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Efficient Learning in Stochastic Bandits Introduction

An Example: Clinical Treatment with Two Pills
(Thompson, 1933)

1 2 3 4 5 6 .. patient

m Setting
m A sequence of patients with the same symptoms
Two treatments with different performance
v: the patient is cured
X : the patient is uncured

m Question: for the next patient t € N*, which pill should be adopted?
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An Example: Clinical Treatment with Two Pills

(Thompson, 1933)

m Model: Bernoulli distributions (for stochastic feedback)

-
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m Challenge: exploration and exploitation
m Extension: multi-armed bandits (Robbins, 1952)
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Multi-Armed Bandits (MAB)

m Scenario: K arms

m Model: sequential decisions to maximize cumulative rewards

1: input: the number of arms K, and the number of rounds T > K
2: fort=1,---,Tdo

3 selectanarmx; € {1,--- ,K}

4 observe a stochastic reward of arm x; which is y;(x;) ~ Py
5. end for

t

m Alias
m Stochastic MAB
m Online learning with bandit feedback
m A simplified version of reinforcement learning
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Multi-Armed Bandits (MAB)

Empirical average: a four-arm case with Bernoulli distributions

® An experiment

round‘ arm 1 ‘ arm 2 ‘ arm 3 ‘ arm 4 ‘ strategy
1-4 ‘ %:1 ‘ %:1 ‘ %:1 ‘ O—iozo ‘ play each arm
5 | WL =95 1 1 0 break ties
randomly
6 0.5 00419 — 0.5 1 0 break ties
randomly
7 ‘ 0.5 ‘ 0.5 ‘ L OJZH'O =1.0 ‘ 0 ‘ play the best arm
8 ‘ 0.5 ‘ 0.5 ‘ 0‘0';'2‘0 % ‘ 0 ‘ play the best arm

m Issue: arm 4 has never been explored
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Multi-Armed Bandits (MAB)

Empirical average + standard deviation

m An experiment
m Standard deviation of estimate: 1 — 0.7 — 0.6 — --- — 0

round| arm 1 | arm 2 | arm3 | arm 4
4| X41=2 | 4= | 41= | 41=
5| 20407 =12 | 2 \ 2 \ 1
6 | 1.2 | 20810407 =12 | 2 \ 1
7 1.2 \ 1.2 | 20810407 =12 | 1
8 | 1.2 \ 1.2 | 00406 =09 | 1

m Standard deviation works like a confidence bound in (Robbins, 1952)
m Standard deviation controls the quality of estimate
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Efficient Learning in Stochastic Bandits

m Our general problem

How to make decisions based on stochastic feedback?

m Two general goals
m To develop realizable and practical bandit algorithms
m To derive theoretical guarantees for bandit algorithms
m Motivating examples

m Clinical trials

m Online personalized recommendations
m Network routing

m Online resource allocation

=
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Online Personalized Recommendations

® Recommendation with item information = contextual bandits

Google Scholar | mutsamod bands B = a FINANCIAL TIMES
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sponsored web search news recommendation
(Lu et al., 2010) (Li et al., 2011)
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Online Resource Allocation
(Huo & Fu, 2017)

® A continuous arm set = bandit optimization

m Sequential investments with M units of money

target 1: = target 2: = o target d: =
w € R w, € R wg € R

=w=[w, -, wy and Z?lei: 1 with w; > 0
m Goal: to maximize cumulative rewards with the assumption of f(w)

= max ZtT:lf(wt)
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Stochastic Bandits in Machine Learning

Reinforcement learning and zeroth-order optimization

m Three paradigms (Jordan and Mitchell, 2015)

reward feedback

sequential decisions

labeled data

]earn]ng classification

supervised

m Optimization
m Zeroth-order optimization < Bandit optimization
m First-order optimization
m Second-order optimization
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A Taxonomy

bandits
.
feedback (decision-arm set ) final goal
| stochastic: | discrete: » regret minimization
classical MAB | K arms
» pure exploration
non-stochastic: _| continuous:
»| adversarial "| linear bandits
MAB
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Goal and Metric for Algorithm .4

m Regret minimization: min R(A, T)

T
R(A, T) 2 (I ZJ/t —E Zyt(xt) . (1)

Vv
an oracle decisions by A

instantaneous payoff

o from the oracle (te+ is the largest mean in K arms)

regret R(A, T)

payoff from A

round

Xiaotian Yu (Ph.D. Oral Defence) 15/96
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Goal and Metric for Algorithm .4

m A different view

What if we care more about the final decision at T?

m Pure exploration (or best arm identification): min P[xr # Opt]

m x7 is the output of A at time T, and Opt is the true optimal arm
m To solve P[xy = Opi] > 1—§ for§ € (0,1)
m Two settings: fixed confidence and fixed budget

fixed confidence fixed budget

Given ¢, what is the smallest T? Given T, what is the smallest §?

m Theoretical guarantees

m T: sample complexity for fixed confidence
m J: probability of error for fixed budget

Xiaotian Yu (Ph.D. Oral Defence) 16 /96
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Regret Minimization versus Pure Exploration

m Application

m Regret minimization: online advertising for news (Li et al., 2010)
m Pure exploration: marketing for cosmetic products (Bubeck et al., 2009)

m Focus

m Regret minimization: all decisions

m Pure exploration: the final decision

m Hardness (Bubeck et al., 2011)

m Regret minimization is at least as hard as pure exploration

pure exploration

regret nfinimization

'convexﬁy'off(x)

we define xr =

A xl+xz+ txr

= f(&r) < f(x1)+f(x2)+ +f(x1)
= f(xr) — f(Opt) <

R(AT)
T

Xiaotian Yu (Ph.D. Oral Defence)
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Theoretical Advancements of Regret Minimization

‘ first theoretical res-
ults (Lai & Robbins, 1985)

T — oo (asymptotic bounds)
lower bound: RCA:D — T,

log(T) i KL(6;,0+)
~ R(UCB,T) _ A
upper bound: iy = 3 7ia, )

finite time analysis of
bandits (Agrawal, 1995)

T is finite and known (finite-time bound)

upper bound: R(SM, T) = O (El ?L‘(l;i%f;)

‘ efficient algorithms for
MAB (Auer et al, 2002)

T is finite and known

|| upper bound: R(UCB1,T) =0 (Z log(T))

i A

!
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Theoretical Advancements of Regret Minimization

improved analysis (Auer
& Ortner, 2010)

}

T is finite
upper bound for known T:

2
R(IUCB, T) = O (Zi bggﬂ)
upper bound for unknown T:

2
R(IUCB, T) = O (Zi R, o max(A,T))

‘ a new lower bound for
MAB (Bubeck, 2013)

}

T is finite
2
lower bound: R(A, T) =Q (Zl log(Ai'))

Thompson sampling for
MAB (Kaufmann et al., 2012)

Xiaotian Yu (Ph.D. Oral Defence)

T is finite and unknown
upper bound: R(TS, T) = O (X, Ailog(T))

upper bound: R(TS, T) = O( Tlog(T))
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Theoretical Advancements of Pure Exploration

Fixed confidence

PAC bounds in MAB (Even-
Dar et al., 2002)

1

improved PAC bounds for

1

bandits with sub-Gaussian

1

bounded payoffs in [0, 1]
SE: P [T <K A7%log (JLA]C)] >1-46

MEP[T< K10g(})] 216

bandits (Karnin et al., 2013) jﬁ

bounded payoffs in [0, 1]
EGE:

P [T <K A;tlog (% log (ﬁ))] >1-6

noises (Jamieson et al., 2014) jﬁ

sub-Gaussian noises
LILUCB:

P [T < Hylog (%) 4+ Hs] > 1—4V/cd — 4cd

two-armed Gaussian ban-

dits (Kaufmann et al., 2016) jﬁ

two-armed Gaussian bandits

o [og 2
a-E: P [Tg o log(%)] >1-6

Xiaotian Yu (Ph.D. Oral Defence) 20/96
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Theoretical Advancements of Pure Exploration

Fixed budget

first results in best arm
identificaiton (Aud-
ibert & Bubeck, 2010)
v

bounded payoffs in [0, 1]
UCB-E: P[Out % Opt] < TK exp (— TI;IK)

SR: P[Out # Opt] < K(K — 1) exp (— FgT(;’)(HZ)

e-optimal learning (Ga-
billon et al., 2012)

bounded payoffs in [0, b]

UGapEb: Pluout — popt > €] < TK exp (_ TI;K

)

!

improved algorithm and

analysis (Karnin et al., 2013) /_

bounded payoffs in [0, 1]

SH: P [Out # Opt] < log(K) exp (—m)

!

two-armed Gaussian ban-

dits (Kaufmann et al., 2016) /_

two-armed Gaussian bandits

SS: P [Out # Opt] < exp (‘%)
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Methodology for Stochastic Bandits

m Setting: K independent arms with different means {p,- - , ux}

m Frequentist approach
m Unknown fixed parameters: {1, -+, ux}
m Observed rewards: conditionally independent
m Tool: empirical average and confidence interval
m Bayesian approach
m Each parameter follows a distribution: pix ~ Py, Vk € [K]
m Py is a prior
m Observed rewards: conditionally independent
m Tool: sampling from posterior, e.g., Thompson sampling

Xiaotian Yu (Ph.D. Oral Defence)
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Existing Problems in Learning of Stochastic Bandits

m Sub-Gaussian noises in rewards

m Bounded rewards
m Rewards following Bernoulli distributions
m Rewards following Gaussian distributions

Can rewards be more general?
= Yes, such as heavy-tailed rewards (Bubeck et al., 2013)
m Discrete arm sets and linear reward mapping

m Finite arms (corresponding to vertex in a polytope)
m Linear reward mapping

Can arm sets be continuous?
Can rewards come from nonlinear mappings?
= Yes, such as bandit convex optimization (Hazan & Levy, 2014)

Xiaotian Yu (Ph.D. Oral Defence) 24 /96
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Roadmap

regret minimization:
Chapter 5

finite arms:
Chapters 3,4,5

continuous set:
Chapter 5

convex set:
Chapter 6

Xiaotian Yu (Ph.D. Oral Defence)

pure exploration (PE):
Chapters 3,4,6

PE in mean-variance:
Chapter 3

bandit problems

payoff

sub-Gaussian:
Chapters 3,6

heavy tails:
Chapters 4,5
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Pure Exploration of MAB

Previous work: mean information

Optimal:
mean

prior work

work \ theoretical guarantee

(Even-Dar et al., 2006) | lower bound of probability of error

(Audibert & Bubeck, 2010) | Plerror] < Aexp(—aT)
(Gabillon et al., 2012) | a unified model
(Jamieson et al., 2014) | lower bound of sample complexity

*error: it denotes that the output is not the true optimal arm

Xiaotian Yu (Ph.D. Oral Defence)
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Pure Exploration of MAB

Our work (new task): mean-variance

Optimal:

o

variance

m Motivations

m Clinical trial with additional risk

m Financial investments in markets
m Setting

m Metric: mean-variance as w = 02 — ku with a known k > 0

m Goal: identify the optimal arm with the minimum mean-variance
m Effect of

m « is small enough oreven Kk = 0: w =0
m x is large enough: minw < max i

2

Xiaotian Yu (Ph.D. Oral Defence) 27 /96
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Pure Exploration of Mean-Variance (PEMV)

Fixed budget

m Problem

Given x and T, what is the optimal arm of w among K arms?

m Challenges

m What is the error of the mean-variance estimate?
m How to design a selection strategy?
m What is the probability of error for the final selected arm?

Xiaotian Yu (Ph.D. Oral Defence) 28 /96
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Pure Exploration of Mean-Variance (PEMV)

Technical contributions

m New metric for the optimal arm

m Prior: empirical average = mean (sub-Gaussian estimate errors)
m Ours: empirical mean-variance = mean-variance?
= Yes. We prove sub-gamma estimate errors

m Intuitive understanding of algorithms

Confidence Bound (CB) halving technique
m empirical mean-variance m binary search
m a CB term for m estimate error

mean-variance estimate ..
m probability of error

m trade-off between the
estimate and CB

Xiaotian Yu (Ph.D. Oral Defence) 29 /96
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Our Algorithms
[ PEMV.CB
1: input: T, K, R, Hy, H3, k
s 25(T—2K) 5(T—2K)
2 0 = min (576(96R2+H2)R2H1’ 96RZH; )

3: play each arm twice and observe payoffs
4 fort=1,2,--- , Tdo
5. fork € [K]| do

6: wi(k) = 6%(k) — ki (k)

o CBilk) = /R e e

8 pe(k) = @i(k) — CBy(k)

9:  end for
10:  x, = argmingerg) pi(k) > break ties arbitrarily
11:  observe a payoff y;(x;) and save information
12: end for

13: return xr = arg minge () @:(k)

Xiaotian Yu (Ph.D. Oral Defence)
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Our Algorithms

PEMV.HALVING

1: input T, K, k

2: construct a decision-arm set D; = [K], t =0
3: for k =1, [logz( )] do

4 T Lo

5 for a € D do

6: forj=1,---, T do

7: t=t+1

8: select a and observe yj(a)

9: end for
10: end for
11: if |Di| > 1 then
12: forj:l,-~~,|_@]do
13: select an arm x; = arg max,ep, Wi(a)
14: Dk = ,Dk\x_,
15: end for
16: end if
17: Di+1 = Dy
18: end for

19: return xr = Diog, (k)] +1

> delete an arm

Xiaotian Yu (Ph.D. Oral Defence)
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Theoretical Results

m Estimate error: p;(a) = &;(a) — w(a) for a € [K]

[ In Theorem 3.3 on Page 47, we prove
)\2

Elep(u(@)] < e (57— 05 ) @

where A € (0,1/¢),¢>0,v>0
See the definition of sub-gamma distributions in (Boucheron &
Lugosi, 2013)

proof sketch: Moment Generating Function (MGF)

Step 1. calculate the MGF of empirical average
Step 2. calculate the MGF of empirical variance
Step 3. take the trade-off of the above two terms to obtain Eq. (2)

Xiaotian Yu (Ph.D. Oral Defence)
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Theoretical Results

m Probability of error for PEMV.CB

Theorem 3.1 on Page 46 in the thesis

Plxy # Opt] = O (exp <—m>> 3)

*H; and Hj are required in the algorithm
m Probability of error for PEMV.HALVING

Theorem 3.2 on Page 47 in the thesis

Plxr # Opt] = O <exp (T>> (4)

Hlil’l(H4 5 3Hz )

*H;-H,4 denote problem hardness on Page 40 in the thesis

Xiaotian Yu (Ph.D. Oral Defence)
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Experiments

m Settings
m Synthetic dataset for pure exploration of mean-variance
m Real financial dataset for risk control of investments
m Baselines: UCBE and CuRisk
m Metric: probability of error and cumulative returns
m Datasets
m Statistics of synthetic datasets

dalaset‘ #arm ‘

{n(»}

o ()}

[1.0,2.9] with a uniform gap

11 )~o?(15) = 0.6,
) = 0.6, others 0.3

random value in [0.0, 1.0]

random value in [1.0, 2.0]

S2 10 ‘

1) = 1.0, u(y) =

a*(1) = 1.0,
o(y) =2.0— 3¢

m Historical returns on stocks, bonds and bills
http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/

Xiaotian Yu (Ph.D. Oral Defence)
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Results for Synthetic Data

m Probability of error with k = 1.0 and T = 1000

algorithm \ s1 \ s2 \ s3
UCBE | 0.63£0.12 | 0.95+0.04 | 0.95+ 0.03
CuRisk | 0.434+0.06 | 0.63=+0.11 | 0.38=£0.10
PEMV.CB | 0.1940.10 | 0.55=+0.08 | 0.17 % 0.06
PEMVHALVING | 0.05£0.01 | 0.40£0.12 | 0.23 £0.09

m Probability of error with k = 10.0 and T = 1000

algorithm \ s1 \ s2 \ s3
UCBE | 0.32£0.04 | 0.52+0.10 | 0.47 +0.23
CuRisk | 0.56+0.12 | 0.67+0.11 | 0.52+0.12
PEMV.CB | 0.4740.17 | 0.62+0.09 | 0.24 % 0.03
PEMVHALVING | 0.08 £0.05 | 0.47 £0.10 | 0.31 £0.10

*More results can be found on Page 62-64 in the thesis

Xiaotian Yu (Ph.D. Oral Defence)
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Exploration of Mea

Results for Financial Data

Sharp ratio: UCBE (-0.23), CuRisk (-5.14), PEMV.CB (0.59), PEMV.HALVING (0.72)
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Summary

Study the task of pure exploration of mean-variance

Prove the sub-gamma estimation error in pure exploration of
mean-variance

Design two algorithms for pure exploration of mean-variance

Prove the probability of error for pure exploration of mean-variance

Plerror] < Aexp(—aT)

*The results were published in ICDM
(Yu X, King I. and Lyu M. R., 2017)
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What Is A Heavy-Tailed Distribution?

m Noises of rewards are not sub-Gaussian

m High-probability extreme returns in financial markets

0.6

0-1 05

NASDAQ returns

-5 o1

m Many other real cases

m Delays in communication networks (Liebeherr et al., 2012)
m Analysis of biological data (Burnecki et al., 2015)
..
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Heavy-Tailed Distributions

Intuition and definition

m A distribution with a “tail” that is “heavier” than an exponential decay

Y
/‘
\ , K

\
=
A -
S \\Exponentlal:e Hx_ -
—~ \ e
;-‘ -
A ”,’
”
—””
”

Ref: http://users.cms.caltech.edu/~adamw/papers/2013- SIGMETRICS - heavytails.pdf
Mathematically, a random variable X is said to be heavy-tailed if
lim,— 00 €”*P[|X| > x] = oo for all ¢ > 0 (Nolan, 2003)
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Heavy-Tailed Distributions in Bandits

m Heavy-tailed distributions in bandits (Bubeck et al., 2013)
E[X*] < 400, (5)

where X is a stochastic observation/noise, and p € (1, 2]
m Remarks

m Eq. (5) is a subcase of the general definition of heavy tails
m In previous work, payoffs are assumed to have sub-Gaussian noises, i.e.,

E[¢*] < exp (AZR) ! (©)

forall A\ € Rand R > 0
m Payoffs with sub-Gaussian noises are light-tailed with finite variance

= There is a connection between sub-Gaussian noises and heavy-tailed
noises with p = 2

Xiaotian Yu (Ph.D. Oral Defence)
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Weaker Assumption: Bounded p-th Moments

Examples

m Standard Student’s t-Distribution with 3 degrees of freedom
m The 2-nd central moment is bounded by 3
m The 2-nd raw moment of signal (with a constant shift a) under noises

following Standard Student’s t-Distribution is bounded by 3 + a*, where
acR

m The p-th moments satisfy the above properties with p € (1, 2] (Jensen’s
inequality)
m Pareto distribution with shape parameter o and scale parameter x,,

m The p-th raw moments are bounded by axh,/(a — p), for all p € (1, a)
m The p-th central moments are not directly available

Xiaotian Yu (Ph.D. Oral Defence) 41/96
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Pure Exploration with Heavy Tails

m Settings
m New task: identify the optimal arm with the largest mean under heavy
tails
m Input parameter: fixed budget or fixed confidence
m Challenges

m What is tail probability of empirical average?
m How to design new tools for decisions with heavy tails?
m What is the theoretical guarantee for the new tool?
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Pure Exploration with Heavy Tails
Fixed budget and fixed confidence

m Intuitive understanding

m Truncation helps in extreme values

Where should we truncate?

m Technical contributions

m Analyze tail probability of empirical average and truncated empirical
average

m Develop two bandit algorithms for pure exploration of heavy tails
m Derive theoretical guarantees for the two algorithms
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Our Algorithms

successive elimination-d (SE-6(TEA)) for fixed confidence
1: input: 6, K, p, B
2: initialization: [LIT (x) < Oforanyarmx € [K], S < [K],and by <— 0
3t 1 > begin to explore arms in [K]
4: while |S;| > 1do

1 p—1
5: ¢t < 5BP (M) P > update confidence bound

1

6: by <+ (bg,(lgﬁ) 4 > update truncating parameter
7: for x € S; do
8: play arm x and observe a payoff m; (x)
9: ﬁj.(x) — % Z?"i(x)]l[\m(x)lgb,'] > calculate TEA
10: end for
11: X; <= argmax,e [x] ;lj (x) > choose the best arm at t
12: Si1 0 > create a new arm set for t 4 1
13: for x € S; do
14: if ﬂj (xt) — [l,tT (x) < 2¢; then
15: Si41 = Sey1 + {x} > add arm x to Sy 4y
16: end if
17: end for
18: t+t+1 > update time index
19: end while
20: out + S[0] D> assign the first entry of S; to Out
21: return: Out
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Our Algorithms

successive rejects-T (SR-T(TEA)) for fixed budget
1: input T,K, p, B A > 0
2: initialization: [ﬂ (x) < 0 forany arm x € [K], S < [K], np <= 0, b < 0 and
1
K+ Z; 1% (%) P > calculate truncating parameter
3: &(x) < Qforallx € S > construct sets to store time index
4: fork € K —l]do
5: Ny fm] > calculate ny at stage k
6: n<— ng — ng_ > calculate the number of times to pull arms
7 for x € S do
8: for i € [n] do
9: tt+1
10: play arm x, and observe a payoff 7 (x)
11: D(x) « D(x) + {t} > store time index for arm x
12: end for
13: )+ fatr Siea o T m1<H
14: end for
15: Xy < arg minyes, ;l;r (x) > choose the worst arm at k
16: Sk1 < Sk — {x} > successively reject arm xj.
17: end for
18: Out < Sk|[0] > assign the first entry of Sk to Out
19: return: Out
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Theoretical Results

m Fixed confidence

1<p<2

For SE-5(EA), we have T = O ((%) ﬁ)
For SE-6(TEA), we have T = O (log (}))

m Remarks
m SE-0(TEA) has an improvement in terms of 6
m For sub-Gaussian noises, we have
T=0 (log (%)) (see Page 77 in the thesis)
= SE-0(TEA) recovers the sub-Gaussian results
m To have the results when p > 2 (see Page 85 in the thesis)
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Theoretical Results

m Fixed budget

1<p<2

For SR-T(EA), we have P[Out # Opt| = ( )

For SR-T(TEA), we have P[Out # Opt] = exp( T))
m Remarks

m For sub-Gaussian noises, we have
Plerror] < Aexp(—aT) (see Page 78 in the thesis)
= SR-T(TEA) recovers the sub-Gaussian results
m To have the results when p > 2 (see Page 87 in the thesis)
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Experiments

m Setting

m Synthetic dataset for pure exploration of heavy tails
m Real-world datasets in cryptocurrency
m Metric: sample complexity and probability of error

m Datasets

m Statistics of synthetic datasets

arms are over [1.0, 1.8]
with a uniform gap

dataset #arms {u(x)} heavy-tailed
{p.B,C}
S1 10 one arm is 2.0 and nine {2,7,3}
arms are over [0.7, 1.5]
with a uniform gap
S2 10 one arm is 2.0 and nine {2,7,3}

m Top ten cryptocurrency in terms of market value

https://www.cryptocompare.com/
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Results for Synthetic Data

Fixed confidence

S1{10} S2 {10}
3x10° —— SEO(EA) —— SE-56(EA)
o —e— SE-6(TEA) - —e— SE-6(TEA)
32x10° 3
[ [
€ €
o o
o o
< 10° K
Q [
& 5 3x105
X
Y 6x10
0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04
Fixed Confidence & Fixed Confidence &

m SE-§(TEA) outperforms SE-0(EA) with small § for S1 and S2

m The crossover point occurs when 4 is large
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Results for Synthetic Data

Fixed budget
S1 {10} Sz {10}
0.36 —— SR-T(EA) —— SR-T(EA)
—— SR-T(TEA) —— SR-T(TEA)
5 5 0.30
20.34 2
w w
s %025
5032 50
3 3
5030 8 020
o o
& 0.28 £
0.15
0.26
400 600 800 1000 400 600 800 1000
Fixed Budget T Fixed Budget T

m SR-T(TEA) is comparable to SR-T(EA) for ST and S2

m The constant factors in the theoretical results matter
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Results for Financial Data

m Ten selected cryptocurrencies in experiments

full name | symbol | market value in April 2018 (unit: billion US dollar)
Bitcoin | BTC | 155
Ethereum ‘ ‘ 66
Classic
Ripple |  XrRP | 32
Bitcoin Cash | BCH | 23
EOS | EOS | 15
Litecoin | ¢ | 8
Cardano | ADA | 8
Stellar | xm | 7
IOTA | o1 | 5
NEO | NEO | 5
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Results for Financial Data

B Statistical property of ten selected cryptocurrencies with hourly returns from Feb. 3rd, 2018 to
Apr. 27th, 2018 (KS-test1 denotes Kolmogrov-Smirnov (KS) test with a null hypothesis that real
data follow a Gaussian distribution, and KS-test2 denotes KS test with a null hypothesis that real
data follow a Student’s t-distribution)

symbol empirical statistics KS-test1 KS-test2
(meanx 103, variance x 103) (statistic, p-value) (statistic, p-value)
BTC | (0.36, 0.54) | (0.08,0.005) | (0.05, 0.20)
ETC | (0.29, 1.03) \ (0.07,0.02) \ (0.03, 0.89)
XRP | (0.33,0.94) | (0.09,0.0004) | (0.03,0.61)
BCH | (0.78,0.92) \ (0.08,0.001) \ (0.03,0.64)
EOS | (1.56,1.18) | (0.09,0.0002) | (0.03,0.88)
LTC | (0.68, 0.86) | (0.10,0.0002) | (0.04, 0.49)
ADA | (0.02,1.22) \ (0.07,0.03) \ (0.02,0.99)
XM | (0.62,0.12) \ (0.07,0.02) \ (0.03,0.80)
10T | (0.68,0.11) \ (0.07,0.02) \ (0.04,0.57)
NEO | (—0.31,1.26) | (0.10,0.0002) | (0.04, 0.53)
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Results for Financial Data

m Estimated parameters for ten cryptocurrencies

(p, B, C) in experiments

symbol |  degree of freedom |
BTC | 3.50 \
ETC | 3.81 \
XRP | 253 \
BCH | 3.00 \
EOS | 2.90 \
LTc | 2.75 |
ADA | 3.55 \
XLM | 3.81 \
oT | 4.66 \
NEO | 313 \

(2,1.577x1073,1.575x1073)
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Results for Finanical Data

0.01 0.02 0.03 0.04 0.05
Fixed Confidence &

fixed confidence fixed budget
—— SE6(EA) 0.84 —— SR-T(EA)
> —e— SE-6(TEA) 5 0.82 —e— SR-T(TEA)
o 3
31 & 0.80
=1 -
£ >
078
S £
OJ Q
o go76
E 2
& &£0.74
T — 0.72
1000 2000 3000 4000 5000

Fixed Budget T

m SE-6(TEA) and SR-T(TEA) perform better
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Summary

m Study pure exploration of bandits with heavy tails

m Derive tail probability of empirical average and truncated empirical
average

m Design two algorithms for pure exploration of bandits with heavy tails

m Derive theoretical guarantees of the two bandit algorithms

*The results were published in UAI
(Yu X, Shao H., Lyu M. R. and King I., 2018)
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LinSB with Heavy-Tailed Payoffs

m Scenario

True Empirically,

Optimal

Optimal

att

x1 = {Thisis an old arm}

orx; = [0,1,0,--- ,1]

orxy; € R4 XK, t

Exploration Exploitation
m Setting

m At ¢, an algorithm is given D; C R? with 0, € R?
m Select an arm x; € Dy, and observe y;(x;) = (x, 0.) + 7
m The goal is to maximize Zthl Ve(xt)

m Assumption: y;(x;) or 1 is heavy-tailed conditional on F;_;
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Problem Definition
Linear stochastic Bandits with hEavy-Tailed payoffs (LinBET)

LinBET

Given a decision set D; for timestept =1,---, T,
an algorithm A, of which the goal is to maximize
cumulative payoffs over T rounds, chooses an arm
x; € Dy. With F;_1, the observed stochastic payoff
y:(x;) is conditionally heavy-tailed, i.e.,
E{lyt|P|Fi=1] < borE[|y: — (x, 0.)|P| Fra] < c,
where p € (1,2],and b, ¢ € (0, +00).
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Challenges and Contributions

m Challenges

m The lower bound of LinBET
m How to develop a robust estimator of the parameter for LinBET and bandit
algorithms
m Results in previous work (Medina & Yang, 2016) are far from optimal
m Sub-Gaussian: regret is O(v/T)
m Prior results when p = 2: regret is é(T%)

= How to develop results when p = 2 recovering the regret with
sub-Gaussian noises?

m Contributions
m The first to provide the lower bound for LinBET

m Develop two novel bandit algorithms to solve LinBET
m Two algorithms are optimal up to logarithmic factors
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Lower Bound of LinBET
m Setting
Assume d > 2 is even. For D, € RY, we fix the decision set as D; = Da),
where D4 2 {(xg, -+ ,xq) € ]Ri x4 X = =x4_1+ x4 = 1}. Let

Sa £ {(Gla T ?Qd) Vie [d/Z] ) (921'*1’ 021') 61 {(ZAa A)? (A7 ZA)}}
with A € (0,1/d]. Payoffs are in {0, (1/A)?=1} such that, for every
x € D(g), the expected payoff is 6] x.

m Result (Theorem 5.1 on Page 107 in the thesis)

lower bound

E[R(A, T)] = Q(T?)

*Sub-Gaussian noises: regret lower bound Q(/T)
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Existing Problems in Prior Work
Regret

m Least square estimate: 0, = Iy + X X)) 71X, Y,
where X; = (x1,--- ,x;)and Y; = (y1,- -, y0) 7
= Considering V;, = I + X, X/, we have

ry =
1 t

Mﬂ

T T
R(A,T) = (Ox, %6) — (O, x1) < Z Gt, Xi) — (O, x1)
= =1

t 1

MH

(16 = brsllvies = 161 — Oullvi, ) Dl

an ellipsoid: {6]|0; — 0]|v, < Bt}

t=1

= Sub-Gaussian noises: 8; = O(y/log(t))
= R(.A, T) = O(maxtem /Bt—lﬁ)

= (Medina & Yang, 2016): R(A, T) = O (T%>when p=2
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Algorithms: MEdian of meaNs under OFU (MENU)

 MENU

1 inputd, c,p, 5, A\, S, T, {D,}V_,

2 initialization: k = [241log (§)], N = [ £], Vo = M, G = B(0, S)
3 forn=1,2,--- ,Ndo

4 (xm en) = argmMaX(x g)eD,x Cy—y <x7 9>

Play x, with k times and observe payoffs y, 1, yn2, -, Ynk
Vo= Vi1 + XX,

Forj € [k Ony = Vil Yl yixi

For j € [k, let r; be the median of {||0n; — Onsllv, : s € [k]\J}

k* = arg min;c(y 1y
1 2=p 1
10 B,=3 ((9dc)ﬁ n» + )\ES)

11: Cn = {9 : ”9 — én,k*”Vn < Bn}
12: end for

D N AN

Xiaotian Yu (Ph.D. Oral Defence)



in Stochastic Bandits Our Contributions | Linear Stochastic Bandits with Heavy Tails

Understanding of MENU

Framework comparison

 MENU MoM by (Medina & Yang, 2016)

O

take median of means of {0, caleulate LSE with {i;},

take median of means
of payoffs on {z;}*,i € [n]

calculate k LSEs with payoffs on {z;}7_, = ==
—E— === wll o oy
FEARIECN I R TN T
i 0 @l o | ay
Ty (- Mo k=Tsl2 I
k= [24log (£)] h8 LI g - 1
1 1
T
1
W L1 T2 T3 |- | Tp TN ;
1 121 B A
[y Sy S S S e I
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Upper Bound Analysis: MENU

Results

m Intuitive idea

a P (||én —0,|lv, < (9dc)in' T +)\%S) >3

= With probability at least 1 — e~ 3, Hén,k* —0.lv, <3y

s RAT) < X0, (10 = isllvi, = 18- = Bullvi, ) lxlly
m Our result (Theorem 5.2 on Page 111 in the thesis)

R(MENU, T) = O(T?)

Xiaotian Yu (Ph.D. Oral Defence)



Efficient Learning in Stochastic Bandits  Our Contributions Linear Stochastic Bandits with Heavy Tails

Algorithms: Truncation under OFU (TOFU)

TOFU
1: inputd, b, p, 8, \, T, {D;}_,
2: initialization: Vo = A\l;, Co = B(0, S)
3: fort=1,2,---,Tdo
1
. _ b p=1 Iop
4: b = <1og(§)> 2
5: (xt,0;) = arg maX(xyg)eD[Xq_l(x, 0)
6: Play x; and observe a payoff y;
7: Vi=Vi1+ xtxtT and XtT =[x, ,x)
8: [, -+, ud]T = Vt_l/zX[T
9: fori=1,---,ddo
10: YiT = (yl]lui,lJ/let?'” 7yf]lux,tyt§b:)
11: end for
120 0l =V, Py ] )
1 =l a—p
13: B, =4vdbr (1og (%T)) 7 f % b ALS
14: Update C; = {0: |0 — 6] ||v, < B:}
15: end for
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Understanding of TOFU

Framework comparison

m For TOFU, at time ¢, all of the history payoffs are truncated by b, for
each u;
L YIT = (yl]lui,lylﬁbﬂ o ’yt]lui,thSb:)
= 0 = V;l/2(ulTY1T, cee u;Y;)
m For CRT in (Medina & Yang, 2016), the payoff at time ¢ is truncated by
ay
n Y = il <a,
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Upper Bound Analysis: TOFU

Results

m Intuitive idea

m Trade-off between truncation error and bounded payoffs
m Truncation parameter related to historical information
m CRT in (Medina & Yang, 2016) only cares about time step

m Our result (Theorem 5.2 on Page 113 in the thesis)

R(TOFU, T) = O(T?)
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Experimental Results

m Datasets
m Four synthetic datasets
m Metric: cumulative payoffs
m Baselines: MoM and CRT (Medina & Yang, 2016)
m Settings
m Run independently ten times for each experiment
m Show cumulative payoffs with one standard variance
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Experimental Results
Synthetic datasets

statistics
dataset | {#arms,#dim} distribution {¢, b, c} optimal
{parameters} arm
S1 120,10} Student’s {1.00, NA, 3.00} | 4.00

t-distribution {v =
3,I,=0,s, =1}

s2 {100,20} Student’s {1.00, NA, 3.00} |  7.40

t-distribution {v =
3,I,=0,s, =1}

S3 {20,10} Pareto distribution | {0.50, 7.72, NA} 3.10
{a=2s,= %}

S4 {100,20} Pareto distribuTtion {0.50, 54.37, 11.39
o =25, = 22} NA}
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Experimental Results

Central moments

S1: 20,10}

le5

o
o

1 —— MomMm
—e— MENU

o
o

Cumulative Payoffs
o
>

o
]

o
o

0.5

1.0
Rounds

15

led

1.50

Cumulative Payoffs
e ©o o = B
N w ~ o N
w o w o w

o
o
)

[52: {100,20}

le5

—+— MoM
—e— MENU

0.5 1.0 15 2.0
Rounds le4

m Our algorithm MENU outperforms MoM in (Medina & Yang, 2016)
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Experimental Results

Raw moments
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m Our algorithm TOFU outperforms CRT in (Medina & Yang, 2016)
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Summary

m Contributions
m Derive lower bound for LinBET
m Develop two novel bandit algorithms to solve LinBET
m Theoretical results are optimal up to logarithmic factors

improvements: almost matching the lower bound S2(Tfl>)

algorithm ||  MoM MENU || CRT | TOFU

|
regret || O(1%) | o(ri) || orith) | o(ri)

|

|

complexity || O(T) O(TlogT) || O(T) | O(T?
storage || O(1) O(logT) || 0O(1) | O(T)

*The results were published in NIPS
(Shao H., Yu X,, King I. and Lyu M. R., 2018)
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Nonlinear Stochastic Bandits

m Reward function: non-linear

m Settings: convex and non-convex (a discussion)
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Stochastic Zeroth-order Convex Optimization (SZCO)

Practical scenarios

m White-box optimization
m Linear regression
m Logistic loss for binary classification
m Convex optimization
m Stochastic black-box optimization
m Unknown objective functions
m Noisy feedbacks
m Many real cases
1. Online advertisement selections (Wibisono et al., 2012)
2. Stochastic structured predictions (Sokolov et al., 2016)
3. Optimization in biological experiments (Nakamura et al., 2017)
4. ...
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Stochastic Zeroth-order Convex Optimization (SZCO)

Practical scenarios

Plot of real experimental output in (Nakamura et al.,
2017) for an industrial device with different input
parameters, i.e., Temperature and Tetraethylene Glycol
(TEG)

Percent Surface Coverage
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Stochastic Zeroth-order Convex Optimization (SZCO)

Motivation

m How to determine the optimal parameter in a convex and compact set

m A lot of real experiments
m A statistical analysis (with a convexity assumption)

m Drawbacks of previous work
m Time consuming for experiments
m Expensive

m Settings of our work

m Convex objective functions < Concave reward functions
m Noisy feedbacks
m Unknown objective functions
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Stochastic Zeroth-order Convex Optimization (SZCO)

Definition

m f(x;€) is the convex model in learning problems
m X is the parameter to be learned with x € R¢
m ¢ is the samples with noises

m The goal is to solve

min f(x) = Ee[f (x;€)] @)

x€N

m e-optimal solution
An e-optimal solution X satisfies the following condition:
E[f(%;€) — mingeq f(x; )] < €
m Theoretical guarantee
How many samples do we need in order to get X? (iteration complexity)
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Two Settings in SZCO

m One-Point Evaluation (OPE)

m For each round, one noisy observation is revealed
m Noisy gradient estimator (Flaxman et al., 2005)

d
g = gf(xt + dug; & )uy, (8)

where u; ~ B(0,1) and § > 0.
m Two-Point Evaluation (TPE)
m Noisy gradient estimator (Agarwal et al., 2010)

d
g = 2% (F(xe +0u &) — f (% — Sy &))uy ©)

m Solver: stochastic gradient descent
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Previous Work

setting ‘ algorithm

assumption

iteration complexity ‘ h.p. or exp.

2
o (%) ‘ exp.

(Flaxman et al., 2005) ‘ LC

OPE 2
o4
(Agarwal et al., 2010) el 9 52 exp.
LC+SC+SM | O(% exp.
&
(Agarwal et al., 2010) LC ? 52 h.p.
LC +SC o hp.
€
o(&
(Nesterov, 2017) LC Oz exp.
TPE LC + SM o(4 exp.
€
~ ( dlogd
(Duchi et al., 2015) . o(—= ) exp.
LC + SM o(4 exp.
‘ (Shamir, 2017) ‘ LC ‘ o (E%) ‘ exp.

LC: Lipschitz Continuous, SC: Strong Convexity, and SM: SMoothness
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Local Error Bound (LEB)

m LEB works for first-order optimization: acceleration
m Previous work (Yang et al., 2015; Bolte et al., 2015; Xu et al., 2017)

A problem of Eq. (7) satisfies the LEB condition on a compact set €2 if there exist
6 € (0,1] and ¢ > 0 such that for any x € Q

dist(x, Q) < ¢(f(x) — min f(x))?, (10)

x€Q

where dist(x, Q,) £ minyeq, ||v — x|/,

m How can we apply LEB into SZCO?
m To improve the iteration complexity of SZCO
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Local Error Bound (LEB)

m An example: quadratic condition with § = 1/2
y=x
y=3a

Understanding;:

m The quadratic function has a
sharper slope

Wo u f(wy) — f(wz) >
ql|wi — wa |2, with ¢ > 0

Xiaotian Yu (Ph.D. Oral Defence)
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Local Error Bound (LEB)

Examples

m Example 1

When f(x; &) = x' € is a linear function and € is a polyhedral set (e.g.,
hypercube), then the problem of Eq. (7) satisfies the LEB with § = 1.
These functions are considered in online bandit linear optimization.
More generally, if f(x) is a polyhedral function and 2 is a polyhedral
set, then LEB with § = 1 holds. For instance, f(x) = Y1, |a/ x — b;|/n
and Q = {||x||; < s}.

Example 2

When f(x) is strongly convex, then the LEB condition holds with
0=1/2

Example 3

Even when f(x) is not strongly convex, the LEB condition with § = 1/2
may still hold, such as f(x) = Y7, (a/ x — b;)%/nand Q is a polyhedral
set.
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Algorithm: A Generic Approach for Accelerating SZCO

Algorithm 1

1: initialization x¢, K, 1y, 01, Dy
2 fork=1,--- ,Kdo

3: Xi =X, D =QN IB(X}(, Dk)
4 fort=1,--- tdo
5: compute a gradient estimator in light of Eq. (8) or
Eq. (9)
6: compute x}_ according to stochastic gradient descent
(under domain strinkage) with a step size ny, a para-
meter Oy, and a domain D
7. end for
g letxp=>"'_ x]/t
9:  update 01, Dxtq and Mg4q
10: end for

11: return xg
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Our Results: OPE

setting ‘ algorithm ‘ assumption ‘ iteration complexity ‘ h.p. or exp.
2
‘ (Flaxman et al., 2005) ‘ LC ‘ 0 (%) ‘ exp.
o(&
(Agarwal et al., 2010) LC+SC ? 62 exp-
LC+SC+SM | O(% exp.
€
fo) i 1
OPE our work LC + LEB 0 e2(2—0) €03 exp-

~ 2
O(=s7).0€(0,1] | hp

~ &z R
our work tc+Lee+sm | O\lam ) 0 € (0, exp.
.0 €(0,1] h.p.

LC: Lipschitz Continuous, SC: Strong Convexity, SM: SMoothness, and LEB:
Local Error Bound

m An order improvement in convergence rate
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Our Results: TPE

setting | algorithm | assumption | iteration complexity | h.p. orexp.
dZ
(Agarwal et al., 2010) LC o % h.p.
LC +SC o(x h.p.
€
~ 2
(Nesterov, 2017) LC ol €xXp-
TPE LC + SM o(< exp.
€
= ([ dlogd
(Duchi et al., 2015) LC o(~a ) b
LC + SM ) g) exp.
‘ (Shamir, 2017) ‘ LC ‘ o (E%) ‘ exp.
‘ our work ‘ LC + LEB ‘ 0 (ez(fi0)>"9 €(0,1] ‘ h.p.
‘ our work ‘ LC + LEB ‘ 0 (52(%9))’ 0 € (0, 3] ‘ exp.

LC: Lipschitz Continuous, SC: Strong Convexity, SM: SMoothness, and LEB:
Local Error Bound
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Experimental Results

m Datasets
m Two real-world datasets
B Music recommendation competition data
m Industrial data on ceramic thin films
m Metric
m [teration complexity with respect to objectives
m Setting
m Three baselines and add ‘. Acc’ for each baseline as the method based on
Algorithm 1

m Run experiments in a personal computer with Intel CPU@3.70GHz and 16
GB memory

m Independent ten times for each epoch
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Experimental Results

Music recommendation competition data (KDD 2011)

m KDD competition: suppose we have multiple models to conduct score
prediction, how to determine the weight of each model?
= Online resource allocation

N )2
f(X) — w’ 6 = 0.5, and T = 10*

N
~

N
[=)]

Square Loss
N
w

—+— OPE
| —e— TPEA
—»— TPEN
OPE.Acc
—&— TPEA.Acc
—¥— TPEN.Acc

10° 10! 102 103 104
Iteration

N
EN

N
w
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Experimental Results

Music recommendation competition data (KDD 2011)

4.2

4.14

Absolute Loss

4.0

3.94

—&— TPEAAcc
—¥— TPEN.Acc

10°

10t

10?
Iteration

103 104
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Experimental Results

Music recommendation competition data (KDD 2011)

f(x) is averaged Huber loss, § = 1 and T = 10*

6.0{ . —— OPE
~&— TPEA
59/ S
&~ TPEA.Acc
~¥— TPEN.Acc
0 5.81
o
p
5 5.71
< ¥
£ 5.6 I
551 —
5.4 1
10° 10t 102 103 104
Iteration
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Experimental Results

Industrial data on ceramic thin films

Growth of ceramic thin films with T = 10*

90
—+— OPE
—e— TPEA
—»— TPEN
801 OPE.Acc
—&— TPEA.Acc
—¥— TPEN.Acc
70

60 A

50 A

Percentage of Coverage

e

10° 10!

102
Iteration

10 104
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Summary

m Contributions
m Design a generic framework for SZCO with LEB
m Derive iteration complexity of the generic framework
m Theoretical guarantees beat the state-of-the-art results
m The results can be extent into non-convex cases (feed-forward networks)

*The results were published in IJCAI
(Yu X, King I, Lyu M. R. and Yang T., 2018)
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Conclusion

m Contributions
m Goals: pure exploration and regret minimization
m Settings: mean-variance, heavy tails, nonlinear payoffs
m Output: algorithms with theoretical guarantees

task \ pure exploration \ regret minimization

‘ (Audibert et al., 2010)

mean-variance
‘ (Yu et al., 2017) in ICDM

MAB with heavy ) (Bubeck et al., 2013)
(Yu et al., 2018) in UAI

tails
linear bandits with (Hsu & Sabato, 2016) (Medina & Yang, 2016)
heavy tails (Shao et al., 2018) in NIPS
nonlinear payoffs (Flaxman et al., 2005; (Hazan & Levy, 2014;

Agarwal et al., 2010) (Yu Bubeck et al., 2016)
etal, 2018) in [JCAl

Xiaotian Yu (Ph.D. Oral Defence) 93/96



Efficient Learning in Stochastic Bandits  Conclusion

Conclusion

Future work

m Adaptive learning in bandits

m Learning in bandits with dependent arms
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Chapter 3: Theoretical Results

Theorem (Estimate error for mean-variance)

For pure exploration of mean-variance in MAB with K arms, suppose
Assumptions 3.1-3.3 are satisfied. We define a random variable as
pi(a) = &,(a) — w(a) for any a € [K]. Then, we have p;(a) is
sub-gamma on the right tail, implying

Elexp(Api(a))] < exp (MA_ZA)), (1)

where A € (0,1/c), c = 8R*, v = (192R* + k*)R? for any a € [K] and
t e [T].

Proof of Theorem 3.3 on Page 47 in the thesis
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Chapter 3: Theoretical Results

Theorem (Probability of error for PEMV.CB)

For pure exploration of mean-variance with K-arm MAB, suppose
Assumptions 3.1-3.3 are satisfied. If PEMV.CB is run with a fixed

budget TK, we have the upper bound of the probability of error for
PEMV.CB as

Plxr # Opt] < 2TK exp (—g) , (12)

where § € (0, min ( 25(T—2K) S(T_ZK))].

576(96R?+-~2)RZH; > 96RZHj

Proof of Theorem 3.1 on Page 53 in the thesis
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Chapter 3: Theoretical Results

Theorem (Probability of error for PEMV.HALVING)

For pure exploration of mean-variance with K-arm MAB, suppose
Assumptions 3.1-3.3 are satisfied. If PEMV.HALVING is run with a

fixed budget T, we have the upper bound of the probability of error for
PEMV.HALVING as

P[xr # Opt] < 2K exp <_log2(€()H> , (13)

where H = 12(96R* + k*)R? min(Hy, 3Hy).

Proof of Theorem 3.2 on Page 58 in the thesis
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Chapter 4: Theoretical Results

[ Theorem (Sample complexity of SE-0)

For pure exploration in MAB with K arms, with probability at least
1 — §, SE-) identifies the optimal arm Opt with sample complexity as

m for SE-)(EA)
€ rrhigey 7
TSZ( AlS ) :

_P_
K (zom)’” (21()
Z 10g 7 9

Proof of Theorem 4.1 on Page 88 in the thesis

m for SE-0(TEA)

where p € (1, 2].
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Chapter 4: Theoretical Results

Theorem (Probability of error for SR-T)

For pure exploration in MAB with K arms, if Algorithm SR-T is run
with a fixed budget T, we have probability of error for p € (1,2] as

m for SR-T(EA)

K\
P[Out # Opt] < 2P"'CK(K — 1)H} (TI() ,
m for SR-T(TEA)

(T — K)B;

where B, = —2=1

4(2p3BpP) P—1

Proof of Theorem 4.2 on Page 90 in the thesis
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Chapter 5: Lower Bound of LinBET

m Setting
Assume d > 2 is even. For D, € RY, we fix the decision set as D; = Dq),
where Dy £ {(x1,- - ,x%3) ERY i xp +xp =+ = xg_1 + x4 = 1}. Let

Sa = {(01,--- ,0q) : Vi€ [d/)2],(02i_1,05) € {(2A,A), (A, 2A)}}

with A € (0,1/d]. Payoffs are in {0, (1/A)1’%1} such that, for every
x € D(g), the expected payoff is 6] x.
m Result

Theorem (Lower bound of LinBET)
If 0, is chosen uniformly at random from S, and the payoff for each x € D(y)

is in {0, (1/A)P '} with mean 6 x, then for any algorithm A and every
T > (d/12) , we have
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Chapter 5: Lower Bound of LinBET
d=2and E [|y;|P|Fi—1] < d case

= Decision set: Dyy = {(x1, %) € RA : x; + x, = 1}

m Payoff function of x:

() = (i)ﬁ%l with a probability of Aﬁ%le;rx,
0 with a probability of 1 — AP%IGIx

m 0, is chosen uniformly at random from {11, u2}, where u; = (2A, A)

and pp = (A, 2A)
m Change of measure (through 1o = (A, A))
m Set A = T_P%/lz
s E[R(A,T)] > LT7
m Extend it to d > 2
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Chapter 5: Algorithm for Linear Stochastic Bandits
OFUL (Abbasi-Yadkori et al., 2011)

m At time t, select arm x; by
m (x, 9,) = arg max(y g)ep,xc,_, (*, 0)
mCG={0:]0- é[’k* v, < Bk Vi= A+ Z::l xx]
m Bo = V642
m For sub-Gaussian case, §; = O (\/th)

m The regret is bounded by 0 (maxtem Bt,lﬁ)
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Chapter 5: Upper Bound Analysis: MENU

Results

Theorem

Assume that for all t and x; € D; with ||x;|l2 < D, ||0.]]2 < S, |x, 04| < L and
E[|n:|P|Fi—1] < c. Then, with probability at least 1 — 0, for every
T > 256 + 241og (e/d), the regret of the MENU algorithm satisfies

).

R(MENU, T) < O(c

=

T

i

at

=i

Proof of Theorem 5.2 on Page 118 in thesis
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Proof sketch

m Lemma 1 (Confidence Ellipsoid of LSE)
Let én denote the LSE of 6, with the sequence of decisions xp, - - - , x,
and observed payoffs y, - - - , y,. Assume that for all 7 € [n] and all
€ D, C RY E[|n;|P|Fr_1] < cand ||6,]|; < S. Then 6, satisfies

—P

P (116 — 0:llv, < (9de)on & +2i5) >

-h\w

® Lemma 2
Recall 6, 0, and V, in MENU. If there exists a v > 0 such that

Pr (H% Oy, < 7) > 3 holds for all j € [k] with k > 1, then with
probability at least 1 — 675, Hén,k* —O|lv, < 3.
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Proof sketch of Lemma 1

m Let u; denote the i-th row of V;l/ZXtT

2
& 10— Oullv, < /3L, (4 (Yo — X)) + A6y
m Union bound

“(E(Er) >7)

d n 2
<P (3,7, |uirne| > ) +P (Z (Z e ey, Tnf<w> > 72) :

i=1

where 1{.} is the indicator function

m Both terms could be bounded by Markov’s inequality
1o20p
m Sety = (9dc)rn?
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Proof sketch of Lemma 2

k

» By Azuma-Hoeffding’s inequality, we have with prob. at least 1 — ™2,

more than 2/3 of {0n 1, n’k} are contained in

By, (6x,7) £ {0 : 110 — 0. ||Vn <7}
m 1; be the median of {||0,; — 0,5|v, : s € [k]\/}
m Select arm arg min;c(y 7y

m £, € By, (0x,7), [0n) — Onsllv, < 2 for all 8, € By, (6,7) by
triangle inequality. Therefore r <2y

n If9,,] ¢ By, (0«,37), ||9,” Onsl|v, > 2 for all 9“ € By, (04,7) by
triangle inequality. Therefore, r; > 2+
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Chapter 5: Upper Bound Analysis: TOFU

Results

Theorem
Assume that for all t and x; € D; with ||x;||l2 < D, ||0.]]2 < S, |x, 04| < L and

E[|y:|P|Fi—1] < b. Then, with probability at least 1 — 6, for every T > 1, the
regret of the TOFU algorithm satisfies

R(TOFU, T) < O(b?dT?).

Proof of Theorem 5.3 on Page 122 in the thesis
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Lemma 3. [Confidence Ellipsoid of Truncated Estimate] With the sequence
of decisions xy, - - - , x;, the truncated payoffs {Y;[}fl:1 and the parameter
estimate GI are defined in TOFU. Assume that for all 7 € [¢] and all

x, € D, C R4 E[|y,|P|Fr_1] < band ||.]]2 < S. With probability at least
1 — 6, we have

p—1
16} — 0,]|v, < 4V/db¥ <log (2")) " LS, (14)

where A > 0 is a regularization parameter and V; = \I; + 22:1 XX, .
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Proof sketch of Lemma 3

m Like before,

d
2
o} — 6 llv, < J S (a7 (F = X80)) " + A0l

i=1

m Foreachi

u;r (Y;r —Xtﬁ*) = zt:ui,r ( i — E[Yi,r|Fr— 1])

t
+ 1> uirE[Yir Ly, v, 561 Fr—1]

T=1

—E[Y] |Fr-1])

l T

m The first term is bounded by Bernstein’s inequality

m Set by = (b/ log(2d/8))? £
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Chapter 6: Lemmas

m Lemma 1 (Flaxman et al., 2005)
Given u ~ B(0, 1), we have Ey[gf] = Vf(x;; &), and HgtHz < dB/é. If
f(x;€) is G-Lipschitz continuous, we have |f(x; &) — f(x;§)| < Gd. If
f(x;€) is L-smooth, we have |f(x; &) — f(x;€)| < L8%/2.

m Lemma 2 (Agarwal et al., 2010)
Given u ~ B(0, 1), we have Ey[g?] = Vf(x,; &). If f(x;€) is
G-Lipschitz continuous, we have ||g}[|> < Gd, Eu [lg2]|3] < db*G*C, and
If(x;&) — f(x;€)| < GI, where C is a universal constant and b is a
constant such that (E[|u/|4])¥/* < b. If f(x; €) is L-smooth, we have

f(x;€) — f(x;6)| < Ld?/2.
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m Lemma 3 (Nesterov et al., 2017)
Considering u ~ N (0, 1), we have Eqy[gh] = Vf(xs; &). If f(x;€) is
G-Lipschitz continuous, we have E,[||g"||3] < G*(d + 4)?, and
F(x; &) — f(x;€)| < 6Gd/2.1f f(x;€) is G-Lipschitz continuous and
L-smooth, we have Ey|||g?||5] < 0%(d +6)°L?/2 + 2(d + 4)G?, and
f(x;€) — f(x;6)| < 8°Ld/2.

g = %(f(xt + 6w &) — f(xe560) ) (15)

Xiaotian Yu (Ph.D. Oral Defence) 96 /96



Chapter 6: Proof Sketch of Results in Expectation (OPE)

m Cumulative errors of Vx € Q)

3 Td? B?
;f(xt;a) — f(x;&) < 2TGS + =

2 — x|l

T
21 + > (Vi &) — ) (xe —x).

t=1
m At the k-th stage

EU@w—f@HSEW”A—X%L+m%W

2nt 2(5,%

+ 2G0y,

m By induction, we prove E[f (xx) — fi] < e
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Elf(xk) — fi] < ek (OPE)

E[f (xk) — f(%k—1,+)]
Efl|xr—1 — Xg—1,4 2] i Ned?B?
21t A

E o 3 20 d’B?

c(E[f (xk—1) — f(Xk—1,4)]) +nk 5— + 2Goy
2t 20%

_ el | mpd®B?

T 2mit 20¢

+ 2Gog

IA

el ey 1296d2B?G? 2

e = 6 T aea
u 2

T]kdsz < €k 6%

=i < "k
202 = 3 RAUEITeF A

€k
2Go <—:>5
k=13 kS oG

Xiaotian Yu (Ph.D. Oral Defence) 96 /96



Efficient Learning in Stochastic Bandits

Chapter 6: Proof Sketch of Results with High Probability
(OPE)

m High probability error

/ 1
- Ix; — x||2 . nd2B? 4dBD 310g(;)
- VTo

2nT 202 *

f&r) = f(x) ,

m By induction, we prove f(x;) — fi < €k

czeie—l nkd®B?
2nt 2(5]2(

f(xk) = f(Rp—1,4) <

4dBee?_ |\ /31og( %)

V10

+ 2Gog
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