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Controllable Text Generation
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Controllable Text Generation

• Text Generation is to generate fluent and natural text.
• Applications: summarization, dialogue generation, story generation...

• Controllable Text Generation (CTG) is to generate text whose attributes
can be controlled.

• Example: informal vs. formal expression

Wow , I’m very dumb in my observation skills.....

I do not have good observation skills.
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Controllable Text Generation

• Text Generation is to generate fluent and natural text.
• Applications: summarization, dialogue generation, story generation...

• Controllable Text Generation (CTG) is to generate text whose attributes
can be controlled.

• Example: negative vs. positive comments

The burgers were over cooked to the point the meat was crunchy.

The burgers were perfectly cooked and I like the juicy meat!
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Controllable Text Generation

• Text Generation is to generate fluent and natural text.
• Applications: summarization, dialogue generation, story generation...

• Controllable Text Generation (CTG) is to generate text whose attributes
can be controlled.
• Applications of CTG

• Paraphrase generation (lexical diversity)
• Text style transfer (style)
• Text simplification (simplicity)
• Grammatical error correction (syntax, grammar)
• Text detoxification (toxic contents)
• ... ...
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Taxonomy

• Our Contributions

Controllable Text 
Generation

Semantics

Fidelity Question Generation
(Ch 3) [EMNLP’19]

Counterfactuality Conterfactual Text 
Generation

Format

Literary Format
Couplet Generation

Quatrain Generation

Lexical Diversity Paraphrase Generation
(Ch 4) [NeurIPS’20]

Style

Formality Text Formalization
(Ch 4, 5) [NeurIPS’20]

Simplicity Text Simplification
(Ch 5) [AAAI’22]

Persona Personalized Dialogue

Part I: 
Full Supervision

Part II: 
Limited Supervision
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Part I: Supervised Text Generation

• Problem Setting
• Training data: (𝐱 ! , 𝒚 ! ) !"#

$
, learn a mapping function from 𝒙 to 𝒚.

• Solution
• sequence-to-sequence framework

• Challenges
• Semantic fidelity 
• Entity accuracy, hallucination
• ...
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Semantic Fidelity in QG: Introduction

• Question generation (QG) is to generate a question from a reference 
sentence and a specified answer within the reference sentence. 

… “Oxygen is used in cellular 

respiration and released by 

photosynthesis, which uses the 

energy of sunlight to produce 

oxygen from water.” …

• What life process produces 
oxygen in the presence of light? 

• Photosynthesis uses which 
energy to form oxygen from 
water？
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Semantic Fidelity in QG: Introduction

• Challenges 
• Identify question-related context words
• The generated question should be relevant to the given answer.

• Existing solutions
• Zhou et al. (2017) uses BIO tagging scheme;
• Sun et al. (2018) proposes proximity-based answer position encoding;
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Semantic Fidelity in QG: Motivation

1. Proximity-based answer-aware approaches can’t tackle with sentences 
with complex structure.
• Example 

• Experiment verification 

Table 1: Performance for the average relative distance between the answer fragment and other non-stop sentence 
words that also appear in the ground truth question
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Semantic Fidelity in QG: Motivation

2. Answer-related structured relation can help keep the generated question 
to the point.

• Verification:
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Semantic Fidelity in QG: Methodology

• Step 1: Answer-Relevant Relation Extraction
• Relation: 

o Triple: (object1, object2, relation) 

• 𝑁-ary relation selection criterion
1. Include answer phrase; 
2. Get high confidence score;
3. Contain maximum non-stop words.

Sentence: The daily mean temperature in January, the area’s coldest month, is 32.6 ˚F (0.3 ˚C) 
; however, temperatures usually drop to 10 ˚F (-12 ˚C) several times per winter and reach 50 F 
(10 ˚C) several days each winter month.

Structured Answer-relevant Relation: 
• 0.95 (The daily mean temperature in January; is; 32.6 ˚F (0.3 ˚C))
• 0.94 (temperatures; drop; to 10 ˚F (12 ˚C); several times per winter; usually)
• 0.90 (temperatures; reach; 50 ˚F)
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Semantic Fidelity in QG: Methodology

• Step 2: Proposed Framework
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Semantic Fidelity in QG: Dataset & Evaluation

• Dataset
• Stanford Question Answering Dataset (SQuAD)

• Evaluation Metrics
• BiLingual Evaluation Understudy (BLEU)
• Metric for Evaluation of Translation with Explicit Ordering (METEOR)
• Recall-Oriented Understudy for Gisting Evaluation (ROUGE-L)
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Semantic Fidelity in QG: Experiments

• Main Result

• Our model achieves significant improvements over proximity-based answer-aware models (Zhou 
et al. & Sun et al.).

• Our model is a general one to jointly leverage structured & unstructured knowledge.
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Semantic Fidelity in QG: Analysis

• Performance Improvement Analysis

• Structured relation improves cases where contexts words are far from answer 
phrase.

• The improvement increases when distance changes from ‘0~5’ to ‘>10’.
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Semantic Fidelity in QG: Case Study

• Case 1: QG with Answer-Relevant Relation
answer

= wrong context words = correct context words

Sentence: The daily mean temperature in January, the area’s coldest month, is 32.6 ˚F (0.3 ˚C) ; 
however, temperatures usually drop to 10 ˚F (-12 ˚C) several times per winter and reach 50 F (10 
˚C) several days each winter month.
Structured Answer-relevant Relation: (The daily mean temperature in January; is; 32.6 ˚F (0.3 
˚C))

Gold Question: What is New York City ’s daily January mean temperature in degrees celsius ? 

Baseline: What is the coldest temperature in Celsius ?
Ours: In degrees Celsius , what is the average temperature in January ?
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Semantic Fidelity in QG: Case Study

• Case 2: QG with Diverse Relations

Sentence: In July 1960, NASA Deputy Administrator Hugh L. Dryden announced the Apollo 
program to industry representatives at a series of Space Task Group conferences.

Relation 1: (Hugh L. Dryden; [is] Deputy Administrator [of]; NASA)
Question 1: Who was the NASA Deputy Administrator in 1960 ?

Relation 2: (NASA Deputy Administrator Hugh L. Dryden; announced; the Apollo program to 
industry representatives at a series of Space Task Group conferences; In July 1960)
Question 2: Who announced the Apollo program to industry representatives ?

= answer-related relation 1 = answer-related relation 2

answer
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Semantic Fidelity in QG: Conclusion

• We propose a novel framework to combine unstructured sentences and 
structured answer-relevant relations for question generation;

• Our proposed framework can be applied as an extension of other 
question generation model.

• Given multiple facts within one sentence, our model can generate diverse 
questions by verifying the input of relation encoder.
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Part II: CTG with Limited Supervision

Ø Stage 1: 
Supervised Neural 

Controllable Text Generation

• Our Reflections
• Neural approaches rely heavily on training data quantity and quality. 
• Requiring much human annotation cost.

• How about low-resource setting?

?
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Part II: CTG with Limited Supervision

Ø Stage 1: 
Supervised Neural 

Controllable Text Generation

Ø Stage 2: 
Neural Controllable Text Generation 

with Limited Supervision

• Problem Setting
• Training data: (𝐱 ! ) !"#

$
 and (𝒚 % ) %"#

&
, how to get a mapping function from 

𝒚 to 𝒙 ?

• Challenges
• no parallel corpus

• Applications
• Low-resource NLG
• Cold start for new projects/applications
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Unsupervised Controllable Generation: Background

• Existing Solution to Unsupervised CTG
• Search-based approaches 
• RL-based methods

• Drawbacks
• Slow in inference: ~100 iterations of propose-and-reject
• Search could be noisy
• Objective is defined heuristically
• Local search in a discrete space
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UCTG by Learn from Search: Overview

• Our Proposal
Ø Search module
• Search for target sentences, then 

learn from the search results.
• Method: simulated annealing

ØLearning module
• Two stages

1. Word-level cross entropy
learning

2. Seq-level max-margin learning 
• Method: Seq2seq framework
• Efficient in inference
• Cross-entropy loss smooths out 

noise
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UCTG by Learn from Search: Search Module

• Simulated Annealing (SA) Search
• The system performs local search towards a heuristically defined objective

(scorers):
• At every step, the system proposes new sentences by local edits 

(replace/insert/delete) on the input, and decides to accept or reject according to
the scores and current temperature:

• Search process

Replace

Insert

Proposals 

Accept or
Reject

𝑦!"

𝑦#"

…

𝑦$%! 𝑦$
Scorers

Fluency Coherence Task
Constraints

𝑦&"
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UCTG by Learn from Search: Learning Module 

• Stage 1: Word-level Cross-Entropy (CE) Learning
• Initialize an autoregressive text generator with search results
• Training objective: 

• CE loss is equivalent to minimize . Due to the asymmetry
nature, a GPT2 model can smooth out the noise of stochastic search.
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UCTG by Learn from Search: Learning Module 

• Stage 2: Sequence-level Max-Margin (MM) Learning
• Alternate between search and learn to bootstrap the performance
• Max-margin learning:

• Compared with CE, MM corrects the prediction of highly-probable but low-
scored samples.
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UCTG by Learn from Search: Experiments

• UCTG Task 1: Text Formalization
• Goal: transduce the formality style of input text
• Dataset: Grammarly’s Yahoo Answers Formality Corpus (GYAFC)
• Evaluation metrics
• Fluency: perplexity (PPL)
• Semantic equivalence: BLEU
• Formality score
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UCTG by Learn from Search: Experiments

• UCTG Task 2: Paraphrase Generation
• Goal: control the lexical diversity between input and output text
• Dataset: Quora 
• Evaluation metrics
• BLEU
• iBLEU 
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UCTG by Learn from Search: Experiments

• Ablation Study
• Search < Search + CE
• 2nd stage: CE < MM

• Efficiency Analysis
• Training: ~ 2 (SA + Seq2Seq)
• Inference: 6-10x speedup than SA
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UCTG by Learn from Search: Conclusion

• We propose a novel search-and-learning framework for unsupervised text 
generation tasks.

• The proposed framework can be applied to different tasks, if the 
resemblance between source and target texts can be measured by a 
heuristically defined scoring function.

• We successfully Incorporate large-scale pretrained language models (GPT2, 
RoBERTa) into our framework.

• Our model outperforms unsupervised baseline methods on paraphrasing and 
text formalization.



36 / 57Jingjing Li Towards Neural Controllable Text Generation

Part II: CTG with Limited Supervision

• How to further improve the efficiency?
• In-place edit!
• phrasal replacement instead of word-level replacement!

Ø Stage 1: 
Supervised Neural 

Controllable Text Generation

Ø Stage 2: 
Neural Controllable Text Generation 

with Limited Supervision
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UCTG by Iterative Revision: Background

• Text Revision
• include family of natural language generation tasks, where the source and target 

sequences share moderate resemblance in surface form but differentiate in 
attributes.

• Problem Formulation
• Given an input sequence 𝑋 with attribute 𝑧, transfer it to another sequence 𝑋∗

with the target attribute 𝑧∗.

• Challenges
• Sequence-to-sequence transduction is not applicable with non-parallel data
• Utilizing the transferrable power of pretrained models to text revision



39 / 57Jingjing Li Towards Neural Controllable Text Generation

UCTG by Iterative Revision:  Overview

• We propose a an iterative in-place editing approach for text revision, 
named OREO (On-the-Fly REpresentation Optimization)
• Training for OREO: Multi-task Fine-tuning
• Inference of OREO: On-the-Fly Representation Optimization

Informal: Wow , I am very dumb in my observation skills ......

Formal: I do not have good observation skills .

[Delete]: Wow, I am very dumb in my observation skills ......
[Replace]:  I do not have good observation skills ......
[Delete]: I do not have good observation skills ......
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UCTG by Iterative Revision: Training Stage in OREO

• Training for OREO: Multi-task Finetuning
1. Masked language modeling 
• variant-length span replacement

• Append special token [LM-MASK] to the selected 
span to a fixed length

• Set [PAD] as the target token and remove it from 
output text

input: 
padded masked input:

target:

Good   luck   to   you! 
[LM-MASK] [LM-MASK] [LM-MASK] to you!
      Good                 luck           [PAD]

TFM TFM TFM

TFM TFM TFM

TFM TFM TFM

… … ……

…

…

…

LM Head
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UCTG by Iterative Revision: Training Stage in OREO

• Training for OREO: Multi-task Finetuning
2. Attribute classification
• Aggregate the representations of [CLS] 

token from all layers

TFM TFM TFM

TFM TFM TFM

TFM TFM TFM

… … ……

…

…

…

Attribute Head P(z* |X)
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UCTG by Iterative Revision: Inference Stage in OREO

• Inference of OREO: On-the-Fly Representation Optimization
1. Span selection
2. Text revision
• Step 1: Representation Optimization
• Setp 2: Span Replacement
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UCTG by Iterative Revision: Inference Stage in OREO

1. Span Selection
• Strategy: gradient-guided selection

• Advantages
• Agnostic to revision algorithm
• Allow use to insert [LM-MASK] tokens in advance
• Enable human-in-the-loop generation
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UCTG by Iterative Revision: Inference Stage in OREO

2. Text Revision 
• Step 1: Representation optimization
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UCTG by Iterative Revision: Inference Stage in OREO

2. Text Revision 
• Step 1: Representation optimization
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UCTG by Iterative Revision: Inference Stage in OREO

2. Text Revision 
• Step 2: New span replacement
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UCTG by Iterative Revision: Experiments 

• UCTG Task 1: Text Simplification
• Goal: revise the complex text into simpler language
• Dataset: Newsela-Turk
• Evaluation metrics: SARI, FKGL, SLen
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UCTG by Iterative Revision: Experiments 

• UCTG Task 2: Text Formalization
• Goal: transduce the formality style of input text
• Dataset: Grammarly’s Yahoo Answers Formality Corpus (GYAFC)
• Evaluation metrics
• Fluency: perplexity (PPL)
• Semantic equivalence: BLEU
• Formality score
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UCTG by Iterative Revision: Experiments 

• Human Evaluation
• Formality
• Coherency
• Fluency

• Ablation Study
1) recomputing all hidden states when infilling span
2) updating the hidden states with Gaussian noise
3) without updating the hidden states
4) randomly selecting span
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UCTG by Iterative Revision: Case Study

• Example cases 
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UCTG by Iterative Revision: Case Study

• Human-in-the-loop
• Let user to decide the span to be edited and ask OREO to revise
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UCTG by Iterative Revision: Conclusion

• We propose an efficient mask-and-infill method with on-the-fly optimized 
representation for text revision;

• Our approach has strong performance on text formalization dataset 
GYAFC-fr and text simplification dataset Newsela-Mturk;

• Our editing system can also produce meaningful revisions when 
interacting with human beings.
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Conclusion
• We investigate the problem of neural controllable text generation across different 

dimensions of control factors.
• We explore the setting of generation task from bipartite settings: supervised and 

unsupervised learning.
• All the studies consistently approach a general and efficient solution to NCTG.

Controllable Text 
Generation

Semantics Fidelity Question Generation
(Ch 3) [EMNLP’19]

Format Lexical Diversity Paraphrase Generation
(Ch 4) [NeurIPS’20]

Style

Formality Text Formalization
(Ch 4, 5) [NeurIPS’20]

Simplicity Text Simplification
(Ch 5) [AAAI’22]

Part I: 
Full Supervision

Part II: 
Limited Supervision
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Thank you!


