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Outline

< Introduction and thesis focus

< Wireless Networks
= Fault tolerance

" Performance

* Message sojourn time
® Program execution time

= Reliability
% Wireless Sensor Networks

= Sleeping configuration
e Coverage with fault tolerance

< Conclusions and future directions
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Wireless Network (IEEE 802.11)

<+ Wireless Infrastructure Network

= At least one Access Point (Mobile Support Station) is

connected to the wired network infrastructure and a
set of wireless terminal devices

= No communications between wireless terminal devices
<+ Wireless Ad Hoc Network

= Composed solely of wireless terminal devices within

mutual communication range of each other without
intermediary devices

= Wireless Sensor Network

e Terminal device with sensing capability
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Wireless CORBA Architecture

CORBA: Common Object Request Broker Architecture
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Wireless Ad Hoc Sensor Network

Deployment Region

Task Management Node

End-User
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Thesis Focus

Wireless
Infrastructure Networks

Wireless Ad Hoc
Sensor Networks
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Figure 1.3: Thesis overview.
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Chapter 3 Message Logging and Recovery in
Wireless CORBA

<+ Motivation
= Permanent failures
® Physical damage

= Transient failures
e Mobile host
e Wireless link

e Environmental conditions

= Fault-tolerant CORBA
% Objective

= To construct a fault-tolerant wireless CORBA
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Fault-Tolerant Wireless CORBA Architecture
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Chapter 4 Message Queueing and Scheduling at
Access Bridge

< Motivation
* Previous work
* Task response time in the presence of server breakdowns

» Wireless mobile environments

® Due to failures and handotfs of mobile hosts, the messages at
access bridge cannot be dispatched

% Objective

= To derive the expected message sojourn time at access

bridge in the presence of failures and handoffs of
mobile hosts

= To evaluate different message scheduling strategies
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Mobile Host’s State Transition

State 0 : normal

State 1 : handoff (H)

State 2 : recovery (U)

p : handoff rate

V., : failure rate

1 : handoff completion
rate

K :recovery rate
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Basic Dispatch Model
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A : message arrival rate for each
mobile host

m : number of mobile hosts

u : service rate of the dispatch
facility
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Static Processor-Sharing Dispatch Model
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Head-of-the-line Priority Queue
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A : message arrival rate

p : handoff rate

V.. mobile host’s failure rate
n : handoff completion rate

K : mobile host’s recovery rate
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Dynamic Processor-Sharing Dispatch Model
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Cyclic Polling Dispatch Model
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Feedback Dispatch Model
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Simulation and Analytical Results (1)

<+ Number of mobile hosts m
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Figure 4.8: Expected message sojourn time vs. number of 1\""IHS.'




Simulation and Analytical Results (2)

< Mobile host’s failure rate vy,
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Figure 4.10: Expected message sojourn time vs. MH's failure rate.
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Chapter 4 Summary

% Analyze and simulate the message sojourn time at
access bridge in the presence of mobile host
failures and handoffs

<+ Observation

= The basic model and the static processor-sharing model
demonstrate the worst performance

= The dynamic processor-sharing model and the cyclic
polling model are favorite to be employed

* However, the cyclic polling model and the feedback model
engage a switchover cost

» [n the basic model and the feedback model, the number
of mobile hosts covered by an access bridge should be
small
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Chapter 5 Program Execution Time at Mobile Host

% Motivation

= Previous work

® Program execution time with and without checkpointing in the
presence of failures on static hosts with given time
requirement without failures
= Wireless mobile environments

® Underlying message-passing mechanism
— Network communications

— Discrete message exchanges

e Handoff
e Wireless link failures
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Program Termination Condition

% A program at a mobile host will be successtully
terminated if it continuously receives 1
computational messages

% Objective
= To derive the cumulative distribution function of the

program execution time with message number 7 in the
presence of failures, handotfs, and checkpointings

* To evaluate different checkpointing strategies
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Assumptions and Mobile Host’s State Transition

SD

State 0 : normal
State 1 : handoff (H)
State 2 : recovery

State 3 : checkpointing

A : message dispatch rate at | A
access bridge

A* : message arrival rate at
mobile host

p : handoff rate

1 : checkpointing rate ‘ 1,’ 2
Y., : mobile host’s failure C/

rate 21
v, : wireless link’s failure

rate
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Composite Checkpointing State
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State 4 : take checkpoint (T)

State 5 : save checkpoint (1))
State 6 : handoff (H)
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Composite Recovery State

Ym | [Tm

#5State 7 : repair (R)

& 5State 8 : retrieve checkpoint (T5)
& 5State 9 : reload checkpoint (1))
¢ State 10 : handoff (H)
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Deterministic Checkpointing Strategy

% The number of messages in a checkpointing
interval is fixed with u

% Checkpointing rate 14. = A/u

B X1, v)] = {

L L E(R)
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E'he_ckpointing time C = 1,00 + T,
Recovery time R’ = [R + T3 + T,hD]®)
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Random Checkpointing Strategy

% Create a checkpoint when | messages have been
received since the last checkpoint

* |: a random variable with a geometric distribution
whose parameter is p

% Checkpointing rate 1. = Ap

E [‘X,(,,,C.f.lz.z)(,2.$p)] _ [ 1
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Without Failures

o 10
i If u=pl, then p(n-1) >w-1,

which indicates that on average the random
checkpointing creates more checkpoints than

the deterministic checkpointing.
% Det P 5 J

L ) g

lim E [\ (desfhd) (n, 4 )] =1+ pE(H)] B (Tl) +E(T2))]. (5.18)

% Random checkpointing

lim E[\ el y, 1))] 1+ pE(H)]

rm l _’O

vm r—O
n - -
XTI) T E(Tz))] (5.28)

w: number of checkpointing intervals
p: parameter of geometric distribution *




Time-based Checkpoint Strategy

% The checkpointing interval is a constant time v
% Checkpointing rate .= 1/v

1
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Average Effectiveness

% Ratio between the expected program execution
time without and with failures, handoffs and
checkpoints

n

A= :
\- E[X(efhD)(n)]

(5.36)

% Checkpointing frequency
uwt=p=(vA)"!
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Comparisons and Discussions (1)

o Message number n

1 . , . ;
\ — — Without checkpointing

—o— Deterministic checkpointing
—— Random checkpointing
—4— Time-based checkpointing

0.8f

average effectiveness

E(R)=10
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Figure 5.2: Average effectiveness vs. message number.




Comparisons and Discussions (2)

% Message arrival rate

average effectiveness

1 :

— — Without checkpointing
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—— Random checkpointing
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Figure 5.3: Average effectiveness vs. message arrival rate.




Comparisons and Discussions (3)

% Optimal checkpointing frequency

average effectiveness
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Figure 5.7: Optimal checkpointing frequency.
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Chapter 5 Summary

% Derive the Laplace-Stieltjes transtorm of the
cumulative distribution function of the program
execution time and its expectation for three
checkpointing strategies

<+ Observation

= The performance of the random checkpointing

approach is more stable against varying parameter
conditions

* Different checkpointing strategies, even including the
absence of checkpointing, can be engaged
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Chapter 6 Reliability Analysis for Various
Communication Schemes

% Motivation
= Previous work

* Two-terminal reliability: the probability of successful
communication between a source node and a target node

= Wireless mobile environments

e Handoff causes the change of number and type of engaged
communication components

% Objective

= To evaluate reliability of wireless networks in the
presence of handoff
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Expected Instantaneous Reliability (EIR)

+ End-to-end expected instantaneous reliability at
time t

ER(t) = Y mi(t)R,(t).  (6.1)

xr

= 1,(t) : the probability of the system in state x at time t
= R (t) : the reliability of the system in state x at time t
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Assumptions

% There will always be a reliable path in the wired
network

% The wireless link failure is negligible

% All the four components, access bridge, mobile
host, static host, and home location agent, of

wireless CORBA are failure-prone and will fail
independently

= Constant failure rates: v,, v.,, 7o and vy,

Dept. of Computer Science & Engineering
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Four Communication Schemes

< Static Host to Static Host (S5)

» Traditional communication scheme

ER(t) = [Ra(1))

< Mobile Host to Static Host (MS)

= 2 system states

< Static Host to Mobile Host (SM)

= 5 system states

< Mobile Host to Mobile Host (MM)

= 11 system states

Dept. of Computer Science & Engineering
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The MS Scheme (Mobile Host — Static Host)
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Figure 6.1: System states in the MS scheme:

(a) normal communication; (b) handoff procedure.

n
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Figure 6.2: Markov model for the MS scheme.




EIR of the MS Scheme

EIR

Figure 6.3: EIR of the MS scheme.
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MTTFE (Mean Time To Failure) of the MS Scheme
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Figure 6.4: End-to-end MTTF of the MS scheme: (a) failure parameters ~,,
and v,; (b) service parameters p and 7.
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The SM Scheme (Static Host — Mobile Host)
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Figure 6.6: Markov models for the SM scheme.




EIR of the SM Scheme (LF_QHLA)
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Figure 6.7: State probabilities and EIR of the SM scheme
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EIR with Location-Forwarding Strategies
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Figure 6.8:
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Time-Dependent Reliability Importance

% Measure the contribution of component-reliability
to the system expected instantaneous reliability

OER(t)

Ir(t) = e = 2 malt) (@) R~ TIR(, e i, (6.7
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Reliability Importance of the SM Scheme
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Figure 6.11: RI of the SM scheme: (a) same failure rate and high handoff rate;
(b) different failure rates and high handoff rate; (¢) same failure rate and low
handoff rate; (d) different failure rates and low handoff rate.
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The MM Scheme (Mobile Host — Mobile Host)

@, P,
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Figure 6.12: System states in the MM scheme: (h) location-querying; (i) nor-
mal communication; (j) MH; in handoff; (k) MH, in handoff; (1) both MH,
and MH, in handoff; (m and q) location-forwarding; (n) location-querying and
MH; in handoff; (o and r) location-forwarding and MH; in handoff; and (p)
location-querying and MH; in handoff.

Dept. of Computer Science & Engineering 48



Markov Models for the MM Scheme

(V) LF_HLA

(VI) LF_QHLA

Figure 6.13: Markov models for the MM scheme.

(VII) LF_AB
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Chapter 6 Summary

% Measure the end-to-end reliability of wireless
networks in the presence of mobile host handoff

< Observation

= Handoff and location-forwarding procedures should
be completed as soon as possible

= The reliability importance of different components
should be determined with specific failure and service
parameters

* The number of engaged components during a
communication state is more critical than the number
of system states
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Chapter 7 Sensibility-Based Sleeping Configuration
in Sensor Networks

< Motivation
* Maintaining coverage

* Every point in the region of interest should be sensed within given
parameters

= Extending system lifetime
® The energy source is usually battery power

® Battery recharging or replacement is undesirable or impossible due to
the unattended nature of sensors and hostile sensing environments
= Fault tolerance
® Sensors may fail or be blocked due to physical damage or
environmental interference
® Produce some void areas which do not satisty the coverage
requirement
= Scalability
e High density of deployed nodes
¢ Each sensor must configure its own operational mode adaptively

based on local information, not on %lo_bal information
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Objective: Coverage Configuration

% Coverage configuration is a promising way to
extend network lifetime by alternately activating
only a subset of sensors and scheduling others to
sleep according to some heuristic schemes while
providing sufficient coverage and tolerating
sensor failures in a geographic region

Dept. of Computer Science & Engineering
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Boolean Sensing Model (BSM)

% Each sensor has a certain sensing range sr

= Within this sensing range, the occurrence of an event
could be detected by the sensor alone

N; € Q, d(Ni,y) < sri. (7.2)

o)

N, : sensor 1

y : a measuring point

Q) : deployed sensors in a deployment region @
d(N,,y) : distance between N; and y

st; : sensing radius of sensor N;
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Collaborative Sensing Model (CSM)

+ Capture the fact that signals emitted by a target ot
interest decay over the distance of propagation

+ Exploit the collaboration between adjacent
Sensors

% Point Sensibility s(IN;, p): the sensibility of a
sensor N, for an event occurring at an arbitrary
measuring point p

@}

d(N;.y)]8

o : energy emitted by events occurring at point p
B : decaying factor of the sensing signal

g T 5 5 54

(7.3)




Field Sensibility

% Collective-Sensor Field Sensibility (CSFS)

i s(N;, y) > e

e, : signal threshold

“ Neighboring-Sensor Field Sensibility (NSFS)

Su(y) = s(Ni,y) + )3 s(N;.y). (7.5)

] Nj € N(@) A S(N]', y) 2 €n

0]

N(i) : one-hop communication neighbor set of sensor N;
g, : required sensibility threshold
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Relations between the BSM and the CSM

% Ensured-sensibility radius

S &

(

v ) ]
€s

1

(7.6)

% Collaborative-sensibility radius

s
ST

(

Y

€ T

)%. (7.7)

& : required sensibility threshold
€, : signal threshold
a : energy emitted by events occurring at point p
B : decaying factor of the sensing signal

Dept. of Computer Science & Engineering
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Sleeping Candidate Condition for the BSM with
Arc-Coverage

% Each sensor N, knows its location (x;, v;), sensing
radius s, communication radius cr

Sponsored Sensing Region (SSR)
Sponsored Sensing Arc (SSA) t;
Sponsored Sensing Angle (SSG) 0;;

Covered Sensing Angle (CSG) w;;

Dept. of Computer Science & Engineering
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Complete-Coverage Sponsor (CCS)

X d(Ni, N]) < SI']' - ST;

CSG 'wi]- =27

SSG 0;; is not defined

Complete-Coverage Sponsor (CCS) of N;

CCS()

Degree of Complete Coverage (DCC) ;= [CCS@)|

Dept. of Computer Science & Engineering
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Minimum Partial Arc-Coverage (MPAC)

% The minimum partial arc-coverage (MPAC)
sponsored by sensor N; to sensor N;, denoted as &,

" on SSA t; find a point y that is covered by the
minimum number of sensors

= the number of N;'s non-CCSs covering the point y

[®)

SSA: Sponsored Sensing Arc
CCS: Complete-Coverage Sponsor
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Derivation of MPAC c‘;i]-

Sponsored Sensing Angle (SSG) 6;

Covered Sensing Angle (CSG) w;;

j
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MPAC and DCC Based k-Coverage Sleeping
Candidate Condition

% k-coverage

= “Aregion is k-covered” means every point inside this
region is covered by at least k sensors.

% Theorem 4

= A sensor N;is a sleeping candidate while preserving k-
coverage under the constraint of one-hop neighbors, ift
C;iZ k or V N] S N(l) - CCS(l), aij> k - (;i -

) o
(D

&; : Degree of Complete Coverage (DCC)

&; : Minimum Partial Arc-Coverage (MPAC)
N(i) : one-hop communication neighbors
CCS5(1): Complete-Coverage Sponsor
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Sleeping Candidate Condition for the BSM with
Voronoi Diagram

% Theorem 5

= Asensor N;is on the boundary of coverage iff its Voronoi
cell is not completely covered by its sensing disk.

I | N | /| I
A sensor N; is said to be on the boundary of coverage it there
exists a point y on its sensing perimeter such that y is not coverd
by its one-hop working neighbors N(i).
6

\/

@

Figure 7.6: Example of coverage boundary: Nj.
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Theorem 6

% A sensor N; is a sleeping candidate iff

= [tis not on the coverage boundary

= When constructing another Voronoi diagram without
N, all the Voronoi vertices of its one-hop working
neighbors in N’s sensing disk are still covered.

Dept. of Computer Science & Engineering
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Example of Sleeping-Eligible Sensor: N;

{ @ ) when Nqis working ( b ) when Nq goes to sleep

Figure 7.7: Example of sleeping-eligible sensor: Nj.
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Sleeping Candidate Condition for the CSM

<% With the NSEFS, if the Voronoi cells of all a sensor’s one-
hop neighbors are still covered without this sensor, then it

is a sleeping candidate.

CSM: Collaborative

Sensing Model

NSFS: Neighboring-

Sensor Field Sensibility

sr;: collaborative-

sensibility radius

Figure 7.9: Scan region for sensor V.
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Location Error

< Assume that a sensor's obtained location is
uniformly distributed in a circle located at its
accurate position with radius ¢4

< normalized deviation of location ¢

* the ratio of the maximum location deviation g4 to a
sensor's sensing radius

% normalized distance d

= the ratio of the distance between a point and a sensor
to the sensor's sensing radius
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Coverage Relationship with Location Error

.Vl.\\a.
(a.1l) d £ 1-¢ (a.2) 1l-£e < d Ssqrt(l—sz) (a.3) sqrt(l-ez) < d = 1l+¢
(a) 021
/'//-"
| 1 | ] | o .
Y / e s
(b.1) 4 £ -1 (b.2) e=1 < 4 ¢ (b.3) < 4 £ 1+¢

(b) e>1
Figure 7.10: The coverage relationship between a point and a sensor with
location error.
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Probability of Coverage with Location Error

probability of coverage
o
NN

.t
co N
V4 L

2

normalized distance 3 o
normalized deviation of location

Figure 7.11: Probability of coverage with location error.
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Sensibility-Based Sleeping Configuration Protocol
(SSCP)

<+ Round-based

* Divide the time into rounds
= Approximately synchronized
= In each round, every live sensor is given a chance to be
sleeping eligible
% Adaptive sleeping

* Let each node calculate its sleeping time locally and
adaptively
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Performance Evaluation with ns-2

% Boolean sensing model

= SS: Sponsored Sector

® Proposed by Tian et. al. of Univ. of Ottawa, 2002

* Consider only the nodes inside the sensing radius of the evaluated node
= CCP: Coverage Configuration Protocol

® Proposed by Wang et. al. of UCLA, 2003

* Evaluate the coverage of intersection points among sensing perimeters

= SscpAc: the sleeping candidate condition with arc-coverage in the
round-robin SSCP

= SscpAcA: the sleeping candidate condition with arc-coverage in the
adaptive SSCP

= SscpVo: the sleeping candidate condition with Voronoi diagram in
the round-robin SSCP

% Collaborative sensing model

= SscpCo: the sleeping candidate condition for the CSM in the round-
fobin SSCP

= (Central: a centralized algorithm with global coordination
Dept. of Computer Science & Engineering 70



Performance Evaluation (1)

< Communication radius cr

sleeping sensor (%)

80| —©— SscpAc
~=— SscpVo
9 _o—2 - SscpCo
: 60 I A : < CCP
A ~7 SS
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Figure 7.14: Percentage of sleeping sensors vs. communication radius cr.
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Performance Evaluation (2)

% Number of working vs. deployed sensors
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Figure 7.15: Number of working vs. deployed sensors.
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Performance Evaluation (3)

+ Field sensibility distribution

percentage (%)
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Figure 7.18: Field sensibility distribution.
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Performance Evaluation (4)

% Loss of area coverage
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Figure 7.21: Deviation of location.
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Performance Evaluation (5)

% Sensitivity to sensor failures

100%—coverage accumulated time

-
N
o
o

2500

ime

e

o)

x-coverage accumulated time: the total time during
which y or more percentage of the original covered
area still satisties the coverage threshold
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Figure 7.22: y-coverage accumulated time vs. MTTF when € = 1.
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Performance Evaluation (6)

% Sensitivity to sensor failures with fault tolerance
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Figure 7.23: y-coverage accumulated time vs. MTTF with FT approaches when € = 1.
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Chapter 7 Summary

% Exploit problems of energy conservation and fault tolerance
while maintaining desired coverage and network
connectivity with location error in wireless sensor networks

= Investigate two sensing models: BSM and CSM
= Develop two distributed and localized sleeping configuration
protocols (SSCPs): round-based and adaptive sleeping

% Suggest three effective approaches to build dependable
wireless sensor networks

= increasing the required degree of coverage or reducing the
communication radius during sleeping configuration

= configuring sensor sleeping adaptively
= utilizing the cooperation between neighboring sensors
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Conclusions and Future Directions

< Build a fault tolerance architecture for wireless
CORBA

* Construct various and hybrid message logging
protocols
% Study the expected message sojourn time at
access bridge
= Derive analytical results for the left three models
= Generalize the exponentially distributed message inter-
arrival time and service time

% Analyze the program execution time at mobile
host

= Exploit the effect of wireless bandwidth and mobile
host disconnection on program execution time
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Conclusions and Future Directions (cont’d)

+ Evaluate reliability for various communication
schemes

= Develop end-to-end reliability evaluation for wireless
sensor networks

% Propose sleeping candidate conditions to
conserve sensor energy while preserving

redundancy to tolerate sensor failures and
location error

= Relax the assumption of known location information
and no packet loss

= Find a reliable path to report event to end-user

= Integrate sleeping configuration protocol with routing
protocol
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Q&A
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