
Effective Fusion-based
Approaches for Recommender

Systems

XIN, Xin

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong

July 2011

Thesis / Assessment Committee Members

Professor Wai LAM (Chair)
Professor Irwin Kuo Chin KING (Thesis Supervisor)
Professor Michael Rung Tsong LYU (Thesis Supervisor)
Professor John Chi Shing LUI (Committee Member)
Professor Qiang YANG (External Examiner)

Abstract of thesis entitled:
Effective Fusion-based Approaches for Recommender Systems

Submitted by XIN, Xin
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in July 2011

Recommender systems are important nowadays. With the ex-

plosive growth of resources on the Web, users encounter infor-
mation overload problem. The research issue of recommender
systems is a kind of information filtering technique that sug-

gests user-interested items (e.g., movies, books, products, etc.)
to solve this problem. Collaborative filtering (CF) is the key

approach. Over the decades, recommender systems have been
demonstrated important in E-business. Thus designing accu-

rate algorithms for recommender systems has attracted much
attention.

This thesis is to investigate effective fusion-based approaches
for recommender systems. Effective fusion of various features
and algorithms becomes important along with the development

of recommendation techniques. Because each feature/algorithm
has its own advantages and disadvantages. A combination to

get the best performance is desired in applications. The fusion-
based approaches investigated are from the following four levels.

(1) Relational fusion of multiple features for the classical re-
gression task (single measure and dimension). Originally, the
task of recommender systems is formulated as a regression task.

Many CF algorithms and fusion methods have been proposed.
The limitation of previous fusion methods is that only local

i

features are utilized and the global relational dependency is
ignored, which would impair the performance of CF. We pro-

pose a relational fusion approach based on conditional random
fields (CRF) to improve traditional fusion methods by incorpo-

rating global relational dependency.
(2) Fusion of regression-oriented and ranking-oriented algo-

rithms for multi-measure adaption. Beyond the level of classical

regression, ranking the items directly is another important task
for recommender systems. A good algorithm should adapt to

both regression-oriented and ranking-oriented measures. Tradi-
tionally, algorithms separately adapt to a single one, thus they

cannot adapt to the other. We propose methods to combine
them to improve the performances in both measures.

(3) Fusion of quality-based and relevance-based algorithms
for multi-dimensional adaption. Recommender systems should
consider the performances of multiple dimensions, such as qual-

ity and relevance. Traditional algorithms, however, only rec-
ommend either high-quality or high-relevance items. But they

cannot adapt to the other dimension. We propose both fusion
metrics and fusion approaches to effectively combine multiple

dimensions for better performance in multi-dimensional recom-
mendations.

(4) Investigation of impression efficiency optimization in rec-

ommendation. Besides performance, impression efficiency, which
describes how much profit can be obtained per impression of rec-

ommendation, is also a very important issue. From recent study,
over-quantity recommendation impression is intrusive to users.

Thus the impression efficiency should be formulated and opti-
mized. But this issue has rarely been investigated. We formulate

the issue under the classical secretary problem framework and
extend an online secretary algorithm to solve it.

ii

論文題目：推薦系統的有效融合方法

作者：辛欣

學校：香港中文大學

學系：電腦科學與工程學系

修讀學位：哲學博士

摘要：

推薦系統是當今重要的研究課題。隨著網路資料的指數增長，用戶面臨著資訊超載的問

題。推薦系統的研究課題是研究一種能夠自動向用戶推薦專案（包括電影，書籍，產品等）

的資訊過濾技術，從而解決這個問題。目前推薦系統的主要方法是基於協同過濾的方法。十

多年來，推薦系統在電子商務中的重要性已被證實。設計準確的推薦系統已經為廣泛研究人

員所關注。

本文主要的研究內容是資訊系統中推薦技術的有效融合方法。隨著推薦技術的發展，有效

的融合技術也變得越來越重要。因為每一種特徵或方法都有其各自的優缺點，所以在應用中

需要將它們融合起來使其互補。本文研究的融合技術主要基於如下四個層次。

(1) 針對傳統推薦問題（單評測單維度）的多特徵關係融合。傳統的推薦問題是一個回歸

問題。人們提出了許多協同過濾的方法。以往融合方法的缺點是，這些方法只用了局部特徵，

而全局的關係特徵卻被忽略，從而破壞了推薦系統的性能。我們提出了一種基於條件隨機場

的關係融合方法，它能夠將全局的關係特徵考慮進來，從而提高推薦系統的性能。

(2) 面向回歸推薦演算法和面向排序推薦演算法的多評測融合。除了傳統的回歸問題，對

專案進行直接排序是資訊系統的另一個重要任務。一個好的演算法應該同時具有良好的回歸

表現和排序表現。而傳統的方法是單獨為單評測而設計，從而不能同時適應多種評測方法。

我們在本文提出將面向回歸演算法和面向排序演算法融合的方法，從而使推薦性能在多評測

上都得到提高。

(3) 基於品質推薦演算法和基於興趣推薦演算法的多維度融合。推薦系統應該考慮其在多

個維度的性能，比如品質維度，興趣維度等。而傳統的方法只考慮一種的一種。他們或者推

薦品質好的專案，或者推薦用戶興趣高的專案。但是每一種演算法不能適應其他的維度。因

此在本文中我們提出了多維度推薦系統的評測標準和有效的融合方法，使推薦系統在多維度

的性能上得到提高。

(4) 推薦系統的顯示效率優化。除了推薦系統的性能，其顯示效率也是一個重要的課題。

顯示效率是指向用戶顯示一條推薦結果推薦系統能夠獲得的平均收益。近年來的研究表明，

過度的資訊推薦是對用戶的商業侵擾。因此資訊系統的顯示效率需要被優化。而對於這個問

題的研究還比較少。本文對這個問題進行形式化的定義，並且在經典秘書問題的框架下提出

有效的方法。

iii

Acknowledgement

I would like to express my sincere appreciation to my super-
visors, Prof. Irwin King and Prof. Michael R. Lyu. They give
me strong support when I meet difficulties in the study. I am

grateful to my thesis committee members, Prof. John C.S. Lui
and Prof. Wai Lam for their helpful comments and suggestions

about this thesis. I give my special thanks to Prof. Qiang Yang
for being the external committee for this thesis.

I would like to thank my pervious supervisor, Prof. Juanzi Li,
and previous mentor, Prof. Jie Tang, for their great help in my
master study in Tsinghua University.

I would like to thank my dearest friends in Hong Kong, Wujie
Zheng, Wei Yu, Kitty Liu, Yangfan Zhou, Wei Wang, Junjie

Xiong, Fan Yang and Mingzhen Mo. I also thank my colleagues
in the Machine Learning and Web Intelligence Group, Hao Ma,

Hongbo Deng, Xinyu Chen, Xiaoqi Li, Chao Zhou, Shouyuan
Chen, Haiqin Yang, Guang Ling and many others.

iv

This work is dedicated to my parents.

v

Contents

Abstract i

Acknowledgement iv

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Contributions 8

1.2.1 Relational Fusion of Multiple Features for
Single Measure and Dimension 8

1.2.2 Effective Fusion of Regression and Rank-
ing for Multi-measure Adaption 9

1.2.3 Effective Fusion of Quality and Relevance
for Multi-dimensional Adaption 10

1.2.4 Recommendation Impression Efficiency Op-
timization 10

1.3 Thesis Organization 11

2 Background Study 14
2.1 Multiple Collaborative Filtering Methods for Sin-

gle Measure and Dimension 14
2.1.1 Classical Regression Problem Definition . . 14

2.1.2 Collaborative Filtering Techniques Overview 15
2.1.3 Memory-based Collaborative Filtering . . 17

2.1.4 Model-based Collaborative Filtering 19

vi

2.1.5 More Machine Learning Techniques for Col-
laborative Filtering 21

2.2 Multi-measure Adaption for Recommender Systems 22
2.2.1 Ranking-adapted Recommendation 23

2.2.2 Ranking v.s. Regression 23
2.3 Multi-dimensional Adaption for Recommender Sys-

tems . 24

2.3.1 Relevance Dimension Adaption 24
2.3.2 Other Dimensions Adaption 25

2.4 Recommendation Impression Efficiency 26
2.5 Traditional Fusion Techniques Overview for Rec-

ommender Systems 27
2.5.1 Fusion of Various Information 27

2.5.2 Fusion of Various Algorithms 28
2.6 Applications and Competitions Related to Rec-

ommender Systems 29

2.6.1 Applications 29
2.6.2 Competitions 30

3 Fusion for Single Measure and Dimension 33
3.1 Limitations of Previous Fusion Techniques 33

3.2 Conditional Random Fields for Recommender Sys-
tems . 36

3.3 Relational Fusion Approach for Recommender Sys-
tems . 37
3.3.1 Relational Recommendation Formulation . 37

3.3.2 Single-scale Continuous Conditional Ran-
dom Fields Fusion Approach 38

3.3.3 Multi-scale Continuous Conditional Ran-
dom Fields Fusion Approach 40

3.3.4 Features for Fusion 43
3.4 Algorithms . 44

3.4.1 Learning Process 44

vii

3.4.2 Inference Process 46
3.5 Experiments . 48

3.5.1 Datasets 49
3.5.2 Data Sample Building 51

3.5.3 Metrics 52
3.5.4 Overall Performance 52
3.5.5 Effectiveness of Relational Dependency . . 54

3.5.6 Effectiveness of Various Features 54
3.5.7 Computing Complexity Analysis 59

3.5.8 Impact of Cluster Size 59
3.6 Summary . 64

4 Fusion for Multi-measure Adaption 65
4.1 Limitation of Single-measure Adaption 65

4.2 Fusion Tasks for Multi-measure Adaption 68
4.3 A Brief Review for Regression and Ranking Adap-

tion in Recommender Systems 69

4.4 Effective Fusion of Regression and Ranking in
Model-based Collaborative Filtering 70

4.4.1 Preliminary Knowledge 71
4.4.2 Regression-adapted Component in Model-

based Collaborative Filtering 72
4.4.3 Ranking-adapted Component in Model-based

Collaborative Filtering 73
4.4.4 Effective Fusion Approach 74
4.4.5 Complexity Analysis 76

4.5 Effective Fusion of Regression and Ranking in
Memory-based Collaborative Filtering 77

4.5.1 Regression-adapted Component in Memory-
based Collaborative Filtering 77

4.5.2 Ranking-adapted Component in Memory-
based Collaborative Filtering 78

4.5.3 Effective Fusion Approach 79

viii

4.5.4 Complexity Analysis 82
4.6 Experiments . 83

4.6.1 Experimental Setup 83
4.6.2 Performance in Model-based Fusion 85

4.6.3 Performance in Memory-based Fusion . . . 89
4.7 Summary . 91

5 Fusion for Multi-dimensional Adaption 95
5.1 Limitation of Single-dimensional Adaption Iden-

tification from Qualitative Analysis 95

5.2 Integrated Metric of Quality and Relevance for
Multi-dimensional Adaption 98

5.3 Fusion Approaches for Multi-dimensional Adaption101
5.3.1 Rationale of Basic Components Selection . 101

5.3.2 Fundamental Fusion Approach Based on
Linear Combination 103

5.3.3 Fundamental Fusion Approach Based on

Ranking Combination 104
5.3.4 Effective Fusion Approach Based on Continuous-

time Markov Process (CMAP) 105
5.4 Experiments . 110

5.4.1 Datasets 110
5.4.2 Limitation of Single-dimensional Adaption

Verification from Quantitative Analysis . . 111
5.4.3 Recommendation Performance 113
5.4.4 Sensitivity Analysis 116

5.5 Summary . 117

6 Impression Efficiency Optimization 123

6.1 Commercial Intrusion Problem from Low Impres-
sion Efficiency . 123

6.2 Background of Advertisements Recommendation
in Sponsored Search 124

ix

6.3 Problem Formulation for Impression Efficiency Op-
timization . 126

6.3.1 Preliminary Knowledge 126
6.3.2 Problem Formulation 127

6.3.3 Evaluation Metric 129
6.4 Dataset and Experimental Setup 131

6.4.1 Dataset 131

6.4.2 Experimental Setup 131
6.5 A Preliminary Assumption for All Methods 132

6.6 Unstable Problem in Static Method for Impres-
sion Efficiency Optimization 132

6.6.1 Static Method Description 132
6.6.2 Experimental Verification 133

6.6.3 Unstable Problem of the Static Method . . 134
6.7 Proposed Dynamic Method for Impression Effi-

ciency Optimization 137

6.7.1 Proposed Dynamic Method 137
6.7.2 Empirical Study of the Dynamic Method . 138

6.8 Combination of Static and Dynamic Methods . . 139
6.8.1 Combination Approach 139

6.8.2 Experimental Verification 140
6.9 Summary . 142

7 Conclusion and Future Work 146
7.1 Conclusion . 146
7.2 Future Work . 148

A Publications 150
A.1 Publications in Ph. D study 150

A.2 Publications in Master study 150
A.3 Unpublished Work in Ph. D study 151

Bibliography 152

x

List of Figures

1.1 Recommender system example in Amazon 2
1.2 Evaluation structure of recommender systems . . 3

2.1 User-item matrix in recommendation problem . . 15

2.2 An overview of recommendation techniques 16
2.3 Single-direction aspect model 19

2.4 Probabilistic graph of probabilistic matrix factor-
ization . 20

3.1 An illustration example to show the limitations
of traditional methods 35

3.2 Probabilistic graph of single-scale continuous con-
ditional random fields 38

3.3 Probabilistic graph of multi-scale continuous con-

ditional random fields 41
3.4 Effectiveness verification of the dependency fea-

tures in MovieLens 55
3.5 Effectiveness verification of the dependency fea-

tures in Epinions 56
3.6 Effectiveness verification of local features 57
3.7 Effectiveness verification of relational features . . 58

3.8 Result samples in different iteration times 60
3.9 Result samples in different temperatures in Movie-

Lens . 61
3.10 Result samples in different temperatures in Epin-

ions . 62

xi

3.11 Results for different cluster sizes in Epinions . . . 63

4.1 Examples to show the limitations of single-measure

collaborative filtering algorithms 66
4.2 Probabilistic graph of probabilistic matrix factor-

ization and list-wise matrix factorization 71
4.3 Problem illustration in data conversion 80
4.4 Illustration of the sampling trick 81

4.5 Convergence in model-based combination (test er-
ror) . 92

4.6 Convergence in model-based combination (NDCG
value) . 93

4.7 Sensitivity analysis of all combination methods . . 94

5.1 Distribution of items in relevance and quality . . 96

5.2 Distribution of recommended results 99
5.3 An overview of CMAP approach 105
5.4 Distribution of recommended results of CMAP . . 114

5.5 Recommendation performance 118
5.6 Impact of parameters of CMAP in MovieLens . . 119

5.7 Impact of parameters of CMAP in Netflix 120

6.1 Problem illustration for the impression efficiency

optimization . 126
6.2 Performance of static method 135

6.3 Distribution of the changed average revenue . . . 136
6.4 Distribution of the changed threshold 137
6.5 The change of query type 138

6.6 The change of click-through rate 139
6.7 Dynamic method illustration 140

6.8 Competitive ratio on different K 141
6.9 Performance of dynamic method 141

6.10 Performance of combination method 142
6.11 Performance in real revenue case 143

xii

List of Tables

2.1 Recommender system applications 30

3.1 Statistics of MovieLens and Epinions 50
3.2 Performance in MovieLens dataset 53

3.3 Performance in Epinions dataset 53

4.1 Statistics of MovieLens and Netflix 83

4.2 Performance of model-based combination in Movie-
Lens . 84

4.3 Performance of model-based combination in Netflix 85
4.4 Performance of memory-based combination in Movie-

Lens . 86
4.5 Performance of memory-based combination in Net-

flix . 87

5.1 Statistics of MovieLens and Netflix 111
5.2 Performance on quality-based NDCG 112

5.3 Performance on relevance-based NDCG 113
5.4 Overall performance for other settings in MovieLens121

5.5 Overall performance for other settings in Netflix . 122

6.1 Statistics of the queries 130

6.2 Statistics of the ads 130
6.3 Improvement of the dynamic algorithm compared

with the static algorithm 139

6.4 Improvement of the combination algorithm com-
pared with the dynamic algorithm 142

xiii

Chapter 1

Introduction

1.1 Overview

The research of recommender systems is important nowadays.
With the explosive growth of resources on the Web, users en-

counter information overload problem, which means that they
are always facing against too much information on the Web and
the useful information targeted is unfriendly covered by disgust-

ing noises. The issue of recommender systems is a kind of in-
formation filtering technique to solve this problem. Specifically,

the task of recommender systems is to suggest items on the
Web (e.g., movies, books, products, etc.) to users according

to their different tastes. Fig. 1.1 shows an example of recom-
mender system in industry. It is Amazon1, an E-business service.
Users can register an account in the system for both selling and

buying products online. The algorithm of recommender sys-
tems would suggest 5-10 products to each user among millions

of products with hundreds of categories, based on his/her brows-
ing and transaction history. For users, such kind of technique

would be surely useful to make convenience of the Web usage.
The benefits for E-business companies are also considerable. A

good recommendation service has been demonstrated effective

1http://www.amazon.com/

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Recommender system example in Amazon

to increase both user and transaction amount, which makes more
profit. Over the decades, the importance and success of recom-

mender systems have been demonstrated in both academia and
industry.

The evaluation structure of recommender systems can be

summarized as shown in Fig. 1.2.

• The bottom level: Single measure and single dimension

adaption. The most popular and original evaluation for
recommender systems is the regression-based measure for

the dimension of quality. Usually, the quality of an item
for a specific user can be presented by a rating, for exam-

ple, an integer from 1 to 5 with the higher value for better
quality. The task is to predict the ratings as accurate as
possible to the user’s real ratings. The main technique for

recommender systems is collaborative filtering (CF). The
idea is based on the assumption that similar users would

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Evaluation structure of recommender systems

have similar tastes. Traditionally, there are two categories
of CF methods: memory-based [17, 64, 130] methods and

model-based [67, 152] methods.

• The second bottom level: Multi-measure adaption for rec-
ommender systems. Besides the performance of regression,

ranking is also an important evaluation measure for recom-
mender systems, proposed by recent work [91]. This sec-

ond level means that recommender systems should adapt
to both regression and ranking measures in their perfor-

mances. Ranking-adapted algorithms emphasize on mod-
eling the preference order of items for a user directly, and

the rating predictions are not necessary. Thus it is different
from regression task. By utilizing different loss functions
and similarity calculations, collaborative filtering methods

can be converted to adapt to ranking-oriented measures.

• The third level: Multi-dimensional adaption for recom-

mender systems. The performance of recommender sys-

CHAPTER 1. INTRODUCTION 4

tems should adapt to multiple dimensions. Besides the di-
mension of quality in most traditional work, relevance is

also an important dimension in the evaluation of recom-
mender system [36]. Other typical dimensions also include

coverage, diversity, etc. Traditional work in recommender
systems is mainly focusing on recommending high-quality
items. While other dimensions become more popular in

recent work [36, 46, 80, 127, 149, 154]. All these dimen-
sions should be considered for the successful performance

of recommender systems.

• The last level: Successful performance with high impression
efficiency. Besides the successful performance of recom-
mender systems, impression efficiency should also be care-

fully considered. Impression efficiency describes how much
profit can be obtained per impression of recommendation

result. The reason why the impression efficiency should be
optimized is that over-quantity impression of recommen-

dation results would have commercial intrusion to users,
which is identified deeply in recent work [18, 21, 33, 71, 99].
Currently, the impression efficiency of recommender sys-

tems is simply controlled by heuristic rules.

In this thesis, we investigate effective fusion-based approaches

for recommender systems. Over the decades, a number of fea-
tures and algorithms are proposed. But each has its own ad-

vantages and disadvantages. Therefore, effective fusion-based
techniques to get the best performance among these algorithms
are desired in applications. The goal of the thesis is to inves-

tigate effective fusion techniques at the four different levels as
discussed above, in order to solve the following four limitations.

1. Limitation at level 1: The relational dependency is
ignored in previous fusion methods for single mea-

sure and dimension. Although many fusion methods

CHAPTER 1. INTRODUCTION 5

have been proposed to fuse various features, their predic-
tions of user-item pairs are independent with each other.

This means that only local features are utilized, while the
global relational dependency is ignored. But the ratings

of user-item pairs are correlated with each other. For ex-
ample, similar items are assumed to have similar ratings.
If only local features are considered, the predictions would

depend on the observed user-item pairs only. Thus many
user-item pairs for prediction would fail to find reliable

information under the sparse data environment of recom-
mender systems. If relational features are considered, all

the predictions would depend on each other besides the
observed user-item pairs. Thus the information is richer,

which would improve recommendation performance, espe-
cially when the data is sparse.

2. Limitation at level 2: The fusion of multi-measure

adaption is rarely investigated, and single-measure-
adapted algorithms cannot adapt to multi-measure

performance. Ideally, recommender systems should have
good performances in both regression and ranking mea-

sures. However, most current studies treat them as two
separate tasks. The problem is that they may fail to adapt

to each other. As a result, the performance is limited. Thus
the separated tasks are expected to be combined together.

3. Limitation at level 3: The fusion of multi-dimensional

adaption is rarely investigated, and single-dimension-
adapted algorithms cannot adapt to multi-dimensional

performance. Successful recommender systems should si-
multaneously consider multi-dimensional performance. Pre-

vious work, however, is mainly focusing on a single dimen-
sion. The limitation is that the single-dimensional recom-
mendation results may not adapt to other dimensions in

CHAPTER 1. INTRODUCTION 6

many cases. Thus the correlations among different dimen-
sions should be studied and the combination algorithms are

expected to be explored.

4. Limitation at level 4: Impression efficiency opti-

mization in recommendation is not carefully con-
sidered. Currently, the issue of how to optimize the im-
pression efficiency for recommender systems has rarely been

investigated, though its importance is identified by the evi-
dences of commercial intrusion to users from over-quantity

recommendation impression in previous work [21, 33, 71,
99]. Therefore, the issue of how to formulate and optimize

the impression efficiency in fairly balancing the utilities be-
tween users and E-business companies is in need for inves-

tigation.

To solve these limitations, four main pieces of work would be
presented in this thesis.

In the first work, we propose a relational recommendation ap-
proach for relational fusion of various features, based on condi-

tional random fields (CRF). Different from most previous meth-
ods which can only model local features, CRF can model both

local and global relational features. In this way, all the predic-
tions of each user-item pair are dependent with each other. Con-
sequently, many user-item pairs which cannot find reliable in-

formation before would have such relational features in the pre-
diction. Therefore, the performance would be improved. Multi-

scale continuous CRF is utilized in our framework. Traditional
single-scale continuous CRF cannot be applied to CF directly,

because single-scale CRF can only model the relational features
for items of a single user, but fail to model the common behav-

ior patterns of different users. In this work, we extend previous
CRF model from single-scale to multi-scale. Then we propose an
optimization approach based on Gibbs-sampling. Experimental

CHAPTER 1. INTRODUCTION 7

verifications demonstrate that the relational features are effec-
tive in improving the performance of recommender systems and

the framework is effective in multiple features fusion.
In the second work, we investigate methods to fuse regression-

oriented and ranking-oriented CF algorithms together to im-
prove performances in both measures. In other domains such as
documents/advertisements search tasks, previous work has al-

ready indicated that the combination would enhance both per-
formances effectively; however, in collaborative filtering, such

combination has never been investigated before. Moreover, pre-
vious combination methods for documents/advertisement search

cannot be directly employed in CF tasks, because predictions
in CF lack effective content features, which is the key point

for documents/advertisements search under the classical clas-
sification framework. Thus new combination methods should
be explored to solve this problem in CF. We propose various

combination methods in both model-based and memory-based
CF algorithms. Through experimental verification on two real-

world datasets, MovieLens and Netflix, we demonstrate that the
combinations are effective in improving the performance.

In the third work, we investigate methods to fuse two dimen-
sions, quality and relevance, as a preliminary work for multi-
dimensional adaption in recommendation. Such combination

has rarely been investigated before. We first give qualitative and
quantitative analysis of competitive quality-based and relevance-

based algorithms in these two dimensions to show that both
algorithms cannot work well in the other dimension. Then

we propose an integrated metric and finally investigate how to
combine previous work together into an unified model. In the

combination, fundamental combination methods suffer from the
integration-unnatural and quantity-missing problems. To ad-
dress these limitations, we introduce a Continuous-time MArkov

Process (CMAP) algorithm for ranking, which enables princi-

CHAPTER 1. INTRODUCTION 8

pled and natural integration with features derived from both
quality-based and relevance-based algorithms. Through experi-

mental verification, the combined methods can significantly out-
perform either single quality-based algorithm or relevance-based

algorithm in the integrated metric, and the CMAP model out-
performs fundamental combination methods.

In the last work, we study the problem of recommendation

impression efficiency optimization for less commercial intrusion
to users. This issue is important, but is also rarely investigated

before. We study this problem under a specific recommendation,
sponsored advertisements recommendation in sponsored search.

We first formulate the impression efficiency and the problem of
impression efficiency optimization under the framework of sec-

retary problem, and then investigate how to solve it. The chal-
lenge lies in that the revenue distribution of query-advertisement
pairs is not stable and is changing over time. Thus fundamen-

tal static methods cannot achieve good performance. In this
paper, we propose a dynamic algorithm, which is an extension

of previous online algorithm of secretary problem, from 1-tuple
multi-choice to 3-tuple multi-choice, in order to solve the un-

stable problem. Through empirical analysis, the performance of
our method outperforms the one of static method significantly,
and is approaching the optimal value.

1.2 Thesis Contributions

The main contributions of this thesis are as follows.

1.2.1 Relational Fusion of Multiple Features for Single
Measure and Dimension

In this work, we propose a relational fusion approach based on
multi-scale continuous CRF and utilize the relational depen-

CHAPTER 1. INTRODUCTION 9

dency to improve recommender systems. In this approach, re-
lational dependency within predictions is modeled by Markov

property. To model various dependency features, we extend
previous single-scale continuous CRF to multi-scale continuous

CRF. In addition, we propose a gradient-based optimization al-
gorithm to train the model and a constrained simulated anneal-
ing process for inference. Gibbs sampling methods in Markov

chain Monte Carlo estimation are employed in both training
and inference processes to make the inference convergence fast.

Through experimental results on two real world datasets, Epin-
ions and MovieLens, we identify that the relational dependency

is effective in improving the performances of recommender sys-
tems. We also demonstrated that the approach is effective in

combining various features.

1.2.2 Effective Fusion of Regression and Ranking for

Multi-measure Adaption

In this work, we propose two fusion-based approaches to com-

bine regression and ranking in collaborative filtering. The first
one is based on model-based CF algorithms. The combination

is based on the joint objective functions from two competitive
model-based methods, regression-oriented probabilistic matrix

factorization (PMF) [128] and ranking-oriented list-wise matrix
factorization (LMF) [139]. The second one is based on memory-
based CF algorithms. The combination is based on the joint re-

sults from two memory-based methods, regression-oriented user-
based Pearson Correlation Coefficient (PCC) method [17] and

ranking-oriented EigenRank [91] model. Through experimental
verification on two real-world datasets, MovieLens and Netflix,

we identify that the combination is effective in improving per-
formances on both metrics.

CHAPTER 1. INTRODUCTION 10

1.2.3 Effective Fusion of Quality and Relevance for
Multi-dimensional Adaption

In this work, we identify that both quality-based algorithms
and relevance-based algorithms cannot work well in the other

dimension through both qualitative and quantitative analysis.
We propose an integrated metric and introduce a large scalable

approach CMAP to fuse the dimensions of quality and relevance
in multi-dimensional recommendation. The model can solve the

integration-unnatural and quantity-missing limitations of funda-
mental combination methods. Through empirical study on two
real world datasets, MovieLens and Netflix, we identify that the

combination can significantly outperform single quality-based
and relevance-based algorithms in the integrated metric. We

also demonstrate that our proposed framework is effective and
can outperform fundamental combination methods by around

3%.

1.2.4 Recommendation Impression Efficiency Optimiza-

tion

In this work, we first formulate the task of optimizing impres-

sion efficiency under the secretary framework, which is a clas-
sical problem in computing theory. Secondly, through analysis

on real world dataset, we identify the observation that the esti-
mated revenue of query-advertisement pairs is not stable, there-

fore fundamental static method cannot work well. In the third,
we propose a novel dynamic approach for the problem. Exper-

imental results show that it outperforms static method signifi-
cantly. Finally, we combine the static and dynamic approaches,
which obtains another improvement.

CHAPTER 1. INTRODUCTION 11

1.3 Thesis Organization

The organization of the thesis is as follows.

• Chapter 2

This chapter presents the background and related work of
recommender systems. The content would include mul-

tiple collaborative filtering methods, multi-measure adap-
tion in recommender systems, multi-dimensional adaption

in recommender systems, impression efficiency in recom-
mendation, traditional fusion techniques, relevant applica-
tions and competitions.

• Chapter 3

This chapter presents the proposed relational fusion ap-
proach based on multi-scale continuous CRF. We first present

the limitation of previous work that many user-item pairs
have no reliable information for prediction if relational fea-

tures are not utilized. Then we introduce how CRF can be
utilized in recommender systems. Traditional single-scale
continuous CRF cannot be employed directly to model the

common behaviors of various users, thus we propose to ex-
tend previous CRF from single-scale to multi-scale. After

that we describe how to train and inference the model based
on Gibbs sampling methods. Experimental verifications are

conducted to identify that (1) relational features are effec-
tive in improving the performance of recommender systems

and (2) CRF is effective in multiple features fusion.

• Chapter 4
This chapter presents the fusion techniques of regression
and ranking for multi-measure adaption in recommender

systems. We first present the limitation that either regression-
oriented or ranking-oriented algorithms would have over-

bias in their own metrics and they also do not fully uti-

CHAPTER 1. INTRODUCTION 12

lize the observed information. Then we propose how to
combine regression and ranking in both model-based and

memory-based CF algorithms. Experimental verifications
are conducted to show that all the combination methods

are effective to improve the performance of recommender
system in both metrics.

• Chapter 5

This chapter presents the fusion model of quality and rele-
vance for multi-dimensional adaption in recommender sys-

tems. We first present the problem that single-dimensional
recommendation cannot adapt to other dimensions through

a detailed data analysis in real world dataset. Then we
propose an integrated metric for multi-dimension recom-

mendation as the first ever solution. After that we describe
how we combine typical recommendation algorithms in the
dimensions of quality and relevance. We propose an frame-

work based on Continuous-time MArkov Process (CMAP)
for principled and natural integration with features. Exper-

imental verification are conducted to demonstrate that (1)
the combination is effective in multi-measure recommen-

dation and (2) the CMAP consistently outperforms funda-
mental combination methods.

• Chapter 6
This chapter presents the work for impression efficiency
optimization in sponsored advertisement recommendation.

We first formulate the problem under the secretary problem
framework. Then we show through statistics in real-world

dataset that the estimated revenue of query-advertisement
pair is not stable over times, thus static methods would fail

to model the unstable problem. After that we propose a
dynamic algorithm, extended from previous work. We give
empirical study on it. Finally, we combine the static and

CHAPTER 1. INTRODUCTION 13

dynamic algorithms together to obtain another improve-
ment.

• Chapter 7
This chapter summarizes the thesis and gives some direc-

tions for the future work.

To guarantee each chapter self-contained, some content such
as fundamental methods, metrics, etc., may be briefly reviewed

in some chapters.

2 End of chapter.

Chapter 2

Background Study

2.1 Multiple Collaborative Filtering Methods

for Single Measure and Dimension

2.1.1 Classical Regression Problem Definition

Originally, the problem of recommender systems has been for-
mulated as a single problem with regression measure and qual-

ity dimension [65]. Over the years, this research issue has been
deeply investigated by both industry and academia communi-

ties. Let U be the set of all users with User Id uj, and let I be
the set of items with Item Id ik. A matrix can be built with U

and I as the two dimensions, as shown in Fig. 2.1. In this ex-
ample, there are four users and seven items. Some values of the
matrix’s elements are fixed from users’ rating history R, indicat-

ing an quality score on each item (e.g., range from 1 to 5, higher
value means better satisfaction.), denoted as rjk in the figure.

A large scale of values are missed, denoted as yjk. The problem
is to build a function f to predict a score for each missing value

of the matrix, formulated as

Y = f(R), (2.1)

based on which a ranking list of unrated items can be built for

each user as recommendation results.

14

CHAPTER 2. BACKGROUND STUDY 15

r47y46y45y44r43y42y41

r37y36y35y34y33y32y31

y27y26r25y24y23y22y21

y17y16y15y14r13y12y11

i
1

i
2

i
3

i
4

i
5

i
6

i
7

u
1

u
2

u
3

u
4

Figure 2.1: User-item matrix in recommendation problem

Metrics for this task measure the closeness of a recommender
system’s predicted ratings to the users’ real ratings. Typical

metrics include Mean Absolute Error (MAE) [17] and Root
Mean Square Error (RMSE) [76]. MAE is defined as

MAE =

∑ |Ru,i − R̃u,i|
N

, (2.2)

where R̃u,i is the predicted ratings of item i by user u, Ru,i is the
ground truth, and N is the total number of testing predictions.

RMSE is defined as

RMSE =

√∑
(Ru,i − R̃u,i)2

N
. (2.3)

In both metrics, lower value indicates higher accuracy.

2.1.2 Collaborative Filtering Techniques Overview

We summarize classical recommendation techniques in Fig. 2.2.

Before collaborative filtering, content-based methods are uti-
lized in recommender systems. In content-based methods [82],

items with similar content features comparing to a user’s past fa-
vorite items will be recommended to the user. For example [104],

CHAPTER 2. BACKGROUND STUDY 16

User-based Item-based

Recommender

Systems

Content-based
Collaborative

Filtering

Memory-based Model-based

Figure 2.2: An overview of recommendation techniques

in movie recommendation systems, such features include spe-
cific actors, directors, genres, subjects, etc. Typical work in-

cludes [10, 106, 107, 109, 117, 126, 144, 168, 169].
The weakness of this kind of methods is that it depends on the

features, and effective features are difficult to find in some rec-

ommendation applications. For example, in the Amazon, many
users have very incomplete profiling information, and the items

in their history have a quantity of diversity. Thus there are not
enough features for accurate predictions. This is the reason that

collaborative filtering comes up.
Collaborative filtering (CF) methods are from a different an-

gle. The prediction is based on the common behavior patterns
analyzed from the large real dataset. The key point is that
CF finds similar users for each user, according to the similar-

ity of their rating history. Then the prediction is made by the
ratings of his/her similar users. Over the years, this kind of

technique has made a great success and has been deeply inves-
tigated. Traditionally, there are two classes of CF approaches:

(1) memory-based and (2) model-based.
The idea of memory-based methods (also called neighborhood-

based) is that the rating predictions for a user directly depend on
his/her similar users’ ratings on similar items. Approaches are
further divided into two streams, user-based [17, 64] and item-

CHAPTER 2. BACKGROUND STUDY 17

based [88, 130]. In user-based algorithms, the prediction of an
item is based on his/her similar users’ ratings on it. Item-based

algorithms are very similar with user-based algorithms. But it
will find similar items for each item according to the similarities

of its user. Thus the prediction of an item for a user is based on
the user’s ratings on its similar items.

In model-based methods [67, 152], the common patterns of

users and items are modeled indirectly by latent features. This
kind of method builds a generated model from a probabilistic

perspective. Latent features are learned through a training pro-
cess, and the predictions are made by these learned features.

According to different objective functions, model-based CF al-
gorithms are further divided into log-likelihood-targeted meth-

ods [67] and root-mean-square-targeted methods [128]. Typical
work includes [2, 16, 17, 25, 37, 51, 54, 84, 140, 97, 101, 115,
122, 137, 140, 152, 158, 170].

In the following sections, we will give some examples for
memory-based CF algorithms and model-based CF algorithms.

2.1.3 Memory-based Collaborative Filtering

The key point of memory-based CF is the similarity selection
among users and items. Typical examples include Pearson Cor-

relation Coefficient (PCC) [123] and vector similarity (VS) [17].
In the following part, we explain a user-based algorithm and an
item-based algorithm [17] based on PCC similarity.

User-based PCC

User-based PCC is defined as [96]

Sima,u =

∑
i∈I(a)∩I(u)(ra,i − ra)(ru,i − ru)√∑

i∈I(a)∩I(u)(ra,i − ra)2
√∑

i∈I(a)∩I(u)(ru,i − ru)2
,(2.4)

CHAPTER 2. BACKGROUND STUDY 18

where a and u denote two users, I(a) and I(u) are the items
they have rated, ra,i is the rating of item i by user a, and ra is

the average rating of user a.
The advantage of this similarity is that it balances different

users’ evaluation standards. For example, some users are more
likely to give high ratings and other may like to give low ratings.
The similarity is based on the difference of values rather than

absolute values.
By using PCC similarity, we can find users with high simi-

larity to the current user as its neighborhood. Then, the rating
predictions are based on the following formula,

f(u, i) = u+

∑
ua∈S(u) Simua,u(rua,i − ua)∑

ua∈S(u) Simua,u
, (2.5)

where S(u) is the neighborhood of the current user u, u is the
user’s average rating score.

Item-based PCC

The idea of item-based PCC is very similar to user-based PCC.
The difference is that user-based PCC finds neighbors for each

user, but item-based PCC finds neighbors for each item. Thus
item-based PCC is defined as [96]

Simi,j =

∑
u∈U(i)∩U(j)(ru,i − ri)(ru,j − rj)√∑

u∈U(i)∩U(j)(ru,i − ri)2
√∑

u∈U(i)∩U(j)(ru,j − rj)2
,(2.6)

where i and j are two items, U(i) ∩ U(j) denote the users who
has rated both i and j, and ri is the average rating of item i.

Under item-based PCC, the prediction is based on

f(u, i) = i+

∑
ik∈S(i) Simik,i(ru,ik − ik)∑

ik∈S(i) Simik,i
, (2.7)

where S(i) is the neighborhood of current item i, i is the item’s

average rating score.

CHAPTER 2. BACKGROUND STUDY 19

User1

User2

UserN

Item1

Item2

ItemM

Layer 1

Layer 2

Layer K

Rate 1

Rate 2

Rate 3

Rate 4

Rate 5

Figure 2.3: Single-direction aspect model

2.1.4 Model-based Collaborative Filtering

Model-based collaborative filtering is another kind of typical col-

laborative filtering method. The main difference from memory-
based methods is that memory-based methods should load all

the ratings in the memory when predicting, while model-based
methods try to learn a model from existing data, and use the

model in prediction without loading the rating information. In
the following, we will use two examples to show model-based
algorithms, (1) Aspect Model (AM) [67] and (2) Probabilistic

Matrix Factorization (PMF) [128]. Comparing to memory-based
methods, model-based collaborative filtering methods save more

memory and complexity in predictions. However, to train a
model needs much time.

Aspect Model

As shown in Fig. 2.3, in Aspect Model [67], latent layers (classes)
exist between users and items, which can be explained as the
users’ interests or styles. Different latent layers have different

distributions on the rating of items, and different users have
different distributions on the latent layers. These distributions

are learned from training data by optimizing the log-likelihood.
Expectations are calculated as predictions. For example, the

CHAPTER 2. BACKGROUND STUDY 20

Figure 2.4: Probabilistic graph of probabilistic matrix factorization

prediction of item k by user j is calculated by

rj,k =

K∑

l=1

(

5∑

r=1

r ∗ p(r|l))P (l|j). (2.8)

Probabilistic Matrix Factorization

Fig. 2.4 shows the probabilistic graph of PMF. Suppose there
are N users and M items. For each user and item, there is
an l-dimensional latent feature vector. The feature vectors for

users are denoted as U ∈ Rl∗N and the feature vectors for items
are denoted as V ∈ Rl∗M . Let Rij denote the rating of item j

given by user i. In this graph, the distribution of Rij is defined
as [128]

P (R|U, V, σ2) =
N∏

i=1

M∏

j=1

[N(Rij|g(UT
i Vj), σ

2)]Iij , (2.9)

whereN(x|u, σ2) is a Gaussian distribution with the mean u and

variance σ2. g(x) is the logistic function g(x) = 1/(1+exp(−x))

CHAPTER 2. BACKGROUND STUDY 21

to convert UT
i Vj to [0, 1] scale. Iij is an indicator to describe

whether user i has rated item j.
The objective function of PMF is to find U, V by minimizing

the summation of regression loss and regularization as

arg min
U,V

1

2

N∑

i=1

M∑

j=1

Iij(Rij−g(UT
i Vj))

2+
λ

2
(‖U‖2

F+‖V ‖2
F). (2.10)

2.1.5 More Machine Learning Techniques for Collabo-

rative Filtering

Besides the fundamental collaborative filtering approaches, there

are also a number of relevant machine learning techniques as
complement for recommender systems.

Active Learning for Collaborative Filtering

Usually, recommender systems suffer from the “cold start” prob-

lem. It means that for a new item or a new user, there is no
rating history for it. Thus it is very difficult for collaborative

filtering to make prediction on these new items or users.
A typical way to solve this problem is to let the new user

rate some items. The importance of each item is different. Thus
the target of active learning for collaborative filtering is to find
the most important items to the new user to rate, in order to

get the most effective collaborative filtering model for the user.
Some typical work includes [61].

Online Learning for Collaborative Filtering

Online learning is to adapt to instant update information for
recommender systems. The original mode of training a collabo-

rative filtering model is a batch mode. It means there is a train-
ing set to learn the model, and in the application, the model

CHAPTER 2. BACKGROUND STUDY 22

would be fixed. However, in the application, some new infor-
mation may come into the system (e.g., a user may rate a new

item). The problem is that these new information would not
be utilized to improve the model until the next batch learning

process. Thus the accuracy would be limited.
Online learning is to develop algorithms that can update the

model instantly as the new information come into the system.

Online learning algorithms will remain most of original model
stable while make a little change for the new information. Thus

the complexity for updating the model is much less than train-
ing a new model. The updating will have an improvement for

current model to fit the new data. Typical work includes [3].

Others

There are also other machine learning techniques for recom-
mender systems. For example, some work tries to speed up the

learning process of collaborative filtering models [3, 34, 73, 166];
some work tries to make the model scalable to large dataset [34,

89, 136, 165, 174]; some work tries to apply transfer learning
technique in collaborative filtering [85]; and many others can be

found in [27, 103, 129, 146, 161].

2.2 Multi-measure Adaption for Recommender

Systems

The classical task of recommender systems is the regression-
oriented problem. However, as the final output of recommender

systems is a ranking list of items for users, the ranking-oriented
recommendation has been paid much attention recently. In the

ranking-oriented recommendation, measurement is from a rank-
ing perspective. The two measurements are quite different for

adaption. Ideally, a good recommendation algorithm should

CHAPTER 2. BACKGROUND STUDY 23

have good performances adapting to both kinds of measure-
ments.

2.2.1 Ranking-adapted Recommendation

Ranking-oriented recommendation is proposed recently [91]. The
goal is to predict the ranking order of items for each user directly,

where the rating predictions are not necessary [91]. Thus the
ranking relation information is directly modeled and the per-
formance is evaluated on the ranking order of predicted items.

Ranking-oriented metrics measure the closeness of predicted rank-
ing with the ground truth ranking. Typical metric is the Nor-

malized Discount Cumulated Gain (NDCG) [32] value. Given
the rank of recommended results, NDCG at position P is defined

as (referring to [91])

NDCGP−quality =
1

U

U∑

u

Zu

P∑

p=1

2ru,p − 1

log(1 + p)
, (2.11)

where U is the number of users, Zu is a normalization factor of
user u, and ru,p is the ground truth rating score by user u on

the item at position p. For NDCG, a larger value indicates the
higher accuracy.

Collaborative filtering approaches can be employed to solve
ranking-oriented recommendation by changing relevant key cal-
culation (e.g., similarity, loss function, etc.) to ranking-oriented.

Currently, the algorithms are further divided into model-based [92,
139] and memory-based algorithms [91]. Other work includes [38,

94]

2.2.2 Ranking v.s. Regression

Both regression-oriented and ranking-adapted recommendations

have their own advantages. The advantage of regression-oriented

CHAPTER 2. BACKGROUND STUDY 24

algorithms is that the prediction is more intuitive. The ratings
are easier than rankings to understand for the evaluation on

items. For example, we can easily calculate the average rat-
ings for the items. We can also understand the difference be-

tween two items by their difference on the ratings. In addition,
the complexity to evaluate a rating is usually much less than
to evaluate a ranking. The advantage of ranking-oriented al-

gorithms, on the other hand, is that the information is richer,
especially when the data is sparse. Suppose a user have four

ratings. In regression-oriented recommendation, it is not con-
fident to utilize the comparison of the ratings to find similar

users. However, if the ranking information is utilized, four rat-
ings have six preference orders, which is more reliable. From

the features of regression and ranking, it can be concluded that
both are important to the success of recommender systems.

2.3 Multi-dimensional Adaption for Recom-

mender Systems

Traditionally, the performance of recommender systems is from

the quality dimension. The quality is described by a rating.
The task is to recommend high-quality items to users. How-

ever, quality is only one dimension in the performance of recom-
mender systems. There are many other dimensions that users
also concern about. Such dimensions include relevance, diver-

sity, coverage, etc. A good recommendation should consider all
these dimensions according to the user’s configurations.

2.3.1 Relevance Dimension Adaption

Relevance is a different dimension from the dimension of qual-
ity. For example, in movies recommendation, quality refers to a

user’s evaluation on a movie’s plot, acting, special effects; while

CHAPTER 2. BACKGROUND STUDY 25

relevance refers to a user’s interests to see a movie. In books
recommendation, quality refers to a book’s content worthiness;

while relevance refers to a book’s attractiveness to a user. A
user may give a high rating to a classical movie for its good

quality, but he/she might be more likely to watch a recent one
that is more relevant and interesting to their lives, though the
latter might be worse in quality. Different from quality-based

recommendation that focuses on recommending items that will
likely to obtain high ratings from users, relevance is reflected

by whether a user will hit (or visited/rated) an item and there-
fore, relevance-based recommendation focuses on recommending

items that will be likely to be hit by a user in the future.
The dimension of relevance in recommender systems has been

paid much attention recently. Relevance-based recommenda-
tions mainly depend on association features [36, 131] and hit-
ting frequency features [12, 80, 149]. The basic assumption of

the former is that frequent co-occurred items in the past are also
likely to appear together in the future. Thus a statistical anal-

ysis is made on each item pair, and the recommendation results
are based on the co-occurrence frequency. An intuitive interpre-

tation of the latter is that popular items are likely to interest
users. In “Who Rate What” task of KDD-cup 2007, the weight
of this feature is much larger than others [80]. Recent work of

relevance-based recommendations includes [113, 158].
Relevance-based metrics measure the likelihood that an item

will be hit. Metrics are also divided into regression-oriented
and ranking-oriented. The difference from quality is that the

relevance score is a 0/1 value instead of the rating from 1 to 5.

2.3.2 Other Dimensions Adaption

Besides the dimensions of quality and relevance, there are many
other dimensions for the performance of recommender systems.

CHAPTER 2. BACKGROUND STUDY 26

Diversity [46] and coverage [154] are two typical dimensions.
Coverage means to what extend the recommendation can cover

all the items; and diversity means how different the recom-
mended items are from each other. Typical work on these di-

mensions includes [72, 83, 111, 175].

2.4 Recommendation Impression Efficiency

Besides the performance, there are many more issues for consid-

eration in the success of recommender systems. A very funda-
mental issue is the recommendation impression efficiency. Im-

pression efficiency describes how much profit can be obtained
per impression of recommendation result.

The reason for optimizing impression efficiency is that over-

quantity of recommendation result would have commercial in-
trusion to users. Since most recommender systems are sup-

ported by E-business companies, the recommendation can be
seen as a commercial behavior from E-business companies to

users. As the E-business and recommender systems become pop-
ular, there are many evidences indicating the existence of com-
mercial intrusion to users from over-quantity recommendation,

especially in sponsored advertisement recommendation in spon-
sored search: 1) Users have reported to show bias against spon-

sored search results after they know its commercial insight [99].
2) From the user study in [71], when sponsored results are as

relevant as the organic results, more than 82% of users will see
organic results first. 3) Organic results have also demonstrated

to gain much higher click through rate (CTR) than sponsored
search results [33].

Thus if the impression efficiency is not carefully optimized,

in a long-term, users will not trust recommender systems due to
the commercial intrusion and finally it will decrease the utility

of E-business. If the recommendations are irrelevant to users’

CHAPTER 2. BACKGROUND STUDY 27

intent, to show less recommendation results or even not to show
any recommendation results is better than to show a full rank

of results [18]. From the research in [21], irrelevant recommen-
dation will have the effect to “train” the users to ignore recom-

mendation in the result page.
Although the intrusion of recommender systems to users has

already been identified from previous work, there is rarely much

work carefully investigating how to optimize the recommenda-
tion impression efficiency in previous work. Thus in later chap-

ters, we will investigate this problem as a preliminary work.

2.5 Traditional Fusion Techniques Overview

for Recommender Systems

With the development of different algorithms of collaborate fil-
tering, there are also many fusion work to combine many com-

ponents together to get better performance. The fusion work
can be divided into fusion of various kinds of information and

fusion of various algorithms.

2.5.1 Fusion of Various Information

This kind of fusion work utilizes additional information beyond

the user-item rating matrix to enhance the performance of rec-
ommender systems. Typical information includes social rela-

tionship of users, temporal information, location information,
etc. We will explain some of them as follows. Other work of
this kind of fusion includes [4, 14, 59, 98, 102, 104, 108, 134,

142, 153, 156].

Social Information Ensemble

Users on the Web are not alone. Usually, many relationships

exist among users. Such relationships can be trust link, friend

CHAPTER 2. BACKGROUND STUDY 28

link, twitter link, etc. The assumption of utilizing social infor-
mation to enhance recommender systems is that users connected

by these links would have similar tastes on items. For example,
if two users are good friends, they may like the same products.

From previous work, effectively incorporating the social informa-
tion into collaborative filtering models would obtain significant
improvements. Typical work includes [5, 28, 110, 53, 69, 75, 97].

Temporal Information Ensemble

Temporal information is another typical feature in recommender
systems. The assumption is that users’ tastes may change over

the time. For example, a user may be very critical at the begin-
ning, but after some time, he/she may be changed to give higher

ratings to most items. Thus the temporal information is consid-
ered in collaborative filtering methods. Through experimental
verification, such information is also very effective in improving

the performance. Typical work includes [70, 77, 159].

Location Information Ensemble

As applications on mobile are more and more popular, location

information becomes important in recommender systems. For
example, if a user is searching for a restaurant, he/she may
prefer the ones near him/her. Thus recently, some collaborative

filtering approaches are proposed to incorporate the location
information in recommendation. Typical work includes [50, 171]

2.5.2 Fusion of Various Algorithms

Over the years, many algorithms have been proposed for col-
laborative filtering [68]. Each algorithm has its own advantages

and disadvantages. Thus it is natural to combine them together
to get the best performance. The fusion work for various algo-
rithms can be divided into: (1) combination of user-based and

CHAPTER 2. BACKGROUND STUDY 29

item-based in memory-based algorithms [96, 157, 163]; (2) com-
bination of memory-based and model-based algorithms [76, 118];

and (3) combination of content-based and collaborative filter-
ing [10, 12, 30, 104, 116, 132, 143, 147].

There are mainly two limitations from previous work. The
first one is that the relational dependency among features and
predictions is not utilized in the fusion. Thus the performance

would be limited when the data is sparse. The second one is
that all the fusion work is to solve the classical regression prob-

lem for recommender systems. However, as discussed in the
introduction chapter, there are mainly four levels to evaluate

recommender systems, such as multi-measure adaption, multi-
dimensional, impression efficiency, etc. Fusion work on these

levels has rarely been investigated before. This is the target of
the thesis.

2.6 Applications and Competitions Related

to Recommender Systems

2.6.1 Applications

A number of recommender system applications appear with the
development of recommendation techniques. These applications

cover many aspects of our daily lives, such as music, web page,
books, etc. They also experience different methods. We sum-

marize some typical recommendation systems in Table 2.1.
Besides these systems, there are also many algorithms devel-

oped to specific recommendation domains, such as tags [56, 121,
141, 135, 145], communities [24, 23], citations [62], news [86, 95],
documents [57, 173], queries [150], etc.

CHAPTER 2. BACKGROUND STUDY 30

Table 2.1: Recommender system applications
System Content Techniques

Amazon [88] books, CDs, others item-based
MovieLens [105] movie item-based
Grundy [124] books content-based

Video Recommendar [66] video memory-based
Ringo [138] music user-based

PHOAKS [151] textual information memory-based
Jester [54] jokes model-based

Fab System [10] Web page hybrid approaches

2.6.2 Competitions

In this section, we will briefly introduce three big competition
events for recommender systems.

Netflix

Netflix competition1 started from October 2006, which was con-
ducted by the DVD renting company Netflix2. The goal is to de-

sign the best recommendation algorithms to recommend movies
to users. The task is to predict the ratings of users on items
as close as possible (the ratings are from 1 to 5 with higher

value indicating better satisfaction). The evaluation metric is
RMSE (the lower the value, the better the performance). Orig-

inally, the RMSE of the algorithm in Netflix was 0.9525; and
anyone that could improve it by 10% (0.8572) would win the

1,000,000 Grand Prize.
Comparing to traditional datasets, there are two main chal-

lenges: (1) the dataset is large-scale. Comparing to a classical
MovieLens datasets3 with 100,000 ratings within 1,682 items
and 943 ratings, Netflix dataset has 100,000,000 ratings from

1http://www.netflixprize.com/
2http://www.netflix.com/
3http://www.movielens.org/

CHAPTER 2. BACKGROUND STUDY 31

over 480,000 users for 17,000 movies. This means many com-
plex graphical models cannot be directly utilized in such a big

application. (2) The data is very sparse. The density of the
user-item matrix in Netflix is 1.18%, compared with 6.3% in

MovieLens. This means that most ratings have not enough re-
liable information for predictions. Thus the competition was
challenging.

Over five years, the team “BellKor’s Pragmatic Chaos” fi-
nally won the prize. Their work is an effective combination of

previous collaborative filtering methods. Detailed algorithms
can be found in their publication [76].

KDD Cup 2007

The KDD Cup 20074 is a competition related to Netflix. They
share the same dataset, but the tasks are different. The original
criterion of Netflix is focusing on the quality of items; but the

criteria in this KDD Cup are related to the relevance of items.
There are two subtasks with different metrics. The first task

is called “Who Rate What in 2006”, which is to predict which
movies a user will be likely to rate in 2006 according to the his-

tory information from 1998 to 2005. The second task is called
“How Many Ratings in 2006”, which is to predict how many
movies a user will rate in 2006 according to the history informa-

tion from 1998 to 2005. The metrics for both tasks are RMSE.
At the end, the team of Hungarian Academy of Sciences won

the first place in the first task and the team of IBM Research won
the first place in the second task. The algorithms are effective

fusions of previous memory-based and model-based methods.
More details can be found in their reports [80, 127].

4http://www.cs.uic.edu/ liub/Netflix-KDD-Cup-2007.html

CHAPTER 2. BACKGROUND STUDY 32

KDD Cup 2011

The KDD Cup 20115 is a recent competition on recommender

systems. The dataset6 is from Yahoo! music recommendation.
Different from previous movie recommendation, this dataset con-

tains structural information. Users can rate tracks, albums,
artists and genres. The tracks can be structured by albums,

artists, and genres. Thus the challenge is how to utilize such
structural information in improving the recommendation per-

formance. In this dataset, it has 1,000,990 users, 624,961 items
and 262,810,175 ratings. Comparing with previous dataset, the
number of items has increased greatly.

There are totally two tasks. The first task is to predict the
users’ ratings to the items. The items contain all four kinds

of information (tracks, albums, artists, and genres). RMSE is
utilized as the evaluation metric. It is a classical regression

problem. The second task is to identify the highly-rated items
from the others for a user. The difference is that it is a clas-
sical classification problem. The evaluation metric is the error

rate (fraction of misclassifications).
Currently, the competition is still open and will end in the

end of June 2011.

2 End of chapter.

5http://kddcup.yahoo.com/
6http://new.music.yahoo.com/

Chapter 3

Relational Fusion of Multiple
Features for Single Measure
and Dimension

3.1 Limitations of Previous Fusion Techniques

In recommender systems, multiple features should be utilized
to improve recommendation results. Traditional collaborative

filtering (CF) algorithms, however, suffer from the following two
weaknesses.

To illustrate the problem, we use an example showed in Fig. 3.1.
In this example, there are four users, denoted by ul and seven
items, denoted by im. rlm is rating record by ul to im. (e.g., scale

from 1 to 5, higher value means better satisfaction). The CF
algorithms predict values of unrated user-item pairs, denoted

as ylm (without loss of generality, not all ylm are shown in the
figure), and suggest top ranked items as recommendations.

Lack of relational dependency within predictions. In
traditional methods, predictions are only relationally dependent

on the rated records, while predictions among each other are in-
dependent. For example, in Fig. 3.1, suppose u3 and u4 are
similar users based on the observed ratings, and then y33 can be

predicted by referring to r43, because it is the same item and

33

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 34

the two users have high similarity. In the same way, suppose
i3 and i5 are observed to have high similarity, and then y45 can

be predicted by referring to r43, because they are similar items
by the same user. For simplicity, we suppose no high similarity

exists between other items/users pairs, and we do not consider
any other relations. In this case, based on traditional CF algo-
rithms, y35 cannot be predicted accurately, because there are no

rated items by u3 which is similar to i5 and there is no rating
on i5 whose host is similar to u3. Thus no relevant information

can be referred to. But if we consider relational dependency
within predictions, things are different. As u3 and u4 are sim-

ilar, y35 and y45 should be close; as i3 and i5 are similar, y35

and y33 should be close. So if relational dependency within pre-

dictions is utilized, the information of r43 can be passed to y35

through relational dependency of y33, y45, and y35. In this case,
predictions should be generated simultaneously by utilizing the

dependency, which let predictions help each other, improving
the accuracy. In recommender systems, the data is sparse [130],

thus a number of predictions lack of information to refer to,
leading to low accuracy. Effectively utilizing relational depen-

dency is indeed important. Previous work, however, did not
utilize such information sufficiently. Wang et al. [157] proposed
a heuristic method to find r43. It has two limitations: (1) It is

difficult to measure the similarity between r43 and y35; and (2)
It cannot guarantee the closeness of y35 and y33 (or y35 and y45).

Ma et al. [96] proposed to firstly predict y33 and y45, and then to
predict y35. The problem is that mistakes can propagate from

the top level to the bottom level, which influences the accuracy.
Being difficult to integrate various features in social

network into an unified approach. In recommendation,
various attribute information and relations have been demon-
strated to be effective features. For example, in attribute infor-

mation, Melville et al. [104] utilized content information (gen-

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 35

r47y45r43

r37y35y33

r25

r13

i
1

i
2

i
3

i
4

i
5

i
6

i
7

u
1

u
2

u
3

u
4

Figure 3.1: An illustration example to show the limitations of traditional
methods

res, directors, etc.) to boost CF algorithms in movie recom-
mender systems; Nakamoto et al. [108] and Sen et al. [134] em-

ployed tag information to improve the accuracy. In relations
information, trust relations are utilized effectively in some re-

cent works [5, 13, 53, 97]. These attribute and relation features
should be combined to assist predictions in relational recommen-
dation. But in traditional CF algorithms, it is hard to combine

these features into an unified model. Melville et al. [104] has
to convert traditional CF to a classification problem in order to

add content features, in which ratings are not predicted. Some
of previous work utilized linear integration techniques to smooth

feature weights [96]. Consequently, the computing complexity
for enumerating values in all spaces to obtain a fitting weight-
vector is large when the number of features increases. Thus a

framework to globally optimize (optimize all the weights simul-
taneously) the weights of multiple effective features should be

explored.

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 36

3.2 Conditional Random Fields for Recom-

mender Systems

Conditional Random Fields (CRF) is first proposed as a state-of-

the-art probabilistic model for segment and labeling sequences
data [60, 81]. This model can describe relational dependency in

undirected probabilistic graphs, solving the label bias problem.
Due to effectiveness in many applications, the theory is widely
developed such as Multi-scale CRF [63], Constrained CRF [78,

160], etc. A more detailed tutorial can be found in [44]. Qin et
al. [119] first extended conditional random fields from discrete

label spaces to continuous label spaces, and applied this CCRF
model to rank documents.

Continuous Conditional Random Fields (CCRF) [119] is a
desirable approach by going through literatures on solving sim-

ilar problems mentioned above. Relational dependency within
predictions is modeled in feature functions in CCRF. CCRF has
outstanding advantages comparing to other methods: (1) re-

lational dependency within predictions can be modeled by the
Markov property, which is the most general assumption in prob-

abilistic graphical models and has been proven effective in many
applications [81]; and (2) feature function weights are globally

optimized in CCRF model, which makes it easy to combine var-
ious of features. Thus all the two problems aforementioned can

be solved based on this approach. Therefore, it is natural to
lead us to employ CCRF in relational recommendation prob-
lems. However, single-scale of CCRF in [119] cannot be directly

employed to model different users in recommendations, which
will be discussed in detail later. Therefore in this work, we ex-

tend CCRF model from single-scale to multi-scale in theory, in
which each scale corresponds to predictions of a particular user,

and apply this new model in relational recommendations as a
framework to solve the two problems discussed above, which to

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 37

the best of our knowledge is the first attempt to employ CCRF
in recommender systems.

3.3 Relational Fusion Approach for Recom-

mender Systems

3.3.1 Relational Recommendation Formulation

Let X denote observations, which can be existing rating records,

trust information, similarities between different users/items, pro-
file information of users, etc. Let vector Y denote predictions
with ylm denoting the prediction of item im by user ul.

We call “local recommendation” or “traditional recommen-
dation”, if the problem is formulated as

yl,m = f(X). (3.1)

Further more, we call “global recommendation” or “relational
recommendation”, if the problem is formulated as

Y = f(X), or (3.2)

yl,m = f(X, y−l,−m),

where y−l,−m denotes all other predictions except yl,m.

The major difference of these two formulations is that predic-
tions in relational recommendation are dependent on each other

conditioned on observations and thus predictions on different
items should be generated simultaneously; while in traditional

recommendation, predictions are independent. In other words,
traditional recommendation is a special case of relational rec-

ommendation when relational dependency within predictions is
removed.

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 38

Figure 3.2: Probabilistic graph of single-scale continuous conditional random
fields

3.3.2 Single-scale Continuous Conditional Random Fields
Fusion Approach

Single-scale CCRF is proposed by Qin et al. [119], applied in
the issue of “global ranking”. In this model, a joint conditional

probability distribution of a probabilistic graph is defined condi-
tioned on observations. In this section, we explain the model in

the application of recommender systems. Please notice single-
scale CCRF can only model predictions of a single user and we
discuss how to handle multiple users in the next sub-section.

The detailed definition of single-scale CCRF is as follows.
Figure 3.2 gives the probabilistic graph. Let nodesX(x1, x2, ..., x5)

denote observations and nodes Y (y1, y2, ..., y5) denote predic-
tions (ym for item im). The edge connecting ym and yn indicates

that relational dependency exits between them in the model.
We define the set of nodes connected to ym by actual line as the
“neighbor” of ym, denoted as neighbor(ym). Since X denotes

observations and all values of Y are conditioned on it, we use

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 39

dotted line to approximately express the relational dependency
among X and Y . The joint conditional probability density func-

tion of predictions Y conditioned on observations X is defined
as

p(Y |X) =
1

Zsgl(X)
exp

{
∑

m

α ·H(ym, X)

+
∑

m,n

β ·G(ym, yn, X)

}
, (3.3)

where H(ym, X) is a local state feature functions vector defined
on a local value ym, and G(ym, yn, X) is a relational edge feature
functions vector defined on the relational dependent values of ym
and yn. α and β are function weights vectors to be learned from
the training dataset. Zsgl(X) is a normalization factor defined

as

Zsgl(X) =

∫

y

exp

{
∑

m

α ·H(ym, X)

+
∑

m,n

β ·G(ym, yn, X)

}
dy. (3.4)

The goal for relational recommendation is to find a vector of
predictions Y for this user, which can maximize the joint con-

ditional probabilistic distribution of p(Y |X). The feature func-
tions are defined in the quadratic form as:

ht1(ym, X) = −(ym − xm,t1)
2, (3.5)

gt2(ym, yn, X) = −1

2
Mm,n,t2(ym − yn)

2. (3.6)

In the equations, t1 is state feature function index ranging from

1 to T1 and t2 is edge feature function index ranging from 1 to T2.
Here, xm,t1 is observed features on item im, which can be the av-

erage rating of im; Mm,n,t2 is a relational feature measure, which

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 40

can be the similarity between item im and item in. If we use
these two features as an example, it is not difficult to conclude

that p(Y |X) will be high if predictions Y fit the following con-
ditions: (1) predictions on item im is close to the average rating

of item im; and (2) similar items receive similar ratings predic-
tions. Therefore, relational dependency within predictions for a
particular user is described in single-scale CCRF model.

3.3.3 Multi-scale Continuous Conditional Random Fields

Fusion Approach

Single-scale CCRF cannot model multiple users, because there

is only single value for each item, though conditioned relational
dependency within predictions is modeled on different items. In

this case, all users will be treated the same, which is not rea-
sonable. Besides, what we need to do is not only distinguishing
prediction strategies of different users, but also modeling the

relational dependency within them. In relational recommenda-
tion, various relationships (trust information, similarity infor-

mation, etc) among users are needed to be modeled. Therefore,
in this work, we extend CCRF from single-scale to multi-scale

to form a novel model and apply it as a framework in relational
recommendations to solve aforementioned limitation.

Figure 3.3 gives the probabilistic graph of MCCRF. In this
graph, label space of Y has been extended from single-scale to
multi-scale with yl,m denoting prediction on item im by user ul.

Different scales of Y are drawn in different layers which denote
predictions of multiple users. For example, (y11, y12, y13, y14, y15)

is the rating predictions for user u1, and (y21, y22, y23, y24, y25)
is for user u2. We still use actual line to denote the relational

dependency of predictions Y in the model. In MCCRF, re-
lational dependency exists not only within predictions of the
same user (layer), but also within predictions among different

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 41

Figure 3.3: Probabilistic graph of multi-scale continuous conditional random
fields

users (layers). For example, the prediction of y13, has depen-
dent relationship with {y11, y12, y14, y15, y23}. This example also
shows how neighbor(y13) (the five dependent nodes) is defined

in MCCRF.
In this model, the joint conditional probability density func-

tion is defined as

p(Y |X) =
1

Zmul(X)
exp

{
∑

l

∑

m

α ·H(yl,m, X)

+
∑

l

∑

m,n

β ·G(yl,m, yl,n, X)

+
∑

m

∑

l,j

γ · R(yl,m, yj,m, X)



 , (3.7)

where l and j denote different users; m and n denote differ-

ent items. H(yl,m, X) is a local state feature functions vector

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 42

defined on local value yl,m; G(yl,m, yj,n, X) is a relational edge
feature functions vector defined on relational dependent values

within the same layer; R(yl,m, yj,m, X) is a relational edge feature
functions vector defined on relational dependent values across

different layers. {α, β, γ} is feature function weights vectors to
be learned from training data. Zmul(X) is the normalization
factor defined as

Zmul(X) =

∫

y

exp

{
∑

l

∑

m

α ·H(yl,m, X)

+
∑

l

∑

m,n

β ·G(yl,m, yl,n, X)

+
∑

m

∑

l,j

γ · R(yl,m, yj,m, X)



 dy. (3.8)

The task for relational recommendations under this framework
is to find the predictions Y that can maximize the joint proba-

bilistic distributions p(Y |X). Feature functions are still defined
in the quadratic form as:

ht1(yl,m, X) = −(yl,m − xl,m,t1)
2, (3.9)

gt2(yl,m, yl,n, X) = −1

2
Mm,n,t2(yl,m − yl,n)

2, (3.10)

rt3(yl,m, yj,m, X) = −1

2
Ul,j,t3(yl,m − yj,m)2. (3.11)

Here, xl,m,t1 is observed features of im or ul, which can be the
average rating of ul; Mm,n,t2 is a measure of relational feature in

the same layer which can be the similarity of im and in; Ul,j,t3 is
a measure of relational feature across different layers which can
be the trust relation of ul and uj (e.g. the value of Ul,j,t3 is 1

of ul trust uj and is 0 of not). Under this definition of features
as an example, it is not difficult to conclude that p(Y |X) will

be high if Y fits the following conditions: (1) predictions of a

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 43

user are close to average rating of the user; (2) predictions on
similar items for the same user are close; and (3) predictions of

trusted users on the same item are close. Therefore all kinds of
relational dependency within predictions have been modeled.

3.3.4 Features for Fusion

The feature selection in our work is experiment-based. In CRF,
features are divided into state features and edge features. Fol-
lowing are the features combined in our model. We will also

show the effectiveness of each feature in experimental section.
State Features (The three kinds of state features are only

provided in MovieLens dataset):

1. Average rating of an item within users of similar occupa-

tion.

2. Average rating of an item within users of similar age and

same gender.

3. Average rating of the same genre.

Edge Features (Trust is only contained in Epinions dataset

and the other two are in both datasets):

1. Trust information among users: if one user trusts another

user, the latter one will be treated as the former one’s neigh-
bor.

2. Similarity of users (please refer to [96] for definition): if the
similarity between two users is larger than a threshold, an

edge is connected between them denoting they are neigh-
bors of each other. Referring to [96], we set the value of
this threshold 0.4 for movieLens dataset and 0.2 for Epin-

ions dataset.

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 44

3. Similarity of items (please refer to [96] for definition): if the
similarity between two items is larger than a threshold, an

edge is connected between them denoting they are neigh-
bors of each other. Referring to [96], we set the value of

this threshold 0.4 for movieLens dataset and 0.2 for Epin-
ions dataset.

3.4 Algorithms

In this section, we introduce the details of learning and inference
processes of MCCRF.

3.4.1 Learning Process

Parameters learning is to obtain parameter {α, β, γ} which can

maximize the log-likelihood from training dataD = {(xk, yk)}Nk=0,
where x is observations and y is predictions. (xk, yk) is a training

data sample, the setup of which will be explained in the experi-
mental section. In this work, Gradient Ascent is chosen as opti-

mization method. For simple denotation, we use vector λ to de-
note feature function weights {α, β, γ}, and use vector F (yk, xk)

to denote the value of feature function vectors {H,G,R} given
yk and xk. Then, the log-likelihood can be written in

Lλ =
N∑

k=0

log pλ(yk|xk)

=

N∑

k

[λ · F (yk, xk) − logZλ(xk)] . (3.12)

As discussed in [119], to make the integration Z calculable, we
must have λ > 0. Thus it is substituted in algorithm by an-

other variable in order to employ Gradient Ascent optimization

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 45

method. Let λ = eλ
′

, where eλ
′

is set by eλ
′

i = eλ
′

i. Thus

Lλ = L′
λ′ =

N∑

k

[eλ
′ · F (yk, xk) − logZeλ′(xk)]. (3.13)

The gradient of the objective function is

∇L′
λ′ = eλ

′ ·
N∑

k=0

[
F (yk, xk) − Epλ′(Y |xk) (F (Y, xk))

]
. (3.14)

To calculate the expectation term is expensive. In this work,
we propose an approximate estimation method based on Markov

chain Monte Carlo. Particularly, we employ Gibbs sampling
technique as our method. The main idea is to first sample

a sequence of variables y following the distribution of current
p(y|x) (this distribution is defined in Eq. (3.7) and is decided
by current λ). Then, the feature function values of the sequence

data y are averaged as the expectation of feature function value
denoted as

Epλ(Y |xk)(F (Y |xk)) =
1

S
(

S∑

1

F (ỹ, xk)), (3.15)

where S is the length of the sequence.
One of the key points for Gibbs sampling is to calculate

p(yl,m|y−l,−m, X) in sampling the sequence, where y−l,−m denotes
all other predictions except yl,m. In our case,

P (yl,m|y−l,−m, X) =
P (yl,m, y−l,−m|X)∫

yl,m
P (yl,m, y−l,−m|X)dyl,m

. (3.16)

Under the definition of p(y|x) in Eq. (3.7), it is not difficult
to conclude that p(yl,m|y−l,−m, X) is a Gaussian distribution,

the mean and variance of which can be calculated by current
y−l,−m, x and λ. Thus the Gibbs sampling methods is feasible

in this estimation case by using existing Gaussian distribution

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 46

Algorithm 1 Learning Algorithm for MCCRF

Input: Training data D = {(xk, yk)}N
k=0,

U : number of updating iterations
S: number of sampling iterations
Algorithm:

for i = 0 to N -1 do
Load features
Initialize λ, y

end for
Gibbs sampling initialization
for i = 0 to U -1 do

for k = 0 to N -1 do
for j = 0 to S-1 do

for each user-item pair t in (xk, yk) do
Sample yt according to Eq. (3.7) and Eq. (3.16)
Update distributions of y for relevant user-item pairs

end for
end for

end for
Compute the expectation term according to Eq. (3.15)
Compute ∇λ′ according to Eq. (3.14)
Update λ′′ = λ′ + η ∗ ∇λ′

end for

Output: Parameter λ of MCCRF model.

sampling methods (in this work, we use DistLib1) as tools. Due

to space limitation, please refer to [7, 90] for more details about
the theory of Gibbs sampling. The detailed learning algorithm

is shown in Algorithm 1.

3.4.2 Inference Process

Inference is to search predictions that can maximize the joint

probability density function conditioned on observations, which
is formulated as

ŷ = arg max p(y|x).
1http://statdistlib.sourceforge.net

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 47

On this problem of MCCRF, exact estimation is hard to cal-
culate, thus we still consider approximate methods. Generally

speaking, Gibbs sampling can be directly used to estimate the
optimal solution, however, as discussed in [7], this method is in-

efficient because random samples can rarely approach the opti-
mal solution unless p(y|x) has large probability mass around the
solution. Thus, in this work, we employ Simulated Annealing.

Using this strategy, the joint conditioned probability function
of acceptable sampling data sequence can be controlled by the

temperature schema as

pi(ỹ|x) = p1/T (i)(ỹ|x), (3.17)

where T (i) is the temperature at time i. When temperature
falls, probability mass around the optimal solution will increase,

making the sampling process approach to the solution faster.
More details about simulated annealing in MCMC are shown

in [7, 39, 90].
Utilizing MCMC technique as inference method has another

advantage: it is easy to add constraints in the inference process
to improve the prediction results. In relational recommenda-
tions, users usually have rating history on some items, and these

ratings can serve as constraints in the inference to assist predic-
tions. In our proposed framework, the constraints can be added

into the model by fixing the rated scores in the inference process
when sampling. Referring to [60, 78, 87], such process will not

destroy the Markov property of the Conditional Random Fields
model, and the inference result will be the best one in candi-
dates that can fit the constraints. The detailed algorithm for

inference of MCCRF is shown in Algorithm 2.

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 48

Algorithm 2 Inference Algorithm for MCCRF
Input: Testing Data
Ti: time control sequence
S: number of sampling iterations
λ: function weights vector
Algorithm:

Load features, λ, constraints
Fix predictions of relevant user-item pairs
Initialize predictions
Gibbs sampling initialization
for T = T0 to Tmin according to Ti do

for i = 0 to S-1 do
for each user-item pair t do

if (prediction is not fixed by constraints) then
Sample yt according to Eq. (3.7), Eq. (3.16) and Eq. (3.17)
Calculate ∆F defined in Simulated Annealing
if (min(1, exp(−∆F/T)) > random[0, 1]) then

Accept yt

Update relevant distributions
end if

end if
end for

end for
end for

Output: Predictions of MCCRF.

3.5 Experiments

Our experiments are conducted on two real world datasets from

MovieLens and Epinions. We aim at verifying the following
issues:

1. How about the overall performance of our proposed ap-
proach comparing with traditional CF methods?

2. How does the relational dependency in predictions affect
the accuracy of recommendation results?

3. How do the features we combined from previous work affect

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 49

the recommendation results?

4. How about the computing complexity of MCCRF?

To Issue 1, we compare our approach with traditional CF
algorithms in Section 3.5.4; to Issues 2 and 3, additional ex-

periments are conducted to show the effectiveness of relational
dependency and combination of various features in Section 3.5.5
and Section 3.5.6. We give analysis of Issue 4 in Section 3.5.7.

Experiments setup is introduced in Section 3.5.1, Section 3.5.2
and Section 3.5.3. In the pre-processing, clustering algorithms

are employed, and the impact of cluster size is analyzed in Sec-
tion 3.5.8.

3.5.1 Datasets

In this work, we choose two datasets, MovieLens2 and Epinions3

in our experiments for relational recommendation. MovieLens
is a famous dataset in CF tasks. In this dataset, there are 1,682

movies and 943 users. Ratings are given on the scale of 1 to
5, with higher value indicating better satisfaction. There are

totally 100,000 rating records in this user-item matrix. The
density is

100, 000

1, 682 ∗ 943
= 6.3%.

For a single user, there are at least 20 ratings. Some of the
statistical results are shown in Table 3.1. Besides rating infor-
mation, the dataset also provides other content information. For

a movie item, content information includes released date, genre,
etc; and for a user, age, gender, occupation are provided. In our

approach, genre, occupation, age and gender are combined as
content features.

2http://www.cs.umn.edu/Research/GroupLens
3http://www.epinions.com/

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 50

Table 3.1: Statistics of MovieLens and Epinions
Statistics MovieLens Epinions

Min. Num. of Ratings/User 20 1
Min. Num. of Ratings/Item 1 1
Max. Num. of Ratings/User 737 1022
Max. Num. of Ratings/Item 583 2018
Avg. Num. of Ratings/User 106.04 16.55
Avg. Num. of Ratings/Item 59.45 4.76

Epinions dataset comes from a consumer review site Epin-
ion.com. In this system, users can give reviews (scale from 1 to

5) to products, being used for future customers as reference and
for companies to receive feedbacks or to recommend items. Dif-

ferent from traditional benchmark datasets, Epinions dataset
has social trust information among users besides basic rating

records. A user can build a trust/distrust list of other users for
personalized products ranking as well as indicating users’ repu-
tations in the whole social network. Thus it is a good dataset for

relational recommendation. The whole dataset contains 40,163
users who rated a total number of 139,529 different items at

least once, writing 664,824 reviews. The density is

664, 824

40, 163 ∗ 139, 529
= 0.01186%.

There are totally 487, 183 trust information records in our dataset.
The density of trust relationship is

487, 183

2 ∗ C2
40,163

= 0.0302%.

Other statistics are summarized in Table 3.1.
In both datasets, we randomly group users into four groups,

with three groups as training, and the rest as testing. To observe
the performances when active users have different number of

ratings as history, experiments are conducted by selecting 5,

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 51

10 and 15 as rating history for each active user respectively in
MovieLens and 2, 5, and 10 in Epinions. We name them Given2,

Given5, Given10, and Given15.

3.5.2 Data Sample Building

In this section, we introduce how we build probabilistic graphs

on the two datasets. A probabilistic graph represents a data
sample (xk, yk) in dataset D = (xk, yk)

N
k=1. For MovieLens,

since it is small in size, all users and items can be contained

in one probabilistic graph. For Epinions, the size is large. For
this problem in memory-based CF, Xue et al. [163] proposed

a cluster-based method as a solution. By clustering users into
small groups, non-similar users are removed in predicting a par-

ticular user’s evaluations. Thus not only the scalable problem
is solved, the accuracy can also be improved. In this work, we
employ similar ideas in our approach. Both users and items are

clustered into sub-groups, and a probabilistic graph is built on
one group of users and one group of items. Referring to [163],

we employ K-means algorithm as our clustering algorithm. K
is the number of clusters, which is manually defined. In this

algorithm, we first randomly select K nodes (users/items) as
centroid. All other nodes are assigned into a cluster whose cen-

troid is closest to current node. During iteration processes, the
centroid of each cluster is re-calculated based on current nodes
in the cluster, and then other nodes are re-assigned to adapt the

new centroid configuration. In each iteration, the node which
has the smallest average distance to other nodes are selected

as centroid. Similar to [163], we employ PCC to measure the

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 52

distance between two nodes. For users, it is defined as

Sim(a, u) =

∑

i∈I(a)∩I(u)
(ra,i − ra)(ru,i − ru)

√ ∑

i∈I(a)∩I(u)
(ra,i − ra)

2
√ ∑

i∈I(a)∩I(u)
(ru,i − ru)

2
,(3.18)

where a and u denote two users. I(a) and I(u) are the items

they have rated. ra,i is the rating of item i by user a. ra is
the average rating of user a. For items, the definition is similar.

Due to space limitation, please refer [96] for the details of the
definition. In Section 3.5.8, we will give analysis on the impact

of cluster size K in this task.

3.5.3 Metrics

We use Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) as our evaluation metrics. MAE is defined as

MAE =

∑
|Ru,i − R̃u,i|

N
, (3.19)

where R̃u,i is the predicted ratings of item i by user u, Ru,i is the
ground truth, and N is the total number of testing predictions.

RMSE is defined as

RMSE =

√∑
(Ru,i − R̃u,i)2

N
. (3.20)

In both metrics, lower value indicates higher accuracy.

3.5.4 Overall Performance

To compare our approach with traditional methods, we choose
two algorithms (one memory-based and one model-based) as

baselines. In memory-based methods, user-based PCC [17] and

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 53

Table 3.2: Performance in MovieLens dataset

Methods
MAE RMSE

Given5 Given10 Given15 Given5 Given10 Given15

EPCC 0.835 0.830 0.815 1.065 1.059 1.033

AM 0.827 0.819 0.816 1.041 1.031 1.025

Fusion 0.815 0.806 0.805 1.029 1.024 1.022

EMDP 0.811 0.804 0.801 1.036 1.019 1.020

MCCRF 0.784 0.781 0.778 0.995 0.994 0.988

Table 3.3: Performance in Epinions dataset

Methods
MAE RMSE

Given2 Given5 Given10 Given2 Given5 Given10

EPCC 0.887 0.867 0.858 1.136 1.105 1.092

AM 0.893 0.885 0.863 1.132 1.131 1.101

Fusion 0.885 0.860 0.853 1.132 1.092 1.101

EMDP 0.885 0.861 0.857 1.131 1.094 1.091

MCCRF 0.871 0.845 0.837 1.115 1.078 1.067

item-based PCC [130] are widely used. In our baseline, following

the idea in [96] which improves the accuracy, we linearly com-
bine these two methods, denoted as EPCC. For model-based

methods, generative models are respective. Specifically, Aspect
Model (AM) [67] is chosen as baseline. Since our approach be-

longs to memory-based methods, we choose two state-of-the-art
memory-based methods, Similarity Fusion (Fusion) [157] and
EMDP [96], for comparison. As stated before, these methods

tried to solve similar problems with our approach, but our model
have more advantages for solving the error propagation problem.

Table 3.2 and Table 3.3 shows the overall performance of dif-
ferent methods on MovieLens and Epinions, respectively. Lower

MAE and RMSE values indicate better accuracy. On both
datasets, we can conclude that MCCRF outperforms traditional

and state-of-the-art algorithms. We summarize the improve-
ments from two factors: relational dependency within predic-
tions and combination of various features.

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 54

3.5.5 Effectiveness of Relational Dependency

To evaluate the effectiveness of relational dependency in predic-

tions, we conduct experiments with only basic features (CRF-B)
of user/item similarities. This means we use the same informa-

tion comparing with previous work, and the main difference of
our approach is that we add relational dependency in predic-

tions. The two state-of-the-art memory-based methods, Fusion
method and EMDP method, are chosen for comparisons. Fig-

ure 3.4 and Figure 3.5 show the experimental results on the two
datasets.

From these two figures we can conclude that relational depen-

dency within predictions can improve recommendation results.
This is because predictions of user-item pairs can help each other

without error propagation. As the data is very sparse in real
recommendation systems, utilizing relations in social network

sufficiently can improve the accuracy.

3.5.6 Effectiveness of Various Features

To evaluate the effectiveness of various features, we conduct
experiments by adding features separately to basic features of

user/item similarity. In MovieLens, we conduct experiments
by adding occupation features (CRF-BO), age and gender fea-

tures (CRF-BA), and genre features (CRF-BG). We compare
the results with only basic features (CRF-B) and all features (CRF-

All). In Epinions, we compare models with (CRF-T) and with-
out (CRF-B) trust information. Figure 3.6 and Figure 3.7 show

the results in the two datasets.
We can observe that each feature we combined (CRF-BO,

CRF-BA, CRF-BG, CRF-T) can improve the prediction accu-

racy comparing to CRF-B. The combination of all features (CRF-
ALL, CRF-T) can outperform models with single additional fea-

ture.

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 55

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

	�
��� 	�
���� 	�
����

�
�

������ ���� �����

(a) MAE

����

�����

����

!����

!���

!��!�

!��!

!��"�

!��"

!��#�

!��#

!��$�

%&'() %&'()!� %&'()!

*+
,-

./0&1) 2345 67.89

(b) RMSE

Figure 3.4: Effectiveness verification of the dependency features in MovieLens

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 56

:;<=

:;<>

:;<?

:;<@

:;<A

:;<<

:;<B

CDEFGH CDEFG? CDEFGI:

JK
L

MNODPG QRST UVMWX

(a) MAE

YZ[\

YZ[]

YZ[^

YZ[_

YZY

YZYY

YZY`

YZYa

YZYb

cdefg` cdefgh cdefgY[

ij
kl

mnodpg qrst uvmwx

(b) RMSE

Figure 3.5: Effectiveness verification of the dependency features in Epinions

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 57

yz{{y

yz{{|

yz{}y

yz{}|

yz{~y

yz{~|

�����| ������y ������|

�
�
�

����� ������ ������ ������ �������

(a) MAE in MovieLens

�����

�����

�����

�����

�����

�����

�����

�����

�����

������ ������� �������

�
�
�
�

 ¡¢£¤ ¡¢£¤¥ ¡¢£¤� ¡¢£¤¦ ¡¢£¥§§

(b) RMSE in MovieLens

Figure 3.6: Effectiveness verification of local features

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 58

¨©ª«

¨©ª¬

¨©ª­

¨©ª®

¨©ª¯

¨©ª°

¨©ª±

¨©ªª

¨©ª²

³´µ¶·¬ ³´µ¶·¯ ³´µ¶·«¨

¸
¹
º

»¼½¾¿ »¼½¾À

(a) MAE in Epinions

ÁÂÃÄ

ÁÂÃÅ

ÁÂÃÆ

ÁÂÃÇ

ÁÂÃÈ

ÁÂÃÉ

ÁÂÃÊ

ÁÂÁÃ

ÁÂÁÁ

ÁÂÁË

ÁÂÁÄ

ÁÂÁÅ

ÌÍÎÏÐË ÌÍÎÏÐÆ ÌÍÎÏÐÁÃ

Ñ
Ò
Ó
Ô

ÕÖ×ØÙ ÕÖ×ØÚ

(b) RMSE in Epinions

Figure 3.7: Effectiveness verification of relational features

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 59

3.5.7 Computing Complexity Analysis

The main computation in our model lies in the sampling pro-

cess in both training and inferencing. The number of sampling
times is the key factor. It is determined by the number of sam-

pling iterations at each temperature and the temperature control
schema. Figure 3.8 shows the results of different iterations in the

initialized temperature on two datasets. We can observe after
four iterations, the change is not obvious. Figure 3.9 and Fig-

ure 3.10 show the results in different temperatures. According
to these results, we set iteration number be 4 and temperature
schema from 1.0 to 0.2 with interval of 0.2. Suppose there are

m items and n users, the sampling times is O(m ∗ n). Another
computation comes from the the updating process of Gaussian

distributions of user-item pairs. This is decided by the neighbor
size of current user-item pair. The neighbor size s can be con-

trolled by adjusting the threshold mentioned in Section 3.3.4.
The updating times for each sample of user-item pair is O(s).

In our experiments, the testing hardware environment is on

two Windows workstations with four dual-core 2.5GHz CPU
and 8GB physical memory each. The approximate total time

for inference in Epinions dataset is 9 hours.

3.5.8 Impact of Cluster Size

As discussed before, we employ clustering techniques as pre-

processing. We conduct experiments on different settings to see
the impact of cluster size. Figure 3.11 shows the experimental

results (x-axis: userSize*itemSize). The accuracy increases first
and then falls down. This is because at the beginning, there
are not enough reference resources. But as the size of a cluster

enlarges, non-relevant users/items are included, which influences
the accuracy. In our experiments, items are clustered into 50

groups and users are clustered into 20 groups.

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 60

� � � � � � � � � �

����

����

����

����

����

����

����

����

����

����

����

����

���

����

���)*�
	�+&
'��

�
�
�
+,
+�
�
�
�

(a) MovieLens

� 	 � �
 � � � �

���

���

���

���

���

���

�

���

���

���

��	

��	

���

����

����)��#�+&�(��

�
�
�
+,
+�
�
�
�

(b) Epinions

Figure 3.8: Result samples in different iteration times

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 61

� ��� ��� ��� ��� ��� ��� ��� ��� ���

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

���

&�'(�)*�!)�

�
�
�

(a) MAE in MovieLens

� ��� ��� ��� ��� ��� ��� ��� ��� ���

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

����

&�'(�)*�!)�

�
�
�
�

(b) RMSE in MovieLens

Figure 3.9: Result samples in different temperatures in MovieLens

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 62

� ��� ��� ��� ��� ��
 ��� ��� ��	 ���

���	�

���	

�����

����

�����

����

���
�

���

�����

����

�����

���

&�(*��)����

�
�
�

(a) MAE in Epinions

� ��� ��� ��� ��� ��
 ��� ��� ��	 ���

�����

�����

���	�

�����

�����

���
�

�����

�����

�����

�����

�����

����

&�(*��)����

�
�
�
�

(b) RMSE in Epinions

Figure 3.10: Result samples in different temperatures in Epinions

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 63

ÛÜÝÛ

ÛÜÝÞ

ÛÜÝß

ÛÜÝà

ÛÜÝÝ

ÛÜáÛ

ÛÜáÞ

âÛãäÛ âåãßÛ ÞÛãåÛ ÞåãàÛ äÛãæÛ äåãÝÛ ßÛãáÛ

ç
è
é

êëìíîÞ êëìíîå êëìíîâÛ

(a) MAE

ïðñò

ïðñó

ïðñô

ïðñõ

ïðïñ

ïðïò

ïðïó

ïðïô

ïñö÷ñ ïøöóñ òñöøñ òøöôñ ÷ñöùñ òøöõñ óñöúñ

û
ü
ý
þ

ÿ
���ò ÿ
���ø ÿ
���ïñ

(b) RMSE

Figure 3.11: Results for different cluster sizes in Epinions

CHAPTER 3. FUSION FOR SINGLE MEASURE AND DIMENSION 64

3.6 Summary

In this work, we have investigated relational fusion technique of
multiple features. According to limitations of traditional fusion

algorithms, we extend single-scale continuous CRF in theory and
propose a new model multi-scale continuous CRF as an effective
approach for relational fusion. We also propose MCMC-based

methods for training and inference of the model. Experimental
results on real world datasets, MovieLens and Epinions, have

demonstrated: (1) Markov property in our approach is an effec-
tive technique to model the relational dependency within pre-

dictions. In sparse data, utilizing this kind of dependency can
improve recommendation results. (2) The model is effective to
combine various features.

Chapter 4

Effective Fusion of Regression
and Ranking for Multi-measure
Adaption

4.1 Limitation of Single-measure Adaption

Collaborative filtering (CF) are mainly divided into regression-
oriented and ranking-oriented algorithms. Regression CF is a

classical research topic. The goal is to generalize an estima-
tion function to predict the ratings of each item for each user.

Thus the rating information is modeled and the performance
is evaluated on the closeness of predicted ratings and the user-
given ratings. The main metrics used include Mean Absolute

Error (MAE) and Root Mean Squared Error (RMSE). In ap-
plications, items with higher predicted ratings will be recom-

mended to users. Ranking-oriented CF is proposed recently [91].
The goal is to predict the ranking relation of items for each user

directly, the rating prediction is not necessary [91]. Thus the
ranking relation information is directly modeled and the per-

formance is evaluated on the ranking order of predicted items.
The main metric used is the Normalized Discount Cumulated
Gain (NDCG). Currently, each kind of algorithms is further

divided into model-based [128, 139] and memory-based algo-

65

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 66

Figure 4.1: Examples to show the limitations of single-measure collaborative
filtering algorithms

rithms [17, 91].
Through the decades, the collaborative filtering techniques

have been explored deeply and have achieved significant im-
provement; however, regression-oriented and ranking-oriented

algorithms are separately investigated, which has the following
limitations: (1) over-bias limitation in single criterion and (2)

information not fully utilized for the data sparsity problem.
Over-bias limitation in single measure. The over-bias

here means that in some cases, regression-oriented algorithms

cannot adapt to ranking and ranking-oriented algorithms cannot
adapt to regression. Thus the performance will be influenced

negatively. Take Fig. 4.1 (a) as an example. There are totally
five items (i1 to i5), and one user uj. i1 and i4 (gray color) are

users’ rating history and i2, i3 and i5 (white color) are the items
for recommendation. The first line shows the ground truth, the
second line shows the prediction of a regression algorithm, and

the third line shows the prediction of a ranking algorithm. For
regression algorithms, although the predictions are close to the

ground truth, it cannot guarantee the order of items. In this
example, it changes the rank order of i2 and i3. In this case,

if only recommending one item, the top-ranked item i3 will be
ignored. For ranking algorithms, it keeps the ranking order of

the three items, but the predicted score may ignore the rating

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 67

information. In this example, the results are probabilities in
the range of [0, 1]. In this case, if an user requests three items,

i5 may have the chance to be recommended together with i2
and i3. However, as indicated from the regression, i5 is a very

low-rated item and should not be recommended. Thus ranking
algorithms fail to identify these items in recommendation. From
the above analysis, the over-bias in single criterion will limit the

performance of recommendation in real applications.
Information not fully utilized for data sparse prob-

lem. In the application of recommender system, data sparsity
is a classical problem [96]. In the dataset of MovieLens1, the

density of existing ratings in the user-item matrix is 6.3%, and
in Netflix2, the density is 1.18%. In many cases, the data is too

sparse for accurate recommendation. If the rating information
and ranking information are separately modeled, relevant infor-
mation will not be fully utilized. Regression algorithms ignore

the ranking information and ranking algorithms ignore the rat-
ing information. But both kinds of information are very useful.

Take an example shown Fig. 4.1 (b), where the previous user
uj has only two ratings. For regression algorithms, user u1 will

be seen as more similar to user uj because the ratings of u1 are
closer to those of uj than u2 to uj. However, u2’s rating for i3 is
closer to the ground truth in Fig. 4.1 (a). The reason is that in

the training of regression algorithms, it fails to consider that u1

changes the order of i1 and i4. If there is penalty for this, the

performance would be improved. Thus the ranking information
would be useful. For ranking algorithms, in this example, it has

no information to predict the ranking of i2 and i5. However,
the average rating information of i2 and i5, on the assumption

that it is available, can be considered to help in ranking predica-
tion. Thus rating information would be also useful. Therefore,

1http://www.cs.umn.edu/Research/GroupLens
2http://www.netflixprize.com

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 68

if such information is not fully utilized, the algorithms will have
limitations in solving the data sparsity problem.

4.2 Fusion Tasks for Multi-measure Adaption

From the above analysis, to solve the limitations, it is natural
to combine the regression and ranking in collaborative filtering.

Ideally, a good algorithm should perform well in both regression
and ranking.

Intuitively, the combination is feasible. The objectives of
two kinds of algorithms are mutually inclusive and there is no

conflict for the combination in each criterion. Moreover, one ob-
jective function can also acts as the regularization for the other
objective function. Thus they are expected to help each other

and the combination is expected to enhance the performance.
In other domains such as documents/advertisements search

application, previous work [133] has also demonstrated that
the combination can enhance both performance. However, the

methods in [133] cannot be utilized directly in CF because their
methods are based on effective content features under the Sup-
port Vector Machine framework. In CF, content features are

difficult to obtain for users with only a few ratings, and the
prediction is based on the common behavior patterns of users.

Thus new combination methods should be explored to solve this
problem in CF. To the best of our knowledge, our work is the

first attempt to combine the regression and ranking algorithms
in CF applications.

Three questions arise in the investigation of combining regres-
sion and ranking in CF: 1) How to combine regression and rank-
ing in CF? 2) Whether the combination will enhance the perfor-

mance? 3) To what extent does the combination enhance? To
answer these questions, we propose various combination meth-

ods in both model-based and memory-based CF algorithms.

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 69

Through experimental verification on two real-world datasets,
MovieLens and Netflix, we demonstrate that the combinations

are effective in improving the performance.

4.3 A Brief Review for Regression and Rank-

ing Adaption in Recommender Systems

Regression-oriented CF and metrics. Regression-oriented
recommendations are classical tasks in the past years. The goal

is to predict the ratings as close as possible to the real ratings
from the users. Then the items with high predicted ratings are

selected as recommended results. Thus the metric is to mainly
measure the closeness of the predicted and original ratings. Typ-
ical metrics include MAE and RMSE. MAE is defined as

MAE =

∑ |Ru,i − R̃u,i|
N

, (4.1)

where R̃u,i is the predicted ratings of item i by user u, Ru,i is the

ground truth, and N is the total number of testing predictions.
RMSE is defined as

RMSE =

√∑
(Ru,i − R̃u,i)2

N
. (4.2)

In both metrics, lower value indicates higher accuracy. Since
the problem has a long history, a large number of algorithms

are developed for it. Some typical and competitive algorithms
include [17, 65, 76, 77, 128, 158, 166, 170].

Ranking-oriented CF and metrics. Ranking-oriented
recommendations are recently proposed tasks. The goal is to
directly model and predict the ranking of unrated items without

the intermediate step of rating predictions [91]. Thus the metric
is to measure the closeness predicted ranking with the ground

truth ranking. Typical metric is the NDCG value. Given the

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 70

rank of recommended results, NDCG at position P is defined
as (referring to [91])

NDCGP−quality =
1

U

U∑

u

Zu

P∑

p=1

2ru,p − 1

log(1 + p)
, (4.3)

where U is the number of users, Zu is a normalization factor

of user u, and ru,p is the ground truth rating score by user u
on the item at position p. For NDCG, a larger value indicates

the higher accuracy. Comparing to regression algorithms, there
is much less ranking algorithms. Some typical and competitive

algorithms include [91, 92, 139].
Selected Methods for Combination. As discussed in

the introduction section, both regression and ranking algorithms

have limitations, we investigate the combination problem. Specif-
ically, we propose combination methods for both model-based

and memory-based algorithms. In choosing the fundamental
components to combine with, we select typical and competi-

tive algorithms in previous work. Without loss of generality, for
model-based algorithms, we select probabilistic matrix factor-

ization (PMF) [128] as regression method and list-wise matrix
factorization (LMF) [139] as ranking method; and for memory-
based algorithms, we select user-based Pearson correlation coef-

ficient (PCC) [17] as regression method and EigenRank [91] as
ranking method. All of them have been thoughtfully tested in

previous work.

4.4 Effective Fusion of Regression and Rank-

ing in Model-based Collaborative Filter-

ing

In this section, we will introduce the combination of regres-
sion and ranking in model-based CF methods. The two com-

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 71

Figure 4.2: Probabilistic graph of probabilistic matrix factorization and list-
wise matrix factorization

petitive algorithms selected are probabilistic matrix factoriza-

tion (PMF) [128], which is regression-oriented; and list-wise ma-
trix factorization (LMF) [139], which is ranking-oriented. Since

both models share the same probabilistic graph with differ-
ent objective functions (loss functions), in this section, we will
first introduce the preliminary knowledge about the probabilistic

graph and notations which will be followed by separate introduc-
tion of the two algorithms. Then we discuss how we combine

them together and finally give the complexity analysis.

4.4.1 Preliminary Knowledge

Suppose there are N users and M items. Fig. 4.2 shows the

probabilistic graph of PMF and LMF. For each user and item,
there is an l-dimensional latent feature vector. The feature vec-
tors for users are denoted as U ∈ Rl∗N and the feature vectors

for items are denoted as V ∈ Rl∗M . Let Rij denote the rating of
item j given by user i. In this graph, the distribution of Rij is

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 72

defined as [128]

P (R|U, V, σ2) =
N∏

i=1

M∏

j=1

[N(Rij|g(UT
i Vj), σ

2)]Iij , (4.4)

whereN(x|u, σ2) is a Gaussian distribution with the mean u and
variance σ2. g(x) is the logistic function g(x) = 1/(1+exp(−x))
to convert UT

i Vj to [0, 1] scale. The real ratings in applications
are usually a positive integer (e.g., from 1 to 5). In this work,

without loss of generality, we map the ratings from 1 to K to
[0, 1] by using f(x) = (x− 1)/(K− 1) refering to [128]. Iij is an

indicator to describe whether user i has rated item j. The zero-
mean spherical Gaussian priors are further utilized to U and V
as

P (U |σ2
U) =

N∏

i=1

N(Ui|0, σ2
UI), (4.5)

P (V |σ2
U) =

M∏

j=1

N(Vj|0, σ2
V I). (4.6)

4.4.2 Regression-adapted Component in Model-based
Collaborative Filtering

We choose PMF as the regression-adapted component in model-
based collaborative filtering. The objective function of PMF is

to find U, V by minimizing the summation of regression loss and
regularization as

arg min
U,V

Lossreg(U, V) + Regularization(U, V), (4.7)

where the loss function is defined as

Lossreg(U, V) =
1

2

N∑

i=1

M∑

j=1

Iij(Rij − g(UT
i Vj))

2, (4.8)

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 73

and the regularization term is defined as

Regularization(U, V) =
λ

2
(‖U‖2

F + ‖V ‖2
F). (4.9)

From the definition, it is observed that the loss function
is to minimize the mean square error. This is a regression-

oriented loss function. The range is [0,+∞]. The optimal
value is 0. The regularizations are Frobenius norms for both

U and V . Under the assumption in this probabilistic graphi-
cal model, the objective function has also another interpreta-

tion, which is equal to maximizing the posterior log-likelyhood
of P (U, V |R, σ2

U , σ
2
V , σ

2) [128].

4.4.3 Ranking-adapted Component in Model-based Col-
laborative Filtering

We choose LMF as the ranking-adapted component in model-
based collaborative filtering. The objective function of LMF is

to find U, V that can optimize

arg min
U,V

Lossrank(U, V) + Regularization(U, V), (4.10)

where the loss function is defined by Kullback-Leibler (KL) di-

vergence [79] as

Lossrank(U, V) =
N∑

i=1

M∑

j=1

Pli(Rij) log(
Pli(Rij)

(g(UT
i Vj))

), (4.11)

and the regularization term is defined the same as PMF

above. Here the Pli(Ri,j) is the top one probability given user
i’s ranking list li (e.g., with K items), which is defined in the
list-wise learning to rank framework [22, 93]. The definition is

Pli(Rij) =
exp(Rij)∑K
k=1 exp(Rik)

. (4.12)

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 74

If the rating of item j in the list li is larger, from the definition,
there will be larger chance for j to rank higher among the K

items in the list.
Different from that in PMF, the loss function in LMF is to

directly optimize the ranking on the framework of list-wise learn-
ing to rank. The intuitive meaning is the Kullback-Leibler diver-
gence of probability derived from original and predicted ratings.

The range is [0,+∞]. The optimization goal is 0. Comparing to
traditional pair-wise learning to rank, the advantage of list-wise

is to reduce much calculation complexity while retaining the key
idea of rank modeling.

4.4.4 Effective Fusion Approach

From the above analysis, we can see that both objective func-

tions contain two parts: loss function and regularization. Also, a
good property is that their ranges are the same and the optimal

value is 0 for both. Thus for the combination, it is natural to lin-
early combine the loss function while sharing the same regular-

ization. In the combined regression and ranking in model-based
CF, we propose the following combined objective function

min
U,V

ζ = min
U,V

α1LossReg(U, V) + α2LossRank(U, V)

+Regularization(U, V) (4.13)

= min
U,V

α1 ∗
1

2

N∑

i=1

M∑

j=1

Iij(Rij − g(UT
i Vj))

2

+α2 ∗
N∑

i=1

M∑

j=1

Pli(Rij) log(
Pli(Rij)

Pli(g(U
T
i Vj))

)

+
λ

2
(‖U‖2 + ‖V ‖2).

When α1 = 1 and α2 = 0, the objective function is reduced to

PMF; when α1 = 0 and α2 = 1, the objective function is reduced

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 75

to LMF; when α1 > 0 and α2 > 0, the objective function is the
combined objective function. The two objective functions share

the same regularization term to avoid over-fitting problem.
In fact, for both single-criterion algorithms, the combination

can also be seen as adding another kind of regularization term
to the original model. For example, LossRank can be seen as a
regularization term for PMF model. While PMF optimize the

RMSE, it should simultaneously keep the right order. As dis-
cussed before, intuitively, LossRank has no conflict with LossReg.

In the same way, LossReg can be seen as a regularization term
for LMF model.

A local minimum of the combined objective function can be
calculated by gradient descent optimization. The gradient with

respect to U and V is

∂ζ

∂Vj
= α1

N∑

i=1

−Iij(Rij − g(UT
i Vj))g

′(UT
i Vj)Ui

+ α2

N∑

i=1

Iij
exp(g(UT

i Vj))∑M
k=1 Iik exp(g(UT

i Vj))
g′(UT

i Vj)Ui

− α2

N∑

i=1

Iij
exp(Rij)∑M

k=1 Iik exp(Rik)
g′(UT

i Vj)Ui

+ λVj (4.14)

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 76

Algorithm 3 Algorithm of Combined Regression and Ranking for model-
based CF
Inputs: Ratings of test user and users
Outputs: Predicted ratings for unrated user-item pairs

1: Read all the rating information
2: Initialize U and V randomly
3: Calculate current objective function value by Eq. (4.13)
4: Initialize update rate to 1
5: while iteration is not over do
6: Calculate the gradient according to Eq. (4.14) and Eq. (4.15)
7: Update U and V according to current rate
8: Update objective function value by Eq. (4.13)
9: Update rate

10: end while
11: Write U, V, and calculate predicted values

∂ζ

∂Ui
= α1

M∑

j=1

−Iij(Rij − g(UT
i Vj))g

′(UT
i Vj)Vj

+ α2

M∑

j=1

Iij
exp(g(UT

i Vj))∑M
k=1 Iik exp(g(UT

i Vj))
g′(UT

i Vj)Vj

− α2

M∑

j=1

Iij
exp(Rij)∑M

k=1 Iik exp(Rik)
g′(UT

i Vj)Vj

+ λUi (4.15)

Details of the algorithm are described in Algorithm 3.

4.4.5 Complexity Analysis

The main calculation of the combined algorithm comes from

the calculation of gradient of the objective function. In our
case, the complexity is O(ρR ∗ l), where the ρR is the number of

nonzero ratings in the user-item matrix. Since the data is very

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 77

sparse, ρR is extremely small comparing to the total size of user-
item matrix. Thus the computational time of the combination

method is linear with respect to the number of observations.
Therefore, the algorithm is efficient in large scale applications.

4.5 Effective Fusion of Regression and Rank-

ing in Memory-based Collaborative Fil-

tering

In this section, we will introduce the combination of regression
and ranking in memory-based CF methods. The two competi-

tive algorithms selected are user-based PCC
method [17], which is regression-oriented, and EigenRank [91],

which is ranking-oriented. In memory-based methods, the main
idea is to find similar users and make the prediction according

to these users. Thus the key problem becomes how to calculate
the similarity between users and how to predict the final rat-

ing/ranking. Regression-oriented algorithms utilize regression-
based similarity calculation while ranking-oriented algorithms
utilize ranking-oriented similarity calculation. We will first in-

troduce the two methods separately and then discuss how we
combine them together. Afterwards, we give the complexity

analysis.

4.5.1 Regression-adapted Component in Memory-based
Collaborative Filtering

We choose User-based PCC as the regression-adapted compo-
nent in memory-based collaborative filtering. User-based PCC
methods utilize Pearson Correlation Coefficient as similarity cal-

culation for finding similar users for current user. It is defined

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 78

as

Sim(a, u) = ∑
i∈I(a)∩I(u)(ra,i − ra)(ru,i − ru)√∑

i∈I(a)∩I(u)(ra,i − ra)2
√∑

i∈I(a)∩I(u)(ru,i − ru)2
,(4.16)

where a and u denote two users. I(a) and I(u) are the items

they have rated. ra,i is the rating of item i by user a. ra is the
average rating of user a.

PCC is regression-oriented and it balances different users’
evaluation standard. For example, some users are more likely to

give high ratings and some tend to give low ratings. The sim-
ilarity is based on the difference of values rather than absolute

values.
By using PCC similarity, we can find users with high simi-

larity to the current user as its neighborhood. Then, the rating

predictions are based on the following formula

f(u, i) = u +

∑
ua∈S(u) Sim(ua, u)(rua,i − ua)∑

ua∈S(u) Sim(ua, u)
, (4.17)

where S(u) is the neighborhood of the current user u, u is the
user’s average rating score.

4.5.2 Ranking-adapted Component in Memory-based
Collaborative Filtering

We choose EigenRank as the ranking-adapted component in
memory-based collaborative filtering. In EigenRank, Kendall

Rank Correlation Coefficient (KRCC) [100] is utilized as simi-
larity. Its definition is

Su,v = 1 −
4 ∗

∑
i,j∈Iu∩Iv I

−((ru,i − ru,j)(rv,i − rv,j))

|Iu ∩ Iv|(|Iu ∩ Iv| − 1)
, (4.18)

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 79

where I−(x) is an indicator function that equals to 1 if x < 0 and
equals to 0 otherwise. KRCC is a ranking-oriented similarity

that counts the number of the same pair-wise ranking between
two users.

To simplify the calculation for pairwise ranking, the predic-
tion of EigenRank model is based on random walk theory. A
probabilistic transition matrix P is defined as

pij = p(j|i) =
eψ(j,i)

∑
j∈S e

ψ(j,i)
, (4.19)

where ψ(i, j) is a preference function defined for each user u on
two arbitrary items i and j as

ψ(i, j) =

∑
v∈N i,j

u
su,v · (rv,i − rv,j)∑
v∈N i,j

u
su,v

. (4.20)

In this equation, N i,j
u is the set of u’s neighbors, and su,v is

KRCC similarity. A stationary distribution is employed to de-

cide the preference score of an item, which is defined as

π = π ∗ P, (4.21)

where π is the stationary distribution vector to decide the final

ranking order of all items.

4.5.3 Effective Fusion Approach

Different from model-based algorithms, which can linearly com-

bine the objective functions of regression and ranking, in memory-
based methods, usually there is no direct optimization goal.

Heuristic rules are commonly employed as an approximation.
Thus in the combination of memory-based methods, we con-
sider to directly combine the results of regression and ranking

algorithms for an effective achievement of the combination.
The challenge lies in that the results of regression and ranking

are usually not in the same scale, thus the result values are

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 80

Figure 4.3: Problem illustration in data conversion

incompatible for linearly combination. For example, user-based
PCC method returns a predicted rating for each item, which

is from 1 to 5; EigenRank method, on the other hand, returns
a stationary probability for each item, which is from 0 to 1.

Another problem is that we need to evaluate the methods from
both regression and ranking angles, thus the final prediction

should have the value of predicted ratings. Therefore, we need
to convert the result of EigenRank from the scale of [0, 1] to

[1, 5]. This is challenging because conversion from ranking to
regression is more difficult than regression score to ranking as
shown in previous work [47].

Some naive conversion methods can be applied intuitively.
For example, directly multiply the results by 5. However, this

can be problematic. Fig. 4.3 draws the distribution of exist-
ing ratings in MovieLens dataset (Left) and the distribution of

EigenRank results (Middle). It can be seen that most results of
EigenRank is around 0.001. Thus to multiply it by a constant

will not work. Another intuitive method is to first convert the
results using logistic function 1/(1.0 + exp(−cx)) and then to
multiply it by a constant. But from the Fig. 4.3 (Right), it is

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 81

>
>
>

>

>
>
>

>

Figure 4.4: Illustration of the sampling trick

observed that the two distributions are quite different. Ratings

follow Gaussian distribution while the converted scores follow
more like power-law distribution. Thus it is still difficult to con-
vert the value to a common rating distribution.

To solve this problem, we propose a sampling trick for the
conversion purpose. Notice the goal is to generate a “normal”

rating value for the EigenRank result, that has a reasonable
distribution. Thus in the sampling trick, as shown in Fig. 4.4,

we first sample M ratings r1, r2, ..., rM for unrated items of a
user according to the distribution of all ratings in the training
set. From Fig. 4.3 and many previous statistical work [96], the

ratings follows a Gaussian distribution. Thus in the sampling,
the mean and variance are learned from the training set. In the

experiments, we also consider a user’s average rating in evalu-
ating the mean. Secondly, we rank both the EigenRank results

and the sampled ratings in a decreasing order. Finally, we map
the EigenRank results to the sampled ratings according to the

order. In this way, the conversion guarantees that the results
follow a reasonable distribution while keeping the ranking result
from ranking-oriented algorithms.

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 82

Algorithm 4 Algorithm of Combined Regression and Ranking for memory-
based CF
Inputs: Ratings of test user and users
Outputs: Predicted ratings for unrated user-item pairs

1: Read all the rating information
2: Find neighborhood of each user by PCC
3: Find neighborhood of each user by KRCC
4: while for each user do
5: Calculate regression result according to Eq. (4.17)
6: Calculate ranking result according to Eq. (4.21)
7: Combine the two results according to Eq. (4.22)
8: end while
9: Write the predicted value

Once the conversion is ready, we can linearly combine the
results from regression-oriented and ranking-oriented algorithms

as
Ratecomb = αRatereg + (1 − α)Raterank. (4.22)

More details of the algorithm are shown in Algorithm 4.

4.5.4 Complexity Analysis

The main computation of our algorithm comes from two as-
pects: 1) similarity calculation; and 2) stationary distribution
calculation from EigenRank.

For the similarity calculation of two users, in both PCC and
KRCC, the complexity is O(k), where k is the number of com-

mon items between the users. But we need to compare all the
user pairs which is almost incomputable. In application, by

following the idea in [128], both users and items are divided
into small bins. This means it can find similar users in a limited
number of user groups instead of all the users for approximation.

Thus the complexity for finding similar users is O(C ∗ k ∗ N),
where C is constant and N is the number of users. It is linear

with respect to the number of users.

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 83

Table 4.1: Statistics of MovieLens and Netflix
Statistics MovieLens Netflix

Avg. Num. of Ratings/User 106.04 209.25
Avg. Num. of Ratings/Item 59.45 5654.50
Min. Num. of Ratings/User 20 1
Min. Num. of Ratings/Item 1 3
Max. Num. of Ratings/User 737 17653
Max. Num. of Ratings/Item 583 232944
Density of User/Item Matrix 6.3% 1.18%

For the stationary distribution, as shown in [91], the com-

plexity is O(M) (M is the number of items) by utilizing the
iterative power method. Therefore, the computation complex-

ity also scales linearly with respect to the number of items and
users.

4.6 Experiments

In this section, we will first introduce the datasets and relevant
experimental setup. The experiments are conducted for two

parts: combining regression and ranking in model-based algo-
rithms, and that in memory-based algorithms. In each part, we
are going to identify the following two issues: sensitivity anal-

ysis of combination parameters, and the overall performance in
both regression-oriented and ranking-oriented measures.

4.6.1 Experimental Setup

We choose two datasets, MovieLens and Netflix, for experimen-
tal verification. In MovieLens, there are 100,000 ratings for 1,682

movies from 943 users. In Netflix, the size is much larger. It
contains about 100,000,000 ratings from over 480,000 users for
17,770 movies. In both datasets, ratings are given as an integer

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 84

Table 4.2: Performance of model-based combination in MovieLens

Methods
Given5

MAE RMSE NDCG1 NDCG3 NDCG5

PMF 0.870 1.153 0.640 0.663 0.673

LMF 0.967 1.350 0.692 0.687 0.701

RegPModel 0.845 1.081 0.672 0.676 0.692

RankPModel 0.863 1.132 0.681 0.689 0.702

Methods
Given10

MAE RMSE NDCG1 NDCG3 NDCG5

PMF 0.825 1.067 0.691 0.700 0.719

LMF 0.953 1.301 0.679 0.708 0.732

RegPModel 0.809 1.003 0.703 0.708 0.727

RankPModel 0.813 1.028 0.705 0.719 0.736

Methods
Given15

MAE RMSE NDCG1 NDCG3 NDCG5

PMF 0.780 0.97 0.693 0.730 0.753

LMF 0.946 1.290 0.734 0.748 0.763

RegPModel 0.781 0.960 0.742 0.750 0.768

RankPModel 0.786 0.964 0.745 0.752 0.765

value on the scale of 1 to 5, with a higher value indicating better
satisfaction. More statistics are shown in Table 1.

In MovieLens, referring to the experimental setup in [163],
we randomly choose 600 users for training and the remaining
343 users for testing. In Netflix, following the idea of [128], we

randomly divide the users and items into small bins with around
1,000 users and 3,000 items each. The average is calculated as

the final result. To observe the performance when the active
users have different number of ratings as the history, experi-

ments are conducted by selecting 5, 10 and 15 ratings as the
rating history for each active user respectively in both datasets.
We name them Given5, Given10, Given15. Users whose rating

number is less than the configuration are not included in the
evaluation. Before experiments, a pre-processing is conducted

to rank all the ratings of a user in an ascending order according
to the rating time stamp.

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 85

Table 4.3: Performance of model-based combination in Netflix

Methods
Given5

MAE RMSE NDCG1 NDCG3 NDCG5

PMF 0.820 1.069 0.694 0.691 0.691

LMF 0.979 1.404 0.713 0.702 0.715

RegPModel 0.819 1.062 0.697 0.685 0.696

RankPModel 0.828 1.063 0.721 0.713 0.723

Methods
Given10

MAE RMSE NDCG1 NDCG3 NDCG5

PMF 0.819 1.061 0.709 0.720 0.733

LMF 0.944 1.444 0.712 0.721 0.731

RegPModel 0.781 0.979 0.724 0.716 0.727

RankPModel 0.801 1.013 0.732 0.719 0.735

Methods
Given15

MAE RMSE NDCG1 NDCG3 NDCG5

PMF 0.769 0.947 0.749 0.742 0.763

LMF 0.918 1.292 0.722 0.743 0.764

RegPModel 0.757 0.922 0.747 0.750 0.722

RankPModel 0.762 0.931 0.750 0.755 0.775

For evaluation of the combination, we choose measures from
both regression and ranking. The regression-oriented metrics we

choose is MAE and RMSE, and the ranking-oriented metrics we
choose is NDCG. The detailed definitions of these metrics have
been discussed in previous section. For NDCG, we choose po-

sitions at 1, 3, and 5 (namely NDCG1, NDCG3, and NDCG5),
which is practical in applications.

4.6.2 Performance in Model-based Fusion

Convergence

In model-based methods, the main optimization approach is gra-

dient descent approach. Thus we analyze the convergence of
the optimization. We show the convergence by the evaluation

performance in each iteration in Fig. 4.5 (a) and (b) show the
MAE and RMSE evaluation for MovienLens (a) and Netflix (b)

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 86

Table 4.4: Performance of memory-based combination in MovieLens

Methods
Given5

MAE RMSE NDCG1 NDCG3 NDCG5

PCC 0.877 1.257 0.668 0.671 0.690

EigenRank 0.878 1.287 0.684 0.709 0.719

RegPMemory 0.817 1.099 0.696 0.698 0.711

RankPMemory 0.848 1.194 0.693 0.711 0.721

Methods
Given10

MAE RMSE NDCG1 NDCG3 NDCG5

PCC 0.806 1.067 0.690 0.713 0.734

EigenRank 0.876 1.288 0.692 0.718 0.737

RegPMemory 0.789 1.028 0.699 0.720 0.742

RankPMemory 0.836 1.163 0.700 0.725 0.745

Methods
Given15

MAE RMSE NDCG1 NDCG3 NDCG5

PCC 0.780 0.999 0.710 0.732 0.752

EigenRank 0.876 1.285 0.722 0.741 0.758

RegPMemory 0.774 0.987 0.720 0.743 0.763

RankPMemory 0.803 1.066 0.726 0.748 0.767

datasets. Fig. 4.6 (a) and (b) show the NDCG evaluation for
MovieLens (a) and Netflix (b) datasets. The configuration is

Given15 for MovieLens and Given5 for Netflix.
From the two figures, it can be observed that as the iteration

increases, all the measurements of MAE, RMSE and NDCG
get better at first. This indicates that the optimization goal

is effective. After some rounds, all of them get worse. This is
because of the over-fitting problem in the training dataset. In

MovieLens, the optimal point is around 35 iterations, and In
Netflix, the optimal point is around 40 iterations. Therefore,
we set the iteration number to these values in the following

experiments.

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 87

Table 4.5: Performance of memory-based combination in Netflix

Methods
Given5

MAE RMSE NDCG1 NDCG3 NDCG5

PCC 0.760 0.936 0.753 0.767 0.781

EigenRank 1.033 1.687 0.792 0.775 0.793

RegPMemory 0.753 0.918 0.760 0.770 0.783

RankPMemory 1.005 1.600 0.790 0.776 0.794

Methods
Given10

MAE RMSE NDCG1 NDCG3 NDCG5

PCC 0.776 0.982 0.727 0.738 0.755

EigenRank 1.028 1.645 0.745 0.750 0.758

RegPMemory 0.767 0.954 0.730 0.746 0.759

RankPMemory 0.882 1.235 0.755 0.755 0.767

Methods
Given15

MAE RMSE NDCG1 NDCG3 NDCG5

PCC 0.838 1.161 0.707 0.710 0.712

EigenRank 1.046 1.685 0.744 0.732 0.740

RegPMemory 0.819 1.079 0.726 0.729 0.739

RankPMemory 1.020 1.605 0.747 0.735 0.744

Sensitivity Analysis

In this section, we make sensitivity analysis for the combina-
tion parameters α1 and α2. As discussed before, α1 controls

the weight of the regression objective function and α2 controls
the weight of the ranking objective function. Although the two
functions are in the same scale and have the same optimal value

0, they indeed have different meanings. Thus in the combina-
tion, it is unnatural to have α1 + α2 = 1. Another problem

is that for evaluation purpose, we have both regression metrics
and ranking metrics, and adjusting the parameters will influ-

ence the metrics unequally. Thus in the combination, we train
two models, regression-prior model (denoted as RegPModel) and

ranking-prior model (denoted as RankPModel). In regression-
prior model, we fix the weight α1 = 1 and adjust α2 in the range
[0,+∞]. We will choose the value of α2 to adapt to the best

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 88

regression performance. In the same way, in the ranking-prior
model, we fix the weight of α2 = 1 and adjust the value of α1 to

adapt to the best ranking performance.
The sensitivity analysis of regression-prior model on both re-

gression and ranking metrics for MovieLens and Netflix (Given15)
is shown in Fig. 4.7(1)(2)(3)(4). α1 = 1.0 is fixed and the weight
of α2 is adjusted in the range [0, 1] with an interval of 0.1. It

can be observed that performance for all the metrics gets better
at first and then gets worse. We omit the range [1,+∞] because

the trend is similar. The better performance indicates that the
combination is effective in improving the performance on both

kinds of metrics. Furthermore, as show in figure, there is an
optimal point that can achieve the best performance. Since it is

a regression-prior model, we choose the value α2 = 0.2 to adapt
to the regression performance in MovieLens and α2 = 0.1 in
Netflix.

The sensitivity analysis of ranking-prior model on both re-
gression and ranking metrics for MovieLens and Netflix (Given15)

is shown in Fig. 4.7(5)(6)(7)(8). α2 = 1.0 is fixed and the weight
of α1 is adjusted in the range [0, 1] with an interval of 0.1. It

can be observed that the ranking performance gets better first
and then gets worse. The regression performance gets better
first and then gets stable. We also omit the rage [1,+∞] be-

cause the trend is similar. This figure can also indicate that the
combination is effective in improving both regression and rank-

ing performance. We choose α1 = 0.1 to adapt to the ranking
performance in MovieLens and α1 = 0.4 in Netflix.

Overall Performance

In the verification of overall performance, we compare the com-
bined methods RegPModel and RankPModel with the single-
criterion methods PMF and LMF. Table 4.2 shows the overall

performance on MovieLens and Table 4.3 shows the overall per-

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 89

formance on Netflix.
The first observation is that for regression metrics, the RegP-

Model consistently outperforms PMF and for ranking metrics,
the RankPModel consistently outperforms LMF. This indicates

that the newly-added objective function is effective in improving
the performance of the original metrics. In MovieLens dataset,
for regression-oriented metrics, RegPModel outperforms PMF

by 2.9% with MAE and by 6.2% with RMSE at best. For
ranking-oriented metrics, RankPModel outperforms LMF by 3.8%

with NDCG at best. In Netflix dataset, for regression-oriented
metrics, RegPModel outperforms PMF by 4.6% with MAE and

by 2.6% with RMSE at best. For ranking-oriented metrics,
RankPModel outperforms LMF by 3.9% with NDCG at best.

The second observation is that for regression-prior combi-
nation RegPModel, the performance of ranking metrics is con-
sistently improved, and for ranking-prior combination RankP-

Model, the performance of regression metrics is significantly im-
proved. In MovieLens, RegPModel outperforms PMF by 5.0%

with NDCG at best and RankPModel outperforms LMF by
17.0% with MAE and 25.0% with RMSE at best. In Netflix,

RegPModel outperforms PMF by 1.6% with NDCG at best and
RankPModel outperforms LMF by 17.0% with MAE and by
24.4% with RMSE at best. In many cases, the performance of

RegPModel in ranking metrics is approaching LMF and the per-
formance of RankPModel in regression metrics is approaching

PMF.

4.6.3 Performance in Memory-based Fusion

Sensitivity Analysis

In this section, we make sensitivity analysis for the combina-
tion parameter α. Since after conversion for EigenRank, the

combination values have the same interpretation thus only one

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 90

parameter α is utilized to control the regression weight (where
1 − α is utilized to control ranking weight). Again, we train

two models, regression-prior model (denoted as RegPMemory)
and ranking-prior model (denoted as RankPMemory) to adapt

to different evaluation metrics respectively.
The sensitivity analysis on both regression and ranking for

MovieLens and Netflix (Given15) is shown in Fig. 4.7(9)(10)(11)(12).

α is adjusted in the range [0, 1] with interval of 0.05. Similar
to model-based methods, it is observed that performance for

all the metrics gets better at first and then gets worse. The
better performance indicates that the combination is effective

in improving the performance on both kinds of metrics. We
choose α = 0.5 for RegPMemory and α = 0.8 for RankPMem-

ory in MovieLens and we choose α = 0.4 for RegPMemory and
α = 0.9 for RankPMemory in Netflix.

Overall Performance

In the verification of overall performance, we compare the com-

bined methods RegPMemory and RankPMemory with the single-
criterion methods PCC and EigenRank. Table 4.4 shows the

overall performance on MovieLens and Table 4.5 shows the over-
all performance on Netflix.

We have similar observations with model-based combination.

First, for regression metrics, the RegPMemory consistently out-
perform PCC and for ranking metrics, the RankPMemory con-

sistently outperform EigenRank. In MovieLens, for regression-
oriented metrics, RegPMemory outperforms PCC by 6.7% with

MAE and by 12.5% with RMSE at best. For ranking-oriented
metrics, RankPMemory outperforms EigenRank by 1.3% with

NDCG at best. In Netflix dataset, for regression-oriented met-
rics, RegPMemory outperforms PCC by 2.3% with MAE and by
7.0% with RMSE at best. For ranking-oriented metrics, RankP-

Memory outperforms EigenRank by 1.4% with NDCG at best.

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 91

Secondly for RegPMemory, the performance of ranking met-
rics is consistently improved; and for RankPMemory, the perfor-

mance of regression metrics is significantly improved. In Movie-
Lens, RegPMemory outperforms PCC by 1.5% with NDCG at

best and RankPMemory outperforms EigenRank by 8.3% with
MAE and 17% with RMSE at best. In Netflix, RegPMemory
outperforms PCC by 3.0% with NDCG at best and RankP-

Memory outperforms EigenRank by 14.2% with MAE and by
24.9% with RMSE at best. In many cases, the performance

of RegPMemory in ranking metrics is approaching EigenRank
and the performance of RankPMemory in regression metrics is

approaching PCC.

4.7 Summary

In this work, we investigate the fusion of regression and ranking

for multi-measure adaption in recommender systems. We choose
competitive regression-oriented and ranking-oriented methods

from both model-based algorithms and memory-based algorithms
and propose combination methods. Experimental verification on
two real-world datasets indicates that the combinations are ef-

fective in improving performance on both regression and ranking
evaluation metrics.

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 92

0 5 10 15 20 25 30 35 40 45 50 55 60

0.6

0.8

1

1.2

1.4

1.6

Iterations in MovieLens

T
e
s
t
E

rr
o
r

MAE
RMSE

(a)

0 5 10 15 20 25 30 35 40 45 50

0.6

0.8

1

1.2

Iterations in Netflix

T
e
s
t
E

rr
o
r

MAE
RMSE

(b)

Figure 4.5: Convergence in model-based combination (test error)

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 93

0 5 10 15 20 25 30 35 40 45 50 55 60
0.6

0.65

0.7

0.75

0.8

Iterations in MovieLens

N
D

C
G

 V
a
lu

e
NDCG1
NDCG3
NDCG5

(a)

0 5 10 15 20 25 30 35 40 45 50
0.6

0.65

0.7

0.75

0.8

Iterations in Netflix

N
D

C
G

 V
a
lu

e

NDCG1
NDCG3
NDCG5

(b)

Figure 4.6: Convergence in model-based combination (NDCG value)

CHAPTER 4. FUSION FOR MULTI-MEASURE ADAPTION 94

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0.79

M
AE

X−axis: α
1
=1,α

2
∈[0,1]

(1) RegPModel MAE

MovieLens
Netflix

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.85

0.9

0.95

1

RM
SE

X−axis: α
1
=1,α

2
∈[0,1]

(2) RegPModel RMSE

MovieLens
Netflix

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

ND
CG

X−axis: α
1
=1,α

2
∈[0,1]

(3) RegPModel NDCG MovieLens

NDCG1−MovieLens
NDCG3−MovieLens
NDCG5−MovieLens

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.68

0.7

0.72

0.74

0.76

0.78

0.8

ND
CG

X−axis: α
1
=1,α

2
∈[0,1]

(4) RegPModel NDCG Netflix

NDCG1−Netflix
NDCG3−Netflix
NDCG5−Netflix

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
AE

X−axis: α
2
=1,α

1
∈[0,1]

(5) RankPModel MAE

MovieLens
Netflix

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.9

1

1.1

1.2

1.3
RM

SE

X−axis: α
2
=1,α

1
∈[0,1]

(6) RankPModel RMSE

MovieLens
Netflix

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

ND
CG

X−axis: α
2
=1,α

1
∈[0,1]

(7) RankPModel NDCG MovieLens

NDCG1−MovieLens
NDCG3−MovieLens
NDCG5−MovieLens

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.68

0.7

0.72

0.74

0.76

0.78

0.8

ND
CG

X−axis: α
2
=1,α

1
∈[0,1]

(8) RankPModel NDCG Netflix

NDCG1−Netflix
NDCG3−Netflix
NDCG5−Netflix

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

M
AE

X−axis: α∈[0,1]

(9) Memory MAE

MovieLens
Netflix

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

RM
SE

X−axis: α∈[0,1]

(10) Memory RMSE

MovieLens
Netflix

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

ND
CG

X−axis: α∈[0,1]

(11) Memory NDCG MovieLens

NDCG1−MovieLens
NDCG3−MovieLens
NDCG5−MovieLens

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.71

0.72

0.73

0.74

ND
CG

X−axis: α∈[0,1]

(12) Memory NDCG Netflix

NDCG1−Netflix
NDCG3−Netflix
NDCG5−Netflix

Figure 4.7: Sensitivity analysis of all combination methods

Chapter 5

Effective Fusion of Quality and
Relevance for
Multi-dimensional Adaption

5.1 Limitation of Single-dimensional Adap-

tion Identification from Qualitative Anal-

ysis

Multi-dimension recommendation has been predicted as an im-

portant direction in the next generation of recommender sys-
tems [1, 20]. The concept “multi-dimension” here refers to
some other recommendation dimensions besides quality evalu-

ated from ratings. Typical dimensions include relevance, cover-
age, diversity, etc. Although one may argue that the evaluation

of relevance, coverage, and diversity might also be contained in
ratings, from previous work [36, 65], ratings reflect mainly for

quality rather than other dimensions. A recommender system’s
success in multi-dimension recommendation should consider all
the dimensions besides quality.

Successful recommender systems should simultaneously con-
sider multi-dimensional performance. Previous work, however,

is mainly focusing on a single dimension. The limitation is that
the single-dimensional recommendation results may not adapt

95

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 96

Figure 5.1: Distribution of items in relevance and quality

to other dimensions in many cases.
Intuitively some conflicts might happen from different dimen-

sions, thus in multi-dimension recommendation it is important
to investigate how each dimension impacts each other, how to

combine multiple dimensions and how to combine previous al-
gorithms together. For example, if a user’s neighbor has given

a very low rating to a movie A, in quality-based algorithms,
A might not be recommended to this user because it is likely
to obtain low rating indicated from his/her neighbor’s rating

records; in relevance-based algorithms, however, A might be rec-
ommended because the neighbor at least has shown interest to

see it.
In this work, we study the interplay relationship of differ-

ent dimensions and investigate how to combine previous sin-
gle dimension approaches in multi-dimension recommendation.
Specifically, we investigate the dimensions of quality and rele-

vance as a preliminary work because they are more practical
and both have enough previous work. In this section, we give a

qualitative analysis to show that single-dimensional algorithms
cannot adapt other dimensions.

The qualitative analysis is designed as follows. We study the

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 97

data of Netflix1, a famous large-scale dataset for movie recom-
mendation. Since qualitative analysis should focus on the whole

view, we utilize an item’s average rating score to describe its
quality and an item’s hitting count to describe its relevance.

The assumption is that if an item is well evaluated by many
users, it is a high-quality item to most users; and if an item
is visited by many users, it is a high-relevance item to most

users. Fig. 5.1 shows the distribution of all 17,770 items on the
measure of quality and relevance. From this figure, we can ob-

serve that there are four types of items: A) normal-quality and
high-relevance; B) high-quality and high relevance; C) normal-

quality and normal-relevance; and D) high-quality and normal-
relevance. Typical example of each type is shown in the right

part of the figure. A success recommendation should contain
type A B and D. We choose user/item-based Pearson Correlation
Coefficient (PCC) [17, 130], Aspect Model (AM) [67], PMF [128]

and EigenRank [91] as quality-based algorithms; and within
relevance-based algorithms, an association-based method [36]

and a hitting-frequency-based method [149] are chosen. We ran-
domly choose 40,000 users for training and 10,000 users (given

their first 10 ratings) for testing. We make statistics of the top
five recommended items by both kinds of algorithms. Fig. 5.2
shows the distributions of these items on the measure of quality

and relevance. Due to space limitation, only results of Eigen-
Rank (quality-based) and the association-based method (relevance-

based) are shown as representatives; and similar results can be
obtained for other methods within the same type. In this fig-

ure, the color of a small area denotes the log value of the total
recommended items’ occurrence count within the quality and

relevance metrics.
It can be obtained that for quality-based algorithms, most

recommended items belong to Type B and D; items of Type A

1http://www.netflixprize.com

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 98

are almost missing. For relevance-based algorithms, most rec-
ommended items belong to Type A and B; and items of Type D

are almost missing. In quantitative analysis, the same problem
can be found, which will be detailed in experimental section.

Thus from these analysis, we can conclude that both quality-
based methods and relevance-based methods cannot perform
well in the opposite dimensions. Thus both quality-based and

relevance-based methods are recommending incomplete items.
But the missing items are important in recommendations.

Items of Type A are especially concerned by commercial com-
panies in advertising or selling business [131], because it reflects

the predictions of hitting counts or sales, which directly influence
their revenue. Items of Type D, on the other hand, have been

demonstrated valuable in recent long tail research [42]. These
high-quality items are only attractive to a limited number of
particular users; but if we cumulate the effect of all these items,

great potential can be explored [43]. Therefore, items in both
Type A and D are important and should not be ignored. In

addition, for most users, for cases that two items with the same
quality, the more relevant one will be more likely to satisfy most

users, and so are the opposite cases. However, in current recom-
mendation methods, quality-based algorithms miss the factor of
relevance. Consequently, users may not show interests to visit

some of the recommended items. Relevance-based algorithms,
on the other hand, miss the factor of quality. Thus users will

suffer from normal-quality recommended results. This is also
the reason why multi-dimension recommendation is important.

5.2 Integrated Metric of Quality and Rele-

vance for Multi-dimensional Adaption

For considering both quality and relevance for multi-dimension
recommendation, we linearly combine quality-based and relevance-

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 99

Figure 5.2: Distribution of recommended results

based metrics as an integrated evaluation measure. Quality-
based metrics measure the closeness of a recommender system’s

predicted ratings to the users’ real ratings. Relevance-based
metrics, on the other hand, measure the likelihood that an item

will be hit. In application systems, a rank list is the final output
for users. Thus normalized discount cumulated gain (NDCG)
has been recently employed to evaluate recommendation results

including both quality-based NDCG [91] and relevance-based
NDCG [56]. In fact, there are many ways for the integrated met-

ric; however, the comparisons of metrics are beyond the scope
of this work. We specifically propose the following NDCG met-

ric as a first ever solution. We are also awared that NDCG is
not the most widely used metric in recommender systems, but
there are two supportive reasons for this: 1) NDCG is a ranking-

oriented metric, which is more practical in application systems.
Comparing other ranking-oriented metrics, NDCG is a position

dependent metric. It assigns top positions more weight, which is
more reasonable. 2) Both quality-based NDCG and relevance-

based NDCG are accepted as practical measures in previous
work of recommender systems [56, 91]. It is also convenient for

the integration because the values have similar meanings in both
tasks and are compatible for combination.

Given the rank of recommended results, quality-based NDCG

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 100

at position P is defined as (referring to [91])

NDCGP−quality =
1

U

U∑

u

Zu

P∑

p=1

2ru,p − 1

log(1 + p)
, (5.1)

where U is the number of users, Zu is a normalization factor
of user u, and ru,p is the ground truth rating score by user

u on the item at position p. Since only a limited number of
items rated by users are selected as ground truth, by follow-

ing [91], uncertain ones in the rank are removed before calcula-
tion. Relevance-based NDCG at position P , on the other hand,

is defined as (refering to [56])

NDCGP−relevance =
1

U

U∑

u

Zu

P∑

p=1

2hu,p − 1

log(1 + p)
, (5.2)

where hu,p is a binary value function indicating whether user
u has hit the item at position p. In this work, we follow the

same idea in [36]: a hit is defined by whether the user has rated
the item. In both metrics, NDCG value is scaled from 0 to 1

with higher value indicating better results. We linearly integrate
these two metrics as

NDCGI−linear = λ ∗NDCGQ + (1 − λ) ∗NDCGR. (5.3)

λ scales from 0 to 1 and can be set in different applications

by particular users. When λ = 0, it is single relevance-based
NDCG; when λ = 1, it is single quality-based NDCG; in other
cases, when λ increases, the evaluation will emphasize more on

quality-based performance and when decreases, it will emphasize
more on relevance-based performance. In our experiments, we

evaluate performances of recommendation algorithms on all the
scale of λ from 0 to 1 with the interval of 0.1. Thus different

configurations for the balance from users can be adapted.

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 101

5.3 Fusion Approaches for Multi-dimensional

Adaption

In this section, we introduce our methodology for optimizing

the integrated metric. We first present our rationale of basic ap-
proaches selection from competitive quality-based and relevance-

based methods. Then for the combination, we propose three
methods. The first one is LinearComb, a linear combination of
different algorithms’ values. Nevertheless, as we will show later,

features contain incompatible values in different basic methods,
thus a linear combination will be unnatural and will make the ac-

curacy decrease [47]. The second method is RankComb, a rank-
based integration, which is to combine the rank results of dif-

ferent recommendation algorithms linearly by Borda count [40].
Yet this means the quantity information from recommendation

results will be lost. Thus it will also make the accuracy decrease.
Therefore, we propose the third method based on Continuous-
time Markov Process (CMAP), to solve above problems. By

further employing queueing system theory, CMAP has a intu-
itive interpretation without losing quantity information.

5.3.1 Rationale of Basic Components Selection

Within quality-based algorithms, we choose EigenRank as the
fundamental method for its advantage of modeling user pref-

erence order directly. Currently, state-of-the-art quality-based
methods are divided into regression-oriented (e.g., PMF [128])
and ranking-oriented (e.g., EigenRank [91]). Regression-oriented

methods predict ratings. Ranking-oriented methods, on the
other hand, predict the rank of recommended items based on di-

rectly modeling the preference order of arbitrary two items [91].
Since the integrated metric is based on ranking, thus we choose

EigenRank as the fundamental method in this work. This model

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 102

is proven to outperform many classical methods [91]; and we
have also demonstrated that it outperform PMF in quanlity-

based NDCG through experiments. EigenRank model is based
on random walk theory, which is a special case of Discrete-time

Markov Process (DMP). A stationary distribution of the DMP
is employed to decide the preference score of an item. Formally,
let T = {0, 1, 2, ...} be a discrete time set, and S = {1, 2, ..., N}
be a state set. The process can be formulated by a stochastic
variable sequence {Xt, t ∈ T}. For arbitrary i0, i1, ..., it, it+1 ∈ S,

we have

P{Xt+1 = it+1|X0 = i0, X1 = i1, ..., Xt = it} =

P{Xt+1 = it+1|Xt = it}. (5.4)

The stationary distribution of this DMP is defined as

π = π ∗ P, (5.5)

where P is probability transition matrix, and π is the stationary

distribution vector. P is built as

pij = p(j|i) =
eψ(j,i)

∑
j∈S e

ψ(j,i)
, (5.6)

where ψ(i, j) is a preference function defined for each user u on
two arbitrary items i and j as

ψ(i, j) =

∑
v∈N i,j

u
su,v · (rv,i − rv,j)∑
v∈N i,j

u
su,v

. (5.7)

In this equation, N i,j
u is the set of u’s neighbors, and su,v is the

Kendall Rank Correlation Coefficient (KRCC) [100] similarity.
Within relevance-based algorithms, we choose an association-

based method [36] and a hitting-frequency-based method [149].
Association and hitting frequency have been demonstrated as

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 103

two competitive features in relevance-based approaches. There-
fore, we combine association and hitting frequency into the Eigen-

Rank model to form an unified recommendation approach. As-
sociation feature describes the number of users who have hit the

same two items. The fundamental assumption of this method is
that frequent co-occurrence items in the past are also likely to
appear together in the future. In other words, if a large number

of users hit both Item M and Item N ; another user hit only one
of them; then he/she is likely to hit the other one. This feature

has been demonstrated effective as a state-of-the-art relevance-
based algorithm in [36]. Hitting-frequency feature describes an

item’s recent total hitting count. The fundamental assumption
of this method is that popular items are likely to interest users.

In other words, for two items, a user is likely to hit the one
with more hitting count. This feature has been demonstrated
effective in recent relevance-based recommendation competition

KDD-cup 2007 [80, 149].

5.3.2 Fundamental Fusion Approach Based on Linear
Combination

LinearComb method is to linearly combine the results, which
is the most intuitive and direct way for combination. In this

method, the final recommendation score (SLinearComb) for each
item is defined as

SLinearComb = w1F (EigenRank) + w2F (Assoc)

+w3F (Hit− freq). (5.8)

F is a normalization function to convert different scales of vari-

ables into 0 to 1, which is defined as

F (x) = 1/(1 + exp(−x)). (5.9)

w is function weight vector to be tuned for each sub-methods. In

the three results to be combined, the score of EigenRank is a sta-

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 104

tionary probability value ranging from 0 to 1; and the scores of
association and hitting-frequency are integer count values from

1 to maximum. Thus the values to combine are incompati-
ble, which makes the fusion unnatural. Even we have converted

them into the same scale, previous work has also indicated that
the accuracy will decrease in such cases [47].

5.3.3 Fundamental Fusion Approach Based on Rank-
ing Combination

To solve the problem of LinearComb, we propose another fun-
damental combination method RankComb, which combines the

ranks from different methods by employing Borda count [40].
The main advantage of this method is the values in the combi-

nation are compatible. Given a recommended rank of an algo-
rithm, RankComb first calculates a Borda count (BC) value for
each item defined as

BCitem = 1/position(item). (5.10)

In Borda count, if the item ranked higher, the value would be
larger. Also, the higher position is more important than the
lower position. Then, the item’s BC values from different algo-

rithms can be linearly combined as a new recommendation score
as

BCRankComb = w1BCEigenRank + w2 ∗BCAssoc
+w3 ∗BCHit−freq. (5.11)

The final results will refer to this new BC value. The weights are
adjusted manually. Although this method solve the integration-

unnatural problem of LinearRank, during the process of con-
verting a rank to BC values, the quantity information of these

results from different methods are missing. This will also make
the recommendation accuracy decrease.

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 105

Figure 5.3: An overview of CMAP approach

5.3.4 Effective Fusion Approach Based on Continuous-
time Markov Process (CMAP)

To attack the integration-unnatural and quantity-missing prob-

lems in fundamental combination methods, we propose the CMAP
model, which retains the quantity information and has an intu-
itive interpretation.

CMAP is a general approach which can integrate both re-
lational and local features. In this work, we show examples of

integrating the association feature (a relational feature) and the
hitting frequency feature (a local feature). Other features can

be integrated into CMAP similarly by linear combination.

Association Feature Combination

Since association is a relational feature of two items, we can em-
ploy a similar idea with the random walk process in EigenRank

to model and integrate it. The difference is that the transition
matrix is determined by association feature instead of rating in-

formation. The questions are how to define neighbors and the
transition matrix.

In defining neighbors, we utilize cosine-based similarity for

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 106

simplicity. The similarity of two users u and v is defined as

s′u,v =

−→
R u ∗

−→
R v

‖−→R u‖ ∗ ‖
−→
R v‖

, (5.12)

where
−→
R u is the hitting history vector of user u. We set a

threshold to select similar users as the current user’s neighbors.

In building the transition matrix, following the idea in [36], we
define a co-occurrence function of two items i and j as

ξ(i, j) =
Freq(ij)

Freq(i) ∗ Freq(j)β , (5.13)

where Freq(∗) is the occurrence times and β is a control pa-
rameter ranging from 0 to 1. When β equals 0, the formula is

the probability of co-occurrence of i and j on the condition of
occurrence of i. In this case, these is a limitation that frequent

items will obtain excessive bias [17, 36]. Thus the term Freq(j)β

is added following the idea of inverse document frequency [112]

to adjust the weight. Therefore, the transition matrix P ′ can be
defined as

p′ij = p′(j|i) =
ξ(i, j)∑
j∈S ξ(i, j)

. (5.14)

Since the transition matrix P ′ includes compatible values to P
in EigenRank, we can combine association feature to this model

by linear combination as

Pnew = P ∗ α + P ′ ∗ (1 − α). (5.15)

Hitting Frequency Combination

Different from relational features like previous association fea-

ture, hitting-frequency is a local feature and it is difficult to be
linearly combined into probability transition matrix. The main

problem is that DMP in EigenRank cannot model local features.

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 107

Thus we propose to extend it to CMAP, by which a new variable
will be added to model local features, making the combination

have an intuitive interpretation. Different from DMP where the
random walk is in discrete steps, in CMAP it is a continuous

process. This means the staying time at each state is considered
as shown in Fig. 5.3. Frequent items should have longer staying
time. Formally, let S = {1, 2, ..., N} denote the state set. The

stochastic variable sequence in CMAP is denoted as {Xt, t ≥ 0}.
For arbitrary 0 ≤ t0 < t1 < ... < tn < tn+1, ik ∈ S, 0 ≤ k ≤ n+1,

P{Xtn+1
= in+1|Xt0 = i0, Xt1 = i1, ..., Xtn = in} =

P{Xtn+1
= in+1|Xtn = in}. (5.16)

For simplicity, we assume it is a time-homogenous Markov Pro-

cess, thus it has the following property

P{Xs+t = j|Xs = i} = P{Xt = j|X0 = i} = pij(t). (5.17)

CMAP is described by Q-matrix instead of the transition matrix
in DMP. Q-matrix is defined as

{
qij = p′ij(0) = limt→0

pij(t)
t , i 6= j;

qii = − limt→0
1−pii(t)

t .
(5.18)

Under such description, it can be proven [148] that the staying
time at each state follows an exponential distribution

P (τ > t|Xpre = i) = exp(qiit), (5.19)

where Xpre denotes the previous state and τ is the staying time

defined as:

τ = inf{t : t > 0, Xt 6= Xpre}. (5.20)

It can also be proven [148] that

P [Xτ = j|X0 = i] =
qij
−qii

. (5.21)

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 108

From Eq. (5.19) and Eq. (5.21), we obtain formulations of the
two determining factors of a CMAP, staying time distribution

and transition probabilities. As we have utilized the transition
matrix to model relational features before, the staying time dis-

tribution, an exponential distribution, is just the one to model
local feature of hitting frequency.

We propose to utilize the following formulation to model lo-

cal feature by employing queueing theory. Because it makes the
staying time have a practical meaning of waiting time in a queue-

ing system in addition to its effectiveness in accuracy. As shown
in the bottom-left part in Fig. 5.3, we suppose that there is a

ticket selling window for each item, and the users who recently
hit the item are costumers buying tickets. We assume that the

temporal sequence of the costumers’ arrival follows the time-
homogenous Poisson Process, with v as the costumer-arriving
rate. The services at the ticket selling windows have the same

speed to process a deal. The time for each deal follows an ex-
ponential distribution with the same service rate u. To make

the system stable, we set u > v. In such a queueing system, for
each item, let Tg denote the waiting time of a customer buying

its ticket, then it can be concluded [6] that

P (Tg ≤ x) = 1 − v

u
exp−(u−v)x . (5.22)

Specifically, on the condition that there is a queue, we fortu-

nately obtain an exponential distribution that fits the require-
ment.

P (Tg ≤ x|the queue exists) = 1 − exp−(u−v)x . (5.23)

Thus we propose to model hitting frequency using

qii = −(u− vi). (5.24)

If u is larger, the variance of waiting time conditions becomes

smaller, which means the staying time has a weaker impact on

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 109

Algorithm 5 CMAP Algorithm

Inputs: Rating information of current user and users in training set
Outputs: The ranked list of unrated items for each user as the recommenda-
tion results

1: Estimate qii for each item i based on recent hitting count of each item
according to Eq. (5.24)

2: for each user do
3: Calculate KRCC and cosine similarities between current user and users

in training set
4: Select its neighbors based on the similarities
5: Build probability transition matrix from Eq. (5.15)
6: Calculate stationary distribution of CMAP according to Eq. (5.25)
7: Rank the items based on the probabilistic score of a stationary distri-

bution of CMAP
8: Remove the rated items
9: end for

the final stationary distribution. If u is small, then the opposite
is true.

Algorithms

We still employ stationary distribution to decide the prefer-

ence score of an item. According to [91, 148], the stationary
distribution π of CMAP can be solved using the following equa-

tions: 



πi =
π̃i

−qii∑S

j=1

π̃j
−qjj

;

π̃j =
∑

i∈S π̃i
qij
−qii .

(5.25)

The details of the algorithm are shown in Algorithm 5.
The main computation of our algorithm comes from two as-

pects: 1) probability transition matrix building; and 2) station-

ary distribution calculation. The main part for the first cal-
culation is the similarity of current user to other users in the

training set. In both KRCC and cosine similarities defined in

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 110

our model, the complexity is O(n), where n is the number of
common items between the users. For the second aspect, we

can conclude from Eq. (5.25) that it is a linear function of the
stationary distribution of DMP. Thus the complexity is approx-

imately the same with the one of DMP’s stationary distribution
calculation, which is O(m) (m is the number of items) by uti-
lizing the iterative power method. Therefore, the computation

complexity scales linearly with respect to the number of items
and users, indicating that our algorithm can be applied to very

large datasets. In our experiments, the testing hardware en-
vironment is on two Windows workstations with four dual-core

2.5GHz CPU and 8GB physical memory each. The approximate
total time for calculation in Netflix dataset is around 7 hours.

5.4 Experiments

In this section, we will first introduce the datasets. The exper-
iments are conducted for three parts. The first part is an em-

pirical study of quality-based and relevance-based algorithms,
which serves as a quantitative analysis for the relationship of
the two dimensions in recommendations. The second part is

to evaluate the recommendation performance of our proposed
approach. The third part is to do the sensitivity analysis of

CMAP.

5.4.1 Datasets

In this work, we choose two datasets, MovieLens2 and Netflix for

experimental verification. In MovieLens, there are 100,000 rat-
ings for 1,682 movies from 943 users. In Netflix, the size is much
larger. It contains about 100,000,000 ratings from over 480,000

users for 17,770 movies. In both datasets, ratings are given as

2http://www.cs.umn.edu/Research/GroupLens

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 111

Table 5.1: Statistics of MovieLens and Netflix
Statistics MovieLens Netflix

Avg. Num. of Ratings/User 106.04 209.25
Avg. Num. of Ratings/Item 59.45 5654.50
Min. Num. of Ratings/User 20 1
Min. Num. of Ratings/Item 1 3
Max. Num. of Ratings/User 737 17653
Max. Num. of Ratings/Item 583 232944
Density of User/Item Matrix 6.3% 1.18%

an integer value on the scale of 1 to 5, with higher value indicat-

ing better satisfaction. More statistics are shown in Table 5.1.
In MovieLens, referring to the experimental setup in [96, 163],

we randomly choose 600 users for training and the remaining
343 users for testing. In Netflix, we randomly divide the users
into 10 groups. In each group, 80% users are randomly selected

as training and the remaining 20% for testing. The average
is calculated as the final result. To observe the performances

when the active users have different number of ratings as his-
tory, experiments are conducted by selecting 5, 10 and 15 ratings

as rating history for each active user respectively in MovieLens
and 5, 10, and 20 in Netflix. We name them Given5, Given10,

Given15, and Given20. Users whose rating number is less than
the configuration are not included in evaluations. Before exper-
iments, a pre-processing is conducted to rank all the ratings of

a user in ascent order according to the rating time stamp.

5.4.2 Limitation of Single-dimensional Adaption Veri-
fication from Quantitative Analysis

In this section, quantitative analysis of competitive quality-based
and relevance-based algorithms on multiple dimensions is con-

ducted. The purpose is to evaluate quality-based algorithms’
performances on relevance-based metric and relevance-based al-

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 112

Table 5.2: Performance on quality-based NDCG

Methods
Given5

NDCG1 NDCG3 NDCG5

PMF 0.635 0.612 0.623

EigenRank 0.698 0.685 0.679

Assoc 0.529 0.542 0.560

Freq 0.642 0.600 0.596

Methods
Given10

NDCG1 NDCG3 NDCG5

PMF 0.644 0.646 0.654

EigenRank 0.699 0.696 0.698

Assoc 0.597 0.593 0.595

Freq 0.636 0.607 0.610

Methods
Given15

NDCG1 NDCG3 NDCG5

PMF 0.696 0.689 0.698

EigenRank 0.713 0.707 0.719

Assoc 0.615 0.610 0.627

Freq 0.638 0.618 0.632

gorithms’ performances on quality-based metric. In the experi-

ments, two quality-based algorithms and two relevance-based al-
gorithms are chosen. Quality-based algorithms include PMF [128]

and EigenRank [91]. Relevance-based algorithms include the
association-based method (Assoc) [36] and a hitting-frequency-
based method (Freq) [149]. The experiments are conducted on

both MovieLens and Netflix. We only report the results for
MovieLens in Table 5.2 and Table 5.3 due to space limitation.

Similar results can be observed from Netflix. From the exper-
imental results, we can conclude that both quality-based and

relevance-based methods do not perform well in the opposite
metric. For configuration of ”Given5,NDCG1”, quality-based

algorithms outperform relevance-based algorithms by 8.7% in
quality-based NDCG and relevance-based algorithms outper-

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 113

Table 5.3: Performance on relevance-based NDCG

Methods
Given5

NDCG1 NDCG3 NDCG5

PMF 0.333 0.325 0.309

EigenRank 0.326 0.306 0.304

Assoc 0.518 0.484 0.467

Freq 0.539 0.489 0.477

Methods
Given10

NDCG1 NDCG3 NDCG5

PMF 0.241 0.227 0.212

EigenRank 0.279 0.282 0.285

Assoc 0.466 0.459 0.449

Freq 0.478 0.429 0.412

Methods
Given15

NDCG1 NDCG3 NDCG5

PMF 0.198 0.194 0.186

EigenRank 0.274 0.276 0.275

Assoc 0.455 0.426 0.430

Freq 0.428 0.377 0.364

form quality-based algorithms by 65.3% in relevance-based NDCG.
This can quantitatively support the importance of fusing quality-

based and relevance-based algorithms together in recommender
systems. In quality-based NDCG metric, EigenRank outper-

forms PMF in almost all the configurations which also supports
the reason to choose EigenRank as a fundamental quality-based

algorithm to combine.

5.4.3 Recommendation Performance

The experiments conducted for overall performance aim at the
following three issues: 1) Quantitatively, how about the per-

formances of the three combination methods comparing to com-
petitive quality-based and relevance-based algorithms? 2) Qual-

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 114

Figure 5.4: Distribution of recommended results of CMAP

itatively, whether the incompleteness problem in each single-
dimension approach can be solved by our approach? 3) How

can CMAP outperform traditional combination methods? For
Issue 1, we compare results of the three combination methods

with the quality-based and relevance-based baselines; for Issue
2, we make statistics of our CMAP approach on the quality-
relevance balance study discussed before; and for Issue 3, we

make comparisons among the three combination methods.
Within quality-based methods, according to previous study,

we choose EigenRank [91] as baseline method, because it out-
performs PMF in almost all the configurations in both quality-

based and relevance-based NDCG metrics. Within relevance-
based methods, as the assoication-based method [36] and the

hitting-frequency-based method [149] have their own advantages
in different cases as shown before, we choose the best result from
them as our baseline method.

Fig. 5.5(a) shows the overall performance on MovieLens; and
Fig. 5.5(b) shows the overall performance on Netflix. In these

two figures, the experimental configuration is: Given5, NDCG1.
In other configurations, similar results can be obtained (See Ta-

ble 5.4 and Table 5.5.). In both these two figures, we can ob-
serve that the three combination methods outperform the two

single-dimension methods in almost all the settings of λ. If we

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 115

average results from λ = 0.6 to λ = 1 as quality-bias metric,
and average results from λ = 0 to λ = 0.4 as relevance-bias

metric. In quality-bias metric, the combination method outper-
forms quality-based algorithm by 8.2% in MovieLens and 6.2%

in Netflix; in relevance-bias metric, our approach outperforms
relevance-based algorithm by 4.1% in MovieLens and 4.9% in
Netflix.

Fig. 5.4 shows the distribution of recommended results of
the top five items by CMAP. The parameters are adapted for

λ = 0.8 (quality-bias) in the left, and λ = 0.2 (relevance-bias)
in the right. It can be obtained that in both figures, there is

a quantity of items for both Type A and D, indicating that
the approach is effective in solving the incompleteness limita-

tion of single-dimension methods. In addition, in quality-bias
CMAP, recommended items are likely to have high ratings; and
in relevance-bias CMAP, they are likely to have high hitting

count. This indicates that the recommended results of CMAP
can adapt for different balance requests from users in practical

applications.
Among the three combination methods, CMAP performs the

best in almost all the settings of λ. In average of all the λ config-
uration, for Given5 and NDCG1, the CMAP model outperforms
LinearComb by 2.0% in MovieLens and 2.0% in Netflix; and it

also outperforms RankComb by 3.0% in MovieLens and 2.7% in
Netflix. RankComb performs the worst, because it misses quan-

tity information. The advantage of our approach comparing to
LinearComb is that the latter unnaturally combines probability

and count value linearly, which are incompatible scores; while
in CMAP, the combination has an practical interpretation ex-

plained before.
At first, we expect that the accuracy of relevance-based algo-

rithm will decrease when λ increases, which is not true accord-

ing to experimental results. There are two reasons. 1) Although

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 116

quality and relevance are emphasizing different aspects, there is
some correlative relation between them. In these two datasets,

if an item is relevant to a user, it will have great chance to
have good quality; but the opposite is not true that many high-

quality items do not attract that many users. 2) In experiments,
we approximately utilize the rating record as visited record. In
fact, it is more practical to use the real visited record. Because

many users will not take time to rate an item after they visit
them. Thus our experiments will cause some bias to quality.

5.4.4 Sensitivity Analysis

There are two important parameters in our approach: α in
Eq. (5.15) and u in Eq. (5.24). α balances CMAP’s probability

transition matrix between rating preference order and associa-
tion feature. It scales from 0 to 1. When α = 1, the transi-
tion matrix is built from quality-based information only; when

α = 0, it is built from relevance-based information only; in other
cases, it is a fusion of two kinds of information. u is the service

rate at ticket windows which controls the influence of staying
time of states. As discussed before, when u is small, the stay-

ing time will have greater impact on the stationary distribution;
and when u is large, the transition probability will have greater

impact. Fig. 5.6(a) shows the impact of α on MovieLens, given
10 ratings as history, with λ = 0.8 and u = 20 and Fig. 5.7(a)
shows the impact of α on Netflix, given 10 ratings as history,

with λ = 0.2 and u = 40. This is a general example, and similar
results can be obtained in other configurations in both Netflix

and MovieLens. Fig. 5.6(b) shows the impact of u on Movie-
Lens, given 10 ratings as history, with λ = 0.8 and α = 0.6.

Fig. 5.7(b) shows the impact of u on Netflix, given 10 ratings as
history, with λ = 0.2 and α = 0.4.

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 117

5.5 Summary

In this work, we make a preliminary fusion work for multi-
dimensional adaption in recommender systems. We take qual-

ity and relevance as two dimensions in recommender system for
analysis. We study the interplay relationship of their impact
to each other and show that both quality-based and relevance-

based methods cannot perform well in the other dimensions. As
the first ever solutions, we propose an integrated metric consid-

ering both dimensions. Then we investigate how to combine pre-
vious work to adjust the new metric under the concept of multi-

dimensional recommendation. We propose a CMAP approach
that enables principled and natural integration with features de-
rived from both quality-based and relevance-based algorithms.

Through empirical study on two real world datasets, we demon-
strate that the combined approach can significantly outperform

traditional quality-based and relevance-based algorithms. The
approach has linear computational complexity. Thus from a

technical standpoint, we believe the work will be helpful in im-
proving recommender system in real applications.

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 118

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

EigenRank

Assoc+Freq

LinearComb

RankComb

CMAP

(a) MovieLens

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

EigenRank

Assoc+Freq

LinearComb

RankComb

CMAP

(b) Netflix

Figure 5.5: Recommendation performance

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 119

0 0.2 0.4 0.6 0.8 1
0.55

0.57

0.59

0.61

0.63

0.65

0.67

0.69

α

N
D

C
G

NDCG1
NDCG3
NDCG5

(a) Impact of α

12 14 16 18 20 22 24 26 28 30 32 34 36 38
0.6

0.62

0.64

0.66

0.68

u

N
D

C
G

NDCG1
NDCG3
NDCG5

(b) Impact of u

Figure 5.6: Impact of parameters of CMAP in MovieLens

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 120

0 0.2 0.4 0.6 0.8 1
0.4

0.42

0.44

0.46

0.48

0.5

0.52

α

N
D

C
G

NDCG1
NDCG3
NDCG5

(a) Impact of α

26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

u

N
D

C
G

NDCG1
NDCG3
NDCG5

(b) Impact of u

Figure 5.7: Impact of parameters of CMAP in Netflix

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 121

Table 5.4: Overall performance for other settings in MovieLens
α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Given5,NDCG3

EigenRank 0.306 0.344 0.381 0.419 0.456 0.493 0.531 0.568 0.605 0.643 0.680

Assoc+Freq 0.489 0.500 0.511 0.522 0.533 0.544 0.555 0.567 0.578 0.589 0.600

LinearComb 0.502 0.511 0.528 0.538 0.559 0.568 0.587 0.598 0.617 0.648 0.678

RankComb 0.503 0.516 0.524 0.533 0.552 0.567 0.583 0.596 0.613 0.637 0.681

CMAP 0.514 0.525 0.541 0.553 0.566 0.580 0.596 0.607 0.624 0.651 0.685

Given5,NDCG5

EigenRank 0.304 0.341 0.379 0.416 0.454 0.491 0.529 0.566 0.604 0.641 0.679

Assoc+Freq 0.477 0.489 0.501 0.513 0.524 0.537 0.548 0.560 0.572 0.584 0.596

LinearComb 0.484 0.498 0.513 0.531 0.546 0.561 0.576 0.593 0.608 0.645 0.682

RankComb 0.487 0.500 0.511 0.524 0.537 0.554 0.571 0.588 0.606 0.639 0.681

CMAP 0.499 0.511 0.523 0.538 0.556 0.569 0.585 0.598 0.623 0.655 0.685

Given10,NDCG1

EigenRank 0.279 0.321 0.363 0.404 0.446 0.487 0.528 0.570 0.611 0.653 0.694

Assoc+Freq 0.478 0.493 0.500 0.525 0.541 0.557 0.572 0.588 0.604 0.620 0.636

LinearComb 0.510 0.527 0.540 0.560 0.581 0.600 0.620 0.640 0.660 0.680 0.710

RankComb 0.479 0.495 0.516 0.536 0.556 0.578 0.607 0.633 0.659 0.683 0.701

CMAP 0.526 0.544 0.559 0.578 0.597 0.611 0.628 0.648 0.664 0.683 0.716

Given10,NDCG3

EigenRank 0.282 0.323 0.364 0.405 0.446 0.487 0.527 0.568 0.609 0.650 0.691

Assoc+Freq 0.459 0.472 0.485 0.499 0.513 0.526 0.539 0.553 0.571 0.589 0.607

LinearComb 0.457 0.479 0.500 0.519 0.538 0.568 0.589 0.608 0.629 0.659 0.700

RankComb 0.462 0.483 0.500 0.519 0.528 0.557 0.584 0.608 0.636 0.661 0.703

CMAP 0.465 0.488 0.509 0.532 0.555 0.576 0.598 0.620 0.643 0.666 0.705

Given10,NDCG5

EigenRank 0.285 0.326 0.366 0.407 0.447 0.488 0.528 0.569 0.609 0.650 0.690

Assoc+Freq 0.449 0.463 0.478 0.493 0.507 0.522 0.536 0.551 0.570 0.590 0.610

LinearComb 0.439 0.459 0.478 0.509 0.527 0.558 0.579 0.608 0.629 0.648 0.701

RankComb 0.452 0.470 0.491 0.512 0.523 0.549 0.574 0.608 0.635 0.656 0.703

CMAP 0.449 0.473 0.496 0.519 0.543 0.565 0.589 0.613 0.637 0.659 0.703

Given15,NDCG1

EigenRank 0.274 0.316 0.358 0.400 0.443 0.485 0.527 0.569 0.611 0.653 0.695

Assoc+Freq 0.455 0.471 0.487 0.503 0.519 0.535 0.554 0.575 0.596 0.617 0.638

LinearComb 0.480 0.501 0.522 0.544 0.564 0.586 0.612 0.631 0.652 0.673 0.711

RankComb 0.456 0.478 0.492 0.513 0.522 0.551 0.584 0.614 0.641 0.673 0.706

CMAP 0.498 0.517 0.539 0.558 0.578 0.597 0.616 0.639 0.658 0.678 0.722

Given15,NDCG3

EigenRank 0.276 0.319 0.362 0.405 0.447 0.490 0.532 0.575 0.617 0.660 0.702

Assoc+Freq 0.426 0.445 0.463 0.482 0.500 0.518 0.537 0.554 0.573 0.594 0.618

LinearComb 0.436 0.462 0.486 0.511 0.529 0.558 0.588 0.611 0.638 0.659 0.711

RankComb 0.433 0.454 0.472 0.498 0.513 0.544 0.575 0.609 0.638 0.668 0.711

CMAP 0.453 0.474 0.494 0.515 0.538 0.564 0.590 0.615 0.645 0.669 0.719

Given15,NDCG5

EigenRank 0.275 0.319 0.363 0.407 0.451 0.495 0.539 0.583 0.626 0.670 0.714

Assoc+Freq 0.430 0.450 0.470 0.489 0.509 0.529 0.548 0.568 0.588 0.607 0.632

LinearComb 0.429 0.448 0.469 0.500 0.528 0.558 0.579 0.609 0.637 0.666 0.715

RankComb 0.430 0.451 0.472 0.497 0.518 0.549 0.583 0.615 0.646 0.674 0.720

CMAP 0.434 0.459 0.485 0.514 0.538 0.568 0.592 0.623 0.649 0.679 0.727

CHAPTER 5. FUSION FOR MULTI-DIMENSIONAL ADAPTION 122

Table 5.5: Overall performance for other settings in Netflix
α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Given5,NDCG3

EigenRank 0.155 0.215 0.275 0.335 0.395 0.456 0.516 0.576 0.636 0.696 0.756

Assoc+Freq 0.456 0.463 0.469 0.486 0.504 0.523 0.541 0.560 0.578 0.597 0.615

LinearComb 0.455 0.464 0.472 0.493 0.521 0.551 0.575 0.600 0.649 0.701 0.763

RankComb 0.456 0.464 0.471 0.492 0.522 0.543 0.575 0.601 0.648 0.691 0.756

CMAP 0.459 0.469 0.487 0.506 0.527 0.559 0.593 0.624 0.658 0.706 0.766

Given5,NDCG5

EigenRank 0.173 0.231 0.289 0.350 0.405 0.463 0.520 0.578 0.636 0.694 0.752

Assoc+Freq 0.420 0.450 0.460 0.480 0.500 0.520 0.540 0.560 0.580 0.600 0.620

LinearComb 0.421 0.454 0.471 0.487 0.516 0.551 0.585 0.618 0.650 0.700 0.759

RankComb 0.421 0.450 0.464 0.485 0.518 0.552 0.583 0.617 0.648 0.698 0.755

CMAP 0.440 0.457 0.478 0.498 0.523 0.554 0.588 0.624 0.659 0.705 0.765

Given10,NDCG1

EigenRank 0.163 0.224 0.285 0.346 0.407 0.469 0.530 0.591 0.652 0.713 0.774

Assoc+Freq 0.452 0.456 0.466 0.485 0.505 0.525 0.545 0.565 0.584 0.604 0.624

LinearComb 0.460 0.464 0.482 0.502 0.531 0.560 0.588 0.626 0.669 0.719 0.778

RankComb 0.460 0.463 0.473 0.498 0.527 0.558 0.588 0.625 0.665 0.718 0.777

CMAP 0.477 0.494 0.509 0.528 0.544 0.574 0.607 0.643 0.678 0.725 0.785

Given10,NDCG3

EigenRank 0.163 0.224 0.284 0.345 0.405 0.466 0.526 0.587 0.647 0.707 0.768

Assoc+Freq 0.439 0.448 0.461 0.482 0.503 0.524 0.544 0.565 0.586 0.607 0.628

LinearComb 0.441 0.456 0.470 0.501 0.532 0.559 0.588 0.619 0.660 0.709 0.771

RankComb 0.442 0.455 0.469 0.498 0.530 0.559 0.584 0.613 0.654 0.705 0.770

CMAP 0.446 0.468 0.487 0.505 0.535 0.568 0.599 0.632 0.666 0.717 0.778

Given10,NDCG5

EigenRank 0.184 0.241 0.298 0.355 0.412 0.469 0.525 0.582 0.639 0.696 0.753

Assoc+Freq 0.408 0.420 0.455 0.478 0.500 0.523 0.545 0.568 0.590 0.612 0.635

LinearComb 0.426 0.439 0.458 0.491 0.525 0.547 0.581 0.625 0.660 0.703 0.764

RankComb 0.426 0.448 0.456 0.489 0.522 0.548 0.578 0.624 0.658 0.703 0.763

CMAP 0.433 0.455 0.477 0.497 0.527 0.558 0.599 0.634 0.668 0.716 0.775

Given20,NDCG1

EigenRank 0.147 0.210 0.272 0.335 0.398 0.461 0.523 0.586 0.648 0.711 0.774

Assoc+Freq 0.430 0.450 0.470 0.490 0.510 0.530 0.550 0.570 0.590 0.610 0.630

LinearComb 0.448 0.462 0.475 0.506 0.536 0.566 0.597 0.627 0.668 0.719 0.773

RankComb 0.442 0.458 0.472 0.502 0.532 0.562 0.593 0.621 0.666 0.718 0.773

CMAP 0.466 0.478 0.492 0.517 0.546 0.577 0.612 0.649 0.688 0.731 0.774

Given20,NDCG3

EigenRank 0.154 0.216 0.277 0.339 0.400 0.462 0.524 0.585 0.647 0.708 0.770

Assoc+Freq 0.423 0.437 0.459 0.481 0.503 0.526 0.548 0.570 0.592 0.614 0.636

LinearComb 0.425 0.447 0.468 0.500 0.522 0.555 0.588 0.621 0.665 0.709 0.780

RankComb 0.424 0.439 0.469 0.499 0.525 0.556 0.587 0.619 0.663 0.711 0.780

CMAP 0.433 0.455 0.479 0.504 0.537 0.569 0.604 0.637 0.671 0.718 0.780

Given20,NDCG5

EigenRank 0.167 0.226 0.285 0.343 0.402 0.461 0.519 0.579 0.637 0.696 0.755

Assoc+Freq 0.415 0.429 0.453 0.477 0.500 0.524 0.548 0.571 0.595 0.618 0.642

LinearComb 0.420 0.438 0.456 0.490 0.514 0.550 0.583 0.620 0.665 0.712 0.777

RankComb 0.420 0.435 0.457 0.489 0.513 0.547 0.581 0.618 0.663 0.713 0.776

CMAP 0.424 0.447 0.472 0.498 0.527 0.563 0.598 0.635 0.671 0.715 0.780

Chapter 6

Impression Efficiency
Optimization for Recommender
Systems

6.1 Commercial Intrusion Problem from Low

Impression Efficiency

Recommendation impression efficiency is another important is-

sue, along with the development of algorithms in recommender
systems. Recommendation impression efficiency means how much

revenue E-business companies can obtain by impressing a rec-
ommendation result to users. The reason why optimizing the

impression efficiency is important is that over-quantity recom-
mendation would have commercial intrusion to users. Thus op-

timizing impression efficiency means to optimize the profit on
the constraint that the total impression number is limited in a
certain range.

If too many recommendation results are pushed to users,
users’ satisfaction would be destroyed. Currently, most recom-

mender systems are supported by E-business companies. While
these companies provide Web services to users, they also expect

users would have more commercial behavior for their business.
Thus the recommendation service in such an environment can

123

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 124

be seen as a commercial behavior from E-business companies to
users.

There are many evidences to support the existence of com-
mercial intrusion in recommender systems. Take the example of

sponsored advertisements (ads) recommendation in sponsored
search, we list the following three supporting materials: 1) Users
have reported to show bias against sponsored search results after

they know its commercial insight [99]. 2) From the user study
in [71], when sponsored results are as relevant as the organic

results, more than 82% of users will see organic results first. 3)
Organic results have also demonstrated to gain much higher click

through rate (CTR) than sponsored search results [33]. Thus if
the ads are irrelevant to users’ search intent, to show less ads

or even not to show any ads is better than to show a full rank
of ads [18]. From the research in [21], irrelevant ads will have
the effect to “train” the users to ignore ads in the result page.

Thus if the impression efficiency is not carefully considered, in
a long-term, users would not trust the recommendation service

and finally it will decrease the utility of advertisers and search
engines.

In this chapter, we utilize sponsored search as a specific rec-
ommendation application to investigate the impression efficiency
optimization problem for recommender systems.

6.2 Background of Advertisements Recommen-

dation in Sponsored Search

Sponsored search has attracted more and more attention for
both research and industry community since web advertising

has become a large business industry nowadays. According to
a report from eMarketer1, advertisers in US have spent $21.4

1www.emarketer.com, October 2007

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 125

billion on web advertising in 2007, and this number is predicted
to be increased to $42 billion in 2011. In web advertising, spon-

sored search is a major component, making up around 40% (also
from eMarketer) of the total revenue. Sponsored search is the

main revenue source for search engines. Usually, the pay-per-
click mechanism is commonly used that advertisers would pay
an amount of money to the search engine company once their

ads shown in sponsored search results are clicked by users.
The majority of research in sponsored search is focusing on

matching relevant ads for queries. These work can be divided
into two streams, learning a function to directly predict an ad

rank list given a query [26, 29, 176] and learning to predict the
click-through rate (CTR) for query-ad pairs as an intermediate

step for matching relevant ads [11]. In the former stream, some
work focus on improving traditional models by exploring new
features such as query expanding [19, 120, 155], user behavior [8],

personalization [164], etc. In the latter stream, the work can be
divided into estimating CTR for frequent queries based on click

model [162, 172] and predicting CTR for rare queries based on
regression and classification model [35, 55, 125]. Other work

includes [15, 52, 167].
Impression efficiency optimization is also an important re-

search issue in sponsored search, but currently, most relevant

work is focusing on its foundation task, commercial revenue es-
timation of a query-ad pair. A query-ad pair refers to a query

and its displayed ad. The revenue value means how much rev-
enue is expected to obtain by showing such a query-ad pair.

Precise estimation of revenue is a preliminary task for further
strategy to optimize the impression efficiency. Typical revenue

estimation methods include: (1) CTR-based estimation [58]; (2)
relevance-based estimation [18]; and (3) advertisability-based es-
timation [114]. In CTR-based estimation [58] method, click-

models are employed to calculate the CTR of the query-ad pair,

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 126

Figure 6.1: Problem illustration for the impression efficiency optimization

and then the expected revenue can be obtained by multiplying
the bid price of the ad. In relevance-based estimation [18], a

classifier based on Support Vector Machines (SVM) is trained
to identify the relevance score of the query and the ad as the

revenue estimation. In advertisability-based estimation [114],
an advertisability score is calculated from the statistics of click

through log data as the estimation of revenue. More details of
the three kinds of methods can be found in the original papers.

Although the expected revenue of ads can be estimated by

previous work, the research issue of the strategy to optimize the
ads impression efficiency has not been formulated and thought-

fully explored. In this work, as the first ever solution, we for-
mulate the problem in sponsored search in the framework of

secretary problem. Then we explore approaches to solve it.

6.3 Problem Formulation for Impression Ef-

ficiency Optimization

6.3.1 Preliminary Knowledge

For each query qi, the search engine generate a ranked list of
relevant ads. The ranking is decided by a bidding process and

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 127

a combined consideration of many factors. The mechanism for
generating the rank is out scale of the work and we assume the

rank is fixed. Usually, there is a maximum number of ads to
show. In this work, we only consider north ads without loss of

generality. The maximum of ads that can be shown is 3. The
ads after the third position in the rank will be ignored.

6.3.2 Problem Formulation

Since the goal of the impression efficiency optimization is to

reduce commercial intrusion to users, we first quantify the com-
mercial intrusion. Intuitively, if more ads are shown for each

query, users would suffer from more commercial intrusion. Thus
in this work, we propose to employ the rate λ, the average ad

impression number per query, as the quantitative description for
commercial intrusion to users as shown in Def. 1. Although in
rare cases, users may seem to take interests in some of the ads

and click them, from the work in [71, 99], the commercial in-
trusion in this case still objectively exists and users would still

prefer to show organic results only.

Definition 1. The intrusion rate λ for sponsored ads recom-

mendation is defined as the average ad impression number per
query.

The impression efficiency and its optimization problem is de-
fined as follows. As shown in Fig. 6.1, for a window of N queries,

they arrive at the search engine in a sequence. When a query
arrives, a fixed function f(qi, adj) can be utilized to calculate

the commercial revenue estimation of the ad at the jth position.
If there are less than three ads, the missing position has the
estimated revenue value of zero. Before the next query arrives,

an impression function I(qi) has to decide how many ads should
be shown for current query. The impression efficiency is defined

in the following way.

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 128

Definition 2. The impression efficiency at λ for sponsored
ads recommendation is defined as

∑N
i=1

∑I(qi)
j=1 f(qi, adj)∑N
i=1 I(qi)

, (6.1)

Sub. to

N∑

i=1

I(qi) ≤ N ∗ λ.

Therefore, the problem is to find the impression function that
can maximize the sum of estimation values of shown ads in the

window under the constraint that the total number of ads is less
than N ∗ λ.

Definition 3. The problem of impression efficiency opti-

mization for sponsored ads recommendation is defined as

max
Imp(q)

N∑

i=1

I(qi)∑

j=1

f(qi, adj), (6.2)

Sub. to
N∑

i=1

I(qi) ≤ N ∗ λ.

From this problem definition, we can see the difference be-

tween our work and previous work. Previous work is mainly
focus on exploring function f to estimate the expected revenue

of the query-ad pairs. But in our work, we focus on exploring
function I to optimize the total revenue, which is a research

issue that has rarely been investigated in sponsored ads recom-
mendation.

In this work, we make the assumption that within a query

window ofN , queries arrive randomly. Thus the problem defined
in this work is under the secretary problem framework. How-

ever, it is different from any traditional secretary problem. The
most basic secretary problem is to select the best secretary from

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 129

a sequence of N applicants. After one arrives, its quality can
be known and a decision should be made immediately without

repentance. The optimal policy for this problem can achieve the
probability of 1/e for success. A similar secretary problem with

our problem is the multiple-choice secretary problem. That is
to select k secretaries from the applicants and optimize the sum
of their quality score. The condition in our problem is more

complex. When a query arrives, three ads arrive as a group,
rather than one. Furthermore, in the decision, there are further

constraints. We can only select the first s ads (s ∈ [0, 1, 2, 3]).
Since the ranking is decided by a bidding process from advertis-

ers and it is fixed, we cannot show the third ad without showing
the second. Thus this problem has never been investigated un-

der the secretary framework. We call the problem constrained
3-tuple multi-choice secretary problem. More details of secre-
tary problems can be found in [9, 31, 45, 49, 48, 41]

6.3.3 Evaluation Metric

The main challenge of this secretary problem is that we do not
know all the estimated revenues in the window when making

decisions. If we know them, then the optimal decision can be
solved by simple linear programming. We suppose the “best
solution” is the decision made in this way. As the first ever so-

lution for measurement, we employ the error distance rate of the
algorithm solution to the best solution as the evaluation met-

ric. Suppose for an algorithm I to this secretary problem, the
sum of all estimated revenue obtained is

∑N
i=1

∑I(qi)
j=1 f(qi, adj),

and suppose the best solution is Ibest, the error distance rate is
defined as

error distance rate = (6.3)
∑N

i=1

∑Ibest(qi)
j=1 f(qi, adj) −

∑N
i=1

∑I(qi)
j=1 f(qi, adj)

∑N
i=1

∑Ibest(qi)
j=1 f(qi, adj)

.

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 130

Table 6.1: Statistics of the queries
Query Freq. # Unique Query # Session Avg. CTR

1 1695146 1695146 0.0212
2 1058697 1342854 0.0153

3-4 772810 1275067 0.0141
5-8 262555 925065 0.0151
9-17 128304 880444 0.0162
18-32 47981 685582 0.0179

33-221480 48582 4427998 0.0201

Table 6.2: Statistics of the ads
Ads Freq. # Unique Ad # Impression Avg. CTR

1 26267 26267 0.0257
2 14689 29378 0.0222

3-4 17539 60146 0.0216
5-8 18058 113186 0.0208
9-17 18092 223102 0.0191
18-32 12786 306201 0.0190

33-82942 36365 17252570 0.0178

The error rate ranges from 0.0 to 1.0. Please notice here the
metric is a measurement of error, so the smaller the value is, the

better the performance is.
In the metrics, the revenue scores are the estimated values

done by previous work, because in this work, we focus on ex-
ploring the strategy for impression efficiency as an independent
problem rather than the revenue estimation. In the experiments,

we also show the error distance rate of real revenue obtained be-
tween I and Ibest. But it is not utilized as a metric. We show

this only as a demonstration that the strategies of impressing
ads are practical in real applications.

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 131

6.4 Dataset and Experimental Setup

6.4.1 Dataset

Our dataset is from a search engine company Sogou2 from the

mainland China. Sogou is the second largest search engine com-
pany. The dataset is the click-through log collected in part of

its sponsored search module. The queries are focused at educa-
tional topic, such as “College English Test Four”, etc. The data
is collected from October 1st to December 1st and it contains

18,010,850 sessions in total. It has 6 field information, including
the query, ad title, ad body, ad bid terms, ad bid price, and

whether it is clicked. In this example, three ads are generated
from the search engine. Although the time-stamps are not in-

cluded, the data is collected by the time sequence. Statistics of
the results are summarized in Table 6.1 and Table 6.2. The aver-

age number of clicks per query is quite low for both queries and
ads in general, with 0.02515 at position 1, 0.009369 at position
2 and 0.006844 at position 3.

6.4.2 Experimental Setup

In this experiments, we set the window length N=500,000 with-
out loss of generality. For a certain λ, the maximum number of

ads to show is λ ∗ N . Experiments are conducted on different
configurations of λ. Its range is from 0.5 to 1.15 with the inter-

val of 0.05. The average error distance rate is calculated among
all the query windows as the result of an algorithm.

For ad revenue estimation function f in this work, we employ

CCM [58] model for CTR prediction. The revenue estimation
of a query-ad pair is the CTR of the ad multiplied by its bid

price. The advantage of this method is that the position-bias is
considered, which makes the estimation more accurate.

2http://www.sogou.com/

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 132

6.5 A Preliminary Assumption for All Meth-

ods

To make the problem simple, we assume, for a query, the esti-

mation revenue of the ad at the latter position is always smaller
than the revenue of the ad at the former position. There are

two supportive points for this assumption: 1) The position-bias
problem exists in sponsored search. People are likely to click the
ads at the former position more than the ads at the latter posi-

tion. 2) In ranking the ads, to place the ad with more estimated
revenue at the former position is also the goal of the ranking

algorithm in search engine. The statistics of this dataset can
also verify this statement.

6.6 Unstable Problem in Static Method for

Impression Efficiency Optimization

6.6.1 Static Method Description

An intuitive way to solve the problem is to employ static meth-

ods. A fixed threshold value can be learned from history data
to determine whether the current query-ad pair has the esti-
mated value large enough to show. The assumption of this kind

of methods is that the distribution of the estimated revenue at
each window is stable over times.

A direct static method is shown in Algorithm 6. In this al-
gorithm, N is the window size, Xi is a three dimension vector

(Xi1, Xi2, Xi3) with Xij denoting the estimated revenue of the
ad for query i at position j. An ad can be shown if all the

estimated revenue values of its previous ads (including itself)
are larger than the threshold. In learning the threshold, we can
use the data in the previous window by selecting the kth largest

value in the window, as shown in Algorithm 7. The complex-

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 133

Algorithm 6 Static Method

Input: A sequence of N queries together with estimated revenue for their
ads X = X1, X2, ...XN

Threshold: to determine whether to impress an ad
k : the maximum number of ads to select
Algorithm:

Variable remainToSelect = k
for i = 0 to N -1 do

if Xi1 > Threshold then
Impress adi1 to the user
remainToSelect=remainToSelect-1;
if Xi2 > Threshold then

Impress adi2 to the user
remainToSelect=remainToSelect-1;
if Xi3 >Threshold then

Impress adi3 to the user
remainToSelect=remainToSelect-1;

end if
end if

end if
end for

Output: The strategy for impressing ads for current N queries.

ity of the learning is mainly from the sorting of all the revenue

values, thus it is O(n logn). The complexity in application is
linear complexity O(n).

6.6.2 Experimental Verification

We compare the performance of the static method with the ran-
dom method as the baseline. Fig. 6.2 shows the result in differ-
ent configurations. It can be observed that 1) the static method

significantly outperform the random method; and 2) there is
an error distance rate of more than 5% for the static method

in most of the configurations, which is because of the unstable
problem we will explain later.

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 134

Algorithm 7 Training Threshold in Static Method

Input: A sequence of N queries together with estimated revenue for their
ads X = X1, X2, ...XN

k : the maximum number of ads to select
Algorithm:

ArrayList list
for i = 0 to N -1 do

list.add(Xi3)
list.add(Xi2)
list.add(Xi1)

end for
sortList = sortDescendOrder(list)
Threshold = sortList[k − 1]

Output: Threshold to determine whether to impress an ad

6.6.3 Unstable Problem of the Static Method

From the experimental results, we find that although the static
method has obtained competitive performance, there is still around

5% distance from the optimal result. It seems that 5% is a
very marginal distance; however, in sponsored search, such a

marginal distance means billions of US dollars per year for search
engine companies from the statistics in eMarketer. Thus to de-

crease this distance is an important research issue.
The main reason for this distance is that the data has un-

stable property. In the static method, it is assumed that the

distribution of the estimated revenue is stable over times. But
this assumption is not accurate. In fact, the revenue distribu-

tion is changing over times. To verify this, we make statistics
on the dataset about the change of different query windows.

First, we calculate the average estimated revenue for all queries
in each window and make statistics on the distance between the

current window and its previous window. Fig. 6.3 shows the dis-
tribution of these distances (the left is original and the right is
the one after normalization). Secondly, we record the threshold

learned in each window and make statistics on the distance be-

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 135

0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

Random

Static

X-axis: lambda
Y-axis: error distance rate

Figure 6.2: Performance of static method

tween current window and its previous window. Fig. 6.4 shows
the distribution of these distances (the left is original and the

right is the one after normalization). It can be observed, in
both figures, more then 10% of the cases, the data has changed
for more than 10%. This demonstrates that the data has the

unstable problem.
Some may argue that the statistics on the estimated revenue

are correlated with specific revenue estimation method and may
not generalizable in other cases. Thus we study more insight

for the unstable problem. We verify the change of data from
two aspects, 1) the change of query type distribution and 2) the
change for CTR. In the former, we cluster all the queries into

1,000 groups based on the term frequency. Within each window,
we calculate the probability for a query to different groups. Then

we make statistics on distribution of the KL distances between
current window and its previous window. Fig. 6.5 shows the

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 136

−0.4 −0.2 0 0.2 0.4
0

5

10

15

20

25

30

35

−0.2 0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

X-axis: change rate
Y-axis: data count(left), data rate(right)

Figure 6.3: Distribution of the changed average revenue

result. In the latter, we estimate the CTR for each group and
calculate the average change between current window and pre-

vious window. Fig. 6.6 shows the distributions of the change.
Both figures have shown that the data is changing at a certain
rate. Therefore the change will result in the unstable property

of estimated revenue values as the insight reasons.
The unstable problem is a main challenge for the issue. Using

static method means that more than 5% of total revenue would
be lost for search engine companies. Thus a dynamic algorithm

is desired to adapt to the change when deciding the strategy in
impressing the ads.

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 137

−0.4 −0.2 0 0.2 0.4
0

5

10

15

20

25

30

35

40

−0.2 0 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

X-axis: change rate
Y-axis: data count(left), data rate(right)

Figure 6.4: Distribution of the changed threshold

6.7 Proposed Dynamic Method for Impres-

sion Efficiency Optimization

6.7.1 Proposed Dynamic Method

To solve the unstable problem, we explore the methods in the
framework of the secretary problem. As mentioned in previous

section, our task is to solve the constrained 3-tuples multi-choice
problem, which has never been investigated before. The most

similar problem with us is unconstrained 1-tuple multi-choice
problem. Previous work in [74] has proposed a recursive algo-
rithm. The expected performance of this algorithm can achieve

(1 − O(1/
√
k))v, where v is the maximum value and k is the

number of elements to be selected. Here we propose a novel

algorithm for our task in this work as an extension.
The proposed algorithm is shown in Algorithm 8 and Fig. 6.7.

If k = 1, we observe the firstN/e queries without ads impression,
and set the largest value observed as the threshold. Then for the

rest of the queries, we select the first ad that has the estimated

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 138

0 0.1 0.2 0.3 0.4
0

50

100

150

200

250

300

0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

X-axis: change rate
Y-axis: data count(left), data rate(right)

Figure 6.5: The change of query type

value larger than this threshold. If k > 1, we first sample an
m from binomial distribution B(N, 0.5), and then recursively to

select k/2 ads from the m queries. Set the k/2th largest value
in m queris as the threshold for remained N −m queries. Then
select ads that is larger than the threshold under the ranking

constraints.

6.7.2 Empirical Study of the Dynamic Method

We show the real competitive ratio in different configurations

of λ, as shown in Fig. 6.8. From the figure, we can observe the
competitive ratio is over 0.97 in all the configurations.

Fig. 6.9 shows the experimental result of the dynamic method
compared with the static method. It can be observed that
the dynamic algorithm can consistently outperform the static

method with significant improvement. Table 6.3 shows the im-
provement in real revenue. This demonstrate that the dynamic

algorithm we proposed is effective in solving the unstable prob-
lem.

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 139

−1 −0.5 0 0.5 1
0

100

200

300

400

500

600

−1 −0.5 0 0.5 1

100

200

300

400

500

600

X-axis: change rate
Y-axis: data count(left), data rate(right)

Figure 6.6: The change of click-through rate

Table 6.3: Improvement of the dynamic algorithm compared with the static
algorithm

Rate 0.5 0.55 0.60 0.65 0.70 0.75 0.80

Imprv. (%) 8.887 13.63 12.02 13.34 14.15 17.6 21.82

Rate 0.85 0.90 0.95 1.00 1.05 1.10 1.15

Imprv. (%) 20.22 21.65 17.26 20.71 20.3 16.58 17.1

6.8 Combination of Static and Dynamic Meth-

ods

6.8.1 Combination Approach

In previous sections, we have tried both static and dynamic
methods for the problem. The advantage of the static method
is that it utilizes history information, but it cannot adapt to

the change; while the dynamic method can adapt well to the
change, but it does not utilize the help from the history data.

Thus it is natural to combine these two kinds of methods to
improve the performance. Therefore, in this section, we propose

a heuristic method to combine static and dynamic methods to-

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 140

Figure 6.7: Dynamic method illustration

gether. The main idea is as follows. We set a lower bound
and upper bound for the selection in dynamic method. In case

that the estimated revenue of an ad is below the lower bound,
it should not be selected; and similarly, in case that it is be-

yond the an upper bound, it will be selected without comparing
to current threshold value. The lower bound and upper bound
are defined according to the history information calculated in

the static method. In this way, the dynamic method adapts to
change in a range constrained by the static method for perfor-

mance improvement. Algorithm 9 shows more details for the
combination. The time complexity is mainly from the sorting,

which is O(n log n).

6.8.2 Experimental Verification

Fig. 6.10 shows the experimental results of the comparison of the

combination method with dynamic method. It can be demon-
strated that the combination method consistently performs the
best in all configurations. The improvement of the real revenue

is shown in Table 6.4. The combination can well solve the unsta-
ble problem identified before. In sponsored search community,

such improvement means a significant increase of revenue for

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 141

0.5 0.6 0.7 0.8 0.9 1 1.1
0.8

0.85

0.9

0.95

1

1.05

1.1

X-axis: lambda Y-axis: K

Figure 6.8: Competitive ratio on different K

0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Static

Dynamic

X-axis: lambda
Y-axis: error distance rate

Figure 6.9: Performance of dynamic method

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 142

0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Dynamic

Combine

X-axis: lambda
Y-axis: error distance rate

Figure 6.10: Performance of combination method

Table 6.4: Improvement of the combination algorithm compared with the
dynamic algorithm

Rate 0.5 0.55 0.60 0.65 0.70 0.75 0.80

Imprv. (%) 6.289 5.503 3.799 0.6202 4.165 3.534 0.0572

Rate 0.85 0.90 0.95 1.00 1.05 1.10 1.15

Imprv. (%) 1.482 2.703 0.5186 1.084 0.1678 1.025 1.070

search engine companies. Fig. 6.11 shows the performance of

four methods in real revenue for demonstration in practical ap-
plication. It can be observed that the algorithms proposed in

this work is practical in real applications.

6.9 Summary

In this work, we formulate the problem of impression efficiency

optimization in sponsored search under the secretary problem
framework. Through experiments on real world dataset, we

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 143

0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random

Static

Dynamic

Combine

X-axis: lambda
Y-axis: error distance rate

Figure 6.11: Performance in real revenue case

found that the data in sponsored search is unstable over time
and direct static methods cannot achieve good performance. A

dynamic algorithm is proposed to solve this problem. By experi-
mental verification, our algorithm has a significant improvement
from static methods. At last, we combine the history informa-

tion in static methods into the dynamic method using heuristic
method, experimental results show that another significant im-

provement can be obtained.

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 144

Algorithm 8 Dynamic Method

Input: A sequence of N queries together with estimated revenue for their
ads X = X1, X2, ...XN

k : the maximum number of ads to select
Algorithm:

ArrayList mList, kList, valueList
double threshold
mList.add(N), kList.add(k)
while k! = 1 do
N = Binormial(N, 0.5), k = k/2.
mList.add(N), kList.add(k).

end while
for g = mList.length − 1 to 0 do

if g equals to mList.length− 1 then
Observe from X1 to XmList.get(g)/e

Put Xij into valueList
Select the largest Xij as threshold
for i = XmList.get(g)/e+1 to XmList.get(g) do

Put Xij into valueList
Impress ads to users if the value is larger than the threshold as in
Algorithm 6 until the impression number reaches kList.get(g).

end for
else

threshold = the (kList.get(g)/2)th largest value in valueList
for i = XmList.get(g−1)+1 to XmList.get(g) do

Put Xij into valueList
Impress ads to users if the value is larger than the threshold as in
Algorithm 6 until the impression number reaches kList.get(g).

end for
end if

end for

Output: The strategy for impressing ads for current N queries.

CHAPTER 6. IMPRESSION EFFICIENCY OPTIMIZATION 145

Algorithm 9 Combination Method

Input: A sequence of N queries
threshold: the threshold in previous window
margin: to decide the up-bound and low-bound
Algorithm:

lowBound = threshold-margin;
upBound = threshold+margin
mList.add(N), kList.add(k)
while k! = 1 do
N = Binormial(N, 0.5), k = k/2.
mList.add(N), kList.add(k).

end while
for g = mList.length − 1 to 0 do

if g equals to mList.length− 1 then
Observe from X1 to XmList.get(g)/e

Impress ads if the value is larger than upBound
Select the largest Xij as the threshold
threshold = Min(threshold, lowBound)
for i = XmList.get(g)/e+1 to XmList.get(g) do

Impress ads to users as in Algorithm 6 if the value is larger than
upBound or if kList.get(g) is larger than selected ads number and
the value is larger than the threshold

end for
else

threshold = the (kList.get(g)/2)th largest value in valueList
threshold = Min(threshold, lowBound)
for i = XmList.get(g−1)+1 to XmList.get(g) do

Impress ads to users as in Algorithm 6 if the value is larger than
upBound or if kList.get(g) is larger than selected ads number and
the value is larger than the threshold

end for
end if

end for

Output: The strategy for impressing ads

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The thesis investigates effective fusion-based approaches for rec-
ommender systems. Specifically, the target is to solve four limi-

tations from the four different levels in the evaluation structure
of recommender systems as shown in Fig. 1.2: (1) the relational
dependency is ignored in previous fusion methods for single mea-

sure and dimension. (2) single-measure-adapted algorithms can-
not adapt to multi-measure performance; (3) single-dimension-

adapted algorithms cannot adapt to multi-dimensional perfor-
mance; and (4) impression efficiency optimization in recommen-

dation is not carefully considered.
For the first limitation, we propose a relational fusion ap-

proach, based on extended multi-scale continuous conditional

random fields (CRF). The approach can model the relational
dependency by Markov property and it is designed to integrate

multiple features. Experimental results demonstrate that the
relational dependency is effective in improving the performance

of recommender systems and CRF framework is effective in com-
bining multiple features.

For the second limitation, we propose methods to fuse regression-
oriented and ranking-oriented algorithms for multi-measure adap-
tion in recommender systems. We propose fusion approaches for

146

CHAPTER 7. CONCLUSION AND FUTURE WORK 147

both model-based and memory-based CF methods. In model-
based methods, we propose to combine the objective functions of

two competitive methods, regression-adapted probabilistic ma-
trix factorization (PMF) [128] and ranking-adapted list-wise ma-

trix factorization (LMF) [139]; and in memory-based methods,
we propose to combine the results of two competitive meth-
ods, regression-adapted user-based Pearson correlation coeffi-

cient (PCC) [17] and ranking-adapted EigenRank [91]. Experi-
mental results verify that the combination is effective in improv-

ing performances on both regression and ranking measurements.
For the third limitation, we propose methods to fuse quality-

based and relevance-based algorithms as a preliminary study for
multi-dimensional recommendation. We propose an effective fu-

sion approach, which enables principled and natural integration
with features derived from both quality-based and relevance-
based algorithms. Experimental results identify that the com-

bination is effective in improving the performance in the inte-
grated metric significantly and the fusion approach outperforms

fundamental combination methods.
For the last limitation, we formulate the problem and pro-

pose a dynamic algorithm to optimize the impression efficiency
in sponsored advertisements recommendation. We identify the
unstable problem for fundamental static methods by statisti-

cal data analysis. Through empirical study, we show that the
dynamic algorithm is effective in solving the unstable problem.

We believe the improvements proposed in this thesis are worth-
while in practice. Users would benefit from convenient and accu-

rate recommendation service with less intrusion; and E-business
companies would obtain more revenue from more commercial

behaviors of the Web users.

CHAPTER 7. CONCLUSION AND FUTURE WORK 148

7.2 Future Work

Although CF algorithms, the key technique in recommender sys-
tem, have been investigated deeply over the decades, there are

still many challenging problems in need to solve. As future work,
we will still focus on improvement from the work proposed in
this thesis.

For the first work on relational fusion based on CRF, the
limitations lie in the computation complexity. Although the in-

ference process based on Gibbs sampling has reduced the com-
plexity from exponential complexity to linear complexity, and

it can be applied in large scale dataset, the converging speed
is still slow comparing to traditional model-based algorithms,
such as PMF. Thus the future work is to explore more effective

optimization methods to speed up the inference process.
For the second work on the fusion of regression-oriented and

ranking-oriented CF algorithms, the limitation is that the com-
bination depends on the formulations of selected algorithms.

Thus for other kind of algorithms, it might has problem in gen-
eralization. Thus as future work, we will explore how to build a

general framework for the combination of all kinds of regression-
oriented and ranking-oriented CF algorithms.

For the third work on the fusion of quality-based and relevance-

based algorithms in multi-dimensional recommendation, it is
still a preliminary work. It only considers two dimensions, and

there are many more dimensions that need to explore, such as
diversity, coverage, etc. Thus as future work, we will explore

how to consider more dimensions in recommendation.
For the last work on optimizing the impression efficiency in

sponsored search, the limitation is that the impression efficiency
optimization and the advertisement ranking are treated as two
separate tasks as a preliminary work. If the two tasks are jointly

optimized, it would make more improvement, which is also as

CHAPTER 7. CONCLUSION AND FUTURE WORK 149

the future work of this thesis.
In the first work, we investigate the relational recommenda-

tion framework to combine multiple features for the traditional
regression problem. However, in the other work, it is still a pri-

mary study. Relational dependency is not utilized in the com-
bination. Thus in future work, we plan to extend the previous
work to utilize the relational dependency information in order

to improve the performance of recommender systems.

2 End of chapter.

Appendix A

Publications

A.1 Publications in Ph. D study

• Xin Xin, Michael R. Lyu, and Irwin King. CMAP: Ef-
fective Fusion of Quality and Relevance for Multi-criteria

Recommendation (Full Paper). In Proceedings of ACM 4th
International Conference on Web Search and Data Mining
(WSDM 2011), Hong Kong, February 2011.

• Xin Xin, Irwin King, Hongbo Deng, and Michael R. Lyu.
A Social Recommendation Framework Based on Multi-scale

Continuous Conditional Random Fields (Full and Oral Pa-
per). In Proceedings of ACM 18th Conference on Infor-

mation and Knowledge Management (CIKM 2009), Hong
Kong, November 2009.

A.2 Publications in Master study

• Xin Xin, Juanzi Li, Jie Tang, and Qiong Luo. Academic
Conference Homepage Understanding Using Hierarchical

Conditional Random Fields (Full and Oral Paper). In Pro-
ceedings of ACM 17th Conference on Information and Knowl-
edge Management (CIKM 2008), Napa Valley, CA, October

2008.

150

APPENDIX A. PUBLICATIONS 151

• Xin Xin, Juanzi Li, and Jie Tang. Enhancing Semantic Web
by Semantic Annotation: Experiences in Building an Auto-

matic Conference Calendar (Short Paper). In Proceedings
of the 2007 IEEE/WIC/ACM International Conference on

Web Intelligence (WI 2007), Fremont, CA, November 2007.

A.3 Unpublished Work in Ph. D study

• Xin Xin, Haiqin Yang, Michael R. Lyu, and Irwin King.

Combining Regression and Ranking in Collaborative Fil-
tering. Submitted to CIKM 2011.

• Xin Xin, Wei Wang, Wei Yu, Jie Tang, Irwin King and
Michael R. Lyu. Learning to Impress in Sponsored Search.
Preparing to submit to WWW 2012.

• Wei Wang, Xin Xin, Irwin King, Jie Tang, and Michael R.
Lyu. Compete or Collaborate? Incorporating Relational

Influence within Search Results into Click Model in Spon-
sored Search. Submitted to CIKM 2011.

2 End of chapter.

Bibliography

[1] G. Adomavicius and A. Tuzhilin. Toward the next gen-
eration of recommender systems: a survey of the state-
of-the-art and possible extensions. IEEE Transactions on

Knowledge and Data Engineering, 17(6):734–749, 2005.

[2] D. Agarwal and B. Chen. Regression-based latent factor

models. In Proc. of SIGKDD’09, pages 19–28. ACM, 2009.

[3] D. Agarwal, B. Chen, and P. Elango. Fast online learning

through offline initialization for time-sensitive recommen-
dation. In Proc. of SIGKDD’10, pages 703–712. ACM,

2010.

[4] X. Amatriain, N. Lathia, J. Pujol, H. Kwak, and N. Oliver.
The wisdom of the few: a collaborative filtering approach

based on expert opinions from the web. In Proc. of SI-
GIR’09, pages 532–539. ACM, 2009.

[5] R. Andersen, C. Borgs, J. Chayes, U. Feige, A. Flaxman,
A. Kalai, V. Mirrokni, and M. Tennenholtz. Trust-based

recommendation systems: an axiomatic approach. In Proc.
of WWW’08, pages 199–208, New York, NY, USA, 2008.

ACM.

[6] W. Anderson. Continuous-time Markov chains:
applications-oriented approach. Springer, 1991.

152

BIBLIOGRAPHY 153

[7] C. Andrieu, N. De Freitas, A. Doucet, and M. Jordan.
An introduction to MCMC for machine learning. Machine

Learning, 50(1-2):5–43, 2003.

[8] N. Archak, V. Mirrokni, and S. Muthukrishnan. Mining

advertiser-specific user behavior using adfactors. In Proc.
of WWW’10, pages 31–40. ACM, 2010.

[9] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg.

Online auctions and generalized secretary problems. ACM
SIGecom Exchanges, 7(2):1–11, 2008.

[10] M. Balabanović and Y. Shoham. Fab: content-based, col-
laborative recommendation. Communications of the ACM,

40(3):66–72, 1997.

[11] H. Bao and E. Chang. AdHeat: an influence-based diffu-

sion model for propagating hints to match ads. In Proc.
of WWW’10, pages 71–80. ACM, 2010.

[12] C. Basu, H. Hirsh, and W. Cohen. Recommendation as
classification: using social and content-based information
in recommendation. In Proc. of the NCAI’98, pages 714–

720, 1998.

[13] P. Bedi, H. Kaur, and S. Marwaha. Trust based recom-

mender system for the semantic web. In Proc. of IJCAI’07,
pages 2677–2682, 2007.

[14] R. Bell, Y. Koren, and C. Volinsky. Modeling relation-
ships at multiple scales to improve accuracy of large rec-

ommender systems. In Proc. of SIGKDD’07, pages 95–104.
ACM, 2007.

[15] M. Bendersky, E. Gabrilovich, V. Josifovski, and D. Met-

zler. The anatomy of an ad: structured indexing and re-

BIBLIOGRAPHY 154

trieval for sponsored search. In Proc. of WWW’10, pages
101–110. ACM, 2010.

[16] D. Billsus and M. Pazzani. Learning collaborative infor-
mation filters. In Proc. of ICML’98, volume 54, 1998.

[17] J. Breese, D. Heckerman, C. Kadie, et al. Empirical anal-
ysis of predictive algorithms for collaborative filtering. In
Proc. of UAI’98, pages 43–52, 1998.

[18] A. Broder, M. Ciaramita, M. Fontoura, E. Gabrilovich,
V. Josifovski, D. Metzler, V. Murdock, and V. Plachouras.

To swing or not to swing: learning when (not) to advertise.
In Proc. of CIKM’08, pages 1003–1012. ACM, 2008.

[19] A. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski,
D. Metzler, L. Riedel, and J. Yuan. Online expansion of

rare queries for sponsored search. In Proc. of WWW’09,
pages 511–520. ACM, 2009.

[20] R. Burke. Hybrid recommender systems: survey and ex-
periments. In Proc. of UAI’02, volume 12, pages 331–370.
Springer, 2002.

[21] G. Buscher, S. Dumais, and E. Cutrell. The good, the
bad, and the random: an eye-tracking study of ad quality

in web search. In Proc. of SIGIR’10, pages 42–49. ACM,
2010.

[22] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning
to rank: from pairwise approach to listwise approach. In

Proc. of the ICML’07, pages 129–136. ACM, 2007.

[23] W. Chen, J. Chu, J. Luan, H. Bai, Y. Wang, and E. Chang.
Collaborative filtering for orkut communities: discovery of

user latent behavior. In Proc. of WWW’09, pages 681–690.
ACM, 2009.

BIBLIOGRAPHY 155

[24] W. Chen, D. Zhang, and E. Chang. Combinational collab-
orative filtering for personalized community recommenda-

tion. In Proc. of SIGKDD’08, pages 115–123. ACM, 2008.

[25] Y. Chien and E. George. A bayesian model for collabora-

tive filtering. In Proc. of the Seventh International Work-
shop on Artificial Intelligence and Statistics, 1999.

[26] Y. Choi, M. Fontoura, E. Gabrilovich, V. Josifovski,

M. Mediano, and B. Pang. Using landing pages for spon-
sored search ad selection. In Proc. of WWW’10, pages

251–260. ACM, 2010.

[27] W. Chu and S. Park. Personalized recommendation on

dynamic content using predictive bilinear models. In Proc.
of WWW’09, pages 691–700. ACM, 2009.

[28] F. Chua and E. Lim. Trust network inference for on-
line rating data using generative models. In Proc. of
SIGKDD’10, pages 889–898. ACM, 2010.

[29] M. Ciaramita, V. Murdock, and V. Plachouras. Online
learning from click data for sponsored search. In Proc. of

WWW’08, pages 227–236. ACM, 2008.

[30] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov,

D. Netes, and M. Sartin. Combining content-based and
collaborative filters in an online newspaper. In Proc. of

ACM SIGIR Workshop on Recommender Systems, 1999.

[31] F. Constantin, J. Feldman, S. Muthukrishnan, and M. Pál.

An online mechanism for ad slot reservations with cancel-
lations. In Proc. of SIAM’09, pages 1265–1274. Society for
Industrial and Applied Mathematics, 2009.

[32] B. Croft, D. Metzler, and T. Strohman. Search engines:
information retrieval in practice. Addison Wesley, 2009.

BIBLIOGRAPHY 156

[33] C. Danescu-Niculescu-Mizil, A. Broder, E. Gabrilovich,
V. Josifovski, and B. Pang. Competing for users’ attention:

on the interplay between organic and sponsored search re-
sults. In Proc. of WWW’10, pages 291–300. ACM, 2010.

[34] S. Daruru, N. Marin, M. Walker, and J. Ghosh. Per-
vasive parallelism in data mining: dataflow solution to

co-clustering large and sparse netflix data. In Proc. of
SIGKDD’09, pages 1115–1124. ACM, 2009.

[35] K. Dembczynski, W. Kotlowski, and D. Weiss. Predicting
ads’ click-through rate with decision rules. In Proc. of

WWW’08. Citeseer, 2008.

[36] M. Deshpande and G. Karypis. Item-based top-n recom-

mendation algorithms. ACM Transactions on Information
Systems, 22(1):143–177, 2004.

[37] C. Ding, H. Simon, R. Jin, and T. Li. A learning
framework using green’s function and kernel regulariza-

tion with application to recommender system. In Proc. of
SIGKDD’07, pages 260–269. ACM, 2007.

[38] J. Duchi, L. Mackey, and M. Jordan. On the consistency of
ranking algorithms. In Proc. of ICML’10. Citeseer, 2010.

[39] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifi-
cation (2nd Edition). Wiley-Interscience, November 2000.

[40] M. Dummett. The Borda count and agenda manipulation.
Social Choice and Welfare, 15(2):289–296, 1998.

[41] E. Dynkin. Optimal choice of the stopping moment of a
Markov process. In Dokl. Akad. Nauk SSSR, volume 150,

1963.

[42] A. Elberse. Should you invest in the long tail? Harvard

Business Review, 86(7/8):88–96, 2008.

BIBLIOGRAPHY 157

[43] A. Elberse and F. Oberholzer-Gee. Superstars and under-
dogs: an examination of the long tail phenomenon in video

sales. MSI Reports, 45(4):49–72, 2007.

[44] C. Elkan. Log-linear models and conditional random fields.

In Tutorial notes at CIKM’08, 2008.

[45] T. Ferguson. Who solved the secretary problem? Statisti-
cal Science, 4(3):282–289, 1989.

[46] D. Fleder and K. Hosanagar. Recommender systems and
their impact on sales diversity. In Proc. of EC’2007, pages

192–199. ACM, 2007.

[47] D. Frank Hsu and I. Taksa. Comparing rank and score

combination methods for data fusion in information re-
trieval. Information Retrieval, 8(3):449–480, 2005.

[48] P. Freeman. The secretary problem and its extensions:
a review. International Statistical Review/Revue Interna-

tionale de Statistique, 51(2):189–206, 1983.

[49] M. Gardner. Mathematical games. Scientific American,
202(3):172–182.

[50] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and
M. Pazzani. An energy-efficient mobile recommender sys-

tem. In Proc. of SIGKDD’10, pages 899–908. ACM, 2010.

[51] L. Getoor and M. Sahami. Using probabilistic rela-

tional models for collaborative filtering. In Proc. of WE-
BKDD’99), 1999.

[52] A. Ghose and S. Yang. Analyzing search engine advertis-
ing: firm behavior and cross-selling in electronic markets.
In Proc. of WWW’08, pages 219–226. ACM, 2008.

BIBLIOGRAPHY 158

[53] J. Golbeck. Generating predictive movie recommendations
from trust in social networks, 2006.

[54] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigen-
taste: a constant time collaborative filtering algorithm.

Information Retrieval, 4(2):133–151, 2001.

[55] T. Graepel, J. Candela, T. Borchert, and R. Herbrich.
Web-scale bayesian click-through rate prediction for spon-

sored search advertising in Microsofts Bing search engine.
In Proc. of ICML’10. Citeseer, 2010.

[56] Z. Guan, J. Bu, Q. Mei, C. Chen, and C. Wang. Per-
sonalized tag recommendation using graph-based ranking

on multi-type interrelated objects. In Proc. of SIGIR’09,
pages 540–547, 2009.

[57] Z. Guan, C. Wang, J. Bu, C. Chen, K. Yang, D. Cai, and
X. He. Document recommendation in social tagging ser-
vices. In Proc. of WWW’10, pages 391–400. ACM, 2010.

[58] F. Guo, C. Liu, A. Kannan, T. Minka, M. Taylor, Y. Wang,
and C. Faloutsos. Click chain model in web search. In Proc.

of WWW’09, pages 11–20. ACM, 2009.

[59] I. Guy, N. Zwerdling, I. Ronen, D. Carmel, and E. Uziel.

Social media recommendation based on people and tags.
In Proc. of SIGIR’10, pages 194–201. ACM, 2010.

[60] J. Hammersley and P. Clifford. Markov fields on finite
graphs and lattices. Unpublished manuscript, 1971.

[61] A. Harpale and Y. Yang. Personalized active learning for
collaborative filtering. In Proc. of SIGIR’08, pages 91–98.
ACM, 2008.

BIBLIOGRAPHY 159

[62] Q. He, J. Pei, D. Kifer, P. Mitra, and L. Giles. Context-
aware citation recommendation. In Proc. of WWW’10,

pages 421–430. ACM, 2010.

[63] X. He, R. S. Zemel, and M. A. Carreira-Perpinan. Multi-

scale conditional random fields for image labeling. In Proc.
of CVPR’04, volume 2, pages 695–702, Los Alamitos, CA,
USA, 2004. IEEE Computer Society.

[64] J. Herlocker, J. Konstan, and J. Riedl. An algorithmic
framework for performing collaborative filtering. In Proc.

of SIGIR’99, pages 230–237. ACM New York, NY, USA,
1999.

[65] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Eval-
uating collaborative filtering recommender systems. ACM

Transactions on Information Systems, 22(1):5–53, 2004.

[66] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Rec-
ommending and evaluating choices in a virtual commu-

nity of use. In Proc. of SIGCHI’95, pages 194–201.
ACM Press/Addison-Wesley Publishing Co. New York,

NY, USA, 1995.

[67] T. Hofmann. Latent semantic models for collaborative

filtering. ACM Transactions on Information Systems,
22(1):89–115, 2004.

[68] M. Jahrer, A. Toscher, and R. Legenstein. Combining
predictions for accurate recommender systems. In Proc. of
SIGKDD’10, pages 693–702. ACM, 2010.

[69] M. Jamali and M. Ester. Trustwalker: a random walk
model for combining trust-based and item-based recom-

mendation. In Proc. of SIGKDD’09, pages 397–406. ACM,
2009.

BIBLIOGRAPHY 160

[70] M. Jamali, G. Haffari, and M. Ester. Modeling the tempo-
ral dynamics of social rating networks using bidirectional

effects of social relations and rating patterns. In Proc. of
WWW’11, pages 527–536. ACM, 2011.

[71] B. Jansen and M. Resnick. An examination of searcher’s
perceptions of nonsponsored and sponsored links during
ecommerce Web searching. Journal of the American Soci-

ety for Information Science and Technology, 57(14):1949–
1949, 2006.

[72] N. Kawamae. Serendipitous recommendations via innova-
tors. In Proc. of SIGIR’10, pages 218–225. ACM, 2010.

[73] B. Kégl and R. Busa-Fekete. Boosting products of base
classifiers. In Proc. of ICML’09, pages 497–504. ACM,

2009.

[74] R. Kleinberg. A multiple-choice secretary algorithm with
applications to online auctions. In Proc. of SIAM’05, pages

630–631. Society for Industrial and Applied Mathematics,
2005.

[75] I. Konstas, V. Stathopoulos, and J. Jose. On social net-
works and collaborative recommendation. In Proc. of SI-

GIR’09, pages 195–202. ACM, 2009.

[76] Y. Koren. Factorization meets the neighborhood: a

multifaceted collaborative filtering model. In Proc. of
SIGKDD’08, pages 426–434. ACM, 2008.

[77] Y. Koren. Collaborative filtering with temporal dynamics.
In Proc.s of SIGKDD’10, pages 89–97. ACM, 2010.

[78] T. T. Kristjansson, A. Culotta, P. A. Viola, and A. Mccal-

lum. Interactive information extraction with constrained

BIBLIOGRAPHY 161

conditional random fields. In Proc. of AAAI’04, pages
412–418, 2004.

[79] S. Kullback and R. Leibler. On information and sufficiency.
The Annals of Mathematical Statistics, 22(1):79–86, 1951.

[80] M. Kurucz, A. Benczúr, T. Kiss, I. Nagy, A. Szabó, and
B. Torma. Who Rated What: a combination of SVD,
correlation and frequent sequence mining. In Proc. of KDD

Cup and Workshop, volume 23, pages 720–727, 2007.

[81] J. Lafferty, A. McCallum, and F. Pereira. Conditional

random fields: probabilistic models for segmenting and
labeling sequence data. In Proc. of ICML’01, pages 282–

289, 2001.

[82] K. Lang. Newsweeder: learning to filter netnews. In Proc.

of ML’95, 1995.

[83] N. Lathia, S. Hailes, L. Capra, and X. Amatriain. Tem-

poral diversity in recommender systems. In Proc. of SI-
GIR’10, pages 210–217, 2010.

[84] N. Lawrence and R. Urtasun. Non-linear matrix factoriza-

tion with gaussian processes. In Proc. of ICML’09, pages
601–608. ACM, 2009.

[85] B. Li, Q. Yang, and X. Xue. Transfer learning for collab-
orative filtering via a rating-matrix generative model. In

Proc. of ICML’09, pages 617–624. ACM, 2009.

[86] L. Li, W. Chu, J. Langford, and R. Schapire. A contextual-

bandit approach to personalized news article recommenda-
tion. In Proc. of WWW’10, pages 661–670. ACM, 2010.

[87] S. Li. Markov random field models in computer vision.

Lecture Notes in Computer Science, 1994.

BIBLIOGRAPHY 162

[88] G. Linden, B. Smith, and J. York. Amazon. com recom-
mendations: Item-to-item collaborative filtering. Internet

Computing, IEEE, 7(1):76–80, 2003.

[89] C. Liu, H. Yang, J. Fan, L. He, and Y. Wang. Distributed

nonnegative matrix factorization for web-scale dyadic data
analysis on mapreduce. In Proc. of WWW’10, pages 681–
690. ACM, 2010.

[90] J. Liu. Monte Carlo strategies in scientific computing.
Springer, 2001.

[91] N. Liu and Q. Yang. EigenRank: a ranking-oriented ap-
proach to collaborative filtering. In Proc. of SIGIR’08,

pages 83–90. ACM New York, NY, USA, 2008.

[92] N. Liu, M. Zhao, and Q. Yang. Probabilistic latent pref-

erence analysis for collaborative filtering. In Proc. of
CIKM’09, pages 759–766. ACM, 2009.

[93] T. Liu. Learning to rank for information retrieval. Founda-
tions and Trends in Information Retrieval, 3(3):225–331,
2009.

[94] T. Lu and C. Boutilier. Learning mallows models with
pairwise preferences. In Proc. of ICML’11, 2011.

[95] Y. Lv, T. Moon, P. Kolari, Z. Zheng, X. Wang, and
Y. Chang. Learning to model relatedness for news rec-

ommendation. In Proc. of WWW’11, pages 57–66. ACM,
2011.

[96] H. Ma, I. King, and M. Lyu. Effective missing data pre-
diction for collaborative filtering. In Proc. of SIGIR’07,
pages 39–46. ACM New York, NY, USA, 2007.

BIBLIOGRAPHY 163

[97] H. Ma, I. King, and M. R. Lyu. Learning to recommend
with social trust ensemble. In Proc. of SIGIR’09, pages

203–210, 2009.

[98] L. Mackey, D. Weiss, and M. Jordan. Mixed membership

matrix factorization. In Proc. ICML’10. Citeseer, 2010.

[99] L. Marable. False oracles: consumer reaction to learning
the truth about how search engines work, results of an

ethnographic study. 2003.

[100] J. Marden. Analyzing and modeling rank data. Chapman

& Hall/CRC, 1995.

[101] B. Marlin. Modeling user rating profiles for collaborative

filtering. In Proc. of NIPS’04, volume 16, pages 627–634.
MIT Press, 2004.

[102] F. McSherry and I. Mironov. Differentially private recom-
mender systems: building privacy into the net. In Proc.

SIGKDD’09, pages 627–636. ACM, 2009.

[103] B. Mehta and W. Nejdl. Attack resistant collaborative
filtering. In Proc. of SIGIR’08, pages 75–82. ACM, 2008.

[104] P. Melville, R. Mooney, and R. Nagarajan. Content-
boosted collaborative filtering for improved recommenda-

tions. In Proc. of UAI’02, pages 187–192. Menlo Park,
CA; Cambridge, MA; London; AAAI Press; MIT Press;

1999, 2002.

[105] B. Miller, I. Albert, S. Lam, J. Konstan, and J. Riedl.

Movielens unplugged: experiences with an occasionally
connected recommender system. In Proc. of the 8th Inter-
national Conference on Intelligent User Interfaces, pages

263–266. ACM New York, NY, USA, 2003.

BIBLIOGRAPHY 164

[106] R. Mooney, P. Bennett, and L. Roy. Book recommend-
ing using text categorization with extracted information.

In Recommender Systems. Papers from 1998 Workshop.
Technical Report WS-98, volume 8, 1998.

[107] R. Mooney and L. Roy. Content-based book recommend-
ing using learning for text categorization. In Proc. DL’00,
pages 195–204. ACM New York, NY, USA, 2000.

[108] R. Nakamoto, S. Nakajima, J. Miyazaki, S. Uemura, and
H. Kato. Investigation of the effectiveness of tag-based

contextual collaborative filtering in website recommenda-
tion. Advances in Communication Systems and Electrical

Engineering, pages 309–318, 2008.

[109] N. Nanas, M. Vavalis, and A. De Roeck. A network-based

model for high-dimensional information filtering. In Proc.
of SIGIR’10, pages 202–209. ACM, 2010.

[110] J. O’Donovan and B. Smyth. Trust in recommender sys-

tems. In Proc. of IUI’05, pages 167–174, New York, NY,
USA, 2005. ACM.

[111] K. Onuma, H. Tong, and C. Faloutsos. Tangent: a
novel,’surprise me’, recommendation algorithm. In Proc.

of SIGKDD’09, pages 657–666. ACM, 2009.

[112] L. Page, S. Brin, R. Motwani, and T. Winograd. The

pagerank citation ranking: bringing order to the web.
1998.

[113] R. Pan and M. Scholz. Mind the gaps: weighting the
unknown in large-scale one-class collaborative filtering. In
Proc. of SIGKDD’09, pages 667–676. ACM, 2009.

BIBLIOGRAPHY 165

[114] S. Pandey, K. Punera, M. Fontoura, and V. Josifovski.
Estimating advertisability of tail queries for sponsored

search. In Proc. of SIGIR’10, pages 563–570. ACM, 2010.

[115] D. Pavlov and D. Pennock. A maximum entropy ap-

proach to collaborative filtering in dynamic, sparse, high-
dimensional domains. In Proc. of NIPS’03, pages 1465–
1472. MIT; 1998, 2003.

[116] M. Pazzani. A framework for collaborative, content-based
and demographic filtering. Artificial Intelligence Review,

13(5):393–408, 1999.

[117] M. Pazzani and D. Billsus. Learning and revising user pro-

files: the identification of interesting web sites. Machine
Learning, 27(3):313–331, 1997.

[118] D. Pennock, E. Horvitz, S. Lawrence, and C. Giles. Col-
laborative filtering by personality diagnosis: a hybrid
memory-and model-based approach. In Proc. of UAI’00,

pages 473–480. Stanford, California, 2000.

[119] T. Qin, T. Liu, X. Zhang, D. Wang, and H. Li. Global

ranking using continuous conditional random fields. In
Proc. of NIPS’08, 2008.

[120] F. Radlinski, A. Broder, P. Ciccolo, E. Gabrilovich,
V. Josifovski, and L. Riedel. Optimizing relevance and

revenue in ad search: a query substitution approach. In
Proc. of SIGIR’09, pages 403–410. ACM, 2008.

[121] S. Rendle, L. Balby Marinho, A. Nanopoulos, and
L. Schmidt-Thieme. Learning optimal ranking with ten-
sor factorization for tag recommendation. In Proc. of

SIGKDD’09, pages 727–736. ACM, 2009.

BIBLIOGRAPHY 166

[122] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Fac-
torizing personalized markov chains for next-basket recom-

mendation. In Proc. of WWW’10, pages 811–820. ACM,
2010.

[123] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: an open architecture for collaborative
filtering of netnews. In Proc. of the 1994 ACM conference

on Computer supported cooperative work, pages 175–186.
ACM, 1994.

[124] E. Rich. User modeling via stereotypes. Readings in In-
telligent User Interfaces, pages 329–341, 1998.

[125] M. Richardson, E. Dominowska, and R. Ragno. Predicting
clicks: estimating the click-through rate for new ads. In

Proc. of WWW’07, pages 521–530. ACM, 2007.

[126] S. Robertson and S. Walker. Threshold setting in adaptive
filtering. Journal of Documentation, 56(3):312–331, 2000.

[127] S. Rosset, C. Perlich, and Y. Liu. Making the most of your
data: Kdd cup 2007 how many ratings winner’s report.

ACM SIGKDD Explorations Newsletter, 9(2):66–69, 2007.

[128] R. Salakhutdinov and A. Mnih. Probabilistic matrix fac-

torization. In Proc. of NIPS’08, volume 20, pages 1257–
1264. Citeseer, 2008.

[129] R. Salakhutdinov and N. Srebro. Collaborative filtering
in a non-uniform world: learning with the weighted trace

norm. In Proc. of NIPS’10, 2010.

[130] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-
based collaborative filtering recommendation algorithms.

In Proc. of WWW’01, pages 285–295. ACM New York,
NY, USA, 2001.

BIBLIOGRAPHY 167

[131] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis
of recommendation algorithms for e-commerce. In Proc. of

EC’00, pages 158–167, New York, NY, USA, 2000. ACM.

[132] A. Schein, A. Popescul, L. Ungar, and D. Pennock. Meth-

ods and metrics for cold-start recommendations. In Proc.
of SIGIR’06, pages 253–260. ACM New York, NY, USA,
2002.

[133] D. Sculley. Combined regression and ranking. In Proc. of
SIGKDD’10, pages 979–988. ACM, 2010.

[134] S. Sen, J. Vig, and J. Riedl. Tagommenders: connecting
users to items through tags. In Proc. of the WWW’09,

pages 671–680. ACM, 2009.

[135] S. Sen, J. Vig, and J. Riedl. Tagommenders: connecting

users to items through tags. In Proc. of WWW’09, pages
671–680. ACM, 2009.

[136] S. Shalev-Shwartz, A. Gonen, and O. Shamir. Large-scale
convex minimization with a low-rank constraint. In Proc.
of ICML’11, 2011.

[137] G. Shani, D. Heckerman, and R. Brafman. An MDP-based
recommender system. Journal of Machine Learning Re-

search, 6(2):1265, 2006.

[138] U. Shardanand and P. Maes. Social information filtering:

algorithms for automating word of mouth. In Proc. of
SIGCHI’95, pages 210–217. ACM Press/Addison-Wesley

Publishing Co. New York, NY, USA, 1995.

[139] Y. Shi, M. A. Larson, and A. Hanjalic. List-wise learn-
ing to rank with matrix factorization for collaborative fil-

tering. In Proc. of RecSys’10, pages 269–272, Barcelona,
Spain, 2010. ACM, ACM.

BIBLIOGRAPHY 168

[140] L. Si and R. Jin. Flexible mixture model for collaborative
filtering. In Proc. of ICML’03, pages 704–711. ACM, NY,

USA, 2003.

[141] B. Sigurbjornsson and R. Van Zwol. Flickr tag recom-

mendation based on collective knowledge. In Proc. of
WWW’08, pages 327–336. ACM, 2008.

[142] A. Singh and G. Gordon. Relational learning via collective
matrix factorization. In Proc. of SIGKDD’08, pages 650–

658. ACM, 2008.

[143] I. Soboro and C. Nicholas. Combining content and collab-

oration in text filtering. In Proc. of IJCAI’99, volume 99,
pages 86–91, 1999.

[144] G. Somlo and A. Howe. Adaptive lightweight text filtering.
Lecture Notes in Computer Science, pages 319–329, 2001.

[145] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W. Lee, and
C. Giles. Real-time automatic tag recommendation. In

Proc. of SIGIR’08, pages 515–522. ACM, 2008.

[146] H. Steck. Training and testing of recommender systems

on data missing not at random. In Proc. of SIGKDD’10,
pages 713–722. ACM, 2010.

[147] D. Stern, R. Herbrich, and T. Graepel. Matchbox:
large scale online bayesian recommendations. In Proc. of

WWW’09, pages 111–120. ACM, 2009.

[148] W. Stewart. Numerical solution of Markov chains. CRC

Press, 1991.

[149] J. Sueiras, A. Salafranca, and J. Florez. A classical predic-

tive modeling approach for task who rated what? of the
kdd cup 2007. ACM SIGKDD Explorations Newsletter,

9(2):57–61, 2007.

BIBLIOGRAPHY 169

[150] I. Szpektor, A. Gionis, and Y. Maarek. Improving recom-
mendation for long-tail queries via templates. In Proc. of

WWW’11, pages 47–56. ACM, 2011.

[151] L. Terveen, W. Hill, B. Amento, D. McDonald, and

J. Creter. Phoaks: A system for sharing recommenda-
tions. Communications of the ACM, 40(3):59–62, 1997.

[152] L. Ungar and D. Foster. Clustering methods for collabo-

rative filtering. In AAAI Workshop on Recommendation
Systems, pages 112–125, 1998.

[153] P. Viappiani and C. Boutilier. Optimal bayesian recom-
mendation sets and myopically optimal choice query sets.

In Proc. of NIPS’10, 2010.

[154] E. Vozalis and K. Margaritis. Analysis of recommender

systems algorithms. In Proc. of HERCMA’03, 2003.

[155] H. Wang, Y. Liang, L. Fu, G. Xue, and Y. Yu. Efficient

query expansion for advertisement search. In Proc. of SI-
GIR’09, pages 51–58. ACM, 2009.

[156] H. Wang, Y. Lu, and C. Zhai. Latent aspect rating analysis

on review text data: a rating regression approach. In Proc.
SIGKDD’10, pages 783–792. ACM, 2010.

[157] J. Wang, A. De Vries, and M. Reinders. Unifying user-
based and item-based collaborative filtering approaches by

similarity fusion. In Proc. of SIGIR’06, pages 501–508.
ACM New York, NY, USA, 2006.

[158] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. Max-
imum margin matrix factorization for collaborative rank-
ing. In Proc. of NIPS’07. MIT Press, 2007.

BIBLIOGRAPHY 170

[159] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang,
and J. Sun. Temporal recommendation on graphs via long-

and short-term preference fusion. In Proc. SIGKDD’10,
pages 723–732. ACM, 2010.

[160] X. Xin, J. Li, J. Tang, and Q. Luo. Academic confer-
ence homepage understanding using constrained hierarchi-
cal conditional random fields. In Proc. of CIKM’08, pages

1301–1310, New York, NY, USA, 2008. ACM.

[161] H. Xu, E. SG, C. Caramanis, U. EDU, and S. Sanghavi.

Robust matrix completion and corrupted columns.

[162] W. Xu, E. Manavoglu, and E. Cantu-Paz. Temporal click

model for sponsored search. In Proc. of SIGIR’10, pages
106–113. ACM, 2010.

[163] G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and
Z. Chen. Scalable collaborative filtering using cluster-
based smoothing. In Proc. of SIGIR’05, pages 114–121.

ACM New York, NY, USA, 2005.

[164] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen.

How much can behavioral targeting help online advertis-
ing? In Proc. of WWW’09, pages 261–270. ACM, 2009.

[165] K. Yu, J. Lafferty, S. Zhu, and Y. Gong. Large-scale col-
laborative prediction using a nonparametric random ef-

fects model. In Proc. of ICML’09, pages 1185–1192. ACM,
2009.

[166] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast nonpara-
metric matrix factorization for large-scale collaborative fil-
tering. In Proc. of SIGIR’09, pages 211–218. ACM, NY,

USA, 2009.

BIBLIOGRAPHY 171

[167] Y. Yue, R. Patel, and H. Roehrig. Beyond position bias:
examining result attractiveness as a source of presentation

bias in clickthrough data. In Proc. of WWW’10, pages
1011–1018. ACM, 2010.

[168] Y. Zhang and J. Callan. Maximum likelihood estimation
for filtering thresholds. In Proc. of SIGIR’01, pages 294–
302. ACM New York, NY, USA, 2001.

[169] Y. Zhang, J. Callan, and T. Minka. Novelty and redun-
dancy detection in adaptive filtering. In Proc. of SIGIR’02,

pages 81–88. ACM New York, NY, USA, 2002.

[170] Y. Zhang and J. Koren. Efficient bayesian hierarchical

user modeling for recommendation system. In Proc. of
SIGIR’07, pages 47–54. ACM, 2007.

[171] V. Zheng, Y. Zheng, X. Xie, and Q. Yang. Collaborative
location and activity recommendations with gps history
data. In Proc. of WWW’10, pages 1029–1038. ACM, 2010.

[172] F. Zhong, D. Wang, G. Wang, W. Chen, Y. Zhang,
Z. Chen, and H. Wang. Incorporating post-click behaviors

into a click model. In Proc. of SIGIR’10, pages 355–362.
ACM, 2010.

[173] D. Zhou, S. Zhu, K. Yu, X. Song, B. Tseng, H. Zha, and
C. Giles. Learning multiple graphs for document recom-

mendations. In Proc. of WWW’08, pages 141–150. ACM,
2008.

[174] S. Zhu, K. Yu, and Y. Gong. Stochastic relational mod-
els for large-scale dyadic data using MCMC. In Proc. of
NIPS’09, volume 21, pages 1993–2000, 2009.

BIBLIOGRAPHY 172

[175] X. Zhu, J. Guo, X. Cheng, P. Du, and H. Shen. A unified
framework for recommending diverse and relevant queries.

In Proc. of WWW’11, pages 37–46. ACM, 2011.

[176] Y. Zhu, G. Wang, J. Yang, D. Wang, J. Yan, J. Hu, and

Z. Chen. Optimizing search engine revenue in sponsored
search. In Proc. of SIGIR’09, pages 588–595. ACM, 2009.

