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How Social Media Change Our Life?

Kitchen table conversation Online social networking
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Social Media is Connecting the World

3.5 billion users (45% of the population)
• 3 hours per day

https://www.oberlo.com/blog/social-media-marketing-statistics
Facebook

Twitter

Sina Weibo
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Social Media is Everywhere

MarketingEntertainmentInformation sharing

How to automatically understand the
massive amount of social media content?
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How to Understand Social Media Content?

Sentiment analysisMicroblog search Trending topic discovery

Keyphras Prediction

Big
Data
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Problem Definition

• Hashtags àKeyphrases

• Pressing need: there are only 15% of tweets containing hashtags

• Keyphrase generation:

Source Post 𝑥
Automatic Keyphrase

Generation (KG) Model

Keyphrase 𝑦!

Keyphrase 𝑦"

Keyphrase 𝑦#
…

E.g., “#ACL2019nlp”à {“ACL”, “2019”, “nlp”}
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Present and Absent Keyphrase

• Present keyphrase

Congratulations to all authors who have 
a paper accepted at ACL 2019 nlp! ... KG Model ACL 2019 nlp

• Absent keyphrase

Somewhere, a wife …, says  "I want the 
team in yellow pants to win.” KG Model Super bowl

More difficult!
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Previous Method

Keyphrase
Prediction

Extraction
Method

Classification
Method

[Zhang et al., EMNLP 2016]
[Zhang et al., NAACL 2018]

[Gong et al., IJCAI 2016]
[Huang et al., COLING 2016]

[Zhang et al., IJCAI 2017]

Generation
Method

[Meng et al., ACL 2017]
[Chen et al., AAAI 2018]
[Chan et al., ACL 2019]

Scientific article domainCannot predict keyphrases out of the source
sequence and predefined candidate list

Social
media

domain

Ours
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Keyphrase prediction in social media

is challenging!
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Challenge – Huge Volume

• Facebook: 4 million posts per minute 

• Twitter: 21 million posts per hour

• Weibo: 130 million posts per day
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Challenge – Data Sparsity

• Informal style

• Short in length 

• Syntax errors

Example Tweet

lol~~

fearless man we r :-)

keep ffffffffighting @StephenCurry30
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Challenge – Multimedia Data

• What’s the largest difference 
in Twitter content in 2010 and 
2020?
• Many more tweets contain 

multimedia data!

• Approximately 12% tweets 
are accompanied by images

2010 2020
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Our Solution

Example

Thank you fox for showing the good sposmanship segment! 

That’s what it should always be like.

?

Sports

Implicit 
topic

Replying messages forming a conversation

[T1] Bet you are happy dancing right about now lol! You are the 

biggest Steelers fan I know, so I have been thinking of you tonight.

[T2] Thank you! That’s a huge compliment. They have won a lot this 

season. It would have been poetic to end the season that way.

[T3] Yes, just think of all the money you will save, not having to buy 

all the SuperBowl champions gear.

Explicit 
conversation

Explicit 
image

#SuperBowl
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Thesis Contributions

Social Media 
Keyphrase Generation

W3: “Cross-Media Keyphrase Prediction: A Unified 

Framework with M3H-Att and Image Wordings”
(Chapter 5)

[EMNLP 2020]

W4: “VD-BERT:  A Unified Vision and  

Dialog Transformer with BERT”
(Chapter 6)

[EMNLP 2020]

W1: “Topic-Aware Neural Keyphrase

Generation for Social Media Language” 
(Chapter 3)
[ACL  2019]

W2: “Microblog Hashtag Generation 

via Encoding Conversation Contexts”
(Chapter 4)

[NAACL 2019]

Multi-modality: text-imageSingle modality: text-only

Encode 
implicit contexts

Encode 
explicit contexts
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Thesis Contributions

W3: “Cross-Media Keyphrase Prediction: A Unified 

Framework with M3H-Att and Image Wordings”
(Chapter 5)

[EMNLP 2020]

W4: “VD-BERT:  A Unified Vision and  

Dialog Transformer with BERT”
(Chapter 6)

[EMNLP 2020]

W1: “Topic-Aware Neural Keyphrase

Generation for Social Media Language” 
(Chapter 3)
[ACL  2019]

W2: “Microblog Hashtag Generation 

via Encoding Conversation Contexts”
(Chapter 4)

[NAACL 2019]

Encode 
implicit contexts

Encode 
explicit contexts

Social Media 
Keyphrase Generation

Multi-modality: text-imageSingle modality: text-only
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Outline

• Topic 1: Topic-aware Keyphrase Generation

• Topic 2: Conversation-aware Keyphrase Generation

• Topic 3: Unified Cross-media Keyphrase Prediction

• Conclusion and Future Work
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Outline

• Topic 1: Topic-aware Keyphrase Generation

• Topic 2: Conversation-aware Keyphrase Generation

• Topic 3: Unified Cross-media Keyphrase Prediction

• Conclusion and Future Work
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Example

Motivation

Somewhere, a wife that is not paying attention to the game, says "I 

want the team in yellow pants to win.”

Relevant tweets

[T1] I been a steelers fan way before black & yellow and this super bowl!

[T2] I will bet you the team with yellow pants wins.

[T3] Wiz Khalifa song “black and yellow” to spur the pittsburgh steelers and 

Lil Wayne is to sing “green and yellow” for the packers.

• By looking at other tweets with a similar topic, we can infer “Superbowl”

• Latent topics learned from the corpus can alleviate the data sparsity

?
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Seq2seq

NTM

Jointly train

Methodology

Keyphrase: 𝒚!, 𝒚", … , 𝒚|𝒚|
Post in word index  𝒙%&'

Post in bag of words 𝒙()*
Input Output
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Methodology

Neural Topic Model (NTM)
• Proposed by [Miao et al., ICML 2017]

• BoW Encoder
• Prior latent variables

• 𝝁 = 𝑓+(𝑓&(𝒙()*))

• log 𝝈 = 𝑓,(𝑓&(𝒙()*))

• BoW Decoder
• Draw latent variable 𝒛~𝑁 𝝁, 𝝈"

• Topic mixture 𝜽 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓-(𝒛))

• For each word 𝑤 ∈ 𝒙:
• Draw word 𝑤~𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!(𝜽))

BoW Encoder BoW Decoder



21 / 80WANG, Yue Neural Keyphrase Generation for Social Media Understanding

Methodology

Seq2Seq keyphrase generation model

• Global vocabulary:

• Local extractive distribution:

• Generation with copy mechanism:
• Proposed by [See et al., ACL 2017]

𝑝!"#
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Methodology

How to feed the topic 𝜃 into the
keyphrase generation model?

• Three paths

Decoder state: 𝑠" = 𝑓#$%( 𝑢"; 𝜃 , 𝑠"&' )

Attention: 𝑓( ⋅ = 𝒗(
)𝑡𝑎𝑛ℎ(𝑊( ℎ*; 𝑠"; 𝜃 + 𝑏()

Copy switch: 𝜆" = 𝜎(𝑊+ 𝑢"; 𝑠"; 𝑐"; 𝜃 + 𝑏+)



23 / 80WANG, Yue Neural Keyphrase Generation for Social Media Understanding

Methodology

• End-to-end joint training

• Inference
• Beam search



24 / 80WANG, Yue Neural Keyphrase Generation for Social Media Understanding

Datasets

• We newly construct three datasets in both English and Chinese

• KPàKeyphrase
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Datasets

• StackExchange has much longer text and more unique keyphrases

• High absent keyphrase rates (over 50%)
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• Social media keyphrase prediction is challenging

• Seq2seq-based keyphrase generation models are effective

• Latent topics are consistently helpful for indicating keyphrases

Main Results
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• Our model achieves comparable or better performance in both settings

• Copy mechanism sacrifice the absent keyphrase prediction performance for 
better predicting the present ones .
• è Latent topics help to alleviate such side effect

Present and Absent Keyphrase Prediction

27 / 25
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Latent Topic Analysis

• Topic coherence (CV scores) • Top words for “super bowl” topic

Red and underlined words indicate non-topic words



29 / 80WANG, Yue Neural Keyphrase Generation for Social Media Understanding

Case Study

Our model correctly predicts “super bowl”, 

while seq2seq-copy without topic guidance 

wrongly predicts “team follow back”

Why? Visualize attention!

Somewhere, a wife that is not paying 

attention to the game, says "I want the 

team in yellow pants to win.”
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Summary

• We propose the first topic-aware keyphrase generation 
model that allows end-to-end training with latent topics

• We newly construct three large-scale social media datasets in
both English and Chinese for this task

• Extensive experiments demonstrate the effectiveness of our 
proposed model for understanding social media language

(96 stars)

https://github.com/yuewang-cuhk/TAKG
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Outline

• Topic 1: Topic-aware Keyphrase Generation

• Topic 2: Conversation-aware Keyphrase Generation

• Topic 3: Unified Cross-media Keyphrase Prediction

• Conclusion and Future Work
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Example

Motivation

“This Azarenka woman needs a talking to from the umpire her weird noises 

are totes inappropes professionally.”

[R1] How annoying is she. I just worked out what she sounds like one of those 

turbo charged cars when they change gear or speed.

[R2] On the topic of noises, I was at the Nadal-Tomic game last night and I loved 

how quiet Tomic was compared to Nadal.

[R3] He seems to have a shitload of talent and the postmatch press conf. He  

showed a lot of maturity and he seems nice.

[R4] Tomic has a fantastic tennis brain...

• From the user conversation, we can imply its keyphrase: AusOpen

?
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Methodology

• Input
• Target post: 𝑥!

/
, 𝑥"
/
, … , 𝑥

𝒙𝒑
/

• Conversation: 𝑥!
1, 𝑥"

1, … , 𝑥 𝒙"
1

• Combine user replies sequentially

• Output
• Keyphrase: 𝑦!, 𝑦", … , 𝑦|2|
• “AusOpen”à “Aus Open”



34 / 80WANG, Yue Neural Keyphrase Generation for Social Media Understanding

Methodology

Post encoder 
• 𝒉/ = BiGRU(𝒙3)

Conversation encoder
• 𝒉1 = BiGRU(𝒙4)

Bi-attention (bi-att)

• 𝛼$%
& =

'()(+!"#$%(𝒉&
'
,𝒉(
"))

∑
()*+

|𝒙"|
'()(+!"#$%(𝒉&

'
,𝒉()
" ))

, 

• 𝛼$%
0
=

'()(+!"#$%(𝒉&
'
,𝒉(
"))

∑
&)*+

|𝒙'|
'()(+!"#$%(𝒉&)

'
,𝒉(
"))

,

• 𝑓1&23" 𝒉$
0
, 𝒉%

& = 𝒉$
0
𝑾4$5677𝒉%

&

Interaction
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Methodology

Post-attentive vector

• 𝒓!
"
= ∑

#$%

|𝒙8|
𝛼#!
"
𝒉#
"

Conversation-attentive vector

• 𝒓;
1 = ∑

<=!
|𝒙"|

𝛼;<
1 𝒉<

1

Merge layer
• 𝒗0 = tanh(𝑾0 𝒉

0; 𝒓& + 𝒃0),

• 𝒗& = tanh 𝑾& 𝒉
&; 𝒓0 + 𝒃& ,

• 𝒗 = [𝒗0; 𝒗&], 
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Methodology

Keyphrase decoder 
• Pr 𝒚, = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾- 𝒔,; 𝒄, + 𝒃-),

• 𝐜. = ∑
*/'
|𝒙!|2|𝒙"|

𝛼*"
3 𝒗*, 

• 𝛼,*
3 =

456(8#"$%&(𝒔',𝒗())

∑
()*+

|𝒙!|.|𝒙"|
456(8#"$%&(𝒔',𝒗()))

,

• 𝑔>?@AB 𝒔,, 𝒗* = 𝒔,𝑾C,,𝒗*

Loss function
• 𝐿 𝜃 = −∑D/'

E log Pr 𝑦D 𝑥D
F
, 𝑥D
? ; 𝜃 .

Inference: beam search
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Dataset

• 80% training, 10% validation, 10% testing

• Gold standards : hashtags appearing before or after the post 

• Twitter: English dataset from TREC 2011 Twitter

•Weibo: Chinese dataset crawled from Sina Weibo
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Dataset

• Keyphrase statistics (present ratio)

Large and imbalanced
keyphrase space!

• Keyphrase frequency distribution

P : target post
C : conversation

Low present ratio
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Main Results

• The task is very challenging, especially for Twitter

• Our model significantly outperforms all the comparison models

• Generation models are better than classification models

The “*” indicates significantly better than other models (p < 0.05, paired t-test) 

Why?

Exact match Partial match
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Classification vs. Generation

• The keyphrase frequency↓，the performance↓

• Generation models consistently outperform classification models

• Generation models perform more robustly

Varying keyphrase frequency：Twitter (left) and Weibo (right).

Generation models Classification models
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Classification vs. Generation

Unseen keyphrases (ROUGE-1 in %)

• It is difficult to generate new keyphrases

• At least 6.5x improvements over classification models on Weibo



42 / 80WANG, Yue Neural Keyphrase Generation for Social Media Understanding

Ablation Study

Bi-attention is helpful!

Ablation results (F1 in %)

Post is more important!

w/ bi-att

w/o bi-att
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Case Study

(a) Model outputs for the case post

Case post

“This Azarenka woman needs a talking to from the umpire her weird noises 

are totes inappropes professionally.”

(b) Bi-attention heatmap visualization

#AusOpen

Azarenka

Nadal Tennis

Noises
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Summary

• We are the first to approach microblog keyphrase annotation with 
sequence generation architecture

• To alleviate data sparsity, we enrich context for short target posts with 
their conversations using a bi-attention mechanism

• Our model establishes new state-of-the-art results on two datasets

https://github.com/yuewang-cuhk/HashtagGeneration
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Outline

• Topic 1: Topic-aware Keyphrase Generation

• Topic 2: Conversation-aware Keyphrase Generation

• Topic 3: Unified Cross-media Keyphrase Prediction

• Conclusion and Future Work
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Motivation

• With the development of mobile Internet…

2010 2020
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Motivation

• How to predict keyphrases for cross-media posts?

• Limited text features
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Motivation

• How to predict keyphrases for cross-media posts?

• Limited text features

Image could provide 
essential clues!
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Challenge

• Unique challenges compared to conventional multi-modal tasks

Caption: a man talking to a 
giraffe in an enclosure

Q: what color is the giraffe? 
A: brown and tan

Tweet: Contemplating the 
mysteries of life from 
inside my egg carton...

?

Complex text-image relationshipSemantics shared in both modalities
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Challenge

• Complex text-image relationship in social media
• Four diverse semantic relations [Vempala and Preotiuc-Pietro, ACL 2019]

(a) text is represented and image adds to. (b) text is represented and image does not add to. 
(c) text is not represented and image adds to. (d): text is not represented and image does not add to.



51 / 80WANG, Yue Neural Keyphrase Generation for Social Media Understanding

Challenge

• Diverse image category
• Category distribution of 200 tweet image samples

Many images contain texts!
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Our Solution

• Encode more indicative features from the images
• Image wordings: image attributes and OCR (Optical Character Recognition) texts

Vision

Tweet: The <mention> have 

the slight lead at halftime!

player

game

picture

poster

basketball

Attribute

2019 NBA FINALS…

OCR texts
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Our Solution

• Better attention mechanism to model complex text-image interactions
• Traditional co-attention network is suboptimal [Zhang et al., IJCAI 2017]

Text

Image

Fusion

Attention

Attention

Multi-Head Attention

Feedforward

Add+LayerNorm

Add+LayerNorm

Q K V

Ours: multi-head attention
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Our Solution

• Previous methods
• Keyphrase classification for text-image posts 

• [Zhang et al., IJCAI 2017] and [Zhang et al., AAAI 2019]

• Cannot produce keyphrases out of the predefined 
candidate list

• Keyphrase generation for text-only posts
• [Wang et al., NAACL 2019] and [Wang et al., ACL 2019]

• Poor performance in predicting absent keyphrases

A unified model to 
combine both
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Methodology

• Encoding text and image

• Multi-modal fusion

• Unified prediction

• Input
• Image 𝐼
• Target post: 𝑥!, … , 𝑥"(

• Output
• Keyphrase: 𝑦!, … , 𝑦K#
• “NBAFINALS”à “NBA FINALS”
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Encoding Text and Image

• Textual features
• Bi-GRU encoder

• Visual features
• Grid-level or object-level

• Image attributes
• Pretrained attribute predictor 

using COCO-caption data

• OCR texts
• Detected from Tesserocr

• Append to the tweet text
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Multi-modal Fusion

• Multi-Modality Multi-Head Attention (M3H-Att) 
• Capture the interactions among three modalities: {text, attribute, vision}
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Unified Prediction

• Combine keyphrase classification and generation

Classification output aggregator Joint training
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Dataset

• Experiment dataset: 53,701 text-image tweets from Twitter

Low present rate!
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Dataset

• Top five image attributes: {man, shirt, woman, sign, white}

Word cloud visualization
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Main Results

• Observations
• Textual features are more important 

than visual signals

Average scores from 5 random seeds. Subscripts denote 

the standard deviation, e.g., 47.0604 denotes 47.06±0.04
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Main Results

• Observations
• Textual features are more important 

than visual signals

• Vision can provide complementary 
information to the text
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Main Results

• Observations
• Textual features are more important 

than visual signals

• Vision can provide complementary 
information to the text

• Our unified model M3H-Att and image 
wordings achieves the best results
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Present and Absent Keyphrase

• Generation models are better for present keyphrases while 
classification models are better for absent ones

• Our output aggregation strategy can cover generation 
models’ weakness for absent keyphrases
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Keyphrase Frequency and Post Length

• Generation models with copy mechanism are better for 
predicting low-frequent keyphrases than classification models

• Image modality plays a more important role when texts 
contain limited features (<15 tokens)
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What our model learns?

• Image-to-text attention visualization for all 12 heads

Happy world turtle globe



67 / 80WANG, Yue Neural Keyphrase Generation for Social Media Understanding

What our model learns?

• Text-to-image attention visualization

Text: The <mention> have the slight lead at halftime!

Main objects: two players Textual region Global view
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What our model learns?

• More examples for text-to-image attention
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What our model predicts?

• Blue tokens are the top four attributes and purple ones are OCR tokens
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Summary

• We design a novel Multi-Modality Multi-Head Attention (M3H-Att) to capture 
the complex text-image interaction for cross-media keyphrase prediction 

• We propose to encode image wordings to bridge their semantic gap 

• We are the first to propose a unified framework coupling classification and 
generation models for better keyphrase prediction

https://github.com/yuewang-cuhk/CMKP
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Outline

• Topic 1: Topic-aware Keyphrase Generation

• Topic 2: Conversation-aware Keyphrase Generation

• Topic 3: Unified Cross-media Keyphrase Prediction

• Conclusion and Future Work
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Conclusion

W3: “Cross-Media Keyphrase Prediction: A Unified 

Framework with M3H-Att and Image Wordings”
(Chapter 5)

[EMNLP 2020]

W4: “VD-BERT:  A Unified Vision and  

Dialog Transformer with BERT”
(Chapter 6)

[EMNLP 2020]

W1: “Topic-Aware Neural Keyphrase

Generation for Social Media Language” 
(Chapter 3)
[ACL  2019]

W2: “Microblog Hashtag Generation 

via Encoding Conversation Contexts”
(Chapter 4)

[NAACL 2019]

Encode 
implicit contexts

Encode 
explicit contexts

Social Media 
Keyphrase Generation

Multi-modality: text-imageSingle modality: text-only
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Future Work (1)

• Extend vision-language pretraining to benefit cross-media
understanding

Pretrain-then-finetune paradigm

Large-scale
Datasets

Task
Datasets

Pretrained
Models

Pretraining Finetuning Models for 
Downstream 

Task 
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Future Work (1)

• Vision-language pretraining can achieve effective vision and dialog fusion

Dialog

Q1: how many people are there? 

A1: 1

Q2: what is he doing? 

A2: looking at the giraffe

[CLS]

𝑝!

𝑜"

𝑝"

…

Segment Image

VD-BERT

Position

Input 𝑜#

𝑝#

[SEP]
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𝐶
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[EOT]
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𝑝|)|

… … …

MLM

…

Text

…

MLM MLM
1: 9𝐴' is correct

0: 9𝐴' is incorrect

Qt: what color is the giraffe? 
9𝐴' : brown and tan

C: a man talking to a giraffe in an enclosure

Vision
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Future Work (1)

• Whether it can encourage fusion of vision and social media post?

Tweet

[CLS]

𝑝!

𝑜"

𝑝"

…

Segment Image

VD-BERT

Position

Input 𝑜#

𝑝#

[SEP]

𝑝#$"

𝐶

…

[EOT]

…

𝑄"𝐴"

…

[EOT]

…

𝑄%𝐴%

…

T[CLS] … … … … … … … …

NSP MLM …

𝑄& 9𝐴'

…

[SEP]

𝑝|)|
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Image

Contemplating 
the mysteries of 
life from inside my 
egg carton...
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Future Work (1)

• Extend to video-text understanding…
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[SEP]
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Future Work (2)

• Unsupervised learning for keyphrase prediction
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Future Work (2)

• Unsupervised machine translation
• [Lample et al., EMNLP 2018]

Source
Language

Target
Language

Back translation

• Unsupervised keyphrase extraction
• [Bennani-Smires et al., CoNLL 2018]
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Thanks!


