
Performance Diagnosis of
Cloud-Based Mobile

Applications
Yu Kang

Supervised by Prof. Michael Lyu

05/07/2016

Outline

• Introduction

• Client Side Performance Diagnosis

• Cloud Side Performance Diagnosis

• Conclusion

Performance Diagnosis of Cloud-Based Mobile Applications 2

Complaints on Performance

• User complaints on the performance of mobile apps

Performance Diagnosis of Cloud-Based Mobile Applications 3

Cloud-Based Mobile App

• Cloud service introduced

− Mobile cloud market: $46.90 billion by 2019

• Typical framework (e.g., Google cloud endpoints)

Performance Diagnosis of Cloud-Based Mobile Applications 4

Performance Still Unsatisfying

• Example: 12306

− Official Chinese railway ticket booking app

− Hundreds of millions users

Server side performance Client side performance

Performance Diagnosis of Cloud-Based Mobile Applications 5

Performance Diagnosis for Cloud-Based Mobile App

• Diagnose performance on both client side and cloud side

Performance Diagnosis of Cloud-Based Mobile Applications 6

Performance Diagnosis for Cloud-Based Mobile App

• On client side

− Detect and diagnose performance issues

− Enhance user experience for long executing
operations

• On cloud side

− Reduce cloud-client communication delay

− Reduce cross-(data) center communication
delay

• All tools, source codes, data released

Performance Diagnosis of Cloud-Based Mobile Applications 7

Outline

• Introduction

• Client Side Performance Diagnosis

− Android Performance Diagnosis via
Anatomizing Asynchronous Executions
(DiagDroid)

− Detecting Poor Responsiveness UI for
Android Applications (Pretect)

• Cloud Side Performance Diagnosis

• Conclusion

Performance Diagnosis of Cloud-Based Mobile Applications 8

Background

• Currently no suitable tools

− Daunting human efforts (e.g., Traceview and dmtracedump)

− Limited scenario (e.g., StrictMode, Asynchronizer)

• A new handy tool

− User-friendly (i.e., locate performance issues automatically)

− Covering more scenarios (e.g., asynchronous executions)

Performance Diagnosis of Cloud-Based Mobile Applications 9

Android Application Specifics

• User-interface (UI) oriented

− UI thread = main thread

− UI thread kept responsive (non-blocking)

• Asynchronous executions

− Time-consuming tasks

− Worker threads

− Update UI afterwards

Performance Diagnosis of Cloud-Based Mobile Applications

∝ User perceived latency

10

Performance Issue: an Example

Performance Diagnosis of Cloud-Based Mobile Applications 11

public class MyActivity extends Activity {

private class RetrieveDataTask extends AsyncTask<String, Void, String> {
...

protected String doInBackground(String... urls) {
... // Retrieve content from Internet
return content;

}

protected void onPostExecute(String content){
this.textView.setText(content);

}

}
...

private class MyOnClickListener implements OnClickListener {
@Override
protected void onClick(View v){

retrieveDataTask task1, task2, task3;
task1 = new retrieveDataTask(textView1);

task2 = new retrieveDataTask(textView2);
task3 = new retrieveDataTask(textView3);
task1.execute(url1);

task2.execute(url2);
task3.execute(url3);

}
}

}

Performance Issue - Sequential Running

• Goal: load contents in parallel

− Straight-forward approach
• Call default execute method 3 times

• Wrong!

• Reason: tasks in a global queue

− Correct approach
• Resort to a thread pool

• Call executeOnExecutor method instead

− Existing tool (e.g., StrictMode,
Asynchronizer) cannot detect such
bugs

Performance Diagnosis of Cloud-Based Mobile Applications 12

private class MyOnClickListener implements

OnClickListener {

@Override

protected void onClick(View v){

retrieveDataTask task1, task2, task3;
task1 = new retrieveDataTask(textView1);

task2 = new retrieveDataTask(textView2);

task3 = new retrieveDataTask(textView3);

// the frist trial on executing tasks in
parallel

task1.execute(url1);

task2.execute(url2);

task3.execute(url3);

}
}

if (Build.VERSION.SDK_INT >=

Build.VERSION_CODES.HONEYCOMB) {

task1.executeOnExecutor(AsyncTask.THREAD_POOL

_EXECUTOR, url1);

} else {

task1.execute(url1);

}

A Motivating Example in Bug Detection

Performance Diagnosis of Cloud-Based Mobile Applications

Execute tasks in sequential Execute tasks in parallel

• Difference: queuing time, pool capacity

13

DiagDroid Framework

• Two key modules

− Profiler

− Log analyzer

• Two parts

− PC & Mobile

• Two mechanisms

− Static & Dynamic Analysis

Performance Diagnosis of Cloud-Based Mobile Applications 14

Profiler

• Features to profile

− Runtime info (e.g., Queuing
time, Execution time)

− Identification info (e.g.,
Execution context (call-stack),
pool identifier)

Performance Diagnosis of Cloud-Based Mobile Applications 15

Profiler

• Challenge

1. Tremendous ways to run asynchronous executions

2. Android Fragmentation

3. Low overhead

• Solution

1. Android asynchronous execution taxonomy

2. Hook only general framework methods
• E.g., For ThreadPoolExecutor execute, beforeExecute, and afterExecute methods

3. Granularity

• Task level vs. method/line level

Performance Diagnosis of Cloud-Based Mobile Applications 16

Log Analyzer

• Target

− Parse logs for statistics

− Find anomaly in statistics

• Challenge

− Too many similar contexts (call-
stacks)

• Solution

− Cluster similar contexts

Performance Diagnosis of Cloud-Based Mobile Applications 17

75

Experimental Study

• Test configuration

− 4 devices

− 4 types of pressures + 1 without pressure

• 30 minutes test per configuration

• Totally 19,800 minutes test for 33 apps

Performance Diagnosis of Cloud-Based Mobile Applications 18

Bugs Found

• Found: 27 new bugs of 5 types in 33 open source apps

1. Sequential execution

2. Forgetting cancelling execution

3. Improper execution pool

4. Message queue overloading

5. Misusing third-party library

• Note:

− No a priori knowledge on the app

Performance Diagnosis of Cloud-Based Mobile Applications 19

A Diagnosis Example

• App: Transportr

• Report: long queuing time (>= 500ms)

• Details:
− Short queuing tasks - avg. queue size: 0.04, avg. exec time in queue: 63.83ms

− Long queuing tasks - avg. queue size: 1.38, avg. exec time in queue: 817.44ms

− Pool capacity: 1

− Context: performFiltering method of class LocationAdapter

• Root cause:
− Overload message queue: blocking asynctask in handler

− Developers confirmed and fixed in new versions

Performance Diagnosis of Cloud-Based Mobile Applications 20

Summary of DiagDroid

• New type of performance issues

• Novel diagnosing framework: DiagDroid

• Categorize asynchronous executions

• New bugs found

• http://www.cudroid.com/DiagDroid

Performance Diagnosis of Cloud-Based Mobile Applications 21

Outline

• Introduction

• Client Side Performance Diagnosis

− Android Performance Diagnosis via
Anatomizing Asynchronous Executions
(DiagDroid)

− Detecting Poor Responsiveness UI for
Android Applications (Pretect)

• Cloud Side Performance Diagnosis

• Conclusion

Performance Diagnosis of Cloud-Based Mobile Applications 22

Introduction

• User expected waiting time

• Previous work 27 performance issues
out of 48 reported

− Resource limitation

• UI feedback required to enhance user
experience

Performance Diagnosis of Cloud-Based Mobile Applications 23

Motivation

• Android unique UI mechanism

− Activity not responding (ANR)

− Asynchronous tasks & UI update

• UI responsiveness

− Simple code may contain non-
responsive UI design

Performance Diagnosis of Cloud-Based Mobile Applications 24

private class ImageDownloader extends AsyncTask<String, Void,

Bitmap> {
protected Bitmap doInBackground(String... urls) {

return downloadBitmap(urls[0]);
}

protected void onPostExecute(Bitmap result) {
imageView.setImageBitmap(result);

}
}

Introduction

• Poor-responsive UI

− long executing without feedback

• Challenge

1. Hard to obtain feedback delay

2. Threshold not clear

3. Impossible to design feedback for all operations

• Our contribution

− Real world user study (For Challenge 2)

− A tool (Pretect) that assists delay tolerant UI design (For Challenge 1 & 3)

Performance Diagnosis of Cloud-Based Mobile Applications 25

User Study

• Impatient mobile users

• Study relationship between users experience & operation delay

• Test settings

− Three delay levels (200ms, 500ms, 2000ms)

− Between-subject test (i.e., fixed delay level per user)

− Compare overall performance rating

• Results

− (Relationship) User experience & UI responsiveness

− (Threshold) 500ms no response is lag enough

Performance Diagnosis of Cloud-Based Mobile Applications 26

Problem Specification

• Operation feedback

− First screen update after a
user operation

• Feedback delay

− Latency between the input
event and the feedback

• Poor-responsive operations

− Operations with feedback
delay ≥ T (T=500ms)

Performance Diagnosis of Cloud-Based Mobile Applications 27

Challenging Task

• Task: detecting poor-responsive operations

• Current tool

− Detecting abnormal tasks despite feedback delay (e.g., DiagDroid)

• First Trial

− Monitoring all display updates

• Solution

− Monitor UI update procedure

− Separate system display update (e.g., notification bar) with app UI updates

Performance Diagnosis of Cloud-Based Mobile Applications 28

Framework

• Execution flow

1. Record user inputs

2. Capture display updates

3. Analyze the feedback delay

• Corresponding modules

1. Event monitor

2. Display monitor

3. Log analyzer

Performance Diagnosis of Cloud-Based Mobile Applications 29

Implementation

• Highlights:

− Compatibility: dynamic instrumentation mechanism

− Usability: no recompiling of OS/framework/app & easy to install

− Android specifics: JAVA hook – Zygote, C hook – ptrace

• Event monitor

− Instrument framework Java methods

− Sample log:

Performance Diagnosis of Cloud-Based Mobile Applications 30

Implementation

• Display monitor

− Hook C inter-process communication (IPC) to surfaceflinger

− Sample log:

• Log analyzer

− Correlate input events and UI updates via checking the source pid of both

− Compute feedback delay and report poor-responsive operations

Performance Diagnosis of Cloud-Based Mobile Applications 31

Case Study

• YouCam

− Popular selfie app over 60 million downloads

− Confirmed & fixed by the developer

− “With your hint, we find that we have used a widget which tends to be slower.
We will fix as soon as possible.”

YouCam - steps to reproduce
YouCam – sample reports

Performance Diagnosis of Cloud-Based Mobile Applications 32

Ver. 4.10 vs. Ver. 5.4

Summary of Pretect

• Real world user study

• A tool (Pretect)

• Cases detected

• http://www.cudroid.com/pretect

Performance Diagnosis of Cloud-Based Mobile Applications 33

Outline

• Introduction

• Client Side Performance Diagnosis

• Cloud Side Performance Diagnosis

− Deployment of Single Cloud Service

− Deployment of Multiple Cloud Services

• Conclusion

Performance Diagnosis of Cloud-Based Mobile Applications 34

Cloud-Service Involved

Performance Diagnosis of Cloud-Based Mobile Applications 35

• Cloud-based mobile app

• Modeling User Experience

− User-data center delay (UC delay)

• Importance of service deployment

C1

C3

C2?
?

?

Optimizing UC Delay

• Challenges

• Not every data center visited

• Difficult to foresee user experience

• Solution

− Measure UC delay: recorded round-trip time (RTT)

− Predict UC delay: delay prediction according to similar users

Performance Diagnosis of Cloud-Based Mobile Applications 36

Framework of Cloud-Based Services

• Measure UC delay

• Predict UC delay

Performance Diagnosis of Cloud-Based Mobile Applications 37

Virtual Machine

User

Data Center

u1

Service Cloud
C3

C2

C1
1

2.5

Measured Network
Distance

2.8

Predicted Network
Distance

1

3

2.7 u2

Minimize Average Cost

Given:

Z = set of data centers

C = set of users

dij = pairwise distance (i,j) ∈ C × Z

Minimize:

Subject to:

𝑍ʹ ⊂ 𝑍, ∣𝑍ʹ∣ = 𝑘

Performance Diagnosis of Cloud-Based Mobile Applications 38

Minimize Average Cost

Performance Diagnosis of Cloud-Based Mobile Applications 39

Problems of the Model

• Unnecessary minimum

• Outlier users

• Tradeoff

− (Response time) ≤ threshold T

− (User number) 99% good, 1% poor

Performance Diagnosis of Cloud-Based Mobile Applications 40

Maximize Close User Amount

•

Performance Diagnosis of Cloud-Based Mobile Applications 41

Maximize Close User Amount

Performance Diagnosis of Cloud-Based Mobile Applications 42

{v1,v2,v3,v5}

v1 v2 v3 v4 v5

{v1,v2,v4}
{v1,v3,v4}

{v4,v5}

Real-World Dataset

• 303 PlanetLab computers

• 4,302 the Internet services

• ≈130,000 response-time values matrix

Performance Diagnosis of Cloud-Based Mobile Applications 43

Outline

• Introduction

• Client Side Performance Diagnosis

• Cloud Side Performance Diagnosis

− Deployment of Single Cloud Service

− Deployment of Multiple Cloud Services

• Conclusion

Performance Diagnosis of Cloud-Based Mobile Applications 44

Background

• Extending previous model

• Different cloud services may cooperate

− YouTube & Facebook

− Google Doc & Gmail

− Taobao & Alipay

• Necessary to deploy together

− Independent deployment not enough

− Global decision required

Performance Diagnosis of Cloud-Based Mobile Applications 45

Motivation Example

Performance Diagnosis of Cloud-Based Mobile Applications 46

Virtual Machine

User

Data Center

S1
…

…

S2
u

Service Cloud

v2

C3

C2

v1

C1

1

1

1

1.5

1.5

1.5

1.5

Network Distance

Multi-Service Co-deployment Problem

• Same company to host

• Multiple services for different users (may overlap)

• Interaction between services

Performance Diagnosis of Cloud-Based Mobile Applications 47

Modeling

Performance Diagnosis of Cloud-Based Mobile Applications 48

Real-World Dataset

1. 597 Planetlab instances

2. Ping 2,213 web services

3. Ping all other Planetlab peers (random order)

4. Obtain ≈577,000 Internet-service access values matrix & ≈94,000
peer-wise communication delay values matrix

Performance Diagnosis of Cloud-Based Mobile Applications 49

Summary of Cloud Service Deployment

• Model user experience

• Formulate deployment problems

• Real-world dataset

• http://appsrv.cse.cuhk.edu.hk/˜ykang/cloud

Performance Diagnosis of Cloud-Based Mobile Applications 50

Outline

• Introduction

• Client Side Performance Diagnosis

• Cloud Side Performance Diagnosis

• Conclusion

Performance Diagnosis of Cloud-Based Mobile Applications 51

Conclusion

• Cloud-based mobile app performance
enhancing

• On client side
− Detect and diagnose performance issues

− Enhancing user experience for long
executing operations

• On cloud side
− Reduce cloud-client communication delay

− Reduce cross-(data) center communication
delay

• All tools, source codes, data released

Performance Diagnosis of Cloud-Based Mobile Applications 52

Thank you!

Q & A

Performance Diagnosis of Cloud-Based Mobile Applications 53

Backup Slides

Performance Diagnosis of Cloud-Based Mobile Applications 54

DiagDroid

Performance Diagnosis of Cloud-Based Mobile Applications 55

Performance issue 2 – forget cancelling

• Goal: deal with dead tasks
− Straight-forward approach

• Don’t do anything

• Wrong!

• Reason: tasks do not cancel automatically

− Alternative approach
• Cancel the task (e.g., downloading) via overriding onCancel method

• Wrong!

• Reason: onCancel is called after doInBackground, cannot cancel tasks

− Correct approach
• Check isCancelled() periodically

• Cancel whenever the function returns true

− Existing tool (e.g., StrictMode, Asynchronizer) cannot detect such bugs

Performance Diagnosis of Cloud-Based Mobile Applications 56

Performance issue 2 – correct code

public class MyActivity extends Activity {

private class RetrieveInfoTask extends
AsyncTask<String, Void, String> {

...

@Override

protected String doInBackground(String...
urls){

...

while (isCancelled() && (length =
is.read(buf)) != -1) {

...

}

...

}

Performance Diagnosis of Cloud-Based Mobile Applications

private RetrieveInfoTask task1,
task2,task3;

...

@Override

public void onStop() {

if(task1 != null)

task1.cancel(true);

if(task2 != null)

task2.cancel(true);

if(task3 != null)

task3.cancel(true);

super.onStop();

}

}

57

Detect bug in Motivating Example

• Profiler:

− Profile tasks

− Queuing time, executing time,
task context (call-stack), pool
info, and etc

• Log analyzer:

− Find the problematic task

− Queuing time, executing time,
pool conflicts

Performance Diagnosis of Cloud-Based Mobile Applications 58

Profiling mechanisms (example)

• Profiling ThreadPool:
− Execution context – call stack when invoking execute method of the

ThreadPoolExecutor class

− Pool id – hash code of the thread pool

− Request time – same time when collecting context

− Start time & End time – time invoking beforeExecute & afterExecute method

• Profiling AsyncTask:
− Execution context – call stack when invoking execute or executeOnExecutor method

of the AsyncTask class

− Pool id – hash code of the relevant pool(s)

− Request time – the time when invoking execute or executeOnExecutor method of
the AsyncTask class

− Start time & End time – reuse ThreadPool mechanism

Performance Diagnosis of Cloud-Based Mobile Applications 59

Log Analyzer

• Target
− Parse logs for statistics

− Find anomaly in statistics

• Challenge
− Too many similar contexts (call-

stacks)

− Missing extreme cases

• Solution
− Cluster similar contexts

− Detect anomalous by
maximum (> threshold T)

Performance Diagnosis of Cloud-Based Mobile Applications 60

Average (failed)

Outlier (failed)
75

Other modules

• Static analysis

− Decompile the app and gather information from bytecode

− Do not modify the original app

• Test executor

− A guard of Monkey Exerciser (a random testing tool)

− Support plugin of any kind of test scripts

Performance Diagnosis of Cloud-Based Mobile Applications 61

DiagDroid - Bugs found

• www.cudroid.com/DiagDroid

Performance Diagnosis of Cloud-Based Mobile Applications 62

DiagDroid – Fix bugs

Performance Diagnosis of Cloud-Based Mobile Applications 63

Fix Transportr

Fix AFWall+

DiagDroid – Low Overhead

• 10, 000 Monkey operations with DiagDroid on and off

• 200 ms interval between two operations

• Time command for CPU time

• 0.8% overhead

Performance Diagnosis of Cloud-Based Mobile Applications 64

DiagDroid - Development Tips

1. Use private pool instead of public one when necessary.

2. Set reasonable pool size.

3. Use third-party library carefully.

4. Keep effective response.

5. Cancel when no longer needed.

6. Use proper type of asynchronous execution.

Performance Diagnosis of Cloud-Based Mobile Applications 65

Pretect

Performance Diagnosis of Cloud-Based Mobile Applications 66

User Study

• Results:
− The mean value shows clear descending trend with delay level

− The Pairwise comparisons show the significance
• 200ms vs. 500ms:

marginal difference

• 200ms vs 2000ms:
Significant difference

• 500ms vs. 2000ms:

no much difference

Performance Diagnosis of Cloud-Based Mobile Applications 67

Experiment

• Tool validation

− Synthetic apps
• Five common asynchronous execution

mechanisms

− Open source projects code injection

• Common operations of five open source
projects including delays incurred by db,

network, remote process, disk operations

− Result suggests we could distinguish
(poor)-responsive operations
• feedback delay ≤ 500ms

Performance Diagnosis of Cloud-Based Mobile Applications 68

Experiment

• Overall

− Apply to 115 popular Android apps covering 23 categories (including
BooksReferences, Photography, Sports, etc)

Performance Diagnosis of Cloud-Based Mobile Applications 69

Experiment Stats

• 94/115 apps contain potential UI design defects

• 327 independent components with feedback delays ≥ 500 ms

• Maximum delay ≥ 29 s

Performance Diagnosis of Cloud-Based Mobile Applications 70

Experiment Stats

Performance Diagnosis of Cloud-Based Mobile Applications 71

Distribution of number of issues per app

Distribution of feedback delay per app

Different threshold

Performance Diagnosis of Cloud-Based Mobile Applications 72

Avg. number of cases per category by threshold

Poor-responsive Components

Performance Diagnosis of Cloud-Based Mobile Applications 73

Single Service Deployment

Performance Diagnosis of Cloud-Based Mobile Applications 74

Introduction

Cloud Computing Systems
−Auto scaling

Dynamic allocation of computing resources

−Elastic load balance

Distributes and balances the incoming traffic

Performance Diagnosis of Cloud-Based Mobile Applications 75

Introduction

• Typical approach of auto scaling and load balance (Amazon EC2)

Performance Diagnosis of Cloud-Based Mobile Applications 76

Introduction

Current approaches are not optimized for users

−Auto scaling

Do not consider distributions of the end users

−Elastic load balance

Do not take the user specifics (e.g., user location) into
considerations

Performance Diagnosis of Cloud-Based Mobile Applications 77

Introduction

•Our contribution:

– User experience model in cloud

– A new service redeployment method

• Two advantages:

1) Improve auto scaling techniques

Launch best set of service instances

2) Extend elastic load balance

Directs user request to a nearby one.

Performance Diagnosis of Cloud-Based Mobile Applications 78

Minimize Average Cost

• k-median problem

• NP-hard

• W[2]-hard with k as parameter

• W[1]-hard with capacity l as parameter

• In FPT with both as parameter

algorithm: O(f(k,l)no(1)) time

Performance Diagnosis of Cloud-Based Mobile Applications 79

Minimize Average Cost

• Approximate Algorithms:

1. Exhaustive Search

2. Greedy Algorithm

3. Local Search Algorithm (3 + ε approximation)

4. Random Algorithm

Performance Diagnosis of Cloud-Based Mobile Applications 80

Maximize Close User Amount

• Max k-cover problem

• NP-hard

• W[2]-hard with k as parameter

• W[2]-hard (general) and FPT (tree-like) with maximum subset size as
parameter

• FPT if both maximum subset size and capacity as parameter

Performance Diagnosis of Cloud-Based Mobile Applications 81

Maximize Close User Amount

• Approximate Algorithms:

1. Greedy Algorithm (1-1/e approximation)

2. Local Search Algorithm

Performance Diagnosis of Cloud-Based Mobile Applications 82

Single Service – Necessity of Redeployment

• Worst case without redeployment

Performance Diagnosis of Cloud-Based Mobile Applications 83

Performance Diagnosis of Cloud-Based

Mobile Applications

Single Service – Weakness of Auto Scaling

84

Deploy in limited data centers

Auto scaling algorithms

Single Service - Comparing Algorithms for k-Median

Performance Diagnosis of Cloud-Based Mobile Applications 85

Selecting 3 data centers by redeployment algorithm

Selecting 10-20 data centers for 4000 users

Single Service - Comparing Algorithms for k-Median

• Theoretical time complexity
− Exhaustive search:

− Greedy:

− Local Search:

Performance Diagnosis of Cloud-Based Mobile Applications

)(NMO
k
×

)(NMkO ××

)(NMkO
tt
××

86

Single Service - Redeployment Algorithms for Max k-Cover

• 20 instances are selected to provide service for 4000 users.

• Expect 200 per server.

Performance Diagnosis of Cloud-Based Mobile Applications 87

• compare the average cost:
max k-cover v.s. k-median

Single Service - Redeployment Algorithms for Max k-Cover

Performance Diagnosis of Cloud-Based Mobile Applications 88

Max k-cover using greedy approach

Average cost by max k-cover model

Multi-Service Deployment

Performance Diagnosis of Cloud-Based Mobile Applications 89

Independent Deployment of Single Service

Performance Diagnosis of Cloud-Based Mobile Applications 90

Single Service Deployment

Performance Diagnosis of Cloud-Based Mobile Applications 91

Indicator whether VM

j is used

Indicator whether

user i is connected to

VM j

Times of user i call

service

Distance between

user i and VM j

Minimize total

distance for all user

requests

Every user i can only

connect to one VMCan only connect

to open VMs

Open at most k VMs

Independent Deployment of Single Service

Performance Diagnosis of Cloud-Based Mobile Applications 92

yj = 1

xij = 1

Every user i can only

connect to one VM

×

Can only connect to

open VMs

×

Open at most k VMs

Multi Cloud Service Co-deployment

Performance Diagnosis of Cloud-Based Mobile Applications 93

Times of user i call

service h

connect at most one

center

Times of interaction between

service q service s for request

of user i

limitation # of instances

every serviceboth centers

should be

opened

at most one

connection

indicator whether

interaction between

services q and s go

through center p and r

for requests of user i

indicator

whether

center j for

service h is

used

Motivation Example

Performance Diagnosis of Cloud-Based Mobile Applications 94

Open at most kh VMs for

service h

xhij = 1

yipqrs = 1

zhj = 1

connect at most one

center

Can only connect to

open VMs

×

First VM is chosen

by user i for service

h, next is open

Iterative Sequential Co-deployment Algorithm

Performance Diagnosis of Cloud-Based Mobile Applications 95

First Generate Random

Deployment

Sequentially improve the

deployment of each

service

Treat requests from other

services as these from

users

Record the best till now

Disturb and do local

search

Dataset Statistics

Performance Diagnosis of Cloud-Based Mobile Applications 96

Experiment Setting

• Above 106 decision variables

• Use the tool Ilog CPLEX provided by our department to solve the MIP
problems

• Randomly generate user log and calling sequences as:

− User id -> service si1 -> service si2 -> … -> service sim

Performance Diagnosis of Cloud-Based Mobile Applications 97

Default Experiment Setting

• 1881 users

• 10 services

• Deploy10 service VMs among a candidate set in 100 data centers

• A user of service 𝑠 would have 5 request logs

• One request of a service would involve on average 5 requests of other
services

Performance Diagnosis of Cloud-Based Mobile Applications 98

Experiment (Algorithm Specifics)

• Convergence of Iterative Sequential Procedure

• Number of Disturbs

Performance Diagnosis of Cloud-Based Mobile Applications 99

Experiment (Number of Services)

Performance Diagnosis of Cloud-Based Mobile Applications 100

Experiment (Number of Service VMs)

• Size of Candidate Set
of Service VMs

• Number of Service
VMs to Deploy

Performance Diagnosis of Cloud-Based Mobile Applications 101

Experiment (Services Logs)

• Number of Service Users

• Average Call Length of Service

Performance Diagnosis of Cloud-Based Mobile Applications 102

Experiment (Services Logs)

• Number of Logs

Performance Diagnosis of Cloud-Based Mobile Applications 103

Future work

• Mobile Side User Experience Enhancement

− Selective Loading, Computing in Advance

− Delay Tolerant UI Design

• Cloud Side Processing Time Optimization

− Moving computation to data

• Client-Cloud Communication Cost Reduction

− Reduce # communications

Performance Diagnosis of Cloud-Based Mobile Applications 104

Publication List

1. “Pretect: Detecting Poor-Responsive UI in Android Applications”, Yu Kang, Yangfan Zhou, Min Gao, Yixia
Sun, Michael R. Lyu, submitted to ISSRE 2016

2. “DiagDroid: Android Performance Diagnosis via Anatomizing Asynchronous Executions,” Yu Kang, Yangfan
Zhou, Hui Xu and Michael R. Lyu, accepted by FSE 2016

3. “SpyAware: Investigating the Privacy Leakage Signatures in App Execution Traces,” Hui Xu, Yangfan Zhou,
Cuiyun Gao, Yu Kang, and Michael R. Lyu, in ISSRE 2015

4. “Dependability Issues of Android Games: A First Look via Software Analysis,” Jiaojiao Fu, Yangfan Zhou,
and Yu Kang, in IVCE 2015

5. “A Latency-aware Co-deployment Mechanism for Cloud-based Services,” Yu Kang, Zibin Zheng, and M.R.
Lyu, in Cloud 2012

6. “WSP: A Network Coordinate based Web Service Positioning Framework for Response Time Prediction,”
Jieming Zhu, Yu Kang, Zibin Zheng, and M.R. Lyu, in ICWS 2012

7. “A Clustering-Based QoS Prediction Approach for Web Service Recommendation,” Jieming Zhu, Yu Kang,
Zibin Zheng, and M.R. Lyu, in IVCE 2012

8. “A User Experience-based Cloud Service Redeployment Mechanism,” Yu Kang, Yangfan Zhou, Zibin Zheng,
and M.R. Lyu, in Cloud 2011

Performance Diagnosis of Cloud-Based Mobile Applications 105

