core server with an Nvidia

GeForce GTX Titan X GPU.

7.3.2 Results

Decision Making Sub-task. The decision making results in macro-

and micro- accuracy on the blind, held out test set of ShARC

are shown in Table 7.1. Discern outperforms the previous best

model EMT [20] by 3.8% in micro-averaged accuracy and 3.5%

in macro-averaged accuracy. We further analyze the class-wise

decision prediction accuracy on the development set of ShARC

in Table 7.2, and find that Discern have far better predictions

than all existing approaches whenever a decision on the user’s

fulfillment is needed (“Yes”, “No”, “Inquire”). It is because the
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Table 7.2: Class-wise decision prediction accuracy among “Yes”, “No”,

“Inquire” and “Irrelevant” on the development set of ShARC.

Models Yes No Inq. Irr.

BERTQA 61.2 61.0 62.6 96.4

E3 65.9 70.6 60.5 96.4

UrcaNet 63.3 68.4 58.9 95.7

EMT 70.5 73.2 70.8 98.6

Discern 71.9 75.8 73.3 99.3

predicted decisions from Discern are made upon the predicted

entailment states while previous approaches do not build the

connection between them.

Question Generation Sub-task. Discern outperforms existing

methods under both the official end-to-end setting (Table 7.1)

and the recently proposed oracle setting (Table 7.3). Because

the comparison among models is only fair under the oracle

question generation setting [20], we compare Discern with E3

[107], E3+UniLM [20], EMT [20], and our ablation Discern

(BERT) in Table 7.3. Interestingly, we find that, in this

oracle setting, our proposed simple approach is even better than

previous sophisticated models such as E3 and EMT which jointly

learn question generation and decision making via multi-task

learning. From our results and investigations, we believe the

decision making sub-task and the follow-up question generation

sub-task do not share too many commonalities so the results

are not improved for each task in their multi-task training.

On the other hand, our question generation model is easy to

optimize because this model is separately trained from the

decision making one, which means there is no need to balance the

performance between these two sub-tasks. Besides, RoBERTa



CHAPTER 7. ENTAILMENT REASONING NETWORK 139

Table 7.3: Oracle question generation performance on the development set

of ShARC.

Models BLEU1 BLEU4

E3 52.79±2.87 37.31±2.35

E3+UniLM 57.09±1.70 41.05±1.80

EMT 62.32±1.62 47.89±1.58

Discern (BERT) 64.13±0.43 50.73±0.72

Discern 64.23±0.84 50.85±0.89

backbone performs comparably with its BERT counterpart.

In our detailed analyses, we find Discern can locate the

next questionable sentence with 77.2% accuracy, which means

Discern utilizes the user scenario and dialog history well

to locate the next underspecified condition. We try to add

entailment prediction supervision to help Discern to locate

the unfulfilled condition but it does not help. We also try to

simplify our approach by directly finetuning UniLM to learn the

mapping between concatenated input sequences and the follow-

up clarification questions. However, the poor result (around

40 for BLEU1) suggests this direction still remains further

investigations.

7.3.3 Ablation Study

Table 7.4 shows an ablation study of Discern for the decision

making sub-task on the development set of ShARC, and we have

the following observations:

RoBERTa vs. BERT. Discern (BERT) replaces the RoBERTa

backbone with BERT while other modules remain the same.

The better performance of RoBERTa backbone matches findings
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Table 7.4: Ablation study of Discern for decision making on the

development set of ShARC.

Models Micro Acc. Macro Acc.

Discern 74.97±0.27 79.55±0.35

Discern (BERT) 73.07±0.21 77.77±0.24

Discern (w/o EDU) 73.34±0.22 78.25±0.57

Discern (w/o Trans) 74.25±0.36 78.78±0.57

Discern (w/o ẽ) 73.55±0.26 78.19±0.30

Discern (w/o VEDU) 72.95±0.23 77.53±0.19

from [83], which indicate that RoBERTa can capture negations

and handle conjunctions of facts better than BERT.

Discourse Segmentation vs. Sentence Splitting. Discern (w/o

EDU) replaces the discourse segmentation based rule parsing

with simple sentence splitting, and we observe there is a 1.63%

drop on the micro-accuracy. This is intuitive because we observe

65% of the rule texts in the training set contains in-line condi-

tions. To better understand the effect of discourse segmentation,

we also evaluate Discern and Discern (w/o EDU) on just that

portion of examples that contains multiple EDUs. The micro-

accuracy of decision making is 75.75 for Discern while it is

70.98 for Discern (w/o EDU). The significant gap shows that

discourse segmentation is extremely helpful.

Are Inter-sentence Transformer Layers Necessary? We investi-

gate the necessity of inter-sentence transformer layers because

RoBERTa-base already has 12 transformer layers, in which the

sentence-level [CLS] representations can also interact with each

other via multi-head self-attention. Therefore, we remove the

inter-sentence transformer layers and use the RoBERTa encoded
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Table 7.5: Decision prediction accuracy categorized by logical types of rules

on the ShARC development set.

Logical Type # samples Micro Acc. Macro Acc.

Simple 569 82.78±1.48 86.91±1.31

Disjunction 726 69.97±1.85 75.89±1.38

Conjunction 698 74.47±2.41 79.78±1.74

Other 277 73.29±2.53 77.17±1.54

[CLS] representations for entailment prediction and decision

making. The results show that removing the inter-sentence

transformer layers (Discern w/o Trans) hurts the performance,

which suggests that the inter-sentence self-attention is essential.

Both Condition Representations and Entailment Vectors Facilitate

Decisions. We remove either the condition representations ẽi
or the entailment vectors VEDU in Eqn.7.4 & 7.6 for decision

predictions. The results show that both sides of the information

are useful for making decisions. Presumably, the condition

representations account for the logical forms of rule texts

and entailment vectors contain the fulfillment states for these

conditions.

7.3.4 Analysis of Logical Structure of Rules

To see how Discern understands the logical structure of rules,

we evaluate the decision making accuracy according to the

logical types of rule texts. Here we define four logical types:

“Simple”, “Conjunction”, “Disjunction”, “Other”, which are

inferred from the associated dialog trees. “Simple” means there

is only one requirement in the rule text while “Other” denotes

the rule text have complex logical structures, for example, a
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conjunction of disjunctions or a disjunction of conjunctions.

Table 7.5 shows decision prediction results categorized by dif-

ferent logical structures of rules. Discern achieves the best

performance on the “Simple” logical type which only needs to

determine the single condition is satisfied or not. On the other

hand, Discern does not perform well on rules in the format

of disjunctions. We conduct further analysis on this category

and find that the error comes from user scenario interpretation:

the user has already provided his fulfillment in the user scenario

but Discern fails to extract it. Detailed analyses are further

conducted in the following section.

7.3.5 How Far Has the Problem Been Solved?

In order to figure out the limitations of Discern, and the cur-

rent challenges of ShARC CMR, we disentangle the challenges

of scenario interpretation and dialog understanding in ShARC

by selecting different subsets, and evaluate decision making and

entailment prediction accuracy on them.

Baseline. Because the classification for unanswerable questions

(“irrelevant” class) is nearly solved (99.3% in Table 7.2), we cre-

ate the baseline subset by removing all unanswerable examples

from the development set. Results for this baseline are shown

in ShARC (Answerable) of Table 7.6.

Dialog History Subset. We first want to see how Discern un-

derstands dialog histories (follow-up QAs) without the influence

of user scenarios. Hence, we create a subset of ShARC (Answer-

able) in which all samples have an empty user scenario. The
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Table 7.6: Decision making and entailment prediction results over different

subsets of the ShARC development set.

Dataset
Decision Making Entailment Prediction

Micro Acc. Macro Acc. Micro Acc. Macro Acc.

ShARC (Answerable) 73.55±0.33 73.46±0.27 86.41±0.39 81.13±0.39

Dialog History Subset 79.29±1.62 76.37±1.95 92.41±0.38 90.12±0.68

Scenario Subset 63.50±1.58 60.18±1.72 82.76±0.46 59.40±1.04

ShARC (Evidence) 84.93±0.29 84.37±0.24 91.46±0.68 89.90±1.40

performance over 224 such samples is shown in “Dialog History

Subset” of Table 7.6. Surprisingly, the results on this portion of

samples are much better than the overall results, especially for

the entailment prediction (92.41% micro-accuracy).

Scenario Subset. With the curiosity to see what is the bot-

tleneck of our model, we test the model ability on scenario

interpretation. Similarly, we create a “Scenario Subset” from

ShARC (Answerable) in which all samples have an empty dialog

history. Results in Table 7.6 (“Scenario Subset”) show that

interpreting scenarios to extract the entailment information

within is exactly the current bottleneck of Discern. We analyze

100 error cases on this subset and find that various types of

reasoning are required for scenario interpretation, including

numerical reasoning (15%), temporal reasoning (12%), and

implication over common sense and external knowledge (46%).

Besides, Discern still fails to extract user’s fulfillment when

the scenarios paraphrase the rule texts (27%). Examples for

each type of error are shown in Figure 7.3. Among three

classes of entailment states, we find that Discern fails to

predict Entailment or Contradiction precisely – it predicts

Neutral in most cases for scenario interpretation, resulting in
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high micro-accuracy in entailment prediction but the macro-

accuracy is poor. The decision accuracy is subsequently hurt by

the entailment results.

ShARC (Evidence). Based on the above observation, we replace

the user scenario in the ShARC (Answerable) by its evidence

and re-evaluate the overall performance on these answerable

questions. As described in Section 7.3.1 Dataset, the evidence

is the part of dialogs that should be entailed from the user

scenario. Table 7.6 shows that the model improves 11.38% in

decision making micro-accuracy if no scenario interpretation is

required, which validates our above observation.

7.4 Summary

In this chapter, we present Discern, a system that does

discourse-aware entailment reasoning for conversational machine

reading. Discern explicitly builds the connection between

entailment states of conditions and the final decisions. Results

on the ShARC benchmark shows that Discern outperforms

existing methods by a large margin. We also conduct com-

prehensive analyses to unveil the limitations of Discern and

challenges for ShARC.

2 End of chapter.



Chapter 8

Conclusion and Future Work

In this chapter, we first summarize the contributions of this

thesis, and then we present potential future research directions.

8.1 Conclusion

The capacity to use complex language to communicate and

maintain our social world has been a trademark of humanity.

Among different goals of language usage, questions and answers

play significant roles in our day-to-day communications. We ask

questions to explore unknown information from our side, and

we answer questions to fill the information gap of others. In

this thesis, we introduce our efforts to make machines ask and

answer questions with human. We do not limit our research

scope to a specific research topic such as question answering,

question generation, or dialogue. Instead, our research comes

from two important communication needs of human: Knowledge

Assessment and Information Acquisition.

In the first part of this thesis, we investigate how ma-

chines can test knowledge of human. Our research focuses on

146
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three aspects listed in Chapter 3, Chapter 4, and Chapter 5.

Specifically, our contributions can make the generated question

difficulty controllable, make the generated options in multiple-

choice questions more distracting, and make the question asking

process more conversational.

In the second part of this thesis, we stand from the infor-

mation gathering perspective for question answering research.

Our research contributions are described in Chapter 6 and

Chapter 7. Specifically, we focus on conversational machine

reading, in which machines need to answer some high-level

questions by asking some clarification follow-up questions first.

Therefore, both asking and answering questions are important

to build satisfying conversation machine reading systems. Our

contributions in the second part are two folds: 1) we propose

an explicit memory tracker to track the dialogue states in

conversations. 2) we propose to leverage discourse parsing to

understand the rule text and entailment reasoning over the

dialogue states for conversational machine reading.

8.2 Future Work

Question answering is a promising research area and has received

rapid progress in the era of deep learning. Despite the contribu-

tions proposed in this chapter, there are still plenty of exciting

research directions that are valuable to explore in the future.

Open-Retrieval Conversational Machine Reading. In Chapter 6

and Chapter 7, the machine reading system answers the user

question according to the given rule text. However, it neglects



CHAPTER 8. CONCLUSION AND FUTURE WORK 148

Retrieved Rule Text 1: SBA provides loans to businesses - not

individuals - so the requirements of eligibility are based on aspects of the

business, not the owners. All businesses that are considered for financing

under SBA’s 7(a) loan program must: meet SBA size standards, be for-

profit, not already have the internal resources (business or personal)

to provide the financing, and be able to demonstrate repayment.

Retrieved Rule Text 2: You’ll need a statement of National Insurance

you’ve paid in the UK to get these benefits - unless you’re claiming Winter

Fuel Payments.

Retrieved Rule Text 3: 7(a) loans are the most basic and most used type

loan of the Small Business Administration’s (SBA) business loan programs.

It’s name comes from section 7(a) of the Small Business Act, which authorizes

the agency to provide business loans to American small businesses. The

loan program is designed to assist for-profit businesses that are not able

to get other financing from other resources.

User Scenario: I am a 34 year old man from the United States who owns

their own business. We are an American small business.

User Question: Is the 7(a) loan program for me?

Follow-up Q1: Are you a for-profit business?

Follow-up A1: Yes.

Follow-up Q2: Are you able to get financing from other resources?

Follow-up A2: No.

Final Answer: Yes. (You can apply the loan.)

Figure 8.1: Open retrieval conversational machine reading task. The machine

answers the user question by searching for relevant rule texts, reading

retrieved noisy rule texts (rule text 2 is irrelevant to the user question),

interpreting the user scenario, and keeping asking follow-up questions to

clarify the user’s background until it concludes a final answer. Question-

relevant requirements in the rule texts are bold.

the essential retrieval step in real scenarios. In the real world, a

system needs to take the question, retrieve several relevant rule

passages, read and reason over them to give the final decision.

Therefore, it is promising to investigate an open-retrieval setting

of conversational machine reading [63, 64, 18]. In the open-

retrieval setting, the relevant rule texts are unknown, so a system
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Prompt Question (Google search query): What’s the most points scored in an NBA

game?

Disambiguated QA Pairs:

Q1: What’s the most points scored in an NBA game by combined team? / A1: 370

Q2: What’s the most points scored in an NBA game by a single team? / A2: 186

Q3: What’s the most points scored in an NBA game by an individual? / A3: 100

Relevant Wikipedia Page 1: The highest-scoring regular season game is the triple-

overtime game between ... the two teams combined to score 370 points, with the

pistons defeating the nuggets 186–184 ...

Relevant Wikipedia Page 2: Wilt Chamberlain scored an nba-record 100 points

...

Figure 8.2: An example from the AmbigQA [55] dataset. The Prompt

Question is gathered from Google search queries and has three interpreta-

tions upon reading Wikipedia. Disambiguated QA Pairs are the full set of

acceptable answers, paired with the disambiguated rewriting of the prompt

question.

needs to retrieve question-relevant evidence from a collection of

rule texts and answer users’ high-level questions according to

multiple retrieved rule texts in a conversational manner. Figure

8.1 gives an example for open-retrieval conversational machine

reading. The user asks whether he is suitable for the loan

program. The machine retrieves three question-relevant rule

texts but only rule text 1 and rule text 3 are truly relevant. Then

it understands the requirements listed in the rule text, finds the

user meets “American small business” from the user scenario,

asks two follow-up questions about “for-profit business” and

“not get financing from other resources”, and finally it concludes

the answer “Yes” to the user’s initial question.

Clarification QA Pair Generation for Ambiguous Questions. Open-

domain Question Answering (QA) is the task of answering

questions using a collection of passages with diverse topics

[6, 23, 31]. Open-domain questions are highly likely to be
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ambiguous because people may not know about relevant topics

when formulating them. For example, in Figure 8.2, the

prompt question “What’s the most points scored in an NBA

game?” is ambiguous because the score in this question could

be interpreted as the combined score in a game (Q1A1), score

from a single team (Q2A2), or score from an individual player

(Q3A3). According to a recent study, over 50% of Google search

queries are ambiguous [55, 54]. Therefore, a system needs to

adaptively predict a single answer or a set of equally plausible

answers when the question has multiple interpretations. When

a set of multiple answers is predicted, an unambiguous rewriting

of the question that leads to each answer should also be provided

to clarify each interpretation. Since more than 50% search

queries are ambiguous, the future search engine may evolve into

a conversational search engine that can ask you clarification

questions before answering your query.

2 End of chapter.
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Singh, Tim Rocktäschel, Mike Sheldon, Guillaume

Bouchard, and Sebastian Riedel. Interpretation of natural

language rules in conversational machine reading. In

Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 2087–2097, Brus-

sels, Belgium, October-November 2018. Association for

Computational Linguistics.



BIBLIOGRAPHY 169

[70] Keisuke Sakaguchi, Yuki Arase, and Mamoru Komachi.

Discriminative approach to fill-in-the-blank quiz genera-

tion for language learners. In Proceedings of the 51st

Annual Meeting of the Association for Computational Lin-

guistics (Volume 2: Short Papers), pages 238–242, Sofia,

Bulgaria, August 2013. Association for Computational

Linguistics.

[71] Abigail See, Peter J. Liu, and Christopher D. Manning.

Get to the point: Summarization with pointer-generator

networks. In Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics (Volume 1:

Long Papers), pages 1073–1083, Vancouver, Canada, July

2017. Association for Computational Linguistics.

[72] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and

Hannaneh Hajishirzi. Bidirectional attention flow for

machine comprehension. In 5th International Conference

on Learning Representations, ICLR 2017, Toulon, France,

April 24-26, 2017, Conference Track Proceedings. Open-

Review.net, 2017.

[73] Iulian Vlad Serban, Alberto Garćıa-Durán, Caglar Gul-
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