Interpretability-driven Intelligent
Software Reliability Engineering

HE, Shilin
Ph.D. Oral Defense

Supervisor: Prof. Michael R. Lyu

2020/09/03

Software is Everywhere

* Traditional software * Intelligent software

) Office

welx e Ao&lSngle L Sl

&(Google
Translate

SEETKE

===
wn
@)
-—h
s
Q)
=
(D
G.
rl.l
Q)
ct,
-]
aqQ
—+
-
(D
)
—
o
1
i
Q)
R
(@
2>
-
Q.
-
(D
D
wn
wn
(D
=
~|
>
QV)
S
N
(s
PR
0
Q)
—+
(-
o
-
=
>
S
b oo o o

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 2

Software Reliability is Crucial

* Software reliability is important to both service providers and end users!

v -
foty .
S 0
Wy)
4@h,oos s
Revenue Loss <4 A Tiny Problem mmm) User Dissatisfaction

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 3

Real-World Examples

 Unreliable traditional software

Microsoft news recap: Azure outage problems explained ...

OnMSFT (blog) - 11 Apr 2020

Sit back, grab some coffee, and enjoy the read! Microsoft explains recent Azure
outage problems in Europe due to “constrained capacity”. Azure ...

hsites 121,176uniq‘{e\4;%mains

148,213 we

Google outage hits Gmail, Snapchat and Nest

The Guardian - 8 Apr 2020

Google declared the outage resolved at 4:57pm BST. Big cloud providers such as
Google Cloud Platform, Amazon Web Services (AWS) and ...

AWS cloud issues hit Sydney region

s 3 CRN Australia - 22 Jan 2020
amazon @ #aws outage Sydney - Its been 3 hours already ...Anyone knows what's happening
Web SGNlCQSTM and recovery timeframe. Impacted ones include glue services ...

AWS suffers cloud problems in Sydney region
iTnews - 22 Jan 2020

[Statistics from: https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/]

HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering 4

Real-World Examples

* Unreliable intelligent software

ST
R E

%:?' ,// -

;‘; —‘:
g :

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 5

Software reliability is a must

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Software reliability engineering is challenging

since the increasing complexity and scale of
software make it hard to comprehend

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

HE, Shilin

Software Reliability is Challenging

* Traditional Software Complexity
* Hadoop: 4,103,332 lines of code in 14 languages

Language Code Lines Comment Lines Comment Ratio Blank Lines Total Lines Total Percentage
. Java 1,688,473 543,932 24.4% 287,755 2520160 [N] 61.4%
.XML 1,149,831 31,931 2.7% 36,977 1,218,739 e | 29.7%
. C++ 122,960 51,981 29.7% 25,464 200,405 B | 4.9%
* Intelligent Software Complexity &

* BERT-large (Google): 340 million parameters [Glbe)x]- (&)

* T5 (Google): 11 billion parameters BERT

* GPT-3 (OpenAl): 175 billion parameters [fla]- [&][Gml=]- &)

——{r o

[cLs) T:)k . Tsk [SEP] T:)k " T':k

Sentence 1 Sentence 2

Interpretability-driven Intelligent Software Reliability Engineering 8

If we cannot understand the software,
how could we keep it reliable?

Interpretability is the first step

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Traditional Software Interpretation

* Development Practices
o source code readability, e.g., writing code comments

Code snippet [FunctionDef]
add two numbers

* Static Program Analysis R [Neme)

return a+b

o control-flow analysis [Name |
b

o data-flow analysis
o abstract interpretation

(e)
a

* Dynamic Program Analysis
o testing
o program slicing
o monitoring, e.g., logs

2008-11-09 20:55:54 PacketResponder 0 for block blk 321 terminating

2008-11-09 20:55:54 Received block blk 321 of size 67108864 from /10.251.195.70

2008-11-09 20:55:54 PacketResponder 2 for block blk_321 terminating

2008-11-09 20:55:54 Received block blk 321 of size 67108864 from /10.251.126.5

2008-11-09 21:56:50 10.251.126.5:50010:Got exception while serving blk 321 to /10.251.127.243
2008-11-10 03:58:04 Verification succeeded for blk_321

2008-11-10 10:36:37 Deleting block blk 321 file /mnt/ hadoop/dfs/data/current/subdirl/blk 321
2008-11-10 10:36:50 Deleting block blk 321 file /mnt/ hadoop/dfs/data/current/subdir51/blk 321

NGOV A WNR

Interpretability-driven Intelligent Software Reliability Engineering 10

HE, Shilin

Intelligent Software Interpretation

* A thriving research area under study

Initialization

>

@ Code Inside Loop

Update
A

Counter

Evaluation

Metric

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

i

Interpretation

11

Intelligent Software Interpretation

* Interpretability helps the intelligent software reliability.
o testing: o debugging

(a) Husky classified as wolf

o robustness and safety
+ interpretability T reliability T

Interpretability-driven Intelligent Software Reliability Engineering

(b) Explanation

12

Thesis Contributions

Interpretability-driven
SRE

—

[Traditional Software }

[Chapter 3]

Log-based Anomaly
Detection

» The first empirical study
on log anomaly detection
» Release a toolkit for reuse

[ISSRE’16]

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

13

Thesis Contributions

Interpretability-driven
SRE

—

[Traditional Software }

\[Chapter 4]

HE, Shilin

Log-based Problem
|dentification

» Efficient cascading
clustering algorithm

» Correlates with KPIs
to identify problems

[FSE8]

Interpretability-driven Intelligent Software Reliability Engineering

14

Thesis Contributions

SRE

\

[Intelligent Software }

[Interpretability-driven 1

[Chapter 5]
[Gradient-based]

Attribution Estimation

» Gradient information to
explain model predictions
by word importance

> Detect under-translation
errors

[EMNLP’19]

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Thesis Contributions

Interpretability-driven
SRE

\

[Intelligent Software }

[Chapter 6]

Phrase-table-based
Knowledge Assessment

Phrase-table to globally
explain model behaviors
Explain model learning
dynamics and advanced
techniques.

EMNLP20]*
[

Interpretability-driven Intelligent Software Reliability Engineering 16

HE, Shilin

Automated Log Interpretation -- Motivation

* Manual analysis of logs is almost infeasible.

* Logs are generated at a high rate. (10+ TB/hour)
* Large-scale software is often implemented by hundreds of developers.

* Manual inspection is error-prone.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

17

Automated Log Interpretation

* A general framework

(L

Log Parsing

ﬁ Feature Extraction

HE, Shilin

HY

) | 03 Mining

.H.

N
11

Interpretability-driven Intelligent Software Reliability Engineering

18

Automated Log Interpretation

— . —
B
U B
Log Parsing
01 | Name=Reguest (GET:http://AAA:1000/BBBB/sitedata.html) t_41bx0
02 | Leaving Monitored Scope (EnsurelistltemsData) Execution Time=52.9013 |t _51xi4
03 HTTP request URL: /14/Emails/MrX(MrX@mail.com)/1c-480-b29.eml t_23hlI3
04 | HTTP Request method: GET t_41bx0
05 [HTTP request URL: /55/RST/UVX/ADEG/Lists/Files/docXX.doc t_01mul
06 | Overridden HTTP request method: GET t_41bx0
07 | HTTP request URL: http://AAA:1000/BBBB/sitedata.html t_41bx0
08 [Leaving Monitored Scope (Request (POST:http://AAA:100/BBBB/ t_41bx0
sitedata.html)) Execution Time=334.319268903038 (Task_ID)
E1 _IName=Request (*)
E2 |Leaving Monitored Scope (*) Execution Time = *
—% .
E3 |HITTP Request methoa: Log Parsmg
E4 |HTTP request URL: *
E5 |Overridden HTTP request method: *

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

19

Automated Log Interpretation

E— [

EEE
_

Feature Extraction

oTask identifier:

Log Sequence Grouping Job ID, Process ID, etc

2008-11-11 03:40:58 BLOCK* NameSystem.allocateBlock: /user/root/randtxtl4 blk_904791815

2008-11-11 03:40:59 Receiving block blk 904791815 slc: /master13 dest: /local22 oTime stamp:
2008-11-11 03:41:01 Receiving block blk_203948592 src: /master47 dest: /local93] .
2008-11-11 03:41:48 PacketResponder O for block blk_904791815 términating 1) Fixed window

2008-11-11 03:41:48 Received block blk_904791815 df size 31864344 from /11.25.18.114
2008-11-11 03:41:48 PacketResponder 1 for bloc 203948592 terminating
2008-11-11 03:41:48 Received bIock blk_203948592 of size 47394022 from /10.251.43.210

2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock added tp blk_904791815 s|ze 67108864 : "
2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock added tq blk_203948592 size 47394022 30 mins 30 mins
2008-11-11 08:30:54 Verification succeeded fo blk_904791815 2) Sliding window Step: 10 min

An example of HDFS logs

30 mins 30 mins

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 20

Automated Log Interpretation

1= |

Feature Extraction

EEE
_

Feature Vectorization

o Each feature denotes a log event in the log sequence. - 101210 -

o For example
E1 E2 E3 E4 E5 E6
[1, 0, 2, 3, 1, O]
E1 occurs once
E4 occurs three times.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

. 003220 -

21

Automated Log Interpretation

g L

Log Mining
o Anomaly Detection o Problem Identification
.‘
o0 o0
0® oy ... 09 o4
o 2%000 4 o 2%000 4
o0 O o ® 0 O o ®
000 g% 00 000 4% 00
®° oo °® oo
o ®%0 o ®%0
® Normal cases ® Normal cases
@® Anomalies ©0@® @ Different problem types

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Outline

* Topic 1: Log-based Anomaly Detection

* Topic 2: Log-based Problem Identification

* Topic 3: Gradient-based Attribution Estimation

e Conclusion and Future Work

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

23

Outline

* Topic 1: Log-based Anomaly Detection

Interpretability-driven
SRE

P

[Traditional Software J

[Chapter 3]/

Log-based Anomaly
Detection

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

24

Log-based Anomaly Detection

* Motivation:
o Lack of comparison among existing anomaly detection methods.
o The state-of-the-art anomaly detection methods are unknown.
o No open-source tools are currently available.

Z o

Aradamina } Indiickrv

|

* Contribution:
o provide the first empirical study on log-based anomaly detection methods.
o release the toolset for public reuse.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

25

Anomaly Detection Methods

» State-of-the-art research studies (Before 2016)

o Failure diagnosis using decision trees [ICAC’04]
o Failure prediction in IBM bluegene/l event logs [ICDM’07]
o Detecting largescale system problems by mining console logs [SOSP’09]

o Mining invariants from console logs for system problem detection. [USENIX

ATC10]
o Log clustering based problem identification for online service systems [ICSE’16]

O...

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 26

Anomaly Detection Methods

* Taxonomy

Anomaly Detection

Log Clustering

PCA

Unsupervised

Logistic Regression
Supervised Decision Tree
4) (
Support Vector Machine

Invariants Mining

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Anomaly Detection Methods

* PCA

* Sn: Normal Space principal components

* Sa: Anomaly Space remaining components

* Check whether the projected vector is far
from the normal space

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

28

Experiments

* Datasets
System | #Time span | #Data size | #Log messages | #Anomalies
BGL | 7 months 708 M 4,747,963 348460 | — Time-stamp
HDFS 38.7 hours 1.55G 11,175,629 16,838 ——— Task-identifier
* Evaluation metric:
Precision [Recall /| F1-Score
Interpretability-driven Intelligent Software Reliability Engineering 29

Experiments

* Accuracy of supervised methods

[Logistic K_Z] Decision Tree £

SVM

1.00 1.00 0.99 1.00 1.00
1.0 F 0.95—0.95 0.9 0.98

..

0.8
0.6
0.4
0.2

0.0

0.98

)
)

HDFS

Precision Recall F-measure

[Logistic 71 Decision Tree &4 SVM

1.0

0.8 |
0.6 |
0.4 |
0.2 |

0.0

F 0.950.950.95

071072071 |

0.570.570.57 g % .

Precision Recall F-measure

[Logistic ¥_Z] Decision Tree B> SVM

1.0
0.8
0.6
0.4
0.2

0.0

.00

0.99

0.92

0.70

0.75

0.63

0.82

0.85

.74}~

Precision Recall F-measure

BGL (Fixed window)

BGL (Sliding window)

: Finding 1: Supervised anomaly detection achieves high precision, while recall varies.
: Finding 2: Sliding windows achieve higher accuracy than fixed windows.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

30

Experiments

* Accuracy of unsupervised methods

1.0 }
0.8
0.6
04
0.2

0.0

L1 Log Clustering

E-ED PCA

0.870.88

0.98

0.74

0.95

[——J Invariant Mining

0.80

0.91

0.67

0.79]

Precision Recall F-measure

HDFS

1.0
0.8
0.6
0.4
0.2

0.0

[__1 Log Clustering
[Invariant Mining

EEEL PCA

0.83

0.42

0.50

0.87

0.99

0.61

0.57

0.91

0.55 1

Precision Recall F-measure

BGL (Sliding window)

I
| Finding 3: Unsupervised methods generally achieve inferior performance against

: supervised methods.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

31

Experiments

* Various hyper-parameters settings

0.9 T T 1
0.8 [
o =t
2 72 07 F D
< <
£ 06 | {1 € o6l]
[E " | —O— Logistic o | —O— Logistic
0.5 }—>— Decision Tree - 0.5 F—P— Decision Tree -
—¥— SVM —¥— SVM
0.4 L L L 0.4 ! ! !
1h 3h 6h %h 12h Smin 0.5h 1h 3h 6h
Window Size Step Size

Supervised Methods

F-measure

1.0

—O— Log Clustering
—>— Invariant Mining

—»— PCA

1 T

L 1

1.0

3h 6h

Window Size

—O— Log Clustering —— PCA

—P— Invariant Mining

b

: Findings 4: The window size and step size affect both supervised and unsupervised :
|
|

: methods a lot.

HE, Shilin

5 08
3
S 0.6
5
= 04
. 0.2 !
%h 12h Smin 0.5h lh 3h 6h
Step Size
Unsupervised Methods
32

Interpretability-driven Intelligent Software Reliability Engineering

Experiments

* Efficiency

—+— Logistic —+— Decision Tree —+— SVM

_ — 1= Log Clustering —¢— Invarants Mining —o— PCA

é 104 103 "

— 103 102

g 102 101

= 101 3+ 100

iy - 101

2 101 ¢= 10-2 L

g 10-2 10-3 ¥

= 10-3 10-4

- 24 12 60 300 1500 1 5 25 125 625
Log Size (M) Log Size (M)

HDFS BGL (Sliding window)

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

33

Summary

* Provide an empirical study of six SOTA anomaly detection methods.
* Compare their accuracy and efficiency on two representative log datasets.

* Release an open-source toolkit for easy reuse and further study.

- : To teach students on Unsupervised Machine learning based
o |ngal / |OQ|IZGI' Log Analysis #38

[CA LIl hraokr opened this issue on Apr 21- 1 comment

® Unwatch v 75 W Unstar 684 % Fork 250 hraokr commented on Apr 21 +@ ssignees

Sir

| am Asst. prof, i have chosen Big Data as subject for this semester and the learning methodology i

have selected is "learn by doing", hence | kindly request you guide me in demonstrating a project on kabels
"Unsupervised Machine learning based Log Analysis" as i am new to this field and also i would like None yet
persuasive further in this subject.

thanking you

with warm regards N
Hanumantha Rao K R Nonejyst
Assistant Professor
Dept. of Computer Applications Milestone
JSS Academy of Technical Education No mileston
c 20 /1, sector 62, NOIDA, 201301, U. P, INDIA

HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering 34

Outline

* Topic 2: Log-based Problem Identification

P

Interpretability-driven
SRE

[Traditional Software J

\[Chapter 4]

HE, Shilin

|

Log-based Problem
|dentification

Interpretability-driven Intelligent Software Reliability Engineering

35

Background

* Problem type matters

* Some types of problem are more impactful, should be fixed with a higher
priority.

IMPACT
@ W wu
Widespread Large Limited Localized
URGENCY (Extensive) (Significant) (Moderate) (Minor)
CRITICAL _— TICE ! Report to
> ’
HIGH RITICA : \,
MEDIUM : ;
LOW
HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering 36

Challenges

1. Lack of labels

=) Unsupervised Methods

2. Huge log size

- X __X X K X X X

~ A AT AT A A A A

-_—’ e’ e’ e’ ' e’ ey’

. X _ X X X XK XK K . .
e e e e mm) [nefficient
-_—r’ e’ ey’ e’ e’ s’ e’

- XK _ X X X XK XK K

-_—r’ e’ ey’ e’ e’ sy’ ey’ e

-_—r s’ e’ e’ ' e’ e’

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 37

Challenges

3. Highly imbalanced log distribution
o High service availability in cloud-based online service systems

MICcrosoft ‘ >
Azure

Google Cloud Platform

-
amazon A

webservices™

99.999%

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

38

Challenges

3. Highly imbalanced log distribution
o problems occasionally happen, demonstrating a long-tail distribution.

j normal cases

104-5)
Q)]
e
8 103
2 problems
5 102 -
s /

123456 7 8 9101112131415161718
Log sequence types

4. Problem impact
o difficult to quantitatively identify the impact of a problem.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

39

KPI

* System KPIs (Key Performance Indicators)

o measure the system’s health status in a certain time period
= Failure Rate
= Service Availability
= Average Request Latency

* periodically collected

Time interval 1h 1h 1h

Failure rate 0.48 0.23 0.14

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

1h

0.53

40

Method

Log3C: Cascading Clustering and Correlation Analysis

1. Log Parsing 2. Sequence Vectorization
[E1, E2, E4, E5] E1 E2 E3 E4 E5 E_G

ti: > [E2, E3, E4, E5] 110110 o
[E1, E2, E3, E5, E4] titJo 1111 0 , KPIs
111110 232330/ 048
[E2, E3, E4, E5] 01111 0lsum !
ta: > [E2, E1, ES5, E3, E6] telt 1101 1|/7>[232231 E 0.64
E1, E2, ES, E4 . .
e propaol | Input: Raw logs, KPIs
110110 O
oy :>[E1,E2,E4,E5] telo 01111
[E3, E4, E6, E5) 111010 % %
[E1, E2, E3, E5] - —

o+ Norm(w(idf)) + B - w(cor)

Output: Clusters of impactful problems

4. Correlation Analysis | 3. Cascading Clustering
Cl1 C2 3 C4) KPls Clusters: C1 c2 c3 ca
: 25 17 69 5 | 048 goseoseseqreseseesqeocecciqpesesacey
b) : AA
t2: 18 12 107 4 | 064 [SHE A,
. e 1 e ’ A
taz 23 23 89 9 | 078 LI
A KPIs s
o tyr i A A
o o/ Al
e -~ © Bommemmsbesn s
7% s S
° ‘s ® . AA,
° 3 A
_ Cluster Size ta: : AAA

Framework of Log3C

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 41

Parsing and Vectorization

* Logs are parsed into log events with log parsing.
* Different log events play different roles in problem identification.

* IDF weighting

* Importance weighting

1. Log Parsing

g %:>
t2:g¢>

[E1, E2, E4, E5]
[E2, E3, E4, E5]
[E1, E2, E3, E5, E4]

[E2, E3, E4, E5]
[E2, E1, ES, E3, E6]
[E1, E2, E5, E4]

[E1, E2, E4, E5]
[E3, E4, E6, ES]

=

[E1, E2, E3, E5]

HE, Shilin

2. Sequence Vectorization

ti:

t,:

ta:

E1l E2 E3 E4 E5 E6

= =0 = O

' o -

1

Y L =

o K

0

O R B ==

= O

L]
= O R =

1

[N]
=

1

A Y o e

=

0

OO OO

IOHO

(23233 0]

Sum
—» |2 322 31

222231

NN

KPIs
0.48

0.64

0.78

o - Norm(w(idf)) + (1-a) - w(cor)

Interpretability-driven Intelligent Software Reliability Engineering

42

Cascading Clustering

Traditional clustering methods are infeasible.

+ / /6— -‘i\\ :- ----- |-|T|: i -: '
o ® i+ R 0 =] |
iy N9 Z A / : .
— * < A A o : — :
» —— » //)Y A »] A — 1 +
+ lIX X X* A \ : iy
\x X X! T4 X =] +
\\X // : : .
- i Matched : Mismatched
L i data | data
og . :
Sampling Clustering & Matchi
Sequences Pattern extraction atching

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

43

Cascading Clustering

* Group log sequences with cascading clustering in each time interval

3. Cascading Clustering
Clusters: C1 C2 c3 c4

t1: g AA P

....................................

t: Alv,i

fa:

>
>
>

....................................

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

44

Correlation Analysis

* Impactful problems: Can lead to the degradation of KPI.

* Goal: Identify clusters that are highly correlated with KPI’s changes.

4. Correlation Analysis

1 2 3 ca i KPls 1. correlate cluster sizes—KPI values with the
tiv 25 17 69 5 50.48 Multivariate Linear Regression (MLR)
t2: 18 12 107 4) 064
ee e e] oo . . .
ta: 23 23 8 9 | 078 2. t-statistic hypothesis test

A KPls
® o -
.
/o o
e /
e ®
Cluster Size

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

45

Experiments

* Datasets: Real-world data from the service system X

Data | Snapshot starts | #Log Seq (Size) | #Events | #Types
Data 1 | Sept 5th 10:50 | 359,843 (722MB) 365 16
Data 2 | Oct 5th 04:30 | 472,399 (996MDB) | 526 21
Data 3 | Nov 5th 18:50 | 184,751 (407MB) | 409 14

* Manual [abelling

1. Problem or not?

2. Problem type?

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

46

Experiments

e Effectiveness Evaluation:

o Problem Detection (Binary Classification)
Precision [Recall /| F1-Measure

TP

Precision =
EClLSUC TP + FP

TP

R(_?(_’f(l‘” = W

o Problem Identification (Clustering)
Normalized Mutual Information (NMI) ~ between [0, 1]

2 X 1(Y;0) Y = class labels H(.) = Entropy

NMI(Y,C) =

[H(Y) + H(C)] C = cluster labels I(Y;C) = Mutual Information b/w Y and C

* Efficiency Evaluation:
o Clustering Time (in seconds)

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

47

Experiments

* Accuracy of Problem Detection:

Data 1 Precision | Recall | F1-measure
PCA 0.465 0.946 0.623
Invariants Mining 0.604 1 0.753
Log3C 0.900 0.920 0.910

Data 2 Precision | Recall | F1-measure
PCA 0.142 0.834 0.242
Invariants Mining 0.160 0.847 0.269
Log3C 0.897 0.826 0.860

Data 3 Precision | Recall | Fl-measure
PCA 0.207 0.922 0.338
Invariants Mining 0.168 0.704 0.271
Log3C 0.834 0.903 0.868

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

48

Experiments

* Accuracy of Problem Identification (NMI):

Size 10k 50k 100k | 200k
Data 1 [Log3C-SC _ 0.659 _ 0.706 _ 0.781 |0.822
Log3C 0.720 0.740 0.798 |0.834
Size 10K 50k 100k | 200k
Data 2 [Log3C-SC__ 0.610 _ 0.540 _ 0.600 | 0.650
Log3C 0.624 0514 0.663 |0.715
Size 10K 50k 100k | 180k
Data 3 [Log3C-SC _ 0.601 _ 0.404 _ 0.792 | 0.8283
Log3C 0.680 0.453 0.837 |0.910

Log3C-SCis the comparison method, which replaces the Cascading Clustering with

the standard clustering (HAC)

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

49

Experiments

» Efficiency of Cascading Clustering (seconds):

Size | 10k 50k 100k 200k
Data 1 | SC [127.6 | 2319.2 | 9662.3 [|38415.5
cCc| 1.0 4.3 9.2 20.7
Size | 10k 50k 100k | 200k
Data 2 | SC | 80.6 | 2469.1 | 8641.2 | 38614.0
cC | 0.7 3.8 9.5 18.9
Size | 10k 50k 100k 180k
Data 3 | SC | 81.5 | 2417.2 | 8761.2 | 33728.3
cC| 038 4.0 8.8 18.3

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

50

Experiments

* Cascading clustering under various configurations

—e— 0=0.25 == 6=0.15 6=0.3

Time Performance 1.00- Accuracy

3
10°1 0.981

0.95+
0.93

+r—o—o—0—o—0—°

0.90 -

NMI

0.88 1
Pt ik dninl oL P SO
0.85 1 >

Running time (in seconds)

0.83

B - - . . - ' 0.80 — - x - - ' -
0.01%0.1% 0.2% 1% 3% 5% 10% 0.01%0.1% 0.2% 1% 3% 5% 10%
Sample rate Sample rate

! Decreasing sample rate does not sacrifice the accuracy while greatly

I reducing the time

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

51

Summary

* Propose Cascading Clustering, an efficient clustering method.

* Propose the Log3C framework, leverage the KP| information as the
supervision.

* Experiments on real-world datasets confirm its effectiveness and
efficiency.

* Deployed to the actual maintenance of Microsoft products.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 52

Outline

* Topic 3: Gradient-based Attribution Estimation

HE, Shilin

SRE

\

[Interpretability-driven J

[Intelligent Software

[Chapter 5] /

Gradient-based
Attribution Estimation

Interpretability-driven Intelligent Software Reliability Engineering

53

Background

* What is the “Log” in intelligent software?

Prediction
o Parameters? Millions, Billions (Output)

t

o Architecture? CNN, RNN

o Gradient Information

t

Input

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

>4

Background

* Neural Machine Translation (NMT) as the intelligent software

Facebook translates 'good morning' into
'attack them', leading to arrest
Palestinian man questioned by Israeli police after embarrassing

mistranslation of caption under photo of him leaning against
bulldozer

A Facebook’s machine translation mix-up sees man questioned over innocuous post confused with attack threat.
Photograph: Thibault Camus/AP

Facebook has apologised after an error in its machine-translation service saw
Israeli police arrest a Palestinian man for posting “good morning” on his
social media profile.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 55

Background

* How to “interpret” the intelligent software?
o Input-output correspondence

=

* Word Importance: the importance of each input word to the output
sentence.

* Also applicable in the adversarial attack and defense.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Challenges

1. Traditional methods on interpreting NMT:

* Attention: attention is not explanation [Jain et al. 2019]
* Erasure: it requires the reference [Li et al. 2016]

* Causality: it requires a Variational Auto Encoder model and ensembles the

attention. [Alvarez-Melis et al. 2017]

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

57

Challenges

2. The basic gradient information does not apply to deep neural networks

f(x) -1 - RELU(1—X) Gradient Saturation
f(o)=0

f(1) =1

RelLU

gradient is 0 since f is flat when x =1

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 58

Method

Integrated Gradients

* Intuition: find a baseline input x’ to calculate the relative feature
Importance in x

I1G™ (%) = (xy—)/ OF (x' + a(x — X/))nd&

m = axm

* F: the model, e.g., Transformer, RNNSearch
* m: the m-th word in the input sentence

* n: the n-th word in the output sentence

* alpha: interpolation ratio

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

59

Method

* Integrated Gradients with approximation

]G,’?’TL(X) p (Xm ;Xm

)5

L OF(X + £ (x —¥)),
- Ox,.,

k=0

* S: Total interpolation steps

* k: the k-th interpolation step

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

60

Method

* Word Importance:
 Step 1: Estimate the integrated gradient of each word pair;
 Step 2: Sum the contribution of an input word to all output words;
 Step 3: Normalize with the Softmax function.

glle a toulou™ eu jeu

& -0.20 0.03 0.01 g=mew -0.07

& 0.06 0.00 0.09 0.09 -0.00
<

v -0.02 0.08 0.05 0.09 -0.01
2

T -0.05 0.10 -0.01 {728 0.11 -0.02

-0.06 0.00 0.07 -0.06

- 0.01 0.01 0.06 -0.08 -0.05

n

:O/a Ce t@ke

(b)

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Evaluation Metric

* Translation performance when perturbing the most important words

Original Input: — A

Perturbed Input: . — . — —

* Perturbation Types:
* Deletion
* Mask
* Grammatical Replacement

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Experiments

* Effectiveness of different word importance estimation methods.

25

20

BLEU

15

10

Random
Frequency
Content
Attention
Attribution

QO I

0 1 2 2 4 5
Number of Operations
(a) Deletion

BLEU

25

20

15

10

Random
Frequency
Content
Attention
Attribution

QO I

0 1 P

Number of Operations

(b) Mask

3

4

S

BLEU

20

15

10

ORI u

Random
Frequency
Content
Attention
Attribution

1 2 3 ! 5

Number of Operations

(c) Grammatical Replacement

| Fmdlng 1: Important words are more influential on translation performance than the others.

| Finding 2: The gradient-based method is superior to comparative methods (e.g., Attention) in

| . .
| estimating word importance.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Experiments

* Further experiments on model structures, language pairs, and directions.

25 40 o 45
20 ¢ 35 40
5 a 30 5 35
0 13 £ &
- A 25 M 30
10 I+ Random 20 I+ Random 25 T Random
<$ Attention < Attention <> Attention
O Attribution O Attribution O Attribution
5 15 20
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Number of Operations Number of Operations Number of Operations
(a) RNN-Search Model (b) English=-French (c) English=-Japanese

___ :
: Finding 3: The proposed method is consistently effective against model structures, language 1

| pairs and translation directions '

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 64

Experiments

* Comparison with the supervised erasure method.

* Erasure:

* Estimate the word importance by perturbing each word one by one

and calculate the performance drop

A BLEU

B ——— 05
B — 17
B 2.3
B 0.8

HE, Shilin

BLEU

25

20

15

10

< EFErasure
O Attribution

0

1 2 3 = 5

Number of Operations

Interpretability-driven Intelligent Software Reliability Engineering

65

Experiments

* Machine translation problems

HE, Shilin

Reference

Under-translation

. EEEE
AN TTI L

Interpretability-driven Intelligent Software Reliability Engineering

Mis-translation

Over-translation

66

Experiments

* Detecting under-translation errors without reference
* a straightforward method: words with the least word importance (top N%)

Original Input:

Method | Top 5% | Top 10% | Top 15%

Attention 0.058 0.077 0.119
Erasure 0.154 0.170 0.192
Attribution | 0.248 0.316 0.342

F1-measure

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Summary

* We approach understanding NMT by investigating the word importance
via a gradient-based method.

* Empirical results show that the proposed method is superior to baseline
methods.

* Our study suggests the possibility of detecting the under-translation error
via a gradient-based method.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 68

Outline

e Conclusion and Future Work

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

69

Conclusion

[Log-based Anomaly)

Traditional
Software

]_

Interpretability-
driven SRE

\ 4

I Log-based Problem :

Detection

-

Identification

- S

Gradient-based

Intelligent
Software

]_

HE, Shilin

\ 4

 Attribution Estimation

Phrase-table-based

. Knowledge Assessment |

~N

» The first empirical study
» Release a toolkit for reuse

» Highly imbalanced data w/o labels

» Cascading clustering and
Correlation with KPI

» Gradient information for word
importance
» Detect translation errors

Interpretability-driven Intelligent Software Reliability Engineering 70

Future Work

* Interpretable automated log analysis

ALERT !l

Trust? Not trust?

Traffic

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 71

Future Work

* Robustness of Intelligent Software

+.007 x

“panda”

577% confidence

“gibbon”

99.3% confidence

HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

72

Publications

[1] Shilin He, Xing Wang, Shuming Shi, Michael R. Lyu, Zhaopeng Tu. Assessing the Bilingual Knowledge
Learned by Neural Machine Translation Models. (EMNLP 2020) *

[2] Shilin He, Yongchang Hao, Xing Wang, Shuming Shi, Michael R. Lyu, Zhaopeng Tu. Multi-Task Learning
with Auxiliary Autoregressive Decoder for Non-Autoregressive Machine Translation. (EMNLP 2020) *

[3] Shilin He, Jieming Zhu, Pinjia He, Michael R. Lyu. Loghub: A Large Collection of System Log Datasets
towards Automated Log Analytics (Arxiv 2020)

[4] Shilin He, Zhaopeng Tu, Xing Wang, Longyue Wang, Michael R. Lyu, Shuming Shi. Towards
Understanding Neural Machine Translation with Word Importance. (EMNLP 2019)

[5] Shilin He, Qingwei Lin, Jianguang Lou, Hongyu Zhang, Michael R. Lyu, Dongmei Zhang. Identifying
Impactful Service System Problems via Log Analysis. (ESEC/FSE 2018)

[6] Shilin He, Jieming Zhu, Pinjia He, Michael R. Lyu. Experience Report: System Log Analysis for Anomaly
Detection. (ISSRE2016)

* denotes in submission

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 73

Publications

[7] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, Michael R. Lyu. Logzip: Extracting Hidden
Structures via Iterative Clustering for Execution Log Compression. (ASE 2019)

[8] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, Michael R. Lyu. Tools and
Benchmarks for Automated Log Parsing. (ICSE 2019)

[9] Pinjia He, Zhuangbin Chen, Shilin He, Michael R. Lyu. Characterizing the Natural Language Descriptions
in Software Logging Statements. (ASE 2018)

[10] Pinjia He, Jieming Zhu, Shilin He, Jian Li, Michael R. Lyu. Towards Automated Log Parsing for Large-
Scale Log Data Analysis. IEEE Transactions on Dependable and Secure Computing (TDSC 2017)

[11] Pinjia He, Jieming Zhu, Shilin He, Jian Li, Michael R. Lyu. An Evaluation Study on Log Parsing and Its Use
in Log Mining. (DSN 2016)

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 74

Intelligent Log Analysis

* LogPAIl (Log analytics power by Al)

Development Phase Runtime Phase Operation and Maintenance Phase
{/* hadoop/hdfs../LeaseRenewer.java _
g;SI{mpllfled for easy presentation) */ Whers 10 oG g 5 5 ML/DL
renew(); : — Y O-
‘lastRenewed = Time.monotonicNow(); : —m =1 |= » » —_— hgteh °
i} catch (IOException ie) { » 3 - ﬂ — Bl £--a * L N
LOG.warn("Failed to renew lease for " + [—] ’ = = o
i clientsString() + " for " + (elapsed/1000) + ": g 3 3
§seconds. Will retry shortly ...", ie); What to Log
'} Z
A Sample Code Snippet T ' Log Collection Log Compression Log Parsing Log Mining
LoggingStatements Loghub Logzip Logparser Loglizer &
[ASE’ 2018] [Arxiv’ 2020] [ASE’ 2019] [ICSE’ 2019] Log3C
[TDSC’2017] [ISSRE’ 2016]
[DSN’2016] [FSE’ 2018]
HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering 75

Open-Source Projects

* LogPAI on GitHub

(? LoGPnl

— Log Analytics Powered by Al

B 2000+ stars

= 800+ forks

» Release alarge dataset (77GB log)
Downloads:

LogAdvisor (ICSE’15)

* Learning to log: A framework for [ﬁ
determining optimal logging
points

LogHub (ICSE’19), LogZip(ASE’19) rmmsm
= |

« A collection of system log datasets ===

for massive log analysis (440
million log lines)

* Alog analysis toolkit for "
automated anomaly detection

HE, Shilin

Parsing r
Logizer (ISSRE’16) 0%

14,596

@ Views

LoggingDescriptions (ASE’18)

/>

* A collection of Software Logging

LT X&' UNIVERSITY OF CALIFORNIA
Statements in source code

C LogParser (DSN'16) = F |: L
LO .
* Atoolkit for automated log

parsing
Log3C (FSE’18
] osclsE NVIDIA
* Log-based Problem
Identification

B Microsoft

Interpretability-driven Intelligent Software Reliability Engineering

16,346

& downloads

BB UNIVERSITY OF
a¥ CAMBRIDGE

ETH:zurich
Al

Adobe

Linux A,

76

HE, Shilin

Thanks!

Interpretability-driven Intelligent Software Reliability Engineering

77

HE, Shilin

Back up slides

Interpretability-driven Intelligent Software Reliability Engineering

78

Software Reliability is Challenging

* Intelligent Software Complexity
* BERT (Google):
base: 110 million parameters with 12 layers and 12 attention heads
large: 340 million parameters with 24 layers and 16 attention heads

v w0 v @ (v (oo
ovocabs | ! ! i ! pu
[T CIassificationILayer: FuIIy-corfrnected Iayer+(TEELU+Norm T] [C][s J [i][T[SEP]][Ty]
Lo J (o J (o J (o J (o]
! I I I I BERT
Transformer encoder |E ‘‘‘‘‘ ” E, | | Ex H Eiser) || i | ‘ Ew |
— g e B e iy
Embedding T T T T T ([CLS] N i] [v](SEn][k 1 (W]
Cw) () (Cw) (wsa) (Cw) —T— —T—
‘L‘ ‘Ilz ‘la ‘IM ‘Ils Sentence 1 Sentence 2

* T5 (Google): 11 billion parameters
* GPT-3 (OpenAl): 175 billion parameters

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

An Overview

Log-based Anomaly
Detection

Traditional Software J—

Interpretability-driven
Software Reliability

)

HE, Shilin

Gradient-based
Attribution Estimation

~
> I Intelligent Software
J

Phrase-table-based
Knowledge Assessment

Log-based Problem
Identification

Interpretability-driven Intelligent Software Reliability Engineering

80

Intelligent Log Analysis

* Log Generation

ource Code Snippet

/* hadoop/hdfs../
LeaseRenewer.java
* (Simplified for easy presentation)
&/
Try
{
renew();
lastRenewed =
Time.monotonicNow();
} catch (IOException ie)
{

LOG.warn("Failed to renew
lease for " + clientsString() + " for "
+ (elapsed/1000) + " seconds. Will
retry shortly ...", ie);

b

HE, Shilin

Log Messages

[1] 2015-10-18 18:05:48,680 WARN
[LeaseRenewer:service@clusters:9000]
org.apache.hadoop.hdfs.LeaseRenewer: Failed to renew lease
for [DFSClient NONMAPREDUCE 1537864556 1] for 51
seconds. Will retry shortly ...

[2] 2015-10-18 18:05:51,180 WARN
[LeaseRenewer:service@clusters:9000]
org.apache.hadoop.hdfs.LeaseRenewer: Failed to renew lease
for [DFSClient NONMAPREDUCE -274751412 1] for 79
seconds.

[3]1 2015-10-18 21:51:51,181 WARN
[LeaseRenewer:service@clusters:9000]
org.apache.hadoop.hdfs.LeaseRenewer: Failed to renew lease
for [DFSClient NONMAPREDUCE -1547462655 1] for 785
seconds. Will retry shortly ...

Interpretability-driven Intelligent Software Reliability Engineering 81

Interpretability

* Interpretability is the degree to which a human can understand the cause
of a decision

gzc:fedsfr\]/‘f/zpne;/ﬂbﬁﬁ's &unCtionDe_f]
* Human-understandable insights def2dd(@ b argument | [Name
* visual explanations Name i

* natural language explanations b

* domain specific explanations

a b

* sometimes referred as “Program Analysis”, “Program Comprehension”,
“Program Understanding”

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 82

Background

* Interpretability is approached from the following aspects:
* Input-Output Attribution
* Internal Representations

e Data Point Attribution

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

83

Experiments

* Why PCA does not perform well on BGL?

T ' Threshold
Normal :- GE0 0NN O @ G0 0 N0 ® SN0
k9, I
- :
8 :
< l
2 |
- |
2 I
= 1
o |
G, i J SPE
200,000 400,000 600,000 800,000

The BGL data distribution after PCA projection, normal cases and anomalies are not
separable

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

84

Background

e NMT model structures

Encoder RNN

h B L .

‘ é‘ _é
|

X1 — x» — - — <end>

Source Embedding

HE, Shilin

Output
Probabilities

. =
Attention Softmax Decoder RNN [Linear |
Feed
""" > Cj e [Cj, Sil Forward
4 %
D L L LR s 1 ~\ Add & Norm
f—>| Add & Norm l =
Multi-Head
S1 : S2 . . Sy Feed Attention
Forward) Nx
—
Add & N
RNN Cell—> —_— - —> Nx ~—>{_Add & Norm] —
Masked
Multi-Head Multi-Head
Attention Attention
t tr
— I
<start> — y] [— YJ \ J \ J/
) Positional D & Positional
Target Embedding Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
Interpretability-driven Intelligent Software Reliability Engineering 85

Experiments

* Linguistic Analysis on important words
* POS Tag

Type Chinese=>English English=French English=>Japanese
Count Attri. A || Count Attri. A || Count Attri. A

Noun | 0.383 0407 | +6.27% | 0.341 0355 | +4.11% | 0.365 0.336 -7.95%
Verb 0.165 0.160 | -3.03% | 0.146 0.131 | -10.27% || 0.127 0.123 -3.15%

Total 0.579 0.595 | +2.76% | 0.563 0.558 -0.89% || 0.587 0.547 -6.81%
Prep. 0.056 0.051 | -8.93% | 0.120 0.132 | +10.00% | 0.129 0.151 | +17.05%
Dete. 0.043 0.043 0.00% | 0.102 0.101 -0.98% || 0.112 0.103 -8.04%
Punc. || 0.137 0.131 | -4.38% || 0.100 0.091 -9.00% | 0.096 0.120 | +25.47%
Others || 0.186 0.179 | -3.76% | 0.115 0.118 | +2.61/% || 0.076 0.079 | +3.95%

Content
2>
g
(@)
o
(O8]
(@]
(@)
(@)
NN
O
]
\O
(O
Co
X
-
(@)
~J
(@)
=)
(@)
~J
(@]
1
(Y
N
N
X
=)
(@)
O
=
=)
(@)
o0
o0
]
N
o
Co
X

Content-Free

' , Finding 4: Certain syntactic categories have higher importance while theI
| | categories vary across language pairs. I

Interpretability-driven Intelligent Software Reliability Engineering

HE, Shilin

Experiments

* Linguistic Analysis on important words

* Fertility: word alignment

Fertility Chinese=-English English=-French English=-Japanese
Count Attri. A || Count Attri. A || Count Attri. A
> 2 0.087 0.146 | +67.82% | 0.126 0.138 | +9.52% | 0.117 0.143 | +22.22%
1 0.621 0.622 | +0.16% | 0.672 0.670 | -0.30% || 0.570 0.565 -0.88%
(0,1) 0.115 0.081 | -29.57% | 0.116 0.113 | -2.59% || 0.059 0.055 -6.78%
0 0.176 0.150 | -14.77% | 0.086 0.079 | -8.14% || 0.254 0.237 -6.69%

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

87

Outline

* Topic 4: Phrase-table-based Knowledge Assessment

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

88

Motivations

* NMT evolution path

-

Rule-based
Machine
Translation

~N

Statistical
Machine
Translation

Neural
Machine
Translation

* Essential translation knowledge should be the same
* bilingual lexicons (translation model)
» grammar (reordering and language models)

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

89

Motivations

1. The input-output attribution provides local explanations only

English It’s @ [day }

French C'est une belle journée

2. There is no previous work on the knowledge assessment in NMT
o How to represent the knowledge?
o How to quantitatively assess the knowledge?

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

90

Method

* Bilingual knowledge:

une

* Bilingual knowledge is at the core of adequacy modelling, a major
weakness of NMT models

* We propose to assess the bilingual knowledge with the statistical
translation model, also known as the phrase table.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

01

An Example

 Phrase table extracted from the NMT model

Input (I do

hope that we finally

start [winning again

\

/

NMT |Ich

hoffe , dass wir endl

ich|[wieder gewinnen

(a) Output of an English = German NMT model

Source Target
[do Ich
I do hope that hoffe ich , dass

hope that we finally
winning again
winning again

hoffe , dass wir endlich

wieder gewinnen
gewinnen einer

(b) Phrase table extracted from the NMT model

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

92

Method

 Phrase table extraction

Algorithm 1 Constructing Phrase Table

Input: training example (x, y), alignment a, mask m
Output: phrase set R

: procedure PHRASETABLE

EXTRACTION

ESTIMATION

: procedure EXTRACTION

R < extract candidates from {(x, y), a}

for each r € R do > priors of NMT predictions
if 7 is consistent with m then
‘R.append(r)
: procedure ESTIMATION
standard procedure

SO XN BT

[E—

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

93

Method

* Implementation
1. Force-decode the training examples

1, ify; = argmax P(yly.;,x)

0, otherwise

2. Build masked training data, $MASKS$
3. Extract the phrase table

4. Remove phrase pairs that contain the sMASKs

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

94

Experiments

* RQ1: Is phrase table a reasonable bilingual knowledge representation?

 Evaluation metric for phrase table

o Phrase Table Size

Scaled

NMT BLEU

Translation Quality
Phrase Table Size
Recovery Percent

0 3 6 9 12 15 18 21
Epoch

(a) En=De

Q< PX

: The extracted phrase table correlates well with the NMT performance,
I consistent across language pairs, random seeds and model structures.

Scaled

o Recovery Percent
1.0
0.8

0.6

04 F

. > NMT BLEU
02 § 4 Translation Quality
: <# Phrase Table Size
< Recovery Percent

0 8 16 24 32 40 48

Epoch
(b) En=-Ja

oTranslation Quality

9
=3
N6
n
2
S
=
]
§ 3 A Seed |
= X Seed?2
F Seed 3
¥ Overlap
0
0O 3 6 9 12 15 18 21

Epoch

(¢) En=-De with Different Seeds

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

95

Experiments

* RQ2: How do NMT models learn the bilingual knowledge during training?
* Different types of phrase pairs with increasing complexity

o Phrase Length o Reordering Type o Word Fertility
1.0 1.0 1.0
0.8 0.8 0.8
5 0.6 B < 06 |8 < 0.6 |8
CR G g |
204 |B 2 04 |8 204 |§
A Short 4 Monotone 4 1-1 Align
- O Medi 2 O Swap 5 O M-1Al
0.2 5z Loenglum 0.2 o * Discontinuous 0.2 2]-MAIEQ
> NMT BLEU > NMT BLEU > NMT BLEU
0.0 § 0.0 0.0
0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21
Epoch Epoch Epoch
(a) Phrase Length (b) Reordering Type (c) Word Fertility
. - - - - ----"-"-"-"-" - - - -- - - - - - “-"“-"“-""=-"=="- I
. . I
: NMT models tend to learn simple patterns first and complex patterns later.
I
e o = = ———

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 96

Experiments

* RQ3: Are the phrase pairs never forgotten once learnt?

~N o0 O

(9]

Phrase Table Size (M)
(@)

AN

<+ Total Phrases
¥ Unforgettable Phrases

0 3 6 9 12 15
Epoch

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

97

Experiments

* RQ4: Does the trained NMT model sufficiently exploit the bilingual

knowledge embedded in the training examples?

Phrase Table Shared Non-Shared All
Size | BLEU | Size | BLEU Size | BLEU
Full O0M | 17.32 | 8.5M 4.50 | 17.5M 17.91
NMT O0M | 17.90 OM 0 9.0M 17.90

NMT models distill the bilingual knowledge by discarding those low-quality

phrase pairs.

|
e o o o o e e e e e e e e e e e e e e e hm e e e e Em e e e e e e e e e e e e e e =

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

98

Experiments

e Revisit recent advances
* Model capacity

! . . « oo
i Data Augmentation induces new knowledge and enhance existing
| knowledge over the baseline

: Domain Adaptation learns more and better bilingual knowledge from the in-
' domain data while forgetting partial out-of-domain knowledge

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

99

Experiments

* Revisit recent advances

* Model capacity

HE, Shilin

Model NMT Phrase Table
0 #Para | BLEU | Size | BLEU

SMALL 38M | 2545 || 7.7TM | 17.35
BASE O8M | 27.11 9.0M | 17.90
BIG 284M | 28.40 || 9.2M | 17.89
Shared Non-Shared

Model —c T BIEU || Size | BLEU
SMALL | 70M | 17.53 || 0.7M 2.37
BASE | 7.0M | 17.49 | 2.0M 3.57
BiG 7.0M | 17.29 || 2.2M 347

Interpretability-driven Intelligent Software Reliability Engineering

100

Experiments

* Revisit recent advances
* Data augmentation

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Model NMT Phrase Table
#Para | BLEU Size | BLEU B Long — i — v
BASE | 98M | 27.11 | 9.0M | 17.90 0 . o e - -
+ BT O8M | 29.75 | 20.9M | 19.26 08
+FT || 98M | 28.43 | 28.0M | 19.33 Eoy
E 0.4
0.2
Model | Shared N qn-Shared N
SlZ€ BLEU SlZé BLEU ' Base BT FT Base BT FT Base BT FT
BASE | 83M | 17.67 || 0.7M | 1.78 (a) Length (b) Reordering (c) Fertility
+ BT | 8.3M 18.61 12.6M 10.45
BASE 84M | 17.83 0.5M 1.21
+FT | 84M | 18.30 || 19.6M | 11.25

101

Experiments

e Revisit recent advances
* Domain Adaptation

HE, Shilin

Fine NMT Phrase Table
Tune | # Para. | BLEU Size | BLEU
X O8M | 15.78 | 168K | 16.08
v O8M | 31.26 | 316K | 18.50
Fine Shared Non-Shared
Tune Size | BLEU Size | BLEU
X 0.16M | 1595 | 0.01M 1.65
v 0.16M | 1692 | 0.16M 6.95

Interpretability-driven Intelligent Software Reliability Engineering

102

Discussion

* Potential applications:
* Error diagnosis: debugs mistaken predictions by tracing associated phrase pairs

* Curriculum learning: dynamically assigns more weights to unlearned instances

* Phrase memory: stores unlearned phrases in NMT to query when generating

translations / \

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 103

Summary

* We interpret NMT models by assessing the bilingual knowledge with the
phrase table.

* Extensive experiments show that the phrase table is reasonable and
consistent.

* Equipped with the interpretable phrase table, we obtain several
interesting findings.

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 104

Conclusion

[Log-based Anomaly 1

Traditional
Software

J_

Interpretability-
driven SRE

\ 4

I Log-based Problem :

Detection

-

Identification

- S

~

Gradient-based

Intelligent
Software

J_

HE, Shilin

\ 4

 Attribution Estimation

Phrase-table-based

\ 4

. Knowledge Assessment

» Experience report
» Release toolkit for reuse

» Highly imbalanced data w/o labels

» Cascading clustering and
Correlation with KPI

> Gradient information for word
importance
» Detect translation errors

» Phrase-table to globally explain
model behaviors
» Explain recent model improvements

Interpretability-driven Intelligent Software Reliability Engineering 105

Thesis Contributions

» Log-based Anomaly :
' Detection '

Traditional Software J—

' Log-baged Prpblem :
| Identification '
Interpretability- drlven
Software Rehablhty ________________
' Gradient-based E
' Attribution Estimation K

Intelligent Software J7

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering 106

