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Abstract of thesis entitled: 

Protocol Design, Testing and Diagnosis towards Dependable Wireless Sensor 

Networks 

Submitted by XIONG, Junjie 

for the degree of Doctor of Philosophy 

at The Chinese University of Hong Kong in September 2012 

This thesis investigates the protocol design, testing, and diagnosis of Wireless 

Sensor Networks (WSNs) to achieve dependable WSNs. 

In the aspect of protocol design, we focus on the MAC (Medium Access 

Control) layer protocol design. First, we propose an efficient MAC protocol 

RAS (routing and application based scheduling protocol) for underwater acoustic 

sensor networks (UWASNs), a type of WSNs that are deployed in the water. 

Utilizing the medium propagation difference between UWASNs and terrestrial 

wireless sensor networks (TWSNs), RAS performs parallel transmissions which 

would definitely result in collisions in TWSNs. It schedules the transmissions 

with different priorities by allocating longer time to heavier-traffic sensor nodes. 

The priority mechanism also benefits the fairness performance. Second, we tackle 

the unreliability problem caused by the packet loss in UWASNs. Based on the 

previously designed RAS, we propose a reliable RAS called RRAS that obtains 

a tradeoff between the reliability and the efficiency. RRAS applies an ACK and 

retransmission mechanism that is different from the traditional one, so that it can 

maintain a comparable throughput while improving reliability. 

Third, in the area of protocol testing, we design RealProct (reliable Protocol 



conformance testing with Real sensor nodes), a novel and reliable framework 

for performing protocol conformance testing in WSNs, i.e., testing the protocol 

implementations against their specifications. With real sensor nodes, RealProct 

can ensure that the testing scenarios are as close to the real deployment as possible. 

To save the hardware cost and control efforts required by testing with large-scale 

real deployments, RealProct virtualizes a network with any topology and generates 

non-deterministic events using only a small number of sensor nodes. In addition, 

test execution and verdict are optimized to minimize the number of test case runs, 

while guaranteeing satisfactory false positive and false negative rates. 

Finally, we propose MDiag, a Mobility-assisted Diagnosis approach that 

employs smartphones to patrol the WSNs and diagnose failures. Diagnosing with 

a smartphone which is not a component of WSNs does not intrude the execution 

of the WSNs as most of the existing diagnosis methods. Moreover, patrolling the 

smartphone in the WSNs to investigate failures is more efficient than deploying 

another diagnosis network. During the patrol, packets exchanged in the WSNs are 

collected and then analyzed by our implemented packet decoder. Statistical rules 

are also designed to guide the detection of abnormal cases. Aiming at improving 

the patrol efficiency, a patrol approach MSEP (maximum snooping efficiency 

patrol) is proposed. We compare MSEP with a naive method, the greedy method, 

and a baseline method, and demonstrate that MSEP is better in increasing the 

detection rate and reducing the patrol time than other methods. 

We perform extensive evaluations to verify the proposed techniques and 

algorithms, and the results confirm their advantages in achieving dependable 

WSNs. 

ii 
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面向可靠的無線傳感器網絡的協議設計，測試和診斷 

提交人：熊捃潔 

修讀學位：哲學博士 

香港中文大學，二零一二年六月 

摘要：本文研究面向可靠的無線傳感器網絡的協議設計，測試和診斷。 

在協議設計方面，我們集中研究媒體接入層的協議設計。首先，我們爲水下 

無線傳感器網絡提出一個有效的媒體接入層協議RAS�這個協議利用了水下 

無線傳感器網絡和地面無線傳感器網絡的媒體傳輸時延的差別，采用了並行 

傳輸的優先級方法。由于會導致碰撞，這種並行傳輸的方法不能被用在地面 

無線傳感器網絡中。該方法爲高負荷的傳感器節點分配更長的傳輸時間。這 

種具有優先級的機制也同時提高了公平方面的性能。第二，我們處理水下無 

線傳感器網絡中由于報文丟失導致的不可靠的問題。基于之前提出的協議 

RAS,我們提出了可靠的RAS協議。該協議可以在可靠性和有效性方便達到 

一個平衡。它裏面的報文確認和重傳機制同傳統的方法不同，所以它可以在 

提高可靠性的同時保證吞吐量不會被大幅降低。 

第三，在協議測試方面，我們設計了 RealProct，一種新的可靠的用于無線傳 

感器網絡的一致性協議測試（測試協議實現是否符合協議規範）的架構。 

RealProct采用了實際的傳感器節點來保證測試盡可能的接近實際部署。爲了 

節省使用大規模實際部署來測試的硬件成本和控制成本，RealProct使用少量 

傳感器節點虛擬各樣的拓撲結構和事件。同時，測試執行和裁決算法也用于 

最小化測試用例執行次數，並保證假陰和假陽錯誤低于給定值。 

最後，我們提出了 MDmg，一種使用移動智能手機巡視無線傳感器網絡並診 

斷網絡錯誤的方法。由于該智能手機不是無線傳感器網絡的組成部分，因此 

該診斷不會像其它已有的診斷方法那樣影響原無線傳感器網絡的運行。並且， 

使用智能手機巡視並診斷無線傳感器網絡比部署另一個用于診斷的網絡更有 

效。在巡視過程中，無線傳感器網絡所交互的報文被收集起來，然後被我們 

所設計的報文解析器所分析。然後，我們設計了統計性規則來指導異常現象 

的診斷。爲了提高巡視效率，我們提出了一個巡視方法MSEP� 

我們做了大量實驗驗證以上提出的方法和算法，結果表明它們在達到可靠性 

無線傳感器網絡的目標上很有效。 
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Chapter 1

Introduction and Background Study

1.1 Wireless Sensor Networks (WSNs)

Recent advances in sensors, VLSI (Very-large-scale integration), MEMS

(Micro-electro-mechanical systems), as well as wireless communication

technologies have made it possible to build powerful wireless sensor networks

(WSNs) [10]. As shown in Figure 1.1, a WSN is composed of many low-cost

and small wireless sensor nodes (sensor nodes in short). These sensor nodes are

distributed in a designated region. Note that their positions need not be engineered

or pre-determined so that they can be randomly deployed in inaccessible terrains

and adverse areas. For example, the sensor nodes can be dropped into a forest

by the helicopter to monitor the temperature and issue fire breakout warnings.

This also means that the sensor nodes should be able to self-organize into a

wireless network. They collect information about the region and transmit it to

the base station (BS), a centralized and more capable station, through multi-hop

communications. Then the BS can send the information to any remote end in the

Internet. Unlike traditional networks, WSNs depend on dense deployment and

co-ordination to carry out their tasks.

As a result of various sensing abilities and wireless connection, WSNs greatly

1
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RegionRegion

Base station

Sensor 

nodes

Base station

Sensor 

nodes

Internet

Figure 1.1: The typical architecture of a WSN.

facilitate a wide range of applications for monitoring or tracking the events of

interest in the regions [10]. WSNs are motivated by military applications, such as

surveillance and target tracking within a battle field. Later they become popular in

civil and industrial applications [73] [115] [130], such as health status surveillance,

living conditions tracking, industrial process monitoring, wildlife observation,

space exploration, and so on. For example, through the sensor nodes attached to

patients, a doctor can remotely monitor the physiological statuses about patients in

real-time and take corresponding actions in time. In industrial applications, they

are employed in monitoring hazardous chemicals. WSNs can also be used to detect

pollutants in the air, ocean, and ground.

WSNs are similar to Mobile Ad Hoc NETworks (MANETs) in that they are

both multi-hop wireless networks. But WSNs are different from the traditional

networks, including MANETs, because they aim at distinct applications. The

following are some properties of WSNs.

• Sensor nodes in a WSN are resource-constrained and much less capable

than a personal computer (PC). Because it usually takes many sensor nodes

to monitor or control an area, it would be impractical if each sensor node

is very expensive. They are limited in power (e.g., two AA batteries),
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computational capacities, and memory. After their deployment, human

attendance is usually not involved. Hence power cannot be conveniently

recharged. Therefore, while traditional networks aim to achieve high quality

of service (QoS) provisions, sensor network research must focus primarily

on power conservation to maximize the network lifetime. Meanwhile, since

the bandwidth of WSNs (250 kbps for an Iris sensor node [1]) is not as high

as the wired network and WiFi (100 Mbps as a moderate value), how to avoid

collisions and improve throughput is another concern.

• Sensor nodes in a WSN are able to self-organize to communicate through a

wireless communications. In WSN applications, the sensor nodes are usually

randomly deployed at a place where human cannot get close or when the

sensor node number is so large that manual placing is laborious. A typical

way of deployment in a forest would be tossing the sensor nodes from an

airplane. In most cases, once deployed, WSNs allow no human intervention.

In such a situation, it is up to the sensor nodes to identify its connectivity

and distribution. They are responsible for self-organizing into a wireless

communication network. As a result, the medium access control (MAC)

protocol and routing protocol are very important for a sensor node to detect

its neighbors and set up a route to the destination. These protocols should

be robust enough to tolerate certain level of corner cases. For example, a

rebooted sensor node should be able to rejoin the WSN other than being

isolated. A malfunctioned sensor node should not damage the routing for a

long period. Otherwise, the WSN applications may suffer failures and break

down easily.

• Sensor nodes in a WSN are subjected to dynamic changes. Some

already-deployed WSNs may be expanded by adding a collection of sensor

nodes. Through communications, these newly joined sensor nodes affect

the execution of the original WSN. In addition, because of their adverse
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working environment and limited capabilities, sensor nodes are prone to

malfunction or die of energy depletion. If the sensor nodes get back to

normal, they will rejoin the network. These common joining in and quitting

actions cause dynamic changes in the networks. Furthermore, the volatile

environment may cause random packet loss during the wireless transmission,

which disturbs the routing and degrade the data communication performance.

As a result, it is vital to improve the system reliability by adapting the WSNs

to these dynamic changes.

• WSNs are application-specific. WSNs are not designed to provide

general-purpose applications as the Internet [90]. Some applications are

time-sensitive, such as fire breakout surveillance, while others only require

regular monitoring, such as wildlife observation. Some applications require

a large amount of data transmission in a short interval whereas some are

satisfied with a low data rate. Moreover, since the main task WSNs take

is collecting data and transmitting the data to the BS in time, the protocol

design and operating system should be tailored to support such requirement.

As a result, WSN applications usually do not employ the standard TCP/IP

protocols, which would consume a lot of the limited resource in a sensor

node. Their key concern is the protocol design below the routing layer,

including the routing layer itself.

Realization of WSNs for different applications requires both hardware and

software support. In the following subsections, we first describe the main hardware

requirements in respects of the sensor nodes and the base station. Then, we

discuss the software necessities in terms of the operating system and the protocols.

The reference architecture of a sensor node is shown in Figure 1.2, in which the

shadowed rectangle represents the hardware while the rest is the software. It is

similar to the traditional PC architecture, but each part of it is different. For

example, the hardware is cost-effective and thus simpler. We will explain them
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Figure 1.2: The reference architecture of a sensor node.

in the following.

1.1.1 Sensor Node

In 1999, the Smart Dust project at UC Berkeley released an early implementation

of sensor nodes, WeC [4]. Later, more capable sensor nodes are developed [1].

Figure 1.3 demonstrates the development of sensor nodes. The size of a Mica or

an Iris sensor node is comparable to two AA batteries.

Sensor nodes are resource-limited. Figure 1.4 overviews the typical hardware

architecture adopted by most of the state-of-the-art sensor nodes. It is composed

of four components: 1) a power supply component, 2) a sensing component that

connects the sensor node with the physical world, 3) a computing component

that processes the collected data and stores them in the memory and 4) a

communicating component that communicates with the neighboring sensor nodes.

We explain each piece of hardware in the following:
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Figure 1.3: The development of sensor nodes.

• The power supply unit. This unit provides power of all the other parts in the

sensor node. In most of the sensor nodes, such as Mica, TelosB, and Iris,

it is composed of two AA batteries. Since the sensor nodes are usually out

of manual access, the batteries are irreplaceable after deployment. Hence,

elongating the lifetime of a sensor node by reducing energy consumption is

a concern in WSN applications [137].

• Sensors. According to different types of sensors equipped on the sensor

nodes such as thermal, photosensitive, barometric, seismic, magnetic,

infrared, humidity, acoustic, and so on, the WSN is able to monitor a wide

variety of ambient conditions that include the following: temperature, light

condition, pressure, vehicular movement, humidity, noise levels, and so on.

The types of sensors equipped are determined by the application tasks.

• An ADC (analog-to-digital converter). The ADC takes the analog signals

from the sensors, and converts them to digital values which can be

understood by the microprocessor.

• A radio transceiver. It is used by a sensor node to communicate with the

others through wireless transmissions and receptions. It is usually compliant

with IEEE 802.15.4 and works on 868/916 MHz or 2.4 GHz ISM frequency.

The modulation types are different for different sensor nodes, such as

ASK (amplitude-shift keying), FSK (frequency-shift keying), OOK (On-off

keying), and QPSK (Quadrature Phase-shift keying). Therefore, the data
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Figure 1.4: The typical hardware architecture of a sensor node. ADC represents

analog-to-digital converter.

rate ranges from 10 kbps to 250 kbps. Correspondingly, the communication

range usually varies from 10 m to 500 m. For example, for a Mica sensor

node and an Iris sensor node [1], their data rates and communication ranges

are shown in Table 1.1.

• The Storage. The storage usually includes RAM, flash memory, and

EEPROM (Electrically Erasable Programmable Read-Only Memory). For

example, Table 1.1 compares the storage sizes of a Mica sensor node and an

Iris sensor node.

• A microprocessor. In general, it runs the required software, such as operating

system and communication protocols. During the execution, it processes

the sensor data, and controls the sensor node behaviors. Taking the Iris

sensor node as an example, its microprocessor is ATmega1281, a low-power

micro-controller. It takes data from the analog-to-digital converter, which
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Table 1.1: Radio and storage parameters for a Mica sensor and an Iris sensor node.

A Mica sensor node An Iris sensor node

Radio frequency 916 MHz kbps 2.4 GHz

Data rate 50 kbps 250 kbps

Communication range 60 m 300 m

RAM 4K bytes 8K bytes

Flash memory 128K bytes 128K bytes

EEPROM 4K bytes 4K bytes

can be stored to the storage or be sent to the radio transceiver. It can also get

data from the radio transceiver and the storage.

1.1.2 The Base Station (BS)

The BS is a centralized station, either fixed or mobile, that gets all the data

collected by the WSN. It can then analyze the data and show the results to the

application users. A WSN is usually equipped with one BS although it can be

allocated with several BSs. A BS should be able to communicate with the sensor

nodes in a WSN. It can be a PC or a sensor node with more powerful abilities

as shown in Figure 1.5 [1]. Any one of the previously described sensor nodes

can function as a BS when it is connected to a standard PC interface. We usually

connect a sensor node with a PC through a serial port.

1.1.3 The Operating System (OS) of the Sensor Node

As the vital component of the sensor node software, the operating system (OS)

manages the hardware resources and provides services for the applications. Since

the sensor nodes are resource-limited, the designed OS should be lightweight.

Although many operating systems are designed [17] [22] [33] [69], the most

popular two are Contiki [33] and TinyOS [49] [69], both of which are small, free,
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Figure 1.5: A BS developed by Crossbow.

open-source, and event-driven. They provide hardware drivers, and we do not

need to know the underlying hardware design during our programming. Generally

speaking, Contiki is more popular in Europe while TinyOS is more popular in the

US.

TinyOS uses a new programming language called nesC [67]. It is a

component-based C language dialect that is similar to the Java language. NesC

defines new concepts called component and interface. Every component is a code

block that declares the functions it provides and the functions it uses. Interfaces are

collections of related functions. TinyOS provides interfaces and components for

common abstractions such as packet communication, routing, sensing, actuation

and storage. A TinyOS program is a graph of components, which are connected

to each other using interfaces. On the other hand, Contiki uses the C language and

hence is easier to learn and understand although its documentation is much poorer

than that of TinyOS. A process in Contiki is defined by an event handler function

and an optional poll handler function. All processes share the same address space

and do not run in different protection domains. Inter-process communication is

done by posting events.

Lengthy computations bring about challenges to operating systems for devices
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that are resource-limited. For example, the lengthy computation required for

cryptographic operations typically takes several seconds to complete on CPU

constrained platforms [110]. In a purely event-driven operating system a lengthy

computation completely monopolizes the CPU, making the system unable to

respond to external events. To support computation that lasts very long time,

TinyOS requires programmers to divide the computation into many tasks, which

are similar to an interrupt handler. When a TinyOS component executes the

large computation, it posts tasks, which the OS will schedule to run later. Tasks

are non-preemptive and run in a FIFO (First In, First Out) order. Interrupts

can preempt the tasks. Hence, interrupts will not be greatly delayed by large

computations and can be responded in real-time. Instead of the multi-tasking

mechanism in TinyOS, Contiki allows lengthy computations to be preempted by

supporting preemptive multi-threading, which is implemented several years after

TinyOS was developed [62]. Preemptive multi-threading can be applied on a

per-process basis. It is implemented as an application library that is optionally

linked only with programs that explicitly require multi-threading.

Since the simulator allows algorithm development, system behavior study

and interaction observations, it can simplify the software development for sensor

networks under the specified OS [85]. We compare the simulators of TinyOS

and Contiki because they would affect the users’ preference in using an OS. As

a discrete event simulator and emulator of TinyOS, TOSSIM [68] simulates the

execution of nesC code on TinyOS. It allows emulation of actual hardware by

mapping hardware interruptions to discrete events. A simulated radio model is also

provided. By only replacing a few low-level TinyOS systems that touch hardware,

it can capture sensor node behavior at a very fine grain, allowing a wide range

of experimentation. Compiling unchanged TinyOS applications directly into its

framework, TOSSIM can simulate thousands of sensor nodes running complete

applications.
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The simulator developed in Contiki is Cooja [85]. It can also simulate

large-scale WSNs. The difference is that it allows cross-level simulation among

different types of sensor nodes: simultaneous simulation at many levels of the

system among different types of sensor nodes. COOJA combines low-level

simulation of sensor node hardware and simulation of high-level behavior in a

single simulation. COOJA currently is able to execute Contiki programs in two

different ways. Either by running the program code as compiled native code

directly on the host CPU (high-level), or by running compiled program code in

an instruction-level TI MSP430 emulator (low-level). For example, it can emulate

several TelosB sensor nodes at the low-level and several Contiki sensor nodes at

the high-level. COOJA is also able to simulate non-Contiki sensor nodes, such

as sensor nodes running another operating system. It is so user-friendly that it is

ported to support TinyOS simulation [38].

1.1.4 The Protocol Design of WSNs

Well-designed protocols can be integrated into the OS. Since the WSNs are

different from the other existing networks, such as wireless ad-hoc networks and

Internet, their protocols should be distinctive. The protocols in WSNs are mainly

composed of communication protocols which range from the physical layer to the

application layer. Other related protocols include coverage algorithms, localization

approaches, reprogramming protocols, security mechanisms and so on.

• To design physical layer protocols that suit WSNs, Wang et al. [120] and

Schurgers [103] et al. discuss energy efficient modulation for WSNs. Shih

et al. [107] present a hardware model for sensor node and then introduce the

design of physical layer aware protocols, algorithms, and applications that

minimize energy consumption of the systems.

• The medium access control (MAC) protocol design is one of the most active

research areas for WSNs. To save the energy consumption, most of the
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MAC protocols try to make the sensor nodes sleep as long as possible

while maintaining the normal communications, such as S-MAC [133] and

T-MAC [29]. S-MAC is a single-frequency contention-based protocol that

introduces periodic listening and sleeping mechanism. Its long time of

sleep greatly saves energy. However, this mechanism requires periodic

broadcast of synchronization frames to establish the sleep-wake up schedule.

In addition, sleep results in latency. The smaller the duty cycle (the

listening time divided by a period), the longer the latency, and the more the

energy that will be saved. There is a tradeoff between latency and energy.

T-MAC is proposed to enhance the poor results of the S-MAC protocol

under variable traffic loads. In T-MAC, the listening period ends when no

activation event has occurred for a time threshold TA. Although T-MAC

gives better results under these variable loads, its early sleeping leads to

longer latency. The above MAC protocols are synchronized approaches.

Degesys et al. [30] propose Desync-TDMA: a MAC protocol which does

not need synchronization. Desync-TDMA addresses two weaknesses of

traditional TDMA: it does not require a global clock and it automatically

adjusts to the number of participating sensor nodes, so that the bandwidth is

always fully utilized. In addition, a multi-channel MAC protocol based on

a light-weight channel hopping mechanism [60] is proposed and actually

implemented on commonly available sensor hardware. X-MAC [20],

BMAC [88], and WiseMAC [36] do not require synchronization, either.

They rely on preamble sampling to link together a sender with a receiver

who is duty cycling. Within them, the most popular one is X-MAC [20].

It allows sensor node sleeping, and it does not require the other methods

to wake up the sleeping receiver, such as a low-power radio equipment that

can be waken by short tones [114]. When a sender has data, the sender

transmits a preamble that is at least as long as the sleep period of the
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receiver. The receiver will wake up, detect the preamble, and stay awake

to receive the data. This allows low power communication without the

need of explicit synchronization between the sensor nodes. The receiver

only wakes for a short time to sample the medium, thereby limiting idle

listening. Finally, Halkes et al. proposes a hybrid MAC protocol combine

the synchronized protocol T-MAC with an asynchronous low power listening

MAC protocol [46].

• Synchronization (short for time synchronization) is closely related to the

MAC protocol design. It is an important feature of almost any distributed

systems. It enables data consistency and coordination in WSNs. Elson et

al. [37] argue that time synchronization schemes developed for traditional

networks are ill-suited for WSNs and suggest more appropriate approaches.

Maroti et al. [80] describe the Flooding Time Synchronization Protocol

(FTSP), especially tailored for applications requiring stringent precision on

resource limited wireless platforms. The proposed time synchronization

protocol uses low communication bandwidth and it is robust against node and

link failures. The FTSP achieves its robustness by utilizing periodic flooding

of synchronization messages and implicit dynamic topology updates. The

unique high precision performance is reached by utilizing MAC-layer time

stamping and comprehensive error compensation including clock skew

estimation. The FTSP was implemented on the Mica2 platform and

evaluated in a 60-node, multi-hop setup. Yoon et al. [134] propose another

time synchronization protocol especially relevant to sensor networks. The

performance of the protocol is also validated on a realistic testbed.

• Besides the MAC protocol design, the network protocol design is another

hot research topic in WSNs. To address the scalability and energy-efficiency

problems in WSNs, various routing protocols are designed to achieve

energy-efficient and robust multi-hop communications. Almost all of the
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routing protocols can be classified according to the network structure as flat,

hierarchical, or location-based [12]. In flat networks, all sensor nodes play

the same role while hierarchical protocols aim at clustering the sensor nodes

so that cluster heads can do some aggregation and reduction of data in order

to save energy. Location-based protocols utilize the position information

to relay the data to the desired regions rather than the whole network.

Directed diffusion is a flat routing protocol [51]. It is data-centric (DC)

and application-aware in the sense that all data generated by sensor nodes

is named by attribute-value pairs. The BS requests data by broadcasting

interests. Interest describes a task required to be done by the network.

Interest diffuses through the network hop-by-hop, and is broadcast by each

node to its neighbors. As the interest is propagated throughout the network,

gradients are setup to draw data satisfying the query towards the requesting

node, i.e., the BS. Each sensor node that receives the interest setups a

gradient toward the sensor nodes from which it receives the interest. This

process continues until gradients are setup from the sources back to the BS.

The intermediate sensor nodes can perform data aggregation in-network and

hence save the energy consumption. LEACH is a two-layer hierarchical

routing where one layer (sensor nodes in a cluster) is used to select cluster

heads and the other layer (sensor nodes that are cluster heads) is used for

routing [47]. Higher energy sensor nodes are selected as cluster heads that

are used to process and send the information the BS while low energy sensor

nodes are used to perform the sensing in the proximity of the target. By

performing data aggregation and fusion in order to decrease the number

of transmitted messages to the BS, the cluster head lowers the energy

consumption within a cluster. Geographic routing is a location-based routing

scheme in WSNs [124]. Unlike IP networks, communications on sensor

networks often directly use physical locations as addresses. For example,
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instead of querying a sensor with a particular ID, a user often queries

a geographic region. The identities of sensor nodes that happen to be

located in that region are not important. Any node in that region which

receives the query may participate in data aggregation and report the result

back to the user. Due to this location-centric communication paradigm of

sensor networks, geographic routing can be performed without incurring the

overhead of location directory services [71].

• The essential task of a transport layer protocol in WSNs is congestion control

(or reliability guarantee) [94]. CODA [119] provides congestion control

mechanisms to control the data stream to the BS. To do so, it introduces three

schemes: congestion detection, open-loop hop-by-hop back-pressure, and

closed-loop end-to-end multi-source regulation. CODA senses congestion

by checking each sensor node’s buffer occupancy and wireless channel load.

If they exceed a predefined threshold value, a sensor node will notify its

neighbor source node(s) to decrease the sending rate through an open-loop

hop-by-hop backpressure. Receiving a back-pressure signal, the neighbor

sensor nodes simply decrease the packet sending rate and also replay the

back-pressure continuously. Similarly, Bret et al. provides hop-by-hop

flow control, rate limiting of source traffic in the transit sensor nodes to

provide fairness and a prioritized MAC protocol [19]. POWER-SPEED

is a specifically tailored data transport protocol for WSNs to achieve

energy-efficient data transport for delay-sensitive event reporting [136]. In

POWER-SPEED, based on the spatio-temporal historic data of the upstream

QoS condition, sensor nodes select the next-hop neighbor, which completely

avoids control packets and improves the reliability in real-time applications.

With an adaptive transmitter power control scheme, POWER-SPEED

conveys packets in an energy-efficient manner while maintaining soft

real-time packet transport. As a real implementation of the transport layer
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protocol in WSNs, µ TCP/IP proposed in [35] and [34] modify the TCP/IP

protocol suite to make it viable for WSNs and provides similar transport

layer control for WSNs as that for the Internet.

• Although data aggregation is enabled by the routing mechanisms, it is done

at the application layer, such as data aggregation in clusters [112] and online

compression of data streams [109] in the application layer. Data aggregation

in networks is very efficient in performance improvement. It greatly reduces

the amount of data to be transmitted and contributes a lot to energy saving in

WSNs. Because sensed data in Wireless Sensor Networks (WSNs) reflect the

spatial and temporal correlations of physical attributes existing intrinsically

in the environment, sensor readings from neighboring sensor nodes in a

certain interval can be aggregated into one reading. Sunhee et al. [112]

propose the Clustered AGgregation (CAG) algorithm that forms clusters

of sensor nodes sensing similar values within a given threshold (spatial

correlation), and these clusters remain unchanged as long as the sensor values

stay within a threshold over time (temporal correlation). With CAG, only one

sensor reading per cluster is transmitted. In addition, CAG provides energy

efficient and approximate aggregation results with small and often negligible

and bounded errors. Soroush et al. tackle the problem of online compression

of data streams in the resource-constrained WSNs, where the traditional data

compression techniques cannot apply. They employ fast piecewise linear

approximation (PLA) methods with quality guarantee on data aggregation.

Other interesting applications include a energy usage monitor and a tiny web

service [111] [93]. LEAP2 platform [111] is a new embedded networked

sensor platform architecture that combines hardware and software tools to

provide detailed, fine-grained real-time energy usage information. With this

energy information system, 60% energy saving can be archived by carefully

selecting the system operating points. A tiny web service is proposed to
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enable an evolutionary sensornet system where additional sensor nodes may

be added after the initial deployment [93].

• Sensing coverage tells us how well each point in the region is covered

by the WSN. Network connectivity measures how reliably the information

gathered by the sensor nodes can be transmitted. Maintaining sufficient

sensing coverage and network connectivity with the minimum number of

active sensor nodes helps improving the reliability and performance in sensor

networks [41]. Wang et al. present the design and analysis of a novel

coverage configuration protocol (CCP) that can dynamically configures a

network to provide different feasible degrees of sensing coverage while

maintaining network connectivity [122]. The basic idea in CCP is that

each sensor maintains state information and checks eligibility criteria by

exchanging messages with its neighbors in order to decide whether or not

to turn itself off. Similarly, Wu et al. propose several local solutions that put

as many sensor nodes as possible to sleep for energy saving purposes, while

meeting different connectivity requirements [123].

• The data collected by the WSN are meaningless without knowing the

location from where the data are obtained. For example, if a fire breakout

is detected, it is critical to know where this event happened so that the

proper actions can be taken. Since most emerging applications based

on networked sensor nodes require location awareness to assist their

operations, such as annotating sensed data with location context, it is an

indispensable requirement for a sensor node to be able to find its own

location [79]. Currently, due to the limited-resource and some environments

not accessible by GPS, it is not feasible to use Global Positioning System

(GPS) hardware for this purpose. GPS-free solutions are favorable for the

location problem in WSNs. Sensor network localization algorithms estimate

the locations of sensor nodes with initially unknown location information
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by using knowledge of the absolute positions of a few sensor nodes and

inter-sensor measurements such as distance and bearing measurements. They

are classified into three categories: angle-of-arrival (AOA) measurements,

distance related measurements and received signal strength (RSS) profiling

techniques. The accuracy of AOA measurements is limited by the directivity

of the antenna, by shadowing and by multi-path reflections. Since the

antenna of a sensor node is not directed, this AOA-based method is not

favored in WSNs. As a distance-based localization method, a distributed

multidimensional scaling (MDS) method is proposed. It uses dimensionality

reduction techniques to estimate sensor node coordinates in two (or three)

dimensional space [53]. Relying on the RSS characteristics, Ray et al take

the probabilistic nature of indoor RF (radio frequency) signals into account

through the full set of probability distributions of signal characteristics as

seen by the cluster heads conditional on the position of the sensor [96].

Using these conditional probability distributions, they pose the location

detection problem as a hypothesis testing problem. Then they discretize the

space of possible sensor locations and seek to map the actual locations of

sensors onto this discrete set.

• WSNs need an efficient and reliable reprogramming service to facilitate

management and maintenance tasks [121]. For example, when bugs are

found after deployment, the WSN needs to update the application with

new code. How to disseminate the code efficiently without degrading the

performance of the WSN is very critical in maintaining the applications.

Traditional ways of manually reprogramming sensor nodes are costly, labor

intensive or even impossible since each node has to be collected from the

field and physically attached to a computer to install new codes. As a result,

reprogramming protocols should be enabled to facilitate code dissemination.

Trickle [70] is an algorithm for propagating and maintaining code updates
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in WSNs. In Trickle, sensor nodes stay up-to-date by occasionally

broadcasting a code summary to their neighbors. Its key contribution is the

use of suppression and dynamic adjustment of the broadcast rate to limit

transmissions among neighboring sensor nodes. A node suppresses its own

broadcast if it recently overhears a similar code summary. When sensor

nodes are not up-to-date, the broadcast rate is reduced, but is otherwise

increased up to a specified limit. These techniques allow Trickle to scale to

thousand-fold changes in network density, disseminate updates quickly, and

consume minimal resources in the quiescent state. While Trickle addresses

single packet dissemination, Deluge extends it to support large data objects

dissemination protocol from one or more source sensor nodes to many other

sensor nodes over a multi-hop WSN [50]. Specifically, It considers the

propagation of complete binary images. MNP also provides a multi-hop

reprogramming service [6]. To reduce the problem of collision and hidden

terminal problem, it proposes a sender selection algorithm that attempts to

guarantee that in a neighborhood there is at most one source transmitting the

program at a time. Jeong et al. design the Rsync algorithm to generate the

difference of the two program images, which allows distributing just the key

changes of the program [52]. This reprogramming is fast because it only

requires transmitting the incremental changes for the new program version.

• Security problems also exist in WSNs as in other systems. Due to the

distributed and ad-hoc nature of WSNs and no supervision after their

deployment, WSNs are vulnerable to numerous security threats that can

adversely affect their proper functioning [104]. The resource constraints in

the sensor nodes make traditional security mechanisms with large overhead

of computation and communication infeasible in WSNs. Because Elliptic

Curve Cryptography (ECC) offers a moderate security with a much smaller

key size, it is employed by Malan et al. to provide cryptography service for
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Mica2 sensor nodes in WSNs [78]. Zhu et al propose a localized encryption

and authentication protocol (LEAP), a key management protocol for WSNs

based on symmetric key algorithms LEAP [138]. It uses different keying

mechanisms for different packets depending on their security requirements.

Besides cryptography, various methods of defending against DoS attacks,

secure broadcasting mechanisms, secure routing mechanisms, sensor privacy

schemes, network intrusion detection mechanisms, secure data aggregation

techniques, and trust management schemes for WSN security are all worth

investigation.

1.2 Thesis Scope and Contributions

WSN applications are the target of many research efforts in WSNs. Suppose the

proper WSN hardware is given, then to provide such applications, researchers first

need to design the protocols that can be employed in WSNs. After implementing

the protocols, the researchers should test and verify the protocols so as to eliminate

as many problems as possible. By then, the WSN applications can be deployed in

the real field. Nevertheless, the after-deployment maintenance is very crucial for

keeping the WSN applications run normally. The whole process is shown is Figure

1.6. This thesis falls in three areas of WSNs in the process, namely, protocol

design, system testing, and application diagnosis, to obtain dependable WSNs.

Specifically, the work in this thesis is shown in the shadowed block in Figure 1.6.

1.2.1 Protocol Design

Protocol design is the beginning step of WSN application development. As

discussed previously, protocols of different layers and for different purposes need

to be proposed to fit the WSN applications. In terms of protocol design, this thesis

proposes an efficient MAC protocol and a reliable MAC protocol for underwater
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Figure 1.6: The development, deployment, and maintenance of the WSN applications.

acoustic sensor networks (UWASNs), a type of WSNs that are deployed in the

water, especially in the oceans.

Due to the different transmission medium used in the water by UWASNs,

the efficiency of UWASNs is inferior to that of the terrestrial wireless sensor

networks (TWSNs). Moreover, the unreliability problem in UWASNs caused by

the packet loss is seldom considered. In improving the efficiency, we first identify

that the scheduling problem of UWASNs is very different from that of TWSNs.

After the scheduling problem analysis, we propose a protocol called RAS (routing

and application based scheduling protocol), a priority scheduling approach for

multi-hop topologies. RAS performs parallel transmissions and prioritizes the

scheduling by allocating longer time to heavier-traffic sensor nodes. Such priority

mechanism also benefits the fairness. Then we design a reliable RAS called RRAS

that obtains a tradeoff between the reliability and the efficiency. RRAS designs an

ACK (acknowledgement) and retransmission mechanism that is different from the

traditional one, so that it can maintain a comparable throughput while improving
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the reliability. On one hand, the ACK and retransmission do not follow the

data loss immediately. On the other hand, though distributed, the retransmission

mechanism is based on ALOHA, a random medium access method which is first

used in a wireless network in the 1970s. Extensive evaluations are conducted

to verify that RAS is efficient and RRAS achieves a tradeoff on reliability and

efficiency.

1.2.2 Protocol Testing

Protocol conformance testing is indispensable in preventing bugs from

sneaking into real deployments. It is especially important for WSNs whose

after-deployment fixing is very expensive [121]. Experiences from real WSN

deployments show that protocol implementations in sensor nodes are susceptible

to software failures, which may cause network failures or even breakdown.

Unfortunately, existing solutions with simulators cannot test the exact hardware

and implementation environment as real sensor nodes, whereas testbeds are

limited to small-scale networks and topologies. Furthermore, large-scale real

deployment is too expensive. To solve the problem, in this thesis, we present

RealProct (reliable Protocol conformance testing with Real sensor nodes), a

novel and reliable framework for testing protocol implementations against their

specifications in WSNs. Utilizing real sensor nodes in protocol conformance

testing, RealProct can ensure that the testing environment is as close to the real

deployment as possible. To save the hardware cost and control efforts required

by large-scale real deployments, RealProct virtualizes a large network with any

topology and generates non-deterministic events using only a small number of

sensor nodes. The framework is carefully designed to support efficient testing in

resource-limited sensor nodes. Moreover, test execution and verdict are optimized

to minimize the number of runs, while guaranteeing satisfactory false positive and

false negative rates. We implement RealProct and test it with the µIP TCP/IP



CHAPTER 1. INTRODUCTION AND BACKGROUND STUDY 23

protocol stack and a routing protocol developed for WSNs in Contiki-2.4. The

results demonstrate the effectiveness of RealProct by detecting several new bugs

and all previously discovered bugs in various versions of the µIP TCP/IP protocol

stack.

1.2.3 Protocol Diagnosis

Real-time diagnosing the WSN can help detecting failures in the WSN protocols

after deployment, thus facilitating the maintenance. Nevertheless, current

in-situ diagnosis methods are either intrusive or inefficient, because they either

inject diagnosis agents into each sensor node or build up another network for

diagnosis purpose. In this thesis, to attack these issues, we propose MDiag,

a Mobility-assisted Diagnosis approach that employs smartphones to patrol the

WSNs and diagnose failures. Diagnosing with a smartphone which is not a

component of WSNs does not intrude the execution of the WSNs. Moreover,

patrolling the smartphone in the WSNs to investigate failures is more efficient

than deploying another diagnosis network. During the patrol, packets are collected

and then analyzed by our implemented packet decoder. Statistical rules are also

designed to guide the detection of abnormal cases. Aiming at improving the

patrol efficiency, a patrol approach MSEP (maximum snooping efficiency patrol)

is proposed. Experiments with real sensor nodes and emulations statistically

demonstrate that MSEP is better than the naive method, greedy method, and

baseline method in increasing the detection rate and reducing the patrol time.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2 [127], we investigate

how to design an efficient MAC protocol for WSNs, based on which we propose

a reliable MAC protocol for WSNs in Chapter 3 [128]. Chapter 4 discusses

the framework and techniques developed for protocol conformance testing in



CHAPTER 1. INTRODUCTION AND BACKGROUND STUDY 24

WSNs [129]. Diagnosing the WSNs on demand in real-time to detect protocol

failures is inspected in Chapter 5, while Chapter 6 concludes this thesis.

2 End of chapter.



Chapter 2

An Efficient MAC Protocol Design

Underwater acoustic sensor networks (UWASNs) are composed of underwater

sensor nodes that use sound to transmit information collected in the ocean. Since

the sound speed is lower than radio wave, UWASNs suffer from much lower

throughput and higher delay compared with terrestrial wireless sensor networks

(TWSNs). Current methods manage to alleviate the bottleneck by replacing

mutual handshakes with reservation mechanisms that consume lower overhead.

However, their throughput improvement and delay reduction are very limited (e.g.,

the throughput is only 30% of the theoretical maximum for TLohi in 8-node

networks), and most of their analysis and simulations are based on single-hop

communication. In this work, we tackle the above challenges by proposing

a priority scheduling approach for multi-hop topologies. First, we find that

the scheduling problem of UWASNs is very different from that of TWSNs,

and analyze the shortest schedule for the whole UWASN. Then, we design an

efficient priority scheduling protocol at the MAC layer. Our approach performs

parallel transmissions and prioritizes the scheduling by allocating longer time to

heavier-traffic nodes. We have conducted extensive evaluations which show that

the proposed protocol not only improves the throughput and delay performance

greatly, but also benefits the fairness.

25
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Figure 2.1: A data transaction process.

2.1 Introduction

Ocean exploitation started from decades ago [108]. However, newer and more

efficient methods to explore the ocean, such as underwater acoustic sensor

networks (UWASNs) [11], only emerged recently. UWASNs play an important

role in ocean applications, such as oceanographic data collection, pollution

monitoring, offshore exploration, disaster prevention, assisted navigation and

so on. While terrestrial sensor networks (TWSNs) are densely deployed, in

underwater, the deployment is deemed to be sparser, due to the high cost of

underwater sensor nodes [11]. UWASNs employ sound to perform wireless

communications in the ocean because of its low attenuation property in the

water [92]. In comparison, TWSNs use radio-frequency electromagnetic wave

to communicate in the air. The speed of sound in the water is 1.5km/s while that of

radio waves in the air is 300,000km/s. As a result, poor throughput and high delay

become the bottleneck of UWASNs.

As an example, Figure 2.1 demonstrates the bottleneck of UWASNs by

comparing with TWSNs in a data transaction process. The data transaction of
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Table 2.1: Parameters for data transmissions.
Parameter Value

Data Rate 10 kbps

Data Packet Size 100 bytes

Control Packet Size 10 bytes

Transmission Range (communication range) 1500 m

Interference Range 3500 m

Average Distance between Two Nodes 1110 m

Guard time 20 ms

Wireless model TwoRayGround

Table 2.2: Tt and Tp for TWSNs and UWASNs.

Tt Tp

TWSNs 80ms 3.7µs

UWASNs 80ms 740ms

UWASNs takes much longer time than that of TWSNs, and thus the throughput is

much lower. In Figure 2.1, parameters [131] in Table 2.1 are adopted, and both

TWSNs and UWASNs employ the CSMA/CA mechanism [7] to transmit a packet.

Then we calculate the data transmission time (Tt) and the propagation time (Tp) for

TWSNs and UWASNs. The results are shown in Table 2.2, in which Tp ≪ Tt for

TWSNs, and Tt ≪ Tp for UWASNs. The long Tp of UWASNs (740ms) amplify

the throughput and delay penalty of handshaking protocols [105], thus UWASNs

should not apply the CSMA/CA as TWSNs do.

Although the long propagation time Tp results in bottleneck in UWASNs, it

enables parallel data transmissions as long as there is no collision. It enables the

start of another data transaction before the end of current data transaction. In

this way, we can mitigate the bottleneck with priority scheduling protocol called



CHAPTER 2. AN EFFICIENT MAC PROTOCOL DESIGN 28

RAS (routing and application based scheduling protocol). We summarize our

contributions as follows:

(1) After distinguishing the scheduling problem of UWASNs with that of

TWSNs, we formulate the scheduling problem. Then we prove that the complexity

of the algorithm to solve such a problem is exponential.

(2) By parallel transmissions and utilizing the information from routing and

application layer, we design an efficient priority scheduling protocol at the MAC

layer of the base station (BS).

(3) Extensive evaluations are conducted to show that the proposed protocol not

only improves the throughput and delay performance in multi-hop networks, but

also enhances the fairness.

In the remainder of this chapter, Section 2.2 describes related work. Section

2.3 gives us an overview of the RAS protocol. Section 2.4 formulates and analyzes

the scheduling problem for UWASNs, and then Section 2.5 illustrates RAS.

Performance evaluations of RAS are provided in Section 2.6while conclusions are

made in Section 2.7.

2.2 Related Work

Recently, there are extensive research efforts focusing on improving the

performance of UWASNs by enhancing the traditional data transmission model

at the MAC layer. Slotted FAMA [82] is a handshaking-based protocol designed

to improve the traditional data transmission model and avoid collisions caused

by the hidden terminal problem. It synchronizes all nodes and makes all the

transmissions start at the beginning of a slot. The slot length is the sum of the

maximum propagation delay and the transmission time of a CTS packet. Although

it can efficiently avoid collision caused by the long propagation of UWASNs, its

throughput and delay performances are poor because the slot is too long. Our RAS

protocol does employ such long slot and its throughput and delay performances are
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better.

Regarding the RTS/CTS handshaking transmission model in UWASNs as

inefficient, Chirdchoo et al. propose two aloha-based MAC protocols [26].

Although they do not use RTS/CTS handshake to avoid collisions, they

require nodes to broadcast their location information for calculating inter-node

propagation delays, which helps avoid collisions and enhances throughput. In

addition, Affan et al. develop T-Lohi [114] which uses short wake-up tones to

reserve channel for data transmission. It increases the throughput to 30% of the

theoretical optimal, but its node needs a low-power receiver that can be waken

by short tones. UW-FLASHR [131] is based on TDMA rather than RTS/CTS

handshaking. It divides its cycle into two portions: experimental portion and

DATA portion. In the experimental portion, control frames RTS and CTS for

requesting new transmission time slots within the DATA portion are exchanged.

In the DATA portion, nodes only transmit data in the already acquired time

slots. Every node has to obtain data transmission slots in an experimental portion

before its data transmission. With such reservation, it improves the throughput by

utilizing the long propagation delay. However, a node does not know whether its

required time slot would collide with other nodes’ schedules, and it may need to

try several times before establishing a successful time slot. In addition, even if a

node does not need to request a new time slot, it cannot save energy by getting

into the sleep state. Although our method is also based on TDMA, our scheduling

elements are different from the existing work.

2.3 RAS Overview

There are three practical network scenarios for UWASNs: static two-dimensional

UWASNs for ocean bottom monitoring, static three-dimensional UWASNs

for ocean column monitoring, and three-dimensional networks of autonomous

underwater vehicles [11]. In this chapter, we focus on the first scenario. For
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Figure 2.2: Application topology for UWASNs.

the three-dimensional case, the distance between each pair of sensor node is

three-dimensional rather than two-dimensional, and our RAS protocol design

for this case can be similarly designed. Considering the mobility feature of

autonomous underwater vehicles, different protocol design should be tailored. The

typical application is the surveillance application, in which all nodes generate the

same amount of data and send them to the BS periodically with cycle Tc. We

address the scheduling problem in a BS-centered multi-hop topology shown in

Figure 2.2.

Before schedule calculation, RAS needs synchronization in the networks.
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Figure 2.3: RAS cycle.

Although there exists many synchronization methods [113], for the sake of

simplicity and low cost, RAS only requires coarse synchronization through the

initial packet exchange or the information piggybacked in the received packets

as [117] and [131] do. Meanwhile, it can calculate the rough propagation delays

between nodes by checking time stamps during the synchronization process [117].

With synchronization, the nodes can work and sleep periodically [133]. In Figure

2.3, the RAS cycle Tc is divided into two portions. One portion is the sleeping

period, and the other is the working period Tw which is divided into many time

slots Ts. One time slot is composed of Td, the time duration for transmitting a

DATA, and Tg, the guard time for avoiding collisions introduced by imprecise

synchronization and propagation time calculation. The actual value of Tg is

determined by the real deployment environment. If there is a data burst due to

abnormal events, nodes can transmit them in the following sleeping period by

notifying the related nodes in advance. In this way, data burst does not require

updates of the working schedule. In the future we focus on analyzing the working

schedule in one cycle.

Since the sensor nodes are anchored to the bottom of the ocean and are thus

static. It is practical to employ static routing because the networks are static.

In addition, the monitoring applications only require DATA transmissions from

the sensor nodes to the BS. Then the BS calculates the number of DATA to

be transmitted and received at each node. Finally, the BS can calculate for all

the sensor nodes the working schedule on when to send and receive DATA, and
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broadcast the schedule to all the sensor nodes to follow for a long time. The steps

are shown in Algorithm 1.

Algorithm 1 RAS protocol at the BS (It runs at the initialization phase).
1: Coarse synchronization through the initial packet exchange.

2: Calculate the rough propagation delay between nodes through the previous packet

exchange.

3: Calculate static routing.

4: Calculate the number of data to be transmitted and received at each node.

5: CalcSchedule() /*Algorithm 2*/.

6: The BS broadcasts the routing table and the schedule to all its children with high

power.

These processes cost little efforts because they do not require frequent updates.

Therefore, the major goal is how to make the working period of the whole network

as short as possible so as to save the energy and improve the network efficiency,

i.e., how to design an efficient schedule for the working period in a cycle.

2.3.1 Scheduling Element

Next, we show that the scheduling problem of UWASNs is different from that

of TWSNs because the scheduling elements of the former are more complex

than those of the latter. Since the purpose of scheduling is to arrange the

data transactions of all nodes, the scheduling element corresponds to one data

transaction. It consists of three time points: data transmission (DT) time, data

reception1 (DR) time, and a sequence of interference reception 2 (IR) time. For

example, in Figure 2.4, the scheduling element of node A’s first data transmission

to B is composed of DT1, DR1 and IR1. They occur at different time because Tp

in UWASNs is long enough (740ms) to distinguish them. In contrast, the three
1reception of a packet destined for it.
2reception of a packet not destined for it.
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Figure 2.4: Data transmissions among 3 nodes in UWASNs.

time points are the same in TWSNs because Tp in TWSNs is too small (3.7µs) to

differentiate them [99]. The different time values make the scheduling problem in

UWASNs very complicated. While in TWSNs we schedule each element in one

time slot, UWASNs’ scheduling element cannot be accommodated in one time

slot.

Due to Tt ≪ Tp in UWASNs, we can improve throughput and delay

performance by parallel transmission. Actually, nodes should transmit or receive

at any time as long as there are no collisions. In this way, channel idling is avoided,

thus throughput and delay performance can be enhanced. For example, in Figure

2.4, nodes B and C transmit packet 2 and packet 3 to each other simultaneously,

but their receptions are not collided. In this case, collisions will surely happen in

TWSNs. Specifically, node B does not have to postpone her packet 2 transmissions

until she has received packet 1 from node A. Many data transactions overlap

in time, and they all include interference IRs, but these IRs do not corrupt the

normal reception IRs. Thus, by scheduling these unique scheduling elements

logically to avoid collisions, throughput and delay performance can be greatly

improved. Hence, we need to answer how to schedule without collision and

improve throughput and delay performance.
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2.4 The Scheduling Problem in UWASNs

In this section, we first introduce the scheduling principles, which are the

constraints for the following scheduling problem formulation. Table 2.3 lists some

used notations.

Table 2.3: Notations.
S the set containing all the nodes, including the BS.

Km node m’s children number.

Cmj node m’s j-th child, j ∈ {1, 2, · · · ,Km}.

DTCmj the time node Cmj transmits a packet to its parent m.

DRCmj the time parent m receives a packet from its child Cmj .

SCmj the set of nodes within node Cmj’s interference range.

IRSCmj the time each node in set SCmj receives interference packets from node Cmj .

Qjw the w-th packet that child Cmj sends to its parent m.

Wmj the number of packets child Cmj has to transmit to its parent node m.

RCmjQjw the time node m receives each of the packets from its children.

L1 the schedule length calculated with RAS.

L2 lower bound schedule length.

2.4.1 Scheduling Principles

The transceiver cannot receive when it is transmitting, and collision will occur at

a node when it receives more than one packet [7]3. In order to avoid collision, we

define the following scheduling principles:

(1) A DR duration must not overlap any DT duration.
3This corruption is called interference. Interference packets at a node are divided into two types: the first

type is for packets that are not destined for the node, but are within the node’s communication range RR.

The other type is for packets that are beyond the node’s communication range, but are within the interference

range RI . Usually, the relation [31] between RR and RI is: 2×RR ≤ RI ≤ 3×RR.
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(2) A DR duration must not overlap any IR duration.

(3) A DR duration must not overlap any other DR duration.

(4) Any other overlaps are allowed as long as they can happen. For example,

DT duration can overlap IR duration(s), IR duration can overlap IR duration(s).

Since there is no data from the BS to sensor nodes, we can design a compact

schedule by only allocating time for data from sensor nodes to the BS. Thus the

next principle is:

(5) No DR from i-th hop node to (i+ 1)-th hop node, and i represents the hop

number from the BS.

The goal of data transactions is to guarantee successful receptions, and we

arrive at the last principle:

(6) A node considers DR duration as the scheduling basis rather than DT or IR

duration.

With DR as the scheduling basis, we do not have to consider whether IR will

overlap other IRs and DTs. In addition, we can increase the throughput and reduce

delay by making nodes transmit or receive instead of idling whenever no DR is

overlapped.

2.4.2 Scheduling Problem Formulation

Under parallel transmissions, we aim at calculating the shortest working period

of a cycle within which all the nodes’ expected data are transmitted and received,

such that we can make the nodes sleep as the long as possible while finishing their

communication. We formulate this problem as follows.

Let S be the set containing all nodes, including the BS. Suppose node m has

Km nodes that send packets to it, so that node m is called a parent and the Km

nodes are called its children. Each child of m is denoted by Cmj . Node m has Km
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types of elements ECmj
, which is composed of three time points as follows:

ECmj
=


DTCmj

DRCmj

IRSCmj

(2.1)

In Equation (1), the notation of each component is explained in Table 2.3.

There is a relationship among the three components of ECmj
, ∀m ∈ S,

∀j ∈ {1, 2, · · · , Km}. If DRCmj
is known, then the other two times could be

determined. Therefore, we only need to calculate the time a node m ∈ S receives

each of the packets from its children. We denote this time as RCmjQjw
, where Qjw

and Wmj are denoted in Table 2.3. The time for node m to finish all the receptions

from its children is maxRCmjQjw
, ∀j ∈ {1, 2, ..., Km}, ∀w ∈ {1, 2, ...,Wmj}.

Since our objective is to minimize the working period of the whole network in a

cycle, we attempt to find a schedule so that all nodes finish all their receptions as

early as possible. We formulate our problem as follows:

minmaxRCmjQjw
,

∀m ∈ S, ∀j ∈ {1, · · · , Km}, ∀j′ ∈ {1, · · · , Km′}, ∀w ∈ {1, · · · ,Wmj}, ∀w′ ∈

{1, · · · ,Wmj′}.

s.t.



RCmjQjw
> RCzj′Qj′w′ +DTCzj′ + Tt,

or RCmjQjw
+ Tt < RCzj′Qj′w′+

DTCzj′ , ∀z ∈ {z|Czj′ = m}, (2)

RCmjQjw
> RCzjQj′w′ + IRm + Tt, or

RCmjQjw
+ Tt < RCzj′Qj′w′ + IRm,

∀z ∈ {z|m ∈ SCzj′}, (3)

RCmjQjw
> RCmj′Qj′w′ + Tt, or

RCmjQjw
+ Tt < RCmj′Qj′w′ ,∀j ̸= j′, (4)

RCmjQjw
+DTCmj

≥ 0. (5)
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Tt in the above inequalities is the duration for one data transmission. Inequalities

(2)-(4) are constrained by our scheduling principles (1)-(3), and Inequality (5)

means that the transmission time of a packet should be equal to or greater than 0.

2.4.3 Scheduling Problem Analysis

We call the solution of the problem as the optimal schedule length. Unfortunately,

although optimal, optimal schedule length is impossible to be calculated in limited

time. The reasons are: Firstly, the problem is not a linear programming problem

as the objective function minmaxRCmjQjw
is not linear; Secondly, even though

the objective function can be changed to be linear with some mathematical

transformations, the complexity is still exponential due to the constraints.

Considering the “or” argument in the constraints, if the constraints contain

one “or” argument, then the problem is divided into two sub-problems. Likewise,

if “or” appears n times, then the above problem is divided into 2n number of

sub-problems. For example, in a network with N nodes, each node is constrained

by Inequalities (2), then the total number of inequality (2) is at least N , i.e., the

number of “or” argument is N . Thus the problem is at least divided into 2N

sub-problems. As a result, the complexity of the algorithm for the above problem

is exponential.

Actually, we implement the algorithm in a Linux server with a CPU as Intel

Core Duo 2.8GHz and 4GB RAM. It takes one day to calculate the shortest

schedule for a 9-node network. It takes about three days for a 16-node network.

However, it will never end in two weeks for a 25-node network. Therefore, we

develop an efficient algorithm to calculate a suitable schedule for UWASNs in the

next section.
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2.5 RAS Protocol

The previous subsection proves that the scheduling elements are complex and it is

impractical to calculate the shortest schedule. Although minimizing the working

period in a cycle focuses on throughput improvement, it ignores the fairness and

queue length. In this section, we propose an efficient scheduling algorithm, a

routing and application based scheduling protocol RAS, to solve the formulated

scheduling problem with a near-optimal solution. According to the network

scenario in the overview section, it is practical for RAS to take advantage of the

routing information and only schedule data transmission from sensor nodes to the

BS. With them, RAS can calculate a compact schedule for data exchange under

the same scheduling principles.

2.5.1 Scheduling Algorithm of the RAS Protocol

We call the schedule length calculated with RAS as L1, and obviously the optimal

schedule length is less than L1. In RAS, the scheduling elements are shown in

Equation (1), and a transaction of data transmission and reception will last for

several time slots. According to scheduling principle (6), we will schedule all the

elements generated in a cycle equals by scheduling all the data receptions in a

cycle. Let Si = {m : node m is i hops from the BS, m ∈ S}. Assuming a node’s

distance from the BS is proportional to its hop distance to the BS, the following is

the priority scheduling steps of RAS algorithm:

Step1: Schedule the BS’s DR from 1-hop nodes.

Step2: Schedule the DR tier by tier: from inner tier to outer tier, i.e., from DR

of nodes in Si to DR of nodes in Si+1, i ∈ {1, 2, 3, · · · , H−1}, H is the maximum

hop distance to the BS.

Step3: For each node m ∈ Si that is going to receive data packets from

its children Cmj ∈ Si+1, j = 1, 2, ..., Km, arrange its DR from its children

alternatively. For example, node 1 has two children A and B. In a cycle, each
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of them send 3 packets PAi, PBi to node 1, and i ∈ 1, 2, 3. Then one possible DR

sequence at node 1 is: PA1, PB1, PA2, PB2, PA3, PB3.

The reason to schedule the BS’s DR first is that the topmost goal is for the

BS to receive all the data generated by all other nodes in a cycle. The reason

to prioritize the inner tier nodes over the outer tier nodes is that the inner-tier

nodes are affording much heavier traffic. It is unfair for them to share the same

bandwidth with other light-traffic nodes. In addition, the packets forwarded by the

inner tier nodes are forwarded more hops than those forwarded by the outer tier

nodes. Colliding or dropping those packets would cost more efforts to retransmit.

Finally, to alternate the receptions among the children provides load balancing of

the nodes. If fairness is not considered for a parent’s children, a few children

might drop packets due to congestion whereas other children’s queues are far from

full. Therefore, when we alternate the children’s transmissions, we improve the

fairness. The three steps are shown in Algorithm 2. How RAS works at the sensor

nodes is shown in Algorithm 3.

2.5.2 Analysis of the RAS Protocol

Since the upper bound for the RAS schedule length (L1) can be infinitely long, we

only discuss L2, the lower bound for the schedule length. Assuming each node

generates P packets in a cycle, then the BS has to receive N × P packets in total

from 1-hop nodes in a N -node network. To receive packets, it has to wait for

at least the propagation time Tp of one packet. Therefore, the shortest time for

receiving all the N × P packets is N × P × Ts + Tp. We call this time period

L2 as the lower bound, which cannot be achieved in large-scale networks due to

interferences. L2 is the shortest time for the BS to finish all its receptions while

L1 is the time for all the nodes, including the BS, in a network to finish their

receptions. Therefore, L2 is no larger than L1. We can use L2 to indicate the lower

bound for L1 instead of using the optimal schedule length which is intractable.
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Algorithm 2 CalcSchedule() function at the BS.
1: Parent = BS; hop = 1. //schedule the BS’s DR from 1-hop nodes

2: while hop ≤ maxhop. do

3: while Parent has children. do

4: while Parent has data to receive from its children. do

5: if Parent is idle in the Time Slot Slot. then

6: With global information, Parent searches its entire children to alternatively

find a child whose transmission results in its reception at the Slot.

7: if Parent finds a suitable child. then

8: schedule the child’s transmission and the related reception and

interference.

9: break searching.

10: end if

11: end if

12: Parent fetches the next Slot for reception.

13: end while

14: fetch the next Parent to schedule reception.

15: end while

16: hop = hop + 1. //schedule the DR tier by tier

17: end while
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Algorithm 3 RAS protocol at the other nodes (It runs at each sensor node after the

initialization).
1: Node x receives routing information and a schedule from the BS.

2: Synchronization.

3: while 1 do

4: if node x is in sleeping period. then

5: sleep until working period starts.

6: end if

7: if abnormal events happen. then

8: request x’s parent to wait for data in sleeping period.

9: end if

10: if receive data from x’s children. then

11: receive the data as scheduled.

12: end if

13: if x has data to send. then

14: send the data in working period as scheduled.

15: end if

16: end while
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2.6 Performance Evaluation

We conduct the performance evaluation in the popular freeware network simulator

ns-3 [3] with parameters shown in Table 2.1. Using the setdest tool of ns-3,

we generate network scenarios of the same node density with six different sizes:

from 9-node network to 64-node network. In those networks, nodes are randomly

distributed and connected without holes, and the maximum hop distance ranges

from 1 hop to 7 hops. For networks of each size, we calculate the performance

under about 10 different topologies and show the average results. We employ

the underlying and traditional propagation model of ns-3 after adjusting the

transmission medium parameters as [117] and [131] do. The reason of using

such propagation model is that although acoustic waves in water suffer significant

absorptive losses, scattering and refraction, those factors do not change the latency

relationship among DT, DR and IR.

In the following we first compare the schedule length of RAS with the lower

bound schedule length. Next we implement RAS and UW-FLASHR [131] in ns-3,

and compare their performance in terms of throughput, delay and fairness.

2.6.1 Schedule Length

In this subsection, we calculate the lower bound schedule length L2 and the RAS

schedule length L1 when the number of packets generated by each node in a cycle

varies from 1 to 10. We do not draw the lines for the optimal schedule length

because it is intractable in limited time.

In Figure 2.5, all the lines are almost linear, which means that RAS is scalable

in calculating the schedule no matter the traffic rate is low or high. Since the

schedule length is the working time under a certain traffic rate, the shorter it is, the

longer the time that the whole network could sleep for. The whole network could

increase their throughput by working in the sleeping period. Therefore, the shorter

the schedule length is, the higher the throughput could be. Observing the value
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Figure 2.5: RAS schedule length vs. lower bound schedule length.

of L2/L1 in Figure 2.6, it stabilizes at around 0.5 in networks with node number

larger than 16, which means that RAS’s throughput can achieve about 50% of the

lower bound’s throughput. Since the optimal schedule length is larger than L1,

thus RAS’s throughput must be more than 50% of the optimal case. However, the

ratios of 9-node and 16-node networks are much higher than 50%. In this case, the

schedule calculated by RAS is very close to the lower bound. The reason is that the

above two networks are small-scale networks, in which the hop distances are 1-hop

or 2-hop. Therefore, they suffer less from the interferences caused by neighboring

nodes. When there are few interferences, the schedule length is reduced. That is

why L1 of small-scale networks are much closer to L2 than large-scale networks.

Basically, the larger the guard time, the longer the schedule length. Longer

guard time allows more imprecise synchronization while reduces the network

efficiency. Figure 2.7 shows the relation between the guard time and the schedule
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length for ten 64-node networks. In accordance with our expectation, the schedule

length increases linearly with the guard time ranging from 25% of the data duration

time (80ms) to 300% of the data duration time. Therefore, if we deploy a network

with high clock drift, we should set the guard time to a longer value. Otherwise,

we can use a smaller guard time.

2.6.2 Network Throughput

Due to RAS’s high scalability in schedule length demonstrated in the previous

subsection, we use the schedule calculated for the case when only one packet is

generated in a cycle. To compare RAS with UW-FLASHR [131], an existing

MAC protocol designed for high channel utilization, we employ their throughput

definition. Throughput is defined by measuring the total number of the intended

data packets received by the BS by the total number of data packets generated by

all the nodes in a period. Obviously, if the traffic generated at each node is so heavy

that it exceeds the maximum capacity of the network, then the throughput would
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drop, and even approaching to 0. Conversely, if the traffic is light, then it is likely

that all the data generated will be received by the BS; therefore, the throughput is

1 when there is no traffic.

Although we simulated networks of different sizes, for the sake of conciseness,

Figure 2.8 only compares the throughput of RAS and UW-FLASHR in 36-node

networks and 64-node networks. As the traffic rate increases, the throughput of

all the networks drops from 1. In addition, 36-node networks are able to afford

a much heavier traffic rate than the 64-node networks because networks with a

larger size suffer higher total traffic. Moreover, we notice that the throughput

for 36- and 64-node networks with UW-FLASHR dramatically drops from 1

when the traffic rate is not 0. This is because UW-FLASHR performs the slot

requirement among the neighbors, and the hidden terminal problem leads to

some slot establishment which might cause collisions. On the other hand, RAS

performs scheduling based on all nodes’ position information, thus no collision

happens. Finally, for UW-FLASHR, the heaviest traffic rate these networks could
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Figure 2.8: Throughput comparison

afford is much less than that of RAS. This is because RAS generates a much

compacter schedule than UW-FLASHR. RAS arranges the exact time needed by

the transmission and reception of each node while UW-FLASHR reserves the time

slots for transmission randomly.

2.6.3 Average End-to-end Delay

The end-to-end delay is the period from the time a packet is generated by a node

until the time it is received by the BS. Figure 2.9 shows that the average end-to-end

delay increases when the traffic rate increases. Specifically, when the traffic rate

is heavy enough to cause congestion in the networks, there are sudden jumps of

delay as observed in the figure. By observing the sudden jumps in delay, we find

that RAS networks can afford about 4 times higher traffic load than UW-FLASHR

networks without collision. Because the scale of 36-node networks is smaller

than 64-node networks, their end-to-end delay is also shorter. In addition, when

heavily congested, the delay of RAS networks and UW-FLASHR networks stops

increasing with traffic rate. The reason is that both RAS and UW-FLASHR are
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based on TDMA to reserve the channel rather than on CSMA/CA to compete

the channel, thus the delay reaches an upper bound. However, the delay upper

bound of RAS networks is higher than that of UW-FLASHR networks, this is

due to that: the priority scheduling makes the queue utilization of RAS networks

higher than that of UW-FLASHR networks (this will be explained in the following

subsection). In UW-FLASHR networks, the queue utilization is very low. Most

packets from faraway nodes cannot arrive at the BS before being dropped by the

heavy-loaded forwarding nodes. In other words, most of packets that arrive at the

BS are generated by nearby nodes, thus the delay upper bound is lower. In contrast,

this phenomenon is alleviated by the priority scheduling in RAS networks.

2.6.4 Average Maximum Queue Length per Node

In this subsection, we demonstrate the advantage of RAS in fairness by showing

that its queue utilization is fairer than that UW-FLASHR. The queue size of each

node is set to 50 in the simulations. If a queue is filled with 50 packets, then further

packet arrival will cause one packet to be dropped.
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UW-FLASHR does not take the application direction into consideration, nor

does it arrange longer time for nodes with heavier traffic. As a result, nodes

with heavier traffic (i.e., nodes that are nearer to the BS) would easily accumulate

a long queue of packets and suffer queue overflow very soon while nodes with

lighter traffic maintain an empty queue. As a result, the queue utilization of the

nodes in UW-FLASHR is very unfair and low. Actually, nodes with heavier traffic

experience a larger packet arrival rate, and they need more time to handle the

packets. RAS gives higher priority to nodes with heavier traffic by allocating

more data transmission time to them, thus their packet leaving rate is also higher.

Likewise, nodes with lighter traffic are allotted less time. As a result, the queues

of all the nodes are balanced, and the queue utilization is fairer.

Due to similar phenomenon of 36-node networks and 64-node networks, we

mainly discuss the case for 64-node networks in Figure 2.10. When the traffic

rate is between 0kbps and 0.06kbps, the queue length of RAS networks is shorter

than that of UW-FLASHR networks. Due to RAS’s capability of affording higher

traffic rate, most of the nodes in RAS networks do not have to queue under those
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traffic rates. Whereas the nodes in UW-FLASHR networks are queueing more and

more packets when traffic gets heavy. In addition, RAS networks undergo a jump

in queue length when the traffic rate increases from 0.06kbps to 0.07kbps. After

this the queue length of RAS networks is much higher than that of UW-FLASHR

networks until they both reach the upper bound 50. This because the queue

utilization of RAS networks is fairer and higher than UW-FLASHR networks. At

traffic rate 0.07kbps, RAS networks start to congest, most of the nodes suffer and

their queues overflow. In contrast, in UW-FLASHR networks, the queues of the

few nodes that are next to the BS are congested at a very low traffic rate while the

queues of faraway nodes are empty. Other nodes get congested gradually with the

increasing traffic rate, thus the queue length does not surge.

Furthermore, because small-scale networks are less likely to suffer congestion,

the queue length of 36-node RAS networks soars at about traffic rate 0.09kbps

rather than at 0.07kbps. It stabilizes at around 27 rather than at 50 when the traffic

rate is larger than 0.11kbps. Eventually, it will stabilize at 50 when the traffic rate

is very high. Nevertheless, 0.15kbps is not a very high traffic rate for 36-node

networks, thus only a majority of the nodes are congested while the others sustain

empty queue. Still the queue length of RAS networks is much larger than that of

UW-FLASHR networks when congestion happens in RAS networks, which again

indicates that the queue utilization of RAS networks is fairer and higher.

In summary, greater maximum queue length allows fairer and higher utilization

of the queue. Correspondingly, the delay upper bound of the RAS networks is

higher than the UW-FLASHR networks because more faraway packets are capable

of arriving at the BS with no overflow in queue.

2.7 Discussions and Conclusions

In this chapter we propose a novel priority-based scheduling algorithm to mitigate

the communication bottleneck of UWASNs. The different characteristics of
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communication and node scheduling between UWASNs and traditional TWSNs

are investigated. We then formulate the scheduling problem for UWASNs and

analyze its complexity. We provide a heuristic algorithm to solve the scheduling

problem with a newly designed scheduling-based MAC protocol, called RAS.

RAS gives higher priority to nodes with heavier loads. We compare RAS with

UW-FlASHR. The simulation results demonstrate that RAS not only effectively

improves the throughput and delay, but also increases the queue utilization and

fairness. Compared with the distributed methods, RAS requires synchronization

among sensor nodes. Since the synchronization accuracy in UWASNs is not

required as high as that in TWSNs, the synchronization cost is worthy of the

throughput and delay performance improvement.

2 End of chapter.



Chapter 3

A Reliable MAC Protocol Design

Underwater acoustic sensor networks (UWASNs) are playing a key role in ocean

applications. Unfortunately, besides the inefficiency, UWASNs also suffer from

the unreliability caused by packet loss. Many MAC protocols are proposed to

improve the efficiency of UWASNs, but few of them consider the reliability

of UWASNs even though the packet loss can fail the applications. Actually, a

few of the protocols employ the traditional acknowledgement (ACK) mechanism,

but they suffer the throughput degradation a lot. In this chapter, based on the

efficient MAC protocol RAS proposed in the previous chapter, we design a reliable

RAS called RRAS that obtains a tradeoff between reliability and efficiency.

RRAS designs an ACK and retransmission mechanism that is different from the

traditional one, so that it can maintain a comparable throughput when improving

the reliability. On one hand, the ACK and retransmission do not follow the

data loss immediately. On the other hand, though distributed, the retransmission

mechanism is based on ALOHA, a technique seldom used in wireless networks.

Extensive evaluations are conducted to verify that RRAS achieves a tradeoff on

reliability and efficiency.

51
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3.1 Introduction

A UWASN is composed of underwater sensor nodes that engage sound to transmit

information collected in the ocean. The reason to utilize sound is that radio

frequency (RF) signals used by terrestrial wireless sensor networks (TWSNs) can

merely transmit a few meters in the water [40] [44]. Although UWASNs and

TWSNs are similar, there still exist many differences that make UWASNs less

efficient than TWSNs [11] [44] [86] [105]. First, the acoustic sensor is more

expensive than the terrestrial sensor and thus the sensor deployment in the water

more sparse. Second, the sound bandwidth is much narrower than RF bandwidth

(e.g., 10 kbps VS. 10 Mbps). Consequently, we should utilize the bandwidth in

UWASNs more efficiently. Third and most importantly, the propagation delay of

UWASNs is far larger than that of TWSNs. Acoustic signals propagate at about

1500 m/s underwater, while RF signals travel at the speed of light in the air [92]. To

transmit a data packet over 1500 meters, it takes 1 s underwater and 5 µs in the air.

Due to the high propagation delay of acoustic signals, the network performance of

UWASNs cannot be achieved as highly as that of TWSNs.

Many existing methods aim at collision avoidance and improving the efficiency

of UWASNs, but they are not reliable. They usually perform best-effort

transmissions rather than guarantee receptions. The loss of important data can

result in serious damage. For example, if the data that contain an extreme

high temperature are lost, it maybe too late to extinguish the fire in the forest.

APCAP [44] utilizes the maximum propagation delay to avoid collisions and MAC

level pipelining to increase efficiency. To avoid the poor throughput caused by

using maximum propagation delay, Peleato and Stojanovic apply a shorter delay

to avoid collision when the communicating nodes are close to each other [87].

In addition, two ALOHA-based MAC protocols [26] improve the efficiency by

reducing the RTS (request to send) and CTS (clear to send) handshaking and

avoiding collisions with the information from the overheard packets. Although
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all these MAC protocols help improve the efficiency of UWASNs, none of them

consider acknowledgements (ACKs) or retransmissions. Since the packet loss may

fail the applications, it is very important to maintain a certain level of reliability

with ACK and retransmission mechanisms. For example, when oil spills are

detected, such event report packets should arrive at the BS in time so that prompt

actions can be taken to prevent pollution spreading. Since they may be lost due to

the volatile environment, they should definitely be equipped with a retransmission

scheme.

On the other hand, existing methods that include ACK mechanisms are not

as efficient as the previous techniques with no ACK mechanisms. For example,

Slotted FAMA [82], UW-FLASHR [131], and the reservation MAC protocol

proposed in [117] realize the traditional ACK technique, but they focus on collision

avoidance rather than on ACK and the retransmission effects.

Due to the volatile wireless environment in UWASNs, packet loss is very

common [11]. Unlike packet collision that can be reduced or manipulated at a

very large extent, this kind of packet loss is out of human control. As a result, we

should implement ACK mechanism and the corresponding retransmissions so as

to improve the network and application reliability. Considering the innate inferior

performance and low bandwidth of UWASNs, we should also avoid deteriorating

the efficiency too much by enabling ACK and retransmissions.

In this chapter, based on RAS, the efficient MAC protocol proposed in

the previous chapter, we design a reliable RAS called RRAS to achieve a

tradeoff between the reliability and the efficiency. Different from RAS whose

period is composed of working portion and sleeping portion, RRAS divides the

sleeping portion into a NACK-retransmission portion and a sleeping portion. The

NACK-retransmission mechanism of RRAS can improve the network reliability.

Specifically, with the scheduling done by RAS, after the working portion,

each node can immediately discover which packets are lost. Then during the
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NACK-retransmission portion, it can ask its children that lose the packets to

retransmit the packets. Since the retransmission is non-deterministic, RRAS uses

a distributed and ALOHA-based method to transmit packets rather than uses

scheduling.

We summarize our contributions as follows:

• (1) We propose RRAS to improve the network reliability.

• (2) Extensive evaluations are conducted to show that RRAS achieves higher

reliability than RAS while achieving comparable throughput performance.

In the remainder of this chapter, Section 3.2 describes related work. RRAS

protocol is designed in Section 3.3 respectively. The performance is evaluated in

Section 3.4. Finally, Section 3.5 concludes the chapter.

3.2 Related Work

Recently, there are extensive research efforts focusing on improving the

performance of UWASNs, which are surveyed in aspects of ACK mechanisms

and efficiency as follows.

Slotted FAMA [82] is a handshaking-based protocol designed to avoid

collisions caused by the hidden terminal problem in UWASNs. While it can

efficiently avoid collision caused by the long propagation of UWASNs and also

enable ACK mechanism, it does not utilize the long propagation delay to improve

the throughput and delay performance. By utilizing the long propagation delay in

the communications, Our RRAS can improve the reliability and efficiency.

The reservation MAC protocol proposed in [117] avoids collisions and

improves the bandwidth utilization by employing two channels: a control channel

for RTS/CTS handshake and a data channel for data transmission. It increases the

network throughput by dividing a larger group of collision sources into smaller

ones. While it realizes traditional ACK technique, it does not investigate the
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retransmission effects. In addition, it is based on a single-hop topology and the

gateway is in charge of the control packet and data packet coordination. Hence this

MAC protocol does not suit the multi-hop situation, whose complexity requires a

different analysis. In contrast, RRAS can be applied in either one-hop or multi-hop

topologies.

APCAP identifies that the traditional CSMA leads to poor performance in

UWASNs due to the long propagation delay [44]. Therefore, it utilizes the

maximum propagation delay to avoid collisions. To avoid the poor throughput

caused by such method, Peleato and Stojanovic reduce the delay used to

avoid collision [87]. In addition, APCAP employs MAC level pipelining

to increase efficiency. Another MAC protocol UW-FLASHR [131] also

implements MAC level pipelining. The difference is that APCAP is based on

an adaptive and distributed RTS/CTS handshake while UW-FLASHR employs

both TDMA mechanism and RTS/CTS handshaking. APCAP does not consider

acknowledgements (ACKs) for the data packets while UW-FLASHR enables

traditional ACK mechanisms.

In the above discussed techniques, slotted FAMA [82], UW-FLASHR [131],

and the reservation MAC protocol proposed in [117] realize the traditional ACK

technique, but they focus on collision avoidance rather than on ACK and the

retransmission effects. Since packet loss is very common in WSNs [11], our RRAS

can greatly improve the network and application reliability.

3.3 RRAS Protocol

Since packet loss is very common in UWASNs [11], RAS is not reliable.

By enlarging the guard time, we can avoid collisions caused by imprecise

synchronization. Hence, in our case, we focus on the packet loss caused by the

volatile wireless environment. Because RAS does not considering the ACK and

retransmission problem, we propose a reliable RAS called RRAS. RRAS employs
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the RAS scheduling to transmit all the DATA efficiently. For the DATA packets

lost during the scheduling, RRAS utilizes the NACK-retransmission mechanism

to improve the overall system reliability.

3.3.1 Overview of NACK-retransmission Mechanism

In the scheduling of RAS, each node n knows nc, the number of packets that should

be received from each of its child node c, and n0, the number of packets generated

by itself. The total packets that should be sent to its parent are n0 +
∑

c nc. In

RRAS protocol, if in a cycle, a node does not receive the expected packets, it

would keep the packet loss in mind and perform retransmission in the following

retransmission period.

Retransmission period is part of a RRAS cycle as shown in Figure3.1. RRAS

cycle is designed from RAS cycle: the DATA transmission period of RAS is

kept while the sleeping period of RAS is divided into the retransmission period

and a shorter sleeping period. In this way, the DATA lost in data transmission

period Tw can be retransmitted in retransmission period Tr. Obviously, RRAS

protocol keeps the nodes working for a longer period than RAS for the sake of

reliable transmission. However, since the unavoidable packet loss might fail the

applications, it is worthy of the extra time Tr to keep all the nodes waiting for

possible DATA retransmission requirement.

The packet loss caused by the volatile wireless environment is random, thus

we do not know which packets will be lost in the data transmission period Tw,
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and we cannot schedule the retransmission as we schedule the periodical DATA

transmission. As a result, we employ a NACK-retransmission mechanism, i.e.,

the NACK packet asks for the lost packets, and the retransmission packets reply

NACK with the required packets. The detailed explanation follows.

During retransmission period Tr, the node n that has not received the expected

packets would send a control packet (NACK) to its child node c whose packets

to n are lost during transmission. The NACK contains the packet sequence

numbers that n has received from c. On receiving the NACK, c would know

which packets to retransmit. If node n failed to receive packets from multiple

child nodes, it would send a NACK to the very child nodes one by one. If the

retransmissions succeed, no more retry is needed. Otherwise, node n could initiate

the corresponding retransmission by sending another NACK.

3.3.2 Retransmission Mechanism

The more times that node n retries the transmissions, the higher the reliability

is. Although such retransmission is aimed at improving the DATA transmission

reliability, it does not promise 100% success which would cost a lot of extra

resources. Hence, in our case, we only focus on one-time retry rather on the

frequently used three-time retry [133]. If we want to retry a second time, we

can simply add another retransmission period to retransmit the DATA packets lost

during the first retransmission period.

After receiving NACK, node c would retransmit the lost DATA packets in a

batch or in a burst to node n. Since the control frame exchanges deteriorate the

UWASN efficiency greatly, batch DATA transmission improves the retransmission

throughput and delay performance by reducing the exchanges.

As for the collision avoidance, in order not to degrade the efficiency, we do not

use the maximum propagation delay to avoid collisions as [44] and [82] do. In

addition, carrier sense and RTS/CTS handshaking are efficient in a network where
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the propagation delay is negligible, but they are inefficient in UWASNs [43]. As

a result, we adopt a simple ALOHA mechanism [9] [26]. According to [127],

the propagation time is usually larger than the data duration time (100ms) as long

as the distance between the nodes is larger than 150m. In this situation, even if

the two nodes send packets to each other simultaneously, no collision happens.

Furthermore, if node A and node B start to send a packet to C at the same time, as

long as the difference between A-C distance and B-C distance is larger than 150m,

there will be no collision at node C. For these reasons, we employ simple ALOHA,

i.e., a node could transmit a packet when it is not receiving or transmitting.

Although this mechanism does not guarantee collision-free situations, it is more

efficient. In case collision happens, further actions can be taken: retransmit the

collided packets again or ignore it and accept the current reliability level. In our

work, we study the effects of ALOHA through experiments and prove its influence

on the efficiency and reliability.

We define the states of a node after the DATA transmission period as (α, β).

The α state is determined by the node itself while the β state is determined by its

parents.

α =

 Y, packets from its child nodes are lost

N, packets from its child nodes are not lost

β =

 Y, packets to its parent nodes are lost

N, packets to its parent nodes are not lost

A node might be in 4 situations: (N,N), (N,Y), (Y,N), (Y,Y). If it it in state

(N,N) with no packet loss, it is free from sending or receiving packets. If it is in

state (N,Y), it does not know that its DATA transmissions to its parents are lost

until it receives the NACKs from its parents. In this case, it will only retransmit

the DATA packets designated in the NACKs.
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If it is in state (Y,N), it knows that DATA transmissions from its child nodes

are lost. It is also aware that since it fails to forward the lost packets to its parent

nodes, its parent nodes will require them through NACK. It should first ask its

child nodes for the lost packets by sending NACKs to them. Next, after collecting

the lost packets from its child nodes, it should forward them to its parent nodes.

Since it does not know the beta state, it does not know whether its parent nodes

will ask for lost packets generated by its child nodes or packets generated by itself.

As a result, even if it has finished collecting the lost packets from its child nodes,

it still should wait to retransmit until receiving the NACKs from its parents.

The actions in state (Y,Y) is similar to those in state (Y,N). The only difference

is that the node should send the lost packets from both its child nodes and from

itself to its parent nodes. In summary, the retransmission will be triggered only

after receiving the NACK requirements.

3.3.3 Retransmission Time

In addition, the length of Tr and extra energy consumption E for reliable

transmission is closely related to the packet loss rate R. The overall energy

consumption is dominated by the transmit power Et, as compared to receive power

Er and idle power Ei [16] [39]. If R is low, then E is low. For example, if R is

0, i.e., there is no packet loss during Tw, then no retransmission is needed, and all

the nodes are idling during Tr with low extra power consumption. If the packet

loss rate is very high during Tw, then the retransmission period Tr should be long

enough to finish all retransmissions, and the extra power would be a lot. In other

words, high packet loss means that the wireless environment is very severe, and

retransmission is required no matter what kind of mechanisms are employed for

DATA transmissions.

Given packet loss rate R, to ensure that the time duration is long enough for

retransmitting the lost packets, the length of Tr for a given network topology is
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calculated as follows.

To make sure that Tr can accommodate all retransmission situations, we

analyze the worst case. Consider the nodes in the longest route to the BS, from the

leaf node a to the BS, and the maximum hop distance is H .

If a DATA transmission from node a to its parent b is lost, then all the nodes

in the route need to retransmit the lost DATA to the BS. A node will retransmit

only on receiving the NACK requirement, then a retransmission between a pair of

nodes would take at most 2 ∗ (Tp + Ts), in which Tp is the maximum propagation

delay and Ts is the time slot. The longest time taken for retransmitting the DATA

to the BS is consequently

2 ∗H ∗ (Tp + Ts). (3.1)

The ALOHA retransmission mechanism only restricts the order between the

NACK and its corresponding retransmission, i.e., it allows parallel transmission

among NACKs from different nodes. As a result, the time used is much less, i.e.

(Tp + Ts) +H ∗ (Tp + Ts). (3.2)

The first term (Tp+Ts) is used to transmit the NACKs, the second term H∗(Tp+Ts)

is used to transmit the lost DATA to the BS.

We then consider the case that more than one packet are lost in such a route.

The worst situation is that all the packets are lost on the way from a to b. The batch

DATA transmission mode reduces the NACK-retransmission handshake, and keeps

the handshake round to be 1 among a node pair. Hence the longest time taken for

retransmitting all the DATA to the BS is

(Tp + Ts) +H ∗ (Tp + Lp ∗ Ts), (3.3)

in which Lp is the total number of DATA packets lost.

Lp = Ap ∗R, (3.4)

given Ap, the number of all the packets to be transmitted in a cycle.
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Next consider the case that more than one route, ro routes, experience DATA

loss. The worst situation is that all the routes are H hops from the BS, and there

is no overlap between any of the routes until they converge at the BS. In this

situation, the batch DATA transmission mechanism cannot be applied to reduce

the time. Then we get the length of Tr that is long enough for most retransmission

situations as:

Tr = ro ∗ (Tp + Ts) + ro ∗H ∗ (Tp + Lp ∗ Ts), (3.5)

When the rough distances between nodes and the routing are known, H and

maximum ro are determined, then Tr can be calculated. However, this value

is too large for a real deployment and hence wastes retransmission time. In

fact, not all DATA losses happen on the way from the farthest nodes to their

parents. In addition, the interference between the routes may be very light, and

the transmissions in each route can happen simultaneously without affecting each

other. Furthermore, the propagation time to transmit 1 DATA packet for 1 hop is

less than the maximum propagation delay Tp. As a result, the actual retransmission

time needed is far less than that indicated in Equation 3.5, and it should be adjusted

accordingly. As our later experiments prove, simulation can help us select a better

value for Tr.

3.4 Performance Evaluation

The protocol performance is simulated using the parameters shown in Table 2.1.

We use the ns-3 setdest tool to generate networks with size ranging from 9 nodes to

64 nodes [3]. For example, the 64-node network covers a 5 km by 5km area, and it

is connected without holes. The maximum one-way propagation time is 1000 ms

calculated from the 1500m transmission range and sound speed. The efficiency

and reliability performance of RRAS is compared to RAS and the traditional

CSMA/CA used in TWSNs.
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3.4.1 Retransmission Time of RRAS
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Figure 3.2: Retransmission time.

In this subsection and the following subsections, each node generates 1

packet for the BS periodically. Experiments are performed to determine the

actual length of the retransmission period. Although we compare UW-FLASHR

with RAS, we cannot compare it with RRAS because it does not contain

retransmission mechanism. According to equation (3.5), the theoretical length

of the retransmission period is conservatively long, attempting to fit in all possible

retransmission communications. Actually, the retransmission time can be much

shorter. In Figure 3.2, RRAS(1) and RRAS(2) are the retransmission time when

the retry time is 1 and 2 respectively. Theoretical RRAS(1) is the retransmission

time calculated with equation (3.5) when the retry time is 1.

In Figure 3.2, with loss rate (loss is caused by the wireless environment)

increasing from 0, the retransmission time of all the three cases increases from

0. RRAS(2) is about a double of RRAS(1) because it retransmits the lost packet

one more time. When the loss rate is very low, say 0.04, RRAS(1) and RRAS(2)
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are equal because the DATA packets that need retransmission are so few that they

can be sent simultaneously. Theoretical RRAS(1) is the longest because it is

an overestimated value that attempts to accommodate all possible retransmission

cases. As a result, to save the time spent on retransmission, we can adjust the

retransmission time according to the simulation results and the loss rate in the

deployment.

3.4.2 Working Time of RRAS and RAS
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Figure 3.3: Working time.

Working time is the total time that a node is turned on. During the working

time, the node can be sending, receiving, or idling, but not sleeping. For RAS,

the working time is the schedule time, and the sensor nodes sleep for the rest

of the cycle time. For RRAS, the working time is the schedule length plus

the retransmission time. For the traditional CSMA/CA used in TWSNs, the

working time is the time used for transmitting all DATA packets to the BS without

exceeding the required retry times. Besides RAS, RRAS(1), RRAS(2), and
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theoretical RRAS(1), Figure 3.3 also shows the working time of CSMA/CA(1)

and CSMA/CA(10), with 1 and 10 as the retry limit, respectively.

Because the traditional CSMA/CA employs RTS/CTS handshaking and does

not design the collision avoidance mechanism suitable for UWASNs, many packets

are collided and its efficiency is very low. The CSMA/CA has to retransmit the

collided DATA packets, and it cannot successfully retransmit all the collided DATA

packets to the BS when the retry time limit is 10, let alone when the retry time is

1. As a result, no matter what the loss rate is, the working time of CSMA/CA is

a constant. In other words, the protocol for UWASNs should first settle down the

negative effects caused by improper collision avoidance methods of the traditional

CSMA/CA, and then recovers the packet loss caused by the volatile environment.

Figure 3.3 also demonstrates that (1) the RAS work time is the lower bound of all

because it does not retransmit; and (2) except for CSMA/CA, the working time

increases with the increase of retry time and loss rate.

3.4.3 Success Rate of RRAS and RAS
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Figure 3.4: DATA transmission success rate.
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The success rate is defined as the DATA packets received by the BS divided

by the total DATA packets for the BS. Because the RAS does not perform ACK

or retransmission mechanism, its DATA success rate is reduced by the loss rate.

RRAS can achieve a higher success rate. Figure 3.4 verifies that compared with

RAS, RRAS attains a higher success rate, especially when the loss rate is high.

In addition, success rate of RRAS(2) is higher than that of RRAS(1) because

RRAS(2) retries one more time. However, according to Figure 3.2 and Figure 3.3,

one more retransmission of RRAS(2) results longer retransmission and working

time. Finally, as discussed previously, the efficiency of CSMA/CA is very low,

including the success rate.

3.4.4 Throughput of RRAS and RAS
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Figure 3.5: Throughput.

According to [87], the throughput is defined as a function of the sensor node

working time and the total DATA packets received by the BS:

throughput =
total DATA packets received by the BS ∗ Td

working time
(3.6)



CHAPTER 3. A RELIABLE MAC PROTOCOL DESIGN 66

In consistency with the poor success rate, the traditional CSMA/CA efficiency

is also very low in Figure 3.5. As discussed in subsection retransmission time,

the throughput of the traditional CSMA/CA is determined by its poor collision

avoidance method rather than by the packet loss rate caused by the environment,

hence it is flat. According to Figure 3.5, the throughput of RAS is the highest, but

the throughput performance of RRAS is not greatly reduced, especially when the

loss rate is not very high. Since the success rate of RRAS is much higher than

RAS according to Figure 3.4, we can observe that RRAS obtains a good tradeoff

between the reliability and the throughput.

3.5 Conclusions

In this chapter, we propose RRAS, a reliable RAS, to achieve a tradeoff between

the reliability and efficiency performance in UWASNs. To improve the throughput,

RRAS employs the efficient RAS scheduling to transmit the majority of the

DATA generated in a cycle to the BS. Then it designs a NACK-retransmission

mechanism to retransmit the DATA packets lost during the previous DATA

transmissions. Because this new NACK-retransmission mechanism is based on the

RAS scheduling that allows each node to know the packets it should receive during

a cycle, it can trigger the NACK requirement after a node identifies its lost packets.

Both the NACK and retransmission packet transmissions are distributed. They are

based on ALOHA so as to reduce the control frame handshaking and improve

throughput. The simulation results demonstrate that RRAS not only effectively

improves the reliability through retransmission, but also attains a comparable

throughput.

2 End of chapter.



Chapter 4

Reliable Protocol Conformance

Testing

Despite the various applications of WSNs, experiences from real WSN

deployments show that protocol implementations in sensor nodes are susceptible

to software failures, which may cause network failures or even breakdown. To

ensure reliable communications for WSNs, pre-deployment protocol conformance

testing is essential. Unfortunately, existing solutions with simulators cannot test

the exact hardware and implementation environment as real sensor nodes, whereas

testbeds are expensive and limited to small-scale networks and topologies.

In this chapter, we present RealProct, a novel and reliable framework for

testing protocol implementations against their specifications in WSNs. RealProct

utilizes real sensor nodes for protocol conformance testing to ensure that the

results are close to the real deployment. Using different techniques from those

in simulations and real deployments, RealProct virtualizes a large network with

any topology and generate non-deterministic events using only a small number of

sensor nodes to provide flexibility and to reduce cost. The framework is carefully

designed to support efficient testing in resource-limited sensor nodes. Moreover,

test execution and verdict are optimized to minimize the number of runs, while

67
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guaranteeing satisfactory false positive and false negative rates. We implement

RealProct and test it with the µIP TCP/IP protocol stack and a routing protocol

developed for WSNs in Contiki-2.4. The results demonstrate the effectiveness of

RealProct by detecting several new bugs and all previously discovered bugs in

various versions of the µIP TCP/IP protocol stack.

4.1 Introduction

Protocols play an important role in WSNs for reliable communication and

coordination [13] [15]. However, experiences from real deployments show that

protocol implementations in sensor nodes are susceptible to software failures

despite pre-deployment testing [15] [50] [66] [135]. Even though specifications

are available for standardized protocols, it is still very hard to assure flawless

protocol implementations by software developers. Misinterpretation of the

specification or software bugs in implementation could both cause communication

failures [13] [135], and even breakdown of the whole network. The bugs can

be very expensive and difficult to fix after deployment [72] [102]. Although

simulations are applied to detect software bugs for WSNs before deployment

[72] [102], it is widely believed that simulations may miss bugs that are

only exposed in real hardware and execution environment. Although testbeds

are considered for pre-deployment testing, they are expensive and limited to

small-scale networks. In addition, most of the existing testbeds are designed

for network performance evaluation rather than software bug detection [75]. To

uncover as many problems as possible, the best method is to test with large-scale

real WSNs which are, however, too expensive.

To settle the above problem and achieve an effective tradeoff between

large-scale real deployment and simulation, we present RealProct (reliable

Protocol conformance testing with Real sensor nodes) that uses a few low-cost

real sensor nodes to mimic large-scale real WSNs and then perform protocol
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conformance testing for WSNs reliably and cost-effectively. With RealProct, the

testing is the closest to the real deployment while the cost is kept at a low level.

RealProct is motivated by protocol conformance testing (PCT), an authoritative

method to check the consistency between a protocol implementation and its

specification [5]. To test a protocol with RealProct, the tester only needs to design

a set of abstract test cases according to the protocol specification [18]. Although

PCT have been applied for Internet, 3G network, WiMAX network [8] [14], its

applications for WSNs have not yet been investigated.

We observe that WSNs that are dramatically different from the traditional

networks. Moreover, RealProct is also very distinct from the simulations and

real deployments. As a result, several major research challenges exist. First,

sensor nodes are resource-constrained devices, so they are unable to provide the

same facilities and operations as the standardized PCT test system. For example,

the sensor node is incapable of storing all the test cases in its limited memory.

Second, a sensor node in the PCT test system is more difficult to be controlled

than a personal computer (PC). A sensor node usually does not provide proper

user interface, so operation commands are sent to the node mainly relying on the

serial ports connecting to the computer. Third, the volatile wireless environment

in WSNs will result in random packet loss [15]. The loss may trigger the potential

protocol bugs and results in instability and unreliability in our tests, such as false

positive and false negative errors [83]. Finally, RealProct only employs a few real

sensor nodes, and hence it seems that it is unable to test the protocol with various

topologies and events as the simulations and high-cost real deployments.

To attack the challenges, our major contributions are as follows:

• We propose RealProct as a generic and cost-effective architecture for

protocol conformance testing in WSNs that makes use of only two real sensor

nodes and a personal computer (PC). The PC helps storing all the test cases

which will be handed over to the sensor nodes in real time. The framework
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enforces abstracting the protocol interfaces to build up a library for concise

control of the sensor nodes through serial ports.

• Three different techniques (not utilized in simulations and real deployments)

are proposed to make RealProct practical and reliable for WSN protocol

conformance testing: topology virtualization, event virtualization, and

dynamic test execution. The topology virtualization technique imitates

WSNs with different structures using a few sensor nodes, while the event

virtualization generates non-deterministic events. Dynamic test execution

can tackle the inaccuracy problem caused by non-deterministic events when

generating the test verdict.

• We provide case studies with real experiments to prove the feasibility of

RealProct. RealProct effectively discovers two new bugs verified by the

developers, and identifies all the previously detected bugs in the µTCP/IP

stack [32] [34] [35] of Contiki-2.4 [33]. It also validates the Rime mesh

routing protocol in Contiki-2.4. The source code for finding the bugs is

available online1.

The remainder of this chapter is organized as follows. Section 4.2 discusses

the related work. Section 4.3 presents the background of PCT. We design the

framework of RealProct for protocol conformance testing in WSNs in Section

4.4, and propose three novel techniques to make RealProct practical for WSNs

in Section 4.5. After discussing the generality of RealProct in Section 4.6, we

evaluate its feasibility with two case studies in Section 4.7. Finally, Section 4.8

concludes the chapter.
1http://www.cse.cuhk.edu.hk/˜jjxiong/testcases/testcase.htm
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4.2 Related Work

It is necessary to extensively test and debug WSN protocols before real

deployment. If the bugs sneak into deployment, they are very difficult to detect

and costly to fix. Currently, the classification between testing and debugging in

WSNs is not very clear. We define testing as the techniques of detecting failures

or abnormal phenomena and debugging as techniques that diagnose the precise

nature of a known error and then correcting it [45]. In other words, helping locate

the errors in program code or root cause of failures is the process of debugging.

Only after testing detects abnormal behaviors will debugging be triggered.

Existing approaches for testing and debugging WSN protocols fall into three

main categories: program analysis tool and simulator (testing before deployment),

real deployment (testing after deployment), and debugger. We consider testing

as the technique for detecting failures or abnormal behaviors, while debugging as

the process for diagnosing the precise nature of a known error [45]. Only after

abnormal behaviors are detected in testing, debugging will be triggered.

Program analysis tools and simulators are very useful in detecting errors

and verifying algorithms of the protocols. Safe TinyOS [28] is compile-time

program analysis tool that can avoid memory corruption before program execution.

Neutron’s compiler and runtime extensions [25] help the programs to efficiently

recover from memory safety bugs. FSMGen [63] derives FSM from TinyOS [69]

application so as to help the programmer detect the software errors at a

system level. Well-known simulation tools include ns-3 [3], a general network

simulator, TOSSIM [68], a simulator for TinyOS WSNs, and Avrora [89] [116],

a cycle-accurate instruction-level simulator. Several tools developed for finding

software bugs in WSNs are based on simulation. T-Check [72] is an event-driven

simulator based on TOSSIM and Safe TinyOS. It employs the model checker

in [59]. KleeNet [102] is based on the low-level symbolic virtual machine

KLEE [21]. Given the fact that nodes in a simulation environment and real sensor
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nodes are different, protocol execution in simulations may not be able to discover

all software problems that will occur in real sensor nodes.

Different from simulations, testing during protocol execution in real sensor

nodes is crucial in detecting software bugs. Kothari et al. [64] presents HERMES,

a lightweight framework and prototype tool that provides fine-grained visibility

and control of a sensor node’s software at run-time. HERMES’s architecture is

based on the notion of interposition, which enables it to provide these properties

in a minimally intrusive manner, without requiring any modification to software

applications being observed and controlled. HERMES provides a general,

extensible, and easy-to-use framework for specifying which software components

to observe and control, as well as when and how the observation and control is

done. Sympathy [95] actively collects run-time status from sensor nodes, such as

routing table and flow information, and detects possible faults by analyzing the

information. To save the energy for collecting logs, PassiveDiagnosis [75] and

PassiveAssertions [101] both passively record the logs from real deployment by

piggybacking the logs in regular data packets. NodeMD [65] is a deployment

management system that successfully implements lightweight run-time detection,

logging, and notification of software faults. Although these run-time testing

method can detect real-time failures in real deployment, it is costly and very

difficult to detect and fix errors after deployment. Similarly, testbeds could

be applied for testing in real nodes, but they are expensive and limited to

small-scale networks [75]. Moreover, existing testbeds are often designed for

network performance evaluation rather than protocol conformance testing [75].

Different from the above work, RealProct uses a few real sensor nodes to perform

protocol conformance test, which can detect bugs on real nodes efficiently before

large-scale deployment.

A number of debuggers have been developed for WSNs. Clairvoyant [132]

is a comprehensive source-level debugger that provides standard debugging
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commands including break, step, watch, and so on. Since it can only debug a

sensor node instead of a network, it cannot handle distributed bugs. Although

some debugging techniques can detect abnormal behaviors, they mainly focus

on locating the root cause of the software bugs. Khan et al. present a

diagnostic simulator to locate possible causes of the user-defined undesirable

behavior when it is encountered during simulation [56]. The simulator works by

logging event sequences and states produced in a regular simulation run. It then

uses sequence extraction and frequent pattern analysis techniques to recognize

sequences and states that are possible root causes. However, this simulator can

only diagnose bugs that occur frequently. Thus, they design another tool called

DustMiner for uncovering bugs due to interactive complexity in networked sensing

applications [57]. Such bugs are often not repeatable, making them particularly

hard to find, as the specific sequence of events that invokes the bug may not be

easy to reconstruct. An extensible framework is developed where a front-end

collects runtime data logs of the system being debugged and an off-line back-end

uses frequent discriminative pattern mining to uncover likely causes of failures.

Sentomist [135] and tracepoints [23] are both automated tools for debugging WSN

applications. The former is built based on simulation and is especially effective

for identifying transient bugs. The latter inserts checkpoints in the applications

to allow run-time debugging. Since debuggers are designed for locating the bugs

after the bugs are detected by testing, they only give a very detailed investigation

on a small part of the codes for locating specific bugs. In this work, we focus

on protocol conformance testing rather than debugging, which allows us to detect

general implementation problems for WSN protocols.

4.3 Protocol Conformance Testing

Due to programming bugs or misunderstanding of the standard specifications,

the protocol implementation always differs from the expected, hindering the
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interoperability between systems implemented by different manufacturers [5] [18].

Hence, testing is necessary. Protocol conformance testing (PCT) is an authoritative

way to check the consistency between the any protocol and its implementation [5].

As functional (black-box) testing, PCT aims to gain confidence in correct

implementation of the protocol (any protocol), so as to force successful

communication between peer protocol entities. An example of a protocol

conformance test would be to check if the ‘ping’ command operates correctly. Ping

should send an ICMP echo request to an operational host or router and the host or

router should return an ICMP echo response. The ‘ping’ command should also be

sent to a non-existent or non-operational host or router, and then report back ‘ping:

unknown host [hostname]’. The latter would be a negative conformance test.

PCT is popular and influential not only in traditional wired networks [18], but

also in wireless networks. The protocol stack in wireless network WiMAX is

tested in a PCT environment provided by Agilent [8], so does 3G protocol stack

tested with PCT toolkit designed by company Anritsu [14]. Those products have

to pass the conformance testing before they get GCF (Global Certification Forum)

approval for an introduction into the market. Despite PCT’s wide application, it

has not yet benefited WSNs due to a number of challenges discussed previously.

4.3.1 PCT Process

The PCT process is shown in Fig. 4.1, in which the protocol implementation

to be tested is called Implementation Under Test (IUT). Its first phase is test

generation, in which abstract test cases for the IUT are designed based on the

protocol specification. Each test case can only have one target, i.e., testing a

particular function of the protocol. A collection of test cases can cover many

aspects of the protocol, and they form a test suite. Formal methods, such as FSM

and extended FSM [18], are employed for deriving the abstract test suite.

The second phase, test implementation, transforms the abstract test cases into
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Figure 4.1: PCT testing process.

executable test cases that can be executed in a real test system. The last phase is

test execution, in which the implemented test cases are executed against the IUT

and the resulting behavior of the IUT is observed. This leads to the verdict about

the conformance of the IUT with respect to the protocol specification. After PCT,

we can rerun those failed test cases to diagnose the problems so as to improve the

protocol implementation.

4.3.2 PCT Architecture

There are mainly four classical architectures for PCT: local, distributed,

coordinated, and remote architectures. Since their difference lies in the component

organization rather than in the component number, we only discuss the PCT

distributed architecture as shown in the biggest rectangle (not including the 4 blue

items) in Fig. 4.2. The architecture is composed of two entities: the System

Under Test (SUT) and the tester. In traditional Internet protocol conformance

testing, both SUT and tester could be a PC.

The points where the tester controls and observes the IUT are called the Points

of Control and Observation (PCO). For IUT at layer N, its specification identifies
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the behavior of a protocol entity at the upper and lower access points (interfaces)

of the protocol. Hence the ideal PCOs to test the IUT are these two access points.

The part that is connected through the upper access point is called the Upper Tester

(UT). Similarly, the part that is connected to the IUT through the lower access point

is called the Lower Tester (LT). The service provider supports the UT, IUT, and LT

implementation.

The tester contains only LT while the SUT contains two logical components:

UT and the IUT. The LT is consisted of executable test cases, and it is a peer entity

of the combination of the UT and the IUT. Each test case execution stimulates

the IUT, and the response of the IUT is observed at PCOs. Test results are

obtained by comparing the observations with the expected behaviors indicated

in the specifications. In other words, the LT provides different kinds of inputs

to IUT, and the outputs of the IUT are compared with the correct behaviors as

specified to arrive at a verdict. When testing IUT, we focus on the operation of

the protocol being tested and consider that the other parts behave correctly. In this

way, the failed test cases can pinpoint the problems in protocol implementation. In

addition, the test coordination helps execute the tests, which includes maintaining

synchronization between the SUT and tester and controlling the execution flow.

4.4 Design of the RealProct Framework

The above PCT design is a general software engineering method for testing

protocol implementation against specifications. However, none of the above four

PCT architectures fit WSNs due to the limited resources of sensor nodes and their

volatile working environment. For this reason, our designed framework for PCT is

different from the previous general one in the 4 blue items as shown in Fig. 4.2. To

unveil as much abnormal behaviors of a protocol implementation in WSNs before

deployment, we utilize two real sensor nodes to work as the tester and the SUT

respectively in a distributed PCT architecture. We explain the unique features of
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Figure 4.2: RealProct framework.

our design as follows.

Number of real sensor nodes

We utilized only two real sensor nodes rather than 3 or dozens of real sensor nodes

for three reasons. First, the general PCT architecture in the ISO9646 standard [5]

employs only two entities as the SUT and the tester respectively. It means that

even the tester is only composed of 1 sensor node; it can still test the protocols

adequately. Second, although we can utilize 3 or more real nodes to function

as the tester, it is much more difficult to control and coordinate larger number

of independent devices in the required testing process. Third, our virtualization

technique allows us to virtualize more than 1 sensor nodes with only 1 real sensor

node, and hence the SUT can hardly distinguish 1 real sensor nodes from more

real sensor nodes.
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Coordination

We suggest test coordination to be functioned by a PC, rather than by the tester or

the SUT, due to the limited memory and computation power of the sensor nodes.

Compared with the sensor nodes, PC is a much more powerful device to coordinate

the tests. We connect the PC with the two sensor nodes with serial ports, through

which the PC communicates with the sensor nodes and supply them with power.

Initially, all the test cases are stored in the PC, and each one is downloaded to the

tester for execution one by one.

In addition, the PC maintains test synchronization and controls sequence of

actions between the tester and the SUT. Since we cannot manipulate the system

to be tested (SUT) directly, we control it passively through the tester which will

be installed with all test cases. The details on how we control it will be discussed

in the next section. Furthermore, the PC observes and saves the test execution

logs through the serial ports. These logs are very important for generating the test

verdict and performing bug analysis afterwards. In practice, we do not save the

test execution results in the sensor nodes due to their limited memory. Moreover,

saving logs in the sensor node may alter or even deteriorate the performance of the

IUT. If we store all the logs in the sensor nodes, we will not know the real-time

results of the testing unless the sensor nodes send the logs to the PC. Instead, we

suggest the PC to get real-time results from sensor nodes through the serial port

and save the logs locally.

Resource management

The design of the LT and the UT are modified to better suit the

resource-constrained WSNs. Unlike the traditional PCT framework, the LT and

the UT are simplified for easier control of the tests. The LT is a suite of executable

test cases based on FSM. Each test case in the LT now only targets at one aspect

of the IUT. To make the test case simpler, we apply virtualization techniques to



CHAPTER 4. RELIABLE PROTOCOL CONFORMANCE TESTING 79

imitate a large network by controlling only two nodes rather than managing a large

number of nodes. The UT should be simple, but still be capable to drive the IUT

to send and receive packets. The log generated from the LT and the UT is mainly

about packets in order to relieve the load of the tester and the SUT.

PCO optimization

We further optimize the PCOs for the testing framework and add logging module

for the PCOs. In traditional PCT architectures, one PCO is in the tester and the

other is the SUT. In contrast, our framework adds a point of observation (PO3) in

the SUT as shown in Fig. 4.2. Is it redundant to add such a point? The answer

is no. The traditional distributed PCT architecture assumes that traditionally both

the PCO1 and PO3 observe the same phenomenon. However, this assumption does

not hold due to the volatile wireless environment of WSNs. The LT can control

and stimulate the IUT at PCO1, but it cannot make sure that the packet it sends

will arrive at PO3 without loss, corruption, or duplication. To avoid false positive

(FP) and false negative (FN) errors in test, we double-check the packet content at

PO3.

4.5 RealProct Techniques

RealProct provides a generic framework for testing the implementation of a

wide range of protocols in WSNs. Although it is straightforward to write test

cases based on the specifications, it is difficult for RealProct to fulfill the testing

requirements for different protocols using only limited number of sensor nodes in

practice. To address this limitation, we propose two novel techniques, topology

virtualization and event virtualization, to aid the LT design in order to imitate

WSNs with various topologies and events in our 2-node framework. Apart from

that, testing with real nodes also experiences random packet loss, which might

cause FP and FN errors in test verdict. We thus design a dynamic test execution
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algorithm to reduce the FP and FN error rates down to a required level.

4.5.1 Topology Virtualization

Because the simulations and real deployments are able to verify the protocol

functionality various topologies, they do not need to virtualize topology at

all. However, for RealProct that tests with limited number of nodes, topology

virtualization is necessary to provide higher test case granularity. Unlike

simulation, virtualization in our framework utilizes real hardware. The technique

can virtualize larger scale network with limited real nodes in a way that the SUT

can hardly distinguish them. The idea is that no matter in what kinds of topology,

the SUT can only recognize its environment from the packets it receives. More

importantly, it can only receive packets from the nodes that are placed within its

reception range, i.e., 1-hop neighbor nodes. In practice, the amount of sensor

nodes that are placed within a sensor node’s reception range is limited. Hence,

it is not difficult for the tester to virtualize all the 1-hop neighbors of the SUT.

It seems that the tester can only virtualize 1-hop topologies, but not multi-hop

topologies apparently. However, this is not true. We will show how the packets

from nodes farther away can also be imitated and transmitted to the SUT by

topology virtualization.

Specifically, given two real sensor nodes: the SUT and tester, and the latter can

virtualize for the former a topology composed of node 1, node 2, and node 3 as

shown in the upper portion of Fig. 4.3. The tester sends two routing packets to

the SUT. Since the SUT can receive packet 1 and packet 2 directly, it regards the

nodes that send these packets as its 1-hop neighbors (node 1 and node 2 here). In

addition, packet 2 tells the SUT that it has a neighbor node 3. Since the SUT has

not received any packets from node 3 directly, it adds node 3 as its 2-hop neighbor.

As a result, the SUT experiences as if it has two 1-hop neighbors and one 2-hop

neighbor in a two-level tree topology.
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Figure 4.3: Topology virtualization demonstration.

In real deployment of this topology, the packet receptions and topology

discovery for the SUT are just the same as those in our virtualized topology.

In other words, as long as the SUT receives the same packets as those in a

real topology, the virtualized topology for the SUT is indistinguishable from the

actual one. With topology virtualization, we can effectively reduce the number of

sensor nodes and the extensive human efforts for protocol conformance testing in

large-scale networks.

Algorithm 4 shows how to virtualize different topologies when testing various

routing protocols. In this case, the routing protocol is IUT, and the real sensor node

installed with IUT is the SUT. The key point to test the SUT in any given topology

is to analyze the effects of different packet transmissions in the SUT, and then to

virtualize the effects for the SUT with the tester.

4.5.2 Event Virtualization

Software bugs are often detected when there are non-deterministic events in

the network, such as node reboot and outage, packet duplication, packet loss,

and so on. These events have potential to drive a WSN application into

corner-case situation, where bugs usually lurk. In order to ensure high coverage
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Algorithm 4 Topology virtualization process for any routing protocol.
1: Understand the route discovery mechanism

2: Divide the routing positions in a route into source, forwarder, and destination

3: Divide the nodes into two sets: N1 (SUT’s 1-hop neighbors) and N2 (SUT’s

non-neighboring nodes)

4: while P takes each value in the above three positions do

5: Analyze the effects on the SUT when nodes ∈ N1 send a packet

6: Analyze the effects on the SUT when nodes ∈ N2 send a packet

7: Analyze the responses of nodes ∈ N1 when the SUT sends a packet

8: Analyze the effects of the above responses on the SUT

9: end while

10: Build a model M for effects of packet transmission on the SUT from the previous

analysis

11: Let S be the set of to-be-tested topologies

12: while Based on the model M , ∀Topo ∈ S do

13: Test the SUT when it is communicating with nodes ∈ N1

14: Test the SUT when it is communicating with nodes ∈ N2

15: end while
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Figure 4.4: A topology for event virtualization.

testing [91] [118], RealProct employs event virtualization to facilitate protocol

conformance testing with different kinds of events, including the non-deterministic

ones that are caused by the volatile environment. During the simulations, such

events are easy to be inserted. Symbolic execution is an example that explores

all possible paths in protocol testing through simulation [61] [102]. While in real

deployments, such events are only allowed to be observed. However, in the testing

of RealProct, these events need to be triggered with different methods. The key

problem is how to trigger these events with only a few real sensor nodes so as to

test the corner-cases. We discuss the virtualization of events below.

Node reboot and outage

Node reboot cases are classified into two categories: the SUT reboots and the

tester reboots. In the first category, our test cases target at verifying that the SUT
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can successfully reboot and return to the initial state. For this case, we just send

to SUT the reboot command ‘/home/user/contiki-2.4/tools/sky/msp430-bsl-linux

–telosb -c /dev/ttyUSB0 -r’ in our experiments. For the second category, the test

cases are checking whether the SUT can appropriately handle the reboot of other

sensor nodes in various topologies. We do not care about which node reboots in

what kind of virtualized topologies. As long as we know the influence of its reboot

in the SUT, we can virtualize node reboot for the SUT by exerting such impacts

on it.

We take the rime mesh routing protocol (RMRP) used in Contiki with the

virtualized topology shown in Fig. 4.4 as an example. The SUT is the only 1-hop

node from the sink, and the application running in the SUT and the tester is sending

data to the sink regularly. The reboot of node 1 has small effects on the SUT.

Before reboot, node 1’s influence on the SUT is its regular data packets and the

related route discovery packets. Hence we virtualize its reboot by not allowing the

tester to send data packets and route discovery packets with source as node 1 to

the SUT. Given that node outage will cause node reboot, the virtualization method

is the same.

Packet disorder, duplication, corruption, and loss

Existing tools, such as KleeNet, have not explored packet disorder in testing. It is

because these tools rely on simulation, model based on human experience [102].

Neither have we realized it until we observed this phenomenon in our testing with

real sensor nodes. We reported this problem to the Contiki developers and believed

that it was caused by the implementations of the lower level protocols and the

volatile wireless channels.

Let us look at the testing of a TCP implementation as an example. Consider the

whole topology in Fig. 4.4, the SUT is the TCP server and node c is the TCP client.

From node c to the SUT, there exist two routes. One is c → b → 2 → SUT, and the
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other is c → 3 → 1 → SUT. If the routing protocol uses two routes simultaneously,

then the packets arrived at the SUT from node c may be disordered. Say, the first

data packet from node c takes route 1 and the second data packet follows route

2. If route 1 is more congested than route 2, the second data packet may arrive at

the SUT before the first data packet, resulting packet disorder at the SUT. If the

SUT cannot handle the disorder appropriately, it fails the test case. To virtualize

the packet disorder with only one tester, it prepares two packets: packet 1 with

a smaller sequence number and packet 2 with a larger sequence number. Then it

sends packet 2 to the SUT first, and packet 1 next.

Packet duplication can be virtualized by sending the same packets to the SUT

twice or multiple times with different intervals. Similarly, packet corruption is

virtualized by distorting different fields of the packet before sending the packet to

the SUT. In order to virtualize the packet loss, the tester will not send the expected

packet or acknowledgment to the SUT.

4.5.3 Dynamic Test Execution

In simulations, we can control when and where the non-deterministic events occur.

However, testing with real sensor nodes is not entirely under human control, and

hence we cannot avoid their occurrences in the cases that we do not anticipate.

Here we focus on unexpected packet loss caused by the volatile environment,

which is the main problem that obstructs our normal testing with real sensor nodes.

The loss may occur to any packets we send or receive during our testing, and hence

threaten our testing and could result in false positive (FP) and false negative (FN)

errors in the test verdict.

PO3 is thus deployed to monitor the difference of packets exchanged between

PCO1 and PO3 during execution (see Fig. 4.2). It can assist human in debugging

problems caused especially by packet loss. Actually, the most convenient way to

avoid FP and FN errors is to repeat the test cases several times so as to filter out the
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volatile influence from the environment. Intuitively, the more times we repeat, the

less likely that FP and FN errors will occur. However, it is inefficient to execute

the test cases for too many times. Thus, here is the problem: What is the minimal

number of executions that can guarantee the FP and FN error rates lower than a

certain level? We design an algorithm to tackle this problem.

Let the empirical probability of packet loss caused by the environment be L0.

Due to packet loss, the test results will be distorted with chance L0, and lead to FP

and FN errors. Suppose a test case is executed n times, and it passes n1 times and

fails n2 times. If n1 > n2, we would like to declare the test as pass (Assertion 1).

If n2 > n1, we would like to declare the test as failure (Assertion 2). If n1 = n0,

we execute the test case for more times until n1 = n0 does not hold. However,

Assertion 1 may suffer FN error if the test verdict should be fail, but was wrongly

concluded as pass. Assertion 2 may suffer FP error if the test verdict should be

pass, but was wrongly concluded as fail. What is the minimum value of n that

guarantees both Assertion 1 suffers FN error and Assertion 2 suffers FP error at a

rate lower than a threshold E, say 1%?

For a test case with n1 > n2, if FN error occurs, then n1 passes are caused

by packet loss and n2 failures are not affected by packet loss. Hence the FN

probability P (FN) is (
n
n1

)
Ln1
0 (1− L0)

n2 .

Let P (FN) ≤ E, then the smallest n exists if n1 = n, i.e., all the executions

pass. Hence we have the minimum n as

n = ⌈lgEL0
⌉.

Similarly, for a test case with n2 > n1, if FP error occurs, then n2 failures are

caused by packet loss and n1 passes are not affected by packet loss. Hence ,the FP

probability P (FP ) is (
n
n2
)Ln2

0

(
1− L0)

n1 .
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Algorithm 5 Dynamic test execution process for each test case.

1: Calculate nmin = ⌈lgEL0
⌉, n = n1 = n2 = 0

2: while n ≤ nmin do

3: Execute the test case

4: if Execution result is pass then

5: n1++

6: else

7: n2++

8: end if

9: end while

10: loop

11: if n1 > n2. then

12: Calculate P (FN) =
(
n
n1

)
Ln1
0 (1− L0)

n2

13: if P (FN) ≤ E then

14: break //end test execution

15: else

16: Execute the test case and increase n1 or n2 according to the result

17: end if

18: else if n1 < n2. then

19: Calculate P (FP ) =
(
n
n1
)Ln2

0

(
1− L0)

n1

20: if P (FP ) ≤ E then

21: break //end test execution

22: else

23: Execute the test case and increase n1 or n2 according to the result

24: end if

25: else if n1 = n2 then

26: Execute the test case and increase n1 or n2 according to the result

27: end if

28: end loop
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Similarly, let P (FP ) ≤ E, then the smallest n exists if n2 = n, i.e., all the

executions fails. We also have the minimum n as

n = ⌈lgEL0
⌉.

For example, if E = 0.01, L0 = 0.2, then n = 3. That is if we get 3 continuous

passes for a test case, then the chance of FN to declare it as pass is less than 1%.

Therefore, for this case, we can end test case repetition after 3 times. However,

if we get 2 passes and 1 failure, through calculation, P (FN) of declaring pass is

9.6% in this case. Therefore, we have to execute the test case for extra times until

we get P (FN) ≤ E and then declare it as pass, or until we get that n2 > n1 and

P (FP ) ≤ E.

In general, for each test case, it is first executed for ⌈lgEL0
⌉ times. If the result is

n1 > n2, then we calculate P (FN) and compare it with E. If P (FN) ≤ E, then

we end the test execution and declare the test case as pass. If the result is n2 > n1,

then we calculate P (FP ) and compare it with E. If P (FP ) ≤ E, we end the

test execution and declare the test case as failure. Otherwise, we repeat the test

case execution until n1 > n2 and P (FN) ≤ E or until n2 > n1 and P (FP ) ≤

E. In this way, the execution repetition of each test case can be minimized in

real-time dynamically according to the requirement of the FN and FP error rates.

The execution process is shown in Algorithm 5.

4.6 Generality of RealProct

RealProct presents a generic framework for testing a wide range of protocols

in WSNs by using only two real sensor nodes and a PC. Three techniques are

designed to make the framework practical for WSNs. Topology virtualization

allows us to test different protocols in various network topologies. Event

virtualization facilitates protocol conformance testing in networks with different

kinds of events, including the non-deterministic ones that are caused by the volatile
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environment, such as node reboot, node outage, packet loss, and packet corruption.

The dynamic test execution and verdict algorithm is used to guarantee the negative

influence caused by the environmental packet loss is lower than a required level.

These techniques and related algorithms are computed in the PC to relieve the

burden of resource-limited sensor nodes.

Although testing diverse protocols in WSNs requires different manual

efforts [5] [118], RealProct provides a generic framework and universal techniques

to keep the testing process the same and easy to follow. A user only needs to

design abstract test cases according to the protocol specification, and then abstract

the interfaces of the protocol implementation and translate those abstract test cases

into executable ones with the aid of our virtualization techniques. The executable

test cases will be stored in the PC. The PC downloads each test case into the tester

node in real-time and trigger the test case execution one by one. Our test execution

and verdict algorithm can control the execution times of each test case and verdicts

the test results autonomously. Finally, the PC can summarize and repeat those

failed test cases to help debugging the problems. The testing methodology is

general rather than designed for a specific protocol.

4.7 Evaluation

This section evaluates the practicability and efficiency of our RealProct for

protocol conformance testing with two case studies. We test the TCP protocol

of the µIP TCP/IP stack for WSNs in Contiki-2.4 because TCP is not only viable

for WSNs, but also very useful to connect WSNs with traditional networks [34].

During the TCP testing, RealProct finds not only two new bugs acknowledged by

the developers, but also all the previously discovered bugs [102]. The Rime mesh

routing protocol (RMRP) designed for WSNs in Contiki-2.4 is also tested. The

test cases for detecting those bugs are available online1. Figure 4.5 shows that the
1http://www.cse.cuhk.edu.hk/˜jjxiong/testcases/testcase.htm
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Figure 4.5: Testing devices.

testing devices are composed of one PC and two TelosB sensor nodes that work as

server and client respectively.

4.7.1 Detecting New Bugs in TCP

Although we design many ordinary test cases based on the TCP specifications, we

only detail those test cases that identify bugs.

Bug 1 – Connect to opened TCP ports

We discuss each test case in the aspect of the test purpose, test scenario, test steps,

and test results. Since the SUT is not under direct control, we steer it passively by

manipulating the tester.

We want to test whether the TCP server allows successful connection to an

opened TCP ports. According to Internet Assigned Numbers Authority (IANA),

the legal ports for TCP connection are from 0 to 65535. We can test each port one

by one because such kinds of similar test case generation and execution are easy
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Figure 4.6: TCP three-way handshake.

to be automated, but it takes long time to execute. As a result, we choose several

representative ports to test. We select port 80 as a common port and port 0 as a

special port to test. Then we get two test cases.

Test case 1 – Test purpose: Connection to an opened common TCP port should

be successful.

Test scenario: TCP is the IUT. One sensor node is the SUT, and it functions

as the TCP server installed with the IUT. The UT runs on top of the IUT. It is a

simple application which just receives packets and sends the received packets to

the peer. The other node is the tester, in which the LT (or tester) is installed with

the test case. It functions as the TCP client.

Test steps: The testing steps are as the three-way handshake process of TCP

as shown in Fig. 4.6. First, the server opens port 80 and waits for connection.

Second, the tester sends an SYN packet to port 80 of the SUT. Then it waits for

the SYN/ACK packet from the SUT. If it does not receive the packet, it declares

the failure of the test and exits. Otherwise, it checks the content of the packet. If

the content is incorrect, it claims test failure. Otherwise, it replies an ACK packet

to the SUT and asserts test case pass.

Our method is different from KleeNet [102] in that only the node to be tested

is installed with the IUT. The other node is installed with test cases. Each test case
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realizes a simple function of the IUT so that it can work as a peer of the IUT and

stimulates the IUT in many aspects.

Test results: According to the logs observed at the PCOs and PO, this test case

passes, which is shown Figure 4.7. However, Test case 2 which tests port 0 fails.

It seems that although the SUT opens port 0, it does not accept connection to port

0 from TCP client.

Then we repeat the test case and observe the packet logs again. We find that

the reason that test case 2 fails is because the client times out waiting for the

SYN/ACK packet from the server. That is to say, the server does not reply the

SYN to port 0. We also observe “tcp: zero port.” in the log. Why does this not

happen to port 80? By digging into the code that is related to the ports and the log,

we find a segment of code as follows:

1 / / Make s u r e t h a t t h e TCP p o r t number i s n o t z e r o .

2 i f (BUF −>d e s t p o r t == 0 | | BUF −>s r c p o r t == 0)

3 {

4 UIP LOG ( ” t c p : z e r o p o r t . ” ) ;

5 goto drop ;

6 }

This code indicates that if the source port or destination port number is 0, then it

just ignores and drops the packet. This explains why the failure happens. Actually,

this operation does not conform to the standard TCP specification, and it obstructs

the communication between other versions of TCP implementation. By browsing

the previous bugs in Contiki-2.x, we find that this bug is introduced after fixing

the previous bug. Since RealProct enables high test coverage and rerunning of test

cases, it can effectively discover bugs in the latest version of Contiki as shown in

this case.
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Figure 4.7: Test results of test case 1.
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Bug 2 – Connect to unopened TCP ports

To complement the previous aspect of port testing in TCP, we should test whether

the TCP server allows successful connection to an unopened TCP ports. According

to the specification, if the client connects to an unopened TCP ports, the server

should reply a reset packet. Similarly, we also test two ports with two test cases.

Test case 3 – Test purpose: Connection to an unopened normal TCP port

should be unsuccessful.

Test scenario: It is the same as test case 1.

Test steps: First, the server opens port 80 and waits for connection. Second,

the tester sends an SYN packet to port 79 of the SUT. Then it waits for SYN/ACK

packet from the SUT. If it does not receive an RST packet from the server, it

declares the failure of the test and exits. Otherwise, it checks the content of the

packet. If the content is incorrect, it claims test failure. Otherwise, it asserts test

case pass.

Test results: pass. However, Test case 4 in which the client connects to port 0

of the server fails because it gets no RST reply after sending SYN. The reason is

the same as the previous bug. A mistake made in the program may result in more

than one failure in execution. Since the test execution in RealProct can be easily

automated, we would suggest software engineers to rerun the test cases after fixing

the bugs.

4.7.2 Detecting Previous Bugs in TCP

Apart from the new bugs, RealProct also detects the four old bugs discovered by

KleeNet earlier in the TCP stack implementation of Contiki [102]. The test cases

for discovering them are very short and simple. Hence, we only discuss the test

cases that identify the bugs caused by non-deterministic events because these bugs

will invoke our virtualization techniques.

According to the TCP specifications, packet loss leads to retransmission. As
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long as the loss is not caused by disconnected or extremely poor physical medium,

it should not result in TCP connection failure. For example, SYN packet loss

would arouse SYN retry for utmost 7 times. If one SYN packet is successfully

received before retransmitting the SYN packets 7 times, then the three-way

handshake process would continue. Next we discuss the test case that checks the

loss of SYN/ACK packet.

Test case 5 – Test purpose: An SYN/ACK packet loss should not result in TCP

connection failure.

Test scenario: It is the same as test case 1. The SUT is the TCP server, and the

tester is the TCP client.

Test steps: As shown in Fig. 4.8, first, the server opens port 80 and waits for a

connection. Second, the tester sends an SYN packet to port 80 of the SUT. Then it

expects an SYN/ACK packet with correct content from the SUT. After receiving

and verifying the content of the packet, it ignores the packet and sends an SYN

packet to the SUT again as if the SYN/ACK packet is lost. It will declare test pass

unless it receives an SYN/ACK packet with correct content again.
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Test results: fail. The reason is that the TCP server replies an ACK packet

to the TCP client at the second time when it receives an SYN packet. However,

the correct behavior for the TCP server is to send an SYN/ACK packet with right

content according to the specification. This error leads to two bugs discovered

earlier by KleeNet, which are also easily identified by RealProct. As long as this

error is fixed, multiple failures can be solved. Compared with KleeNet which has

to explore many redundant paths and manually write many assertions, our test

cases are clearer, more concise, and more specific. Besides virtualizing packet

loss flexibly, we can also generate extra test cases easily by retransmitting the

SYN packets from 2 times up to 6 times on Contiki-2.4 to verify whether this bug

is completely fixed. The results show that the above test cases all pass.

Similarly, we also design a test case that virtualizes SYN packet duplication

event to uncover a bug. The process is shown online1.

The next test case process utilizes event virtualization to virtualize SYN

packet duplication. It is true that the SYN duplication happens in practical TCP

communications. For example, the client sends a SYN packet to the server, but it

does not receive SYN/ACK in time. Hence it retransmits the SYN packet. The

second SYN is still on its long way to the server while the client receives the

SYN/ACK for the first SYN and replies the server an ACK packet. Due to the long

route the second SYN takes, it arrives at the server after the ACK. This process

is different from the virtualized process as shown in Fig. 4.9. Although the client

would not send another SYN to the server after establishing connection as shown in

Fig. 4.9, this virtualization is correct because the tester generates the same effects

as the practical process at the SUT. That is the SUT receives a duplicate SYN after

established connection. What’s more, this sequence of virtualized events is easy

to be produced and controlled by the tester.

Test case 6: Test purpose: A SYN duplicate should not result in TCP
1http://www.cse.cuhk.edu.hk/˜jjxiong/testcases/testcase.htm
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Figure 4.9: SYN packet duplication.

connection failure. Test scenario: It is the same as test case 1. SUT is TCP server,

and the tester is TCP client.

Test steps: As shown in Fig. 4.9, first, the server opens port 80 and waits for

connection. Second, the tester sends a SYN packet to port 80 of SUT. After it

receives a SYN/ACK packet with correct content from the SUT, it sends an ACK

packet to the SUT. Next, it sends a duplicate SYN packet to the SUT. Finally, it

expects an empty ACK packet from the SUT. If not, the test case fails.

Test results: This test case fails on the TCP stack specified by the KleeNet

authors. It passes on the latest version of the TCP stack. According to the

specification, when the connection is in established state, any unacceptable packet

(unacceptable acknowledgement number or sequence number) elicits only an

empty acknowledgement packet containing the current send-sequence number and

an acknowledgement number indicating the next sequence number expected to be

received. However, in the previous TCP version, the server returns SYN/ACK
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packet rather than replies an empty ACK packet. KleeNet identifies this bug from

the connection failures introduced by it. Unlike KleeNet, our method is quite direct

at the root cause. It does not analyze what kinds of failures this bug would further

introduce, and it is unnecessary to do so.

4.7.3 Testing Routing Protocol RMRP

For RMRP testing, we give two test cases demonstrating the topology

virtualization techniques presented in Section 4.5. The first test case checks

whether the SUT can establish route to 1-hop neighbor in the topology shown

in Fig. 4.4.

Test case 7 – Test purpose: The SUT can establish route to 1-hop neighbor 2.

Test scenario: RMRP is the IUT. One sensor node is the SUT, and it functions

as the route discovery originator installed with the IUT. The UT runs on top of the

IUT. It is a simple application that just receives packets and sends the received the

packets to the tester. The other node is the tester, in which the LT is installed with

the test case. It functions as all the other nodes in the topology.

Test steps: First, the SUT broadcasts a route request packet (REQ) before

sending a data packet to node 2. Second, the tester virtualizes node 2 to uni-cast

a route reply packet (REP) to the SUT and then virtualizes node a to forward

the REQ. Third, tester virtualizes node 2 to wait for the data from the SUT. On

receiving the data, it will declare test pass. Otherwise, it will assert failure.

Test results: The pass result validates the RMRP in aspect of route discovery

with 1-hop neighbor.

The second test case tests if the SUT can establish route to non-neighboring

nodes in the topology shown in Fig. 4.4. Since this topology will result in four

scenarios. The test case is divided into four sub-cases. We also show one sub-case.

Test case 8 – Test purpose: The SUT can establish route to non-neighboring

nodes d.
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Test scenario: It is the same as test case 7.

Test steps: First, the SUT broadcasts an REQ before sending a data packet

to node d. Second, the tester virtualizes node 2 to forward the REQ and then

virtualizes node a to forward the REQ. Third, after a while, tester virtualizes node

2 to uni-cast the REP originated from node d to the SUT. Finally, tester virtualizes

node d to wait for the data from the SUT. The next-hop of the data should be node

2. If it receives the data, it will declare test pass. Otherwise, it will assert failure.

Test results: The pass result validates the RMRP implementation in aspect of

route discovery and initiation with non-neighboring nodes.

4.8 Conclusions

In this chapter, we presented RealProct, a reliable protocol conformance

testing approach using real sensor nodes to check the conformance of protocol

implementation to the specification. RealProct includes two real sensor nodes

and a PC for testing and three techniques are carefully designed to support the

resource-limited sensor nodes. We proposed topology virtualization as a technique

for the two sensor nodes to imitate larger WSNs with different topologies, which

allows efficient and flexible protocol conformance testing. Event virtualization is

also invented to generate non-deterministic events to support virtualized topology

with multi-hop routing. We further enhanced the efficiency of testing and

the accuracy of verdict by determining the optimal number of test executions,

while guaranteeing an acceptable probability of false negative and positive

errors. We implemented RealProct in real sensor nodes and tested the protocol

implementation of the µIP TCP/IP stack in Contiki-2.4. RealProct effectively

found two new bugs and all the previously detected bugs in the µIP TCP/IP stack.

The experiments demonstrated that our protocol conformance testing setup can

effectively detect bugs that might be missed in simulations. We also tested and

validated the protocol implementation of Rime mesh routing in Contiki-2.4. The
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results indicated that RealProct can provide a cost-effective and flexible solution

for testing different advanced protocols, like multi-hop routing, which are more

sensitive to the network topology and the non-deterministic events in real wireless

channels.

Due to the limited number of real sensor nodes used, there are some cases that

RealProct cannot virtualize with high similarity. For example, It cannot virtualize

the wireless environment when interference caused by simultaneous transmissions

happens, although the result of interference is easy to be virtualized as packet loss

or erroneous packet. In the future, we will attempt at solving the problem with

more real sensor nodes.

2 End of chapter.



Chapter 5

Mobility-assisted Diagnosis for

WSNs

Though widely employed in various applications, WSNs are liable to failures,

especially after deployment. Since the on-site failures are difficult to reproduce, it

is of critical importance to perform in-situ diagnosis. Current in-situ diagnosis

methods are either intrusive or inefficient, because they either inject diagnosis

agents into each sensor node or build up another network for diagnosis purpose.

To tackle these issues, we propose MDiag, a Mobility-assisted Diagnosis approach

that employs smartphones to patrol the WSNs and diagnose failures. Diagnosing

with a smartphone which is not a component of WSNs does not intrude the

execution of the WSNs. Moreover, patrolling the smartphone in the WSNs to

investigate failures is more efficient than deploying another diagnosis network.

Statistical rules are designed to guide the detection of abnormal cases. Aiming at

improving the patrol efficiency, a patrol approach MSEP is proposed. MSEP is

designed to achieve better performance than the naive method, the greedy method,

and the baseline method in increasing the detection rate and reducing the patrol

time of MDiag. Experiments with real sensor nodes and emulations validate the

effectiveness of MDiag in detecting anomalous cases caused by faults.

101
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5.1 Introduction

Recently, many efforts have been devoted to improve the reliability of WSNs in

various aspects, such as simulation [68], debugging [132], and most importantly

in-situ diagnosis that observes real-time network status and enables timely

network failure detection [95]. WSNs are liable to failures, especially after the

deployment [66]. In addition, on-site failures are difficult to reproduce [77].

Hence, it is critical to perform in-situ diagnosis.

One in-situ diagnosis approach is to implant diagnosis agents into each sensor

node [95]. However, many already-deployed WSNs are not facilitated with

diagnosis functions [66]. We have to update the software of the whole WSN

so as to embed the diagnosis agents. Nevertheless, programming the agent into

each sensor node will inevitably affect the normal execution of a running WSN

application [48] [50]. In addition, the diagnosis agent in each sensor node is

usually required to transmit specified metrics back to a centralized station for

diagnosis. In a sensor node with limited resources, such diagnosis affects the

on-site application performance by consuming the bandwidth and the related

resources [95]. Furthermore, as we know, the execution of logging statements

could change the actual execution of a system and then may introduce bugs [98].

It is very costly to insert agents at each protocol layer although this would result in

high granularity diagnosis. How many agents to insert is a similar problem. The

more the agents are embedded, the more logs the diagnosis can obtain, and the less

efficient and more intrusive the diagnosis is.

To avoid the intrusion caused by agent injection, some approaches deploy

another network (such as another WSN) to monitor a WSN, but this approach is

neither efficient nor cost-effective. SNTS deploys several monitoring sensor nodes

(they formulate a snooping network) in the real field along with the original sensor

nodes [58]. The monitoring sensor nodes sniff and record the packets sent from the

monitored sensor nodes, which are manually retrieved to a PC for investigation.
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Figure 5.1: A MDiag patrol scenario. The smartphone first visits sensor node 1, then

sensor node 2, 3, 4, and 5.

For a large WSN, SNTS needs to deploy many monitoring sensor nodes; as a

result, SNTS does not adapt to large WSNs well. SNIF deploys a temporary

wireless network to snoop a WSN [100]. It is better than SNTS in that it does

not need to manually fetch back the monitoring nodes, but its nodes are required

to be equipped with two radio sets.

To tackle the above disadvantages, we are the first to propose a

mobility-assisted diagnosis (MDiag) approach to examine failures in WSNs with

an independent mobile device. Nowadays, mobile smartphones are increasingly

popular. By the end of 2011, there are 6 billion mobile subscribers globally, and

smartphone users show the strongest growth [2]. It is now convenient to patrol

a deployed WSN with smartphones to collect packets sent from sensor nodes.

Then the smartphones can perform diagnosis by analyzing these packets. Such

a diagnosis process can be flexibly turned on or off, allowing users to perform an
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on-demand diagnosis. For WSNs that are deployed in harsh areas without human

traces, mobile robots are able to carry the smartphones.

A diagnosis scenario with one smartphone is shown in Figure 5.1, where

the dotted lines are the patrol path of the smartphone. The smartphone starts

snooping sensor node 1 for a certain interval, continues traveling along the path

and snooping sensor nodes 2, 3, 4, and 5 for some intervals, and then returns to the

starting sensor node 1.

The most important feature of such an approach is that it is not intrusive to

WSN applications because the smartphones themselves are not components of

WSNs. MDiag does not need to implant diagnostic agents to the applications,

and thus it does not need to modify the applications as the proactive approaches

do. Hence, MDiag can be employed to scrutinize any deployed WSNs when

needed without affecting the WSN performance. In addition, the mobility of

smartphones allows users to apply one or several smartphones to record the packets

sent from the WSN instead of many debugging sensor nodes that need laborious

manual placement and retrieval. Finally, MDiag can collect all kinds of raw

packets (packet created from the radio frequency chip that contains packet header

information of the upper layer protocols), which is especially useful in finding

more failures. To analyze raw packets of all types, the agent approaches need

to inset agents at all the protocol agents, which is very inefficient. For example,

MDiag can collect control packets exchanged locally, which are not transmitted

back to the BS for diagnosis in Sympathy [95].

The design of MDiag mainly faces two challenges. First, it is difficult to

determine the abnormal behaviors from the collected various packets, such as

routing packets, MAC layer control packets, and application data packets. We

define a few statistical rules to identify anomalies based only on minimum prior

knowledge of the system. Second, the patrol pattern of the smartphones influences

the failure detection rate. How to design the patrol method for visiting the
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sensor nodes in order to collect packets is crucial and difficult. We propose a

method called MSEP (maximum snooping efficiency patrol) which identifies the

sensor node set to patrol and collect relevant packets for analysis. Consequently,

it increases the failure detection rate. Finally, in comparison with the naive

method, greedy method, and baseline method, we perform extensive experiments

to demonstrate the effectiveness of MDiag and show its effective detection of

several interesting failures.

The rest of this chapter is organized as follows. First, Section 5.2 highlights

the related work. Next, Section 5.3 clarifies the network architecture and failure

classification for MDiag. Section 5.4 designs the framework of MDiag while

Section 5.5 proposes the algorithm for the smartphone patrol approaches. Section

5.6 presents the results of our experimental evaluation. Finally, Section 5.7

concludes the chapter.

5.2 Related Work

There has been tremendous work in finding faults that will cause network

failures in WSNs. Some of them are based on simulations, such as ns-3 [3],

a general network simulator, and TOSSIM [68], a simulator for WSNs running

on TinyOS [69]. More advanced simulation-based failure detection tools include

T-Check [72] and KleeNet [102]. T-Check [72] is an event-driven simulator

developed from TOSSIM, while KleeNet [102] is based on the low-level symbolic

virtual machine. Given the fact that the behaviors of nodes in a simulation

environment and real sensor nodes are not the same, in-situ diagnosis approaches

for WSNs are indispensable.

One kind of in-situ diagnosis approaches is to embed diagnosis agents into

each sensor node. For example, by injecting the diagnosis agent, Sympathy [95]

actively collects run-time status from sensor nodes, such as routing table and

flow information, and detects possible faults after transmitting them to the BS.
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Nevertheless, these approaches are not adaptable for WSNs that have already

been deployed without such agents. Because we have to update the software of

WSNs so as to embed the agents, this unavoidably affects the running of WSN

applications [50]. Moreover, Sympathy asserts that it only employs one rule that

insufficient data at the BS imply failures, which means that it cannot detect certain

network failures, such as overenthusiastic transmission which results in reduced

battery lifetime.

For WSNs deployed with these diagnosis agents, the agent injection methods

inevitably intrude the WSN applications. The agent execution may cost extra

CPU computation, communication bandwidth, and energy of the sensor nodes,

which imposes heavy burden on the resource-limited networks. Since Sympathy

costs extra communications bandwidth and energy consumption in order to

actively transmit the information, PAD [75] and PassiveAssertions [101] reduce

the diagnosis efforts by piggybacking the logs in regular data packets. Agnostic

Diagnosis [81] also needs to collect enough amount of network state information to

perform agnostic diagnosis. Self-Diagnosis [76] involves multiple local nodes in

cooperation to detect WSN failures based on finite state machines. This approach

reduces the communications effort of transmitting the logs to the BS. Since all the

existing in-situ diagnosis approaches are intrusive to the WSNs, we propose a new

MDiag approach. Instead of changing the WSN systems, MDiag employs mobile

phones to travel in deployed WSNs and to passively collect raw packets sent from

the passing sensor nodes. The collected packets can then be utilized for diagnosis.

Because mobile phones are not a part of WSNs, MDiag does not intrude the WSNs

and is thus adaptable to all WSN applications.

Another type of approaches to avoid the intrusion to WSN applications is

deploying another network to monitor the WSN. SNTS deploys several monitoring

sensor nodes in the real field along with the original sensor nodes [58]. The

monitoring sensor nodes sniff and record the packets sent from the sensor nodes
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that they observe. Although the debugging sensor nodes can formulate a network,

they cannot communicate with each other and transmit the recorded packets to the

BS because their transmissions would cause interference to the original WSN. As

a result, in fetching the recorded packets, all of the debugging sensor nodes have

to be manually retrieved, which is quite labor-intensive. In addition, for a large

WSN, SNTS should deploy many debugging sensor nodes so as to guarantee that

all the original sensor nodes can be monitored; hence SNTS does not suit large

WSNs.

To avoid the efforts of manually retrieving the nodes in the monitoring

network, SNIF deploys a different monitoring network which is composed of

nodes with two sets of radio equipment [100]. One set is used to passively listen

to the packets sent from the WSN. The other set employs a different wireless

channel to transmit the sniffed packets to the BS without interfering the original

WSN. Nevertheless, dual radios are generally not facilitated in the off-the-shelf

sensor network products. Moreover, like SNTS, SNIF also deploys an additional

diagnosis network, which is not cost-effective. With our MDiag approach, the

mobility of diagnosis devices saves the cost of the large monitoring network

deployment, and the employment of smartphones eliminates the extra hardware

requirement of monitoring nodes.

Finally, mobile sensor nodes have already been introduced to improve WSN

coverage [74] [125] while multiple, mobile base stations are also deployed to

prolong the lifetime of the WSNs [106] [126]. In the recent innovative application

OppSense [84], the mobile phones are the users while the WSN is a service

provider. However, no prior work has employed mobile platforms, such as the

smartphones, for diagnosing WSNs. MDiag is the first work to utilize mobile

platforms for WSN diagnosis purpose.
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5.3 MDiag Background

5.3.1 Network Architecture

We consider a network which involves a BS and static wireless sensor nodes

deployed in a sensing field for monitoring temperature, humidity, noise level,

etc., from the environment. A smartphone is able to receive the raw packets sent

from the sensor nodes within its reception range as long as it is equipped with

the same reception device as the sensor nodes or it is attached with a sensor node

for snooping purpose only [84] [97]. To diagnose, the smartphone can patrol in

the WSN field as shown in Figure 5.1. The patrol can start at any time and last

for any duration according to the requirement of WSN maintainers. For example,

they may want to patrol a WSN once each day, or they only turn on the diagnosis

for a long period when they need to ascertain and find more information about

suspicious phenomena.

Intuitively, the more the smartphones are available for WSN diagnosis, the

better the diagnosis effectiveness is. Nevertheless, more efforts are required to

carry them in the network field. Without loss of generality, in the following we

discuss the case of using one smartphone to patrol a WSN and to passively collect

network packets. The case of using more smartphones can be similarly extended.

5.3.2 Failure Classification

MDiag is proposed to diagnose the failures in WSNs by collecting and analyzing

the packets sent by sensor nodes. Since it can only diagnose the network failure

according to the packets sent out in the WSNs, it cannot detect failures that are not

triggered during the execution. The failures are divided into three classes as shown

in Figure 5.2. The x-axis is failure lasting time, and it increases from left to right.

The first class is transient failures that last for a very short period, such as random

packet loss considered in [135]. The second class lasts only for a longer period and



CHAPTER 5. MOBILITY-ASSISTED DIAGNOSIS FOR WSNS 109

Figure 5.2: Failure classification.

then disappears, such as routing failures, link failures, and congestion. It is called

short-term failure. The third class is permanent failures that stay in the network

until they fixed or they stay for a very long time, such as node crash and incorrect

resource allocation failures. We discuss some of the failures we identified in our

experiments in Section 5.6.

The transient failures hold for a very short time and they do not affect the

network behaviors distinctively, so we can hardly detect them by in-situ diagnosis.

In the following, we focus on detecting the permanent failures and short-term

failures.

5.4 MDiag Framework

Referring to the diagnosis scenario shown in Figure 5.1, we design the MDiag

framework as shown in Figure 5.3.

In the first step, by visiting each sensor node in the WSN for a sufficiently long

time, the smartphone can get the neighboring information of each sensor node. It

inputs the neighboring information to the algorithm of patrol set selection which

generates the set of K sensor nodes to patrol. Note that we do not need to know

the WSN topology, although during the patrol the smartphone could build up a

coarse topology by locating each sensor node’s approximate position with its GPS

equipment. During the initial WSN visit, we can also estimate the traffic load at

each sensor node. Then the time that the smartphone stays along with each sensor

node in the patrol set is easy to be calculated. The heavier the traffic load, the

shorter the time that the smartphone requires to collect enough data packets and

other control packets for the statistical analysis.
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Figure 5.3: MDiag framework.

In the second step, on the basis of packet structures provided by WSN

developers or system specifications, packet decoder and some statistical rules for

packet analysis are applied on the collected packets.

In the third step, the sequence of packets collected during the patrol of the K

sensor nodes is input to the packet decoder, which will generate statistical results.

Based on the statistical rules on packet analysis, if the smartphone deducts that

the network behavior is abnormal, it can produce a failure report and trigger

the additional diagnosis. Further actions, such as collecting extra packets for

more detailed inspection, can be taken to analyze the phenomenon and locate the

potential bugs.

Next we focus on the input and output of the packet decoder and the statistical

rules on packet analysis. The algorithm of patrol set selection will be discussed in

the next section.



CHAPTER 5. MOBILITY-ASSISTED DIAGNOSIS FOR WSNS 111

Figure 5.4: Raw packet structure.

Figure 5.5: Statistical results.

5.4.1 Packet Decoder Input and Output

Packet decoder is used to analyze the various types of collected raw packets in the

network and to output statistical packet results for inspection. First, we discuss the

feature of the decoder input. Then we show the format of the decoder output.

We can collect raw packets from the radio frequency chip. Figure 5.4 shows

a typical raw packet structure in WSNs whose MAC layer protocol is X-MAC,

a frequently used MAC protocol [20]. Besides application data, the raw packet

contains a lot of low-level header information, from which we can acquire the

information on packet types, addresses, values, and so on. Raw packets help
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us analyze the network behaviors from all protocol layers, including interactions

between layers.

The input of the packet decoder is a sequence of raw packets. After decoding

the raw packets according to the structures shown in Figure 5.4, the output is

statistical results for the failure report shown in Figure 5.5. It shows the sensor

node neighbor information, the count of each type of packets, and so on.

5.4.2 Statistical Rules on Packet Analysis

The aforementioned rules describe statistical packet behaviors in WSNs; therefore,

they are not applicable to analyze a single packet exchange process. For example,

the rules cannot be used in detecting the failure of the TCP three-way handshake

caused by random packet loss because a TCP three-way handshake process

does not compose a statistical packet behavior [24]. Moreover, a random TCP

packet loss does not mean application failure or performance degradation unless it

happens frequently.

Because our rules are statistical and are provided by the developers or based

on the specification, they are a subset of the specification-based rules as shown

in Table 5.1. Unlike the state-of-the-art approach Sympathy [95] which employs

only one rule, i.e., insufficient data at the BS imply failures, our statistical rules

are based on the targets of all protocol layers. Hence our approach can detect more

failures than Sympathy [95].

By decoding the raw packet, we can infer the following packet fields on which

the statistical rules utilize:

• Packet type

• Packet count of each type

• Packet directions

• Neighbor information
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Table 5.1: Our statistical rules are a subset of the specification-based rules.

Layer Specification-based rules Statistical

rules

Application layer

The value (e.g., temperature) of the application data falls within

the range specified.

Yes

The number of data packets exchanged among the BS and the

sensor nodes should be within the specified range in a certain

interval.

Yes

The data communication process (such as the packet order) is

based on the specification.

No

...

Routing layer

The routing metric value is in the specified legal range. Yes

The number of each kind of routing packets sent out by the BS

and sensor nodes is normal within a certain period.

Yes

The routing packet exchange sequence should conform to a

specific routing protocol (e.g., first routing request packet, then

routing reply packet).

No

...

MAC layer

The number of each kind of MAC packets sent out by the BS

and sensor nodes is normal within a certain period.

Yes

The MAC packet exchange process is based on the

specification.

No

...
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• Packet value, such as the routing metric of a routing packet, data content of

an application data packet, and so on.

Without loss of generality, we take one kind of the most popular WSN applications,

the data gathering application, including routing protocol CTP [42] and X-MAC

protocol [20], as an example and give the major statistical rules in Table 5.2.

This set of rules can be extensible according to the statistical granularity. The

parameters used in the rules are represented in Figure 5.5.

Table 5.2: Statistical rules for a typical WSN application.

Layer Statistical rules

Application layer Rule 1. For BS, Z, the number of application data sent out, is 0.

Application layer Rule 2. For sensor nodes other than BS, Z is within the application requirement.

Routing layer Rule 3. For BS, the legal routing metric is 0.

Routing layer Rule 4. For sensor nodes other than BS, routing metric value is legal.

Routing layer Rule 5. For sensor nodes other than BS, no bidirectional data exchange exists, i.e.,

Z ∗ U = 0

MAC layer Rule 6. For sensor nodes other than BS, the number of each kind of MAC packets

sent is normal, i.e., Y ≃ U,X > or ≫ Z.

According to the application target, the data flow is only from the sensor nodes

to the BS, and hence we derive Rule 1 and 2 in Table 5.2. Rule 1 means that the BS

does not send data packets. Rule 2 means that other sensor nodes send the required

amount of data packets.

Based on the routing protocol target, Rule 3 and 4 clarify the legal range of

the routing metric, and Rule 5 means no routing fluctuation. There should be no

bidirectional data exchange between two sensor nodes; otherwise, it is possible

that the routing is unstable and causes the two sensor nodes to use each other as

the forwarding counterpart.

Rule 6 comes from the X-MAC behavior between a pair of communicating
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sensor nodes, i.e., for each sensor node, the number of X-MAC STROBE ACK

packets sent should be almost equal to the number of X-MAC DATA ACK packets

sent and the number of X-MAC DATA packets received. If Rule 6 is violated, say

the number of X-MAC STROBE ACK packets sent is far more than the number

of X-MAC DATA ACK packets sent, then the X-MAC works inefficiently.

The application mechanism, the CTP protocol, the X-MAC protocol should be

working well when these rules are satisfied. The BS receives its expected data

regularly, and the CTP and X-MAC protocols work efficiently without too much

extra energy consumption for communications.

5.5 Coverage-oriented Smartphone Patrol Algorithms

By patrolling the WSN, we can collect the packets sent out by the sensor nodes in

the patrol set. By analyzing these packets, we can diagnose the WSN. Collecting

more packets can help detect more failures. If the packets from some sensor nodes

are never collected, failures happening at these sensor nodes are less likely to be

discovered. As a result, the patrol approach should try to cover all the sensor nodes

in the WSN. Due to their different coverage efficiency, different patrol methods can

affect the detection efficiency, especially for the short-term failures.

We do not consider the cost during the travel, hence the visiting order of the

sensor nodes in the patrol set is not a concern in our patrol set establishment

process. The key is the patrol set rather than the patrol path. Moreover, our

experiments also verify that the difference is very small (less than 3% in most

cases) for visiting the sensor nodes in the same patrol set in different order.

5.5.1 Naive Method (NM)

The first method is the naive method that the smartphone visits all the sensor nodes

one by one, but it needs a long time to traverse the deployed WSN for only one

round. If a failure happens at the last sensor node that will be patrolled, it is
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Figure 5.6: Network topology I. The smartphone stays near sensor node 2.

very likely that when the smartphone finally arrives at the sensor node, the failure

phenomenon has already disappeared. Correspondingly, the failure detection rate

of NM is low. If we can cover all the sensor nodes in a shorter period, then the

failure missing rate would be lower.

5.5.2 Greedy Method (GM)

To reduce the patrol time, we utilize the broadcast nature of wireless transmissions

and thus design methods that perceive all the sensor nodes without visiting each

sensor node one by one. For example, in Figure 5.6, since node 2 is neighboring to

nodes 1 and 3, a smartphone that visits node 2 can also overhear the packets sent

from node 1 and node 3. As a result, to patrol all the senor nodes in this topology,

we only need to visit node 2 and node 4 instead of visiting all the 4 nodes one by

one. By patrolling the sensor nodes in the patrol set, all the sensor nodes could be

snooped without visiting them one by one.

However, to find the patrol set with the minimum sensor nodes is a set cover

problem, which is shown to be NP-complete [55]. An intuitive method is the

greedy method (GM) [54]. To simplify the GM explanation, we choose a regular

9-node network topology as shown in Figure 5.7, in which sensor node 1 is the

BS, and the other 8 nodes are sensor nodes. Sensor node 5’s neighbors are: 2, 4,

6, and 8. The degree of each sensor node v is the number of its neighbors, denoted

as Degree(v). For example, for sensor node 5, Degree(5)=4, and for sensor node

1, Degree(1)=2.
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Figure 5.7: Patrol set selection of GM (sub-figure a) and MSEP (sub-figure b). The blue

circle is put into the patrol set.

We define the snooping efficiency of visiting a sensor node v as Degree(v).

Visiting v can overhear the other (Degree(v)−1) sensor nodes. The larger the

snooping efficiency the better, because more packets can be collected on the visit.

The snooping efficiency of a patrol set S with K sensor nodes is defined as
1
K

∑
v∈SDegree(v). Improving the patrol set snooping efficiency can increase the

packets collected for diagnosis, and hence raise the failure detection probability.

By them our target is to improve the patrol set snooping efficiency rather than to

solve the minimum set cover problem. When the sensor node coverage is satisfied,

minimizing the patrol set size can increase the patrol set snooping efficiency, and

increasing the patrol set snooping efficiency helps reduce the patrol set size.

In the GM algorithm, the smartphone always selects to visit the sensor node

whose current degree is the largest. Each time a sensor node is selected into the

patrol set, its neighbors and itself are removed from the neighbors of the remaining

sensor nodes. Hence, the degrees of the remaining sensor nodes are updated for

the next greedy selection. The sensor node selection continues until all the sensor

nodes can be snooped.
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5.5.3 Maximum Snooping Efficiency Patrol (MSEP)

GM can result in selecting several sensor nodes with small degree. For example,

the selection results with GM are shown in sub-figure (a) of Figure 5.7. Sensor

nodes 1, 3, 7, and 9 are visited with low snooping efficiency because their

degrees are 2. In contrast, sensor node 5 is visited with high snooping efficiency.

Nevertheless, since many sensor nodes are visited with low snooping efficiency,

GM cannot achieve high patrol set snooping efficiency which is 2.4. Eliminating

or reducing such visiting can help enhance the snooping efficiency and reduce the

patrol set size. Therefore, we design a different method called maximum snooping

efficiency patrol (MSEP) that can traverse all the sensor nodes with a smaller patrol

set size. In comparison, its patrol set selection of the regular 9-node network is

shown in sub-figure (b) of Figure 5.7, which contains only 3 sensor nodes rather

than 5 sensor nodes for the GM algorithm. The snooping efficiency of this patrol

set is 2.67, higher than that of GM patrol set.

MSEP aims at enhancing the snooping efficiency by reducing small degree

node selection probability. Therefore, it can correspondingly reduce the patrol

set size. On one hand, it should guarantee to cover every sensor node, including

the sensor node with a small degree. Therefore, MSEP first finds i, the sensor

nodes with the minimum degree. On the other hand, to reduce small degree node

selection probability, it selects a sensor node j with the largest degree from i’s

neighbor set. By visiting j, the smartphone can also snoop i, and the snooping

efficiency is increased. Then j is added to the patrol set M . Nevertheless, such

selection may still result in selecting sensor nodes with a small degree in the future.

Hence, MSEP rewinds and corrects sensor node j and i selection for a few times.

The details are shown in Algorithm 6.

The first step in Algorithm 6 is the sensor node selection and degree update. At

line 7, sensor node i with the minimum degree is selected. At line 14, sensor node

j with the largest degree is chosen to be included in the patrol set. To calculate
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how many sensor nodes remain to be patrolled, line 16 deletes j and sensor nodes

in its neighbor set Nj from S ′ and W ′. Corresponding to the deletion, line 17

updates the degree of the remaining sensor nodes in S ′ and W ′ (i.e., the degree is

decreased because of sensor node deletion).

Next is the refinement of sensor node selection. Line 19 checks whether

selecting j will result in the remaining sensor nodes with a small degree, e.g.,

degree 1. If the answer is no, we select the j and add it to M (line 22). Otherwise,

we refine the sensor node selection. We select a different j (back to line 14). If

all sensor nodes in Hi result in sensor nodes with a degree 1, remove i from S,

add it to W (line 20), and repeat to find a sensor node with the minimum degree

in S (back to line 7). Doing such check and sensor node selection refinement can

improve the snooping efficiency. In our algorithm we choose to refine the selection

of sensor nodes with degree 1. We can also refine with a larger degree, which can

improve the snooping efficiency, but will cost more computation efforts.

After handling all the sensor nodes in S, we visit the sensor nodes in W . The

difference is that when handling sensor nodes in W , we do not take refining actions

on sensor nodes with degree 1.

5.6 Evaluations

For permanent failure detection, we carry out the evaluations with 4 TelosB

sensor nodes and 1 Andriod smartphone [97]. We perform emulations on sensor

node operating system Contiki-2.4 [33] for short-term failure detection. In all

the experiments, an existing application, data collection application runs with

underlying routing protocol CTP [42] and X-MAC protocol [20]. We use real

failures encountered in our experiments and also failures found in the code

repositories of Contiki, and passively collect the raw packets sent from the radio

frequency chip. The received packets can be stored at the smartphone which is

equipped with larger memory. Then based on the packet format, we provide a
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Algorithm 6 MSEP algorithm.
1: Node set S = {all the nodes}

2: Patrol set M = ∅

3: Candidate node set W = ∅

4: S′ = S,W ′ = W

5: k = 0 //k is the size of set M

6: while S != ∅ do

7: Choose a node i ∈ S with the minimum degree //from neighbor information

8: Let Hi = Ni
∪

i// Ni is node i’s neighbor set

9: repeat

10: S′ = S,W ′ = W

11: if Hi == ∅ then

12: break

13: end if

14: ∀ nodes ∈ Hi, choose j with the largest degree

15: Delete j from Hi

16: Delete j and Nj from S′ and W ′

17: Update Degree(v), ∀v ∈ S′ and W ′

18: until Do not exists v ∈ S′ with Degree(v) == 1

19: if Hi == ∅ and ∃v ∈ S′ with Degree(v) == 1 then

20: Delete i from S, add i to W,W ′ = W,S′ = S

21: else

22: Add j to M,W = W ′, S = S′, k = k + 1

23: end if

24: end while

25: while W != ∅ do

26: Choose a node i ∈ W with the minimum degree

27: ∀ nodes ∈ Ni
∪

i, choose j with the largest degree

28: Add j to M , Delete j and Nj from W,K = K + 1

29: Update Degree(v), ∀v ∈ W

30: end while
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packet decomposition program (small enough to fit in smartphones) to analyze the

received packets online and then generate the failure report.

Besides NM and GM, we also implement a baseline method called RM-K.

RM-K randomly selects K sensor nodes to form the patrol set. It does not care

whether such set can cover all the sensor nodes, i.e., visiting the sensor nodes in

the set can snooping all the sensor nodes in the WSN. We repeat the random patrol

set selection for 100 times and use the averaged results for RM-K.

5.6.1 Permanent Failure Detection

Initially, for the purpose of demonstrating an existing WSN application in Contiki,

we build up and run it with four telosB sensor nodes and one smartphone shown

in Figure 5.6. We do not expect any failure because the topology is simple and the

application is provided by the developers. However, the failure still happens.

Specifically, in the packets which sent from sensor node 2 to sensor node 3, the

ratio of X-MAC STROBE ACK packets to X-MAC DATA ACK packets is about

52, while in fact the ratio should be around 1 according to Rule 6. This means that

node 2 agrees to receive X-MAC DATA packets from node 3 for 52 times, but it

only tells node 3 that it receives the expected data packets once.

This is a performance degradation failure because it costs a lot of control packet

exchange to transmit one required data packet and the energy consumption is very

high. It can hardly be detected at the application layer because the BS receives

the expected data packets. Although this problem does not fail the application

in this simple topology, it will break down the application when the network size

increases. In this experiment, the smartphone can detect the failure by staying near

any sensor node. It finds that the collected packets violate Rule 6.

It is very surprising that this failure is caused by the ‘printf’ statements in the

application program. As we know, for the program running in the PC, inserting

a few ‘printf’ statements can hardly affect the normal execution. Nevertheless, it
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damages the WSN application execution. In this WSN application, every time a

sensor node is going to send out a data packet, it will first print out a message

‘Sending’. By analyzing the actual running process of the sensor node, we notice

that the ‘printf’ statement will issue the serial port interrupt, which will post

a process to print out a character. Printing out several characters means more

processes posted in the CPU queue. As a result, the ‘printf’ statement will take up

so many CPU resources that the CPU is too busy to handle the packet transmission

and reception in time. As a result, the packets are dropped after the sensor node

receives them at the physical layer rather than being dropped on the way.

Forgetting to comment out the debugging ‘printf’ statements is very common.

Writing redundant statements is also common, which may fail the WSN

applications due to consumption of limited resources. This kind of failures is

not easy to be identified because the programs are correct in the functional and

logical aspects. As performance degradation failure, they may not be manifested

in simple scenarios, such as in a small-scale testbed. Nevertheless, since MDiag

is able to collect raw packets of all types, it can analyze the WSN application and

detect failures at all protocol layers. In other words, it can help find failures that

do not just occur at the application layer.

5.6.2 Short-term Failure Detection

The patrol approaches are very crucial in detecting short-term failures. For the sake

of easy identification of correct behaviors, we use the regular network topology

shown in Figure 5.8. In fact, our MDiag also works very well with sensor nodes

randomly deployed because our algorithm of patrol sensor node set selection relies

only on neighbor information of each sensor node rather than on the precise

topology and locations.
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Figure 5.8: Network topology II. The smartphone patrols the sensor nodes in the network.
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Figure 5.9: Lasting time of the abnormal cases.

Short-term failure explanation

Next we run the existing application in a larger network shown in Figure 5.8. It is

composed of 25 sensor nodes with sensor node 1 as the BS. The smartphone patrols

the network with different patrol algorithms (NM, GM, MSEP, and RM-K).

We find that the routing is very unstable when the WSN starts to run. Many

bidirectional data exchange happens, which violates Rule 5. After a long time

the routing stabilizes, i.e., no bidirectional data exchange. Due to node crash and

application fix, sensor node reboot is not rare in real deployment. We reboot a

sensor node during the application running process. Because such reboot takes a

very short time, according to the basic mechanisms of routing protocol CTP, we

expect that the routing may remain unchanged or the routing of the surrounding

sensor nodes may change a little. Nevertheless, the reboot results in routing

fluctuation in a large range and for a long time. Rule 5 is violated again, i.e.,

bidirectional data exchange happens.

This failure in the routing protocol CTP is caused by not initializing the routing

value of each sensor node to the maximum value while the routing value of the BS
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is initialized as 0. According to the original value in the memory, the routing

value is 0 at the initial stage. As a result, a rebooted sensor node will broadcast its

routing value as 0. This is the action of the BS whereas it is actually not the BS.

In this way, routing disturbance will occur in the network when a sensor node is

rebooted. Although the routing will become normal after the correct routing value

from the BS arrives at the rebooted sensor node and its surrounding sensor nodes,

failures last for a period of time because the wrong routing value will propagate

for a certain range. The routing fluctuation caused by a sensor node reboot is a

short-term failure.

At time 600s, the network stabilizes, and node 15 is rebooted to repeat our

previous failure detection process. To get the ground truth, we analyze all the

packets sent out from time 600s to 1600s and find many abnormal cases (ACs):

bidirectional data packet exchange between a pair of sensor nodes, which disobeys

Rule 5. The abnormal cases can be classified in two aspects. First, in respect of

lasting time, some of them last for a much longer time than the others. We name

them long AC and short AC. Second, for some ACs, the bidirectional data packet

exchange happens frequently throughout their lasting period while for the other

ACs, it only happens for a very few times. We called them frequent AC and

infrequent AC. For example, R represents a datum in the opposite direction of

a datum D. In 200s, the pattern of a frequent AC can be DRDRDRDRDR and an

infrequent AC can be DDDDDRRRRR. Intuitively, a frequent and long AC is easy

to be discovered with high probability.

People are interested in knowing whether reboot happens, but they always

ignore the performance during reboot. In fact, many potential bugs are trigger

in corner situations, such as sensor node reboot, random packet loss, packet

duplication, and sensor node crash [102]. In addition, not initializing variables

is a frequently-made mistake, though its negative influence is not always obvious.

When such kind of frequently-made mistakes meet the corner cases, failures are
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triggered. Nevertheless, some of the failures do not persist for a very long time.

Hence, the BS may still receive its expected data at the application layer. In this

way, other methods that are unable to collect raw packets of all types will have a

lower chance to detect the failures.

Short-term failure detection results

To evaluate the failure detection ability of MSEP, we compare the AC detection

probabilities of NM, GM, and MSEP and RM-K because detecting any AC means

detecting failures. In this experiment, the patrol set of NM, GM, and MSEP

contains 25, 10, and 7 sensor nodes respectively. RM-7’s patrol set consists of

7 randomly selected sensor nodes while RM-10’s consists of 10. To collect three

(the data packet number can be adjusted) data packets at each snooped node, the

patrol time of NM, GM, MSEP is around 625, 260, and 180s respectively. These

parameters are shown in Table 5.3.

Table 5.3: Parameter comparison for all the algorithms.

Algorithm Patrol set size Patrol time

NM 25 625s

GM 10 260s

MSEP 7 180s

RM-7 7 unfixed

RM-10 10 unfixed

To compare the approaches, we first compare their performance in finding one

AC by filtering out all the other ACs. Then we check their probability in finding at

least one AC from all the ACs. To do so, we select 7 representative ACs as shown

in Figure 5.9. Among them exist long, short, frequent, and infrequent ACs. AC1,

AC2, and AC3 are long ACs that last for about 500s or 600s, while AC4, AC5,

AC6, and AC7 are short ACs that last for about 200s. AC1, AC3, AC4, and AC5
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(red pillars) are frequent AC. AC2, AC6, AC7 (yellow pillars) are infrequent ACs.
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Figure 5.10: Detection probability of AC1.

Figure 5.10 and Figure 5.11 statistically shows the detection probability of

AC1 and AC3, two long and frequent ACs. In this scenario, the lasting of all the

ACs is no longer than 600s, hence we do not consider working for an interval

longer than 600s. Generally, as the working time of the smartphone increases

from 200s to 600s, the detection probabilities of all methods increase because

more packets can be snooped. The detection probability of RM-7 and RM-10 is

similar and they represent the average level. NM is worse than RM-7 and RM-10,

i.e., its performance is below the average. MSEP is better than other methods no

matter how long the smartphone works. Notice that GM performs worse than NM.

Because GM always chooses the sensor nodes with the largest current degree, it

will lead to local optimum rather than global optimum. GM is not an ideal method

because it cannot always outperform NM.

In detail, for MSEP, the patrol time is 180s, hence the smartphone can patrol

the WSN once within 200s and about three times within 600s. Nevertheless, the
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Figure 5.11: Detection probability of AC3.

patrol time of NM is 625s, and hence NM can only patrol all the sensor nodes for

about 1 time within 600s. This results in a much lower detection probability of

NM than MSEP when the working time of the smartphone is 200s. So do GM,

RM-7, and RM-10. When the working time is 600s, all the methods can patrol the

WSN for at least 1 time. Because AC1 and AC3 are long and frequent, they are

easy to be discovered by all the methods with high probability. Compared with

other methods, MSEP can save the working time a lot while still maintaining high

detection probability.

Figure 5.12 plots the detection probability of AC2. Since AC2 is infrequent,

the detection probability of AC2 is much lower than those of AC1 and AC3,

especially when the smartphone working time is less than 500s. Specifically, when

the smartphone working time is less than 400s, all methods can hardly collect

enough packets to detect AC2. Generally, the detection probabilities of all the

other methods are lower than that of MSEP. Unlike the case of AC1 and AC3, in

the case of AC2, GM performs better than NM though it is still below RM-7 and
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Figure 5.12: Detection probability of AC2.

RM-10.

Figure 5.13 statistically shows the detection probabilities of AC4, AC5, AC6,

and AC7. The working time is 200s because they are short AC lasting for about

200s. Since AC4 is more frequent than AC5, the detection probability of AC4 is

higher than that of AC5. AC6 and AC7 are infrequent ACs while AC4 and AC5

are frequent ACs, hence the detection probabilities of AC6 and AC7 are lower

than those of AC4 and AC5. For all the short AC, MSEP achieves higher detection

probability than the other methods. GM is better than NM for AC5 and AC6. It

is worse for AC4 and AC7. The performance of RM-7 and RM-10 is similar. GM

and NM are below the average level while MSEP is above the average level.

In summary, Figure 5.14 demonstrates that the detection probability of all

ACs for MSEP is higher than that of all the other methods. In addition, since

more ACs exist, the detection probabilities of all approaches are high when the

smartphone working time approaches 600s. Furthermore, Figure 5.14 shows that

if MSEP is employed, the smartphone only needs to work for about 300s to achieve
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Figure 5.13: Detection probability of AC4, AC5, AC6, and AC7 when the working time is

200s.

high detection probability. When the ACs are not as frequent as the ACs in this

experiment, using MSEP to work for a longer time can increase the detection

probability a lot as shown in Figure 5.12. In a word, MSEP can reduce the

smartphone patrol time and increase the failure detection rate.

5.7 Conclusions

In this chapter, we propose a mobility-assisted diagnosis method called MDiag to

diagnosis failures in WSNs with smartphones. The advantages of this approach are

multi-fold: MDiag does not intrude the WSNs and is more efficient than deploying

another network for diagnosis purpose. In addition, MDiag can help the BS find

more failures because it can snoop all kinds of raw packets that are sent out.

Aiming at the targets of all protocol layers, we design statistical rules to guide

the abnormal phenomena determination. MSEP algorithm is further proposed to
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Figure 5.14: Detection probability of all ACs.

improve the detection rate and reduce the patrol time of MDiag. The permanent

failure detection experiments demonstrate that MDiag can help discover more

failures than BS-centralized methods. The experiments on short-term failure

detection show that MSEP algorithm suits WSNs better than NM, GM, and

baseline method RM-K.

2 End of chapter.



Chapter 6

Conclusions

WSN applications facilitate the development in civil, industrial, military, and other

areas. Due to the difference from the traditional networks, including MANETs,

WSNs face new challenges in the development, implementation, and maintenance

of their applications. The contribution of this thesis is to enable successful WSN

applications. In this chapter, we summarize the key research presented in this

thesis, and discuss some future research work.

To assist the development of WSN applications, this thesis proposes a reliable

and efficient MAC protocol for UWASNs. Due to the different transmission

medium used in the water by UWASNs, the efficiency of UWASNs is inferior

to that of the TWSNs. Moreover, the unreliability problem in UWASNs caused by

packet loss is seldom considered. We propose an efficient MAC protocol called

RAS to improve the efficiency in UWASNs. Then RRAS, the reliable RAS, is

implemented to achieve a tradeoff between reliability and efficiency performance

in UWASNs. With information of the rough propagation delays between each node

pair, RAS can arrive at coarse synchronization. Adopting parallel transmissions,

RAS performs priority scheduling. It calculates a compact schedule at the BS

when static routing is applied and the DATA direction is only from the sensor

nodes to the BS. In maintaining the throughput performance, RRAS employs

132
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the RAS scheduling to transmit the majority of the DATA generated in a cycle

to the BS. Then it designs a NACK-retransmission mechanism to retransmit

the DATA packets lost during the previous DATA transmissions. Because this

new NACK-retransmission mechanism is based on the RAS scheduling that

allows each node to know the packets it should receive during a cycle, it can

trigger the NACK requirement after a node identifies its lost packets. Both

the NACK and retransmission packet transmissions are based on ALOHA so

as to reduce the control frame handshaking and improve throughput. The

simulation results demonstrate that RAS is not only efficient, but also obtains good

fairness performance. RRAS not only effectively improves reliability through

retransmission, but also attains a comparable throughput. But there is still room

to further extend this research by relaxing the assumptions. For example, the

DATA direction is not only from the sensor nodes to the BS, but from the BS

to the sensor nodes. In this case, we should schedule the DATA transmission of

both directions. Otherwise, we should assign a different bandwidth for control

message transmission. In the future, we are also interested in investigating the

performance of the current MAC protocols when the loss rate is higher than 20%,

and in designing a reliable protocol for such situation.

Next, this thesis presents RealProct, a novel and reliable framework for testing

protocol implementations against their specifications in WSNs. It helps improve

the protocol implementation and avoid bugs to sneak into real deployment.

The RealProct framework includes two real sensor nodes and a PC for testing.

Three techniques are carefully designed to support the resource-limited sensor

nodes. The first technique is topology virtualization for the two sensor nodes to

imitate larger WSNs with different topologies, which allows efficient and flexible

protocol conformance testing. The second technique is event virtualization that

generates non-deterministic events to support virtualized topology. The third one

is a dynamical execution algorithm. It improves the efficiency of testing and
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the accuracy of verdict by determining the optimal number of test executions,

while guaranteeing an acceptable probability of false negative and false positive

errors. We implemented RealProct in real sensor nodes and tested the protocol

implementation of the µIP TCP/IP stack in Contiki-2.4. RealProct effectively

found two new bugs and all the previously detected bugs in the µIP TCP/IP stack.

The experiments demonstrated that our protocol conformance testing setup can

effectively detect bugs that might be missing in simulations. We also tested and

validated the protocol implementation of Rime mesh routing in Contiki-2.4. The

results indicated that RealProct can provide a cost-effective and flexible solution

for testing different advanced protocols, like multi-hop routing, which are more

sensitive to the network topology and the non-deterministic events in real wireless

channels.

Due to the limited number of real sensor nodes used, there are some cases that

RealProct cannot virtualize with high similarity. For example, it cannot virtualize

the wireless environment when interference caused by simultaneous transmissions

happens, although the result of interference is easy to be virtualized as packet loss

or erroneous packet. In the future, we will attempt to solve the problem with more

real sensor nodes. In this situation, the control of multiple sensor nodes becomes

difficult. First, synchronization should be achieved so as to maintain the temporal

order of interactions. Second, communications among them need to be solved.

Finally, this thesis proposes MDiag, a Mobility-assisted Diagnosis approach

that employs smartphones to patrol the WSNs and diagnose their failures in

real-time. MDiag can help detecting failures in the WSN protocols after

deployment in real-time, thus facilitating the maintenance. Diagnosing with a

smartphone which is not a component of WSNs does not intrude the execution of

the WSNs. MDiag is more efficient than deploying another network for diagnosis

purpose. In addition, it can help the BS find more failures because it can snoop

all kinds of raw packets that are sent out. Aiming at the targets of all protocol
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layers, we design statistical rules to guide the abnormal phenomena determination.

A patrol approach MSEP is further proposed to improve the detection rate and

reduce the patrol time of MDiag. The permanent failure detection experiments

demonstrate that MDiag can help discover more failures than BS-centralized

methods. The experiments on short-term failure detection show that MSEP

algorithm is better than the naive method, greedy method, and baseline method in

increasing the detection rate and reducing the patrol time. Since we do not consider

the traveling cost in our patrol algorithm design, we can take it into account and

give more accurate and effective patrol algorithms in the future. Moreover, we are

also interested in patrolling the deployed WSNs with more than one smartphones.

In conclusion, this thesis investigates the methodologies to enable dependable

WSNs in the aspects of protocol design, testing and diagnosis. Both simulations

and real experiments are conducted to prove the effectiveness of the methods.

Considering that each sensor node is identified by an address and contains

information sensed by the sensors, if we equip any object with the sensors and

mark it with an identity, then we can form the Internet of things (IoT), which

is foreseen to be the next generation of Internet [27]. As WSNs can collect

surrounding context and environment information, they will be the eyes, ears, nose

and even skin of the IoT. Meanwhile, WSN will also get strong support from IoT,

such as cloud computation. In the future, we are interested in integrating the WSN

into the Internet to facilitate a mighty IoT that can monitor and control every corner

of the world.

2 End of chapter.
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