i T o B N
PWESR 4 3

S e

« - > fo"“ﬁ Wﬂ'\‘f —i

=

Network Compression and
Architecture Search in Deep Learning

Haoli Bai Supervisors: Committee Members:
Prof. Michael Rung-Tsong Lyu Prof. Laiwan Chan
Prof. Irwin Kuo-Chin King Prof. Andrej Bogdanov

2021-09-01 Prof. Hsuan-Tien Lin

HREF XL XEZ

e ¢ The Chinese University of Hong Kong

Real-time Al Services

c) Speech Recognition d) Tumor Detection

Network Compression and Architecture Search in Deep Learning 2/58

The Increasing Model Size

NASNet-A-Large
SE-ResNeXt-101(32x4d)
80 PR Reallet 2 SENet-154
4 n-v et-
T 50'3.2‘“) Xception IPathiNet-98 JIPa!hNel-lJl
SE-ResNet-101 . esNet-152 eXt-101(64x4d)
SE-ResNet#§0,_ Incaption-v3 ’:'101(32)(esNet-152
DenseNet-201@) WBenseNet-161 ol-101 "GP Reshet-152
® Oresverso ..Ca"e-"““ﬁ‘-‘“‘ VGG-19_BN
75 - DualPathNet-68 DenseNet-169 VGG-16_BN
DenseNet-121
3 .NASNe!-’-Mohlle
S
= BN-incapton @ ResNet34 V6G-13 BN
[%)
g ® MobileNet-v2 VGG-11_BN
53
@ VGG-19
==z 704 .ResNeMB VGG-16
|
8- MobileNet-v1
= VGG-13
P shutfleNet VGG-11
.GoogLeNei
1M 5M 10M 50M 75M 100M 150M
SqueezeNet-v1.1
® SqueezeNet-v1.0
. AlexNet
55 T T T T
0 5 10 15 20 25
Operations [G-FLOPs]

a) Computer Vision Models

(Bianco et.al., 2018)

10000
MegatronLM
8300
L J
7500 N
NVIDIA.
5000
© w
OpenAI UNIVERSITY,of WASHINGTON
2500 GPT-2 Grover-
Mega
ots AIZ 1500 1500
@ i Google Al g o
kfz OpenAI YruéSLf':l;lmor L ’ ’0>
BERT-Large LMo MT-DNN XLM 665 RoBERTa
ELMo GPT 34 465 330 340 355 DIstilBERT
4 10 XLNET % Ao
® L ° arnegie @) ;
o2 e Mellon a
. niversity

b) Natural Language Processing Models

(Sanh et.al., 2020)

> Efficient deep learning by network compression and neural architecture search

Network Compression and Architecture Search in Deep Learning 3/58

Overview: Network Compression

= Common methods

Pruning Quantization Knowledge distillation Tensor factorization coe
O
l full-prec (~
, Teacher
min(x,) 0 max(x;
-t) \]

L)
\

\\l u/ - I I 1 [1 L 1
° it L Student]—o [—|—[—|—f

Unstructured

pruning
(Zhu et.al, 2017)

= Multi-bit quant
(He et.al., 2017)

" Ternarization
(Li et.al., 2016)

Logit
(Hinton et.al.,
2015)

Canonical
Polyadic
(Lebedev et.al.,
2015)

Structured Hidden

pruning = Binarization representation Tucker

(He et.al., 2017) (Courbariaux (Romero et.al, (Kim et.al,,
et.al, 2016) 2015) 2016)

Network Compression and Architecture Search in Deep Learning

4 /58

Overview: Network Compression

* Compression pipeline

Training Resources

(Data)

v II
@ User Serv1ce

/ L

Challenge 2: sharp performance drop Challenge 1: access of training resources

Caused by extreme compression such as: V :Accessible on the user side
= Pruning: higher sparsity
X : Restricted for the compression service
= Data: privacy and security
= GPU: quick deployment

= Quantization: lower bit-width
(e.g., binarization)

Network Compression and Architecture Search in Deep Learning 5/58

Overview: Neural Architecture Search (NAS)

" NAS components

Search Space Search Strategy

.. 0.945
‘\
_______ \ A Legend %(
BISE | . & Edge on \
’
Sum - - 9 Edge off

e
g 0940 A

0.5 0.6 0.7 0.8 0.9
One-Shot Model Accuracy

= Basic cell = Differentiable search = Accuracy
(Zoph et.al, 2017) (Liu et.al., 2019) (Zoph et.al., 2017)

= Width and depth = Evolutionary algorithm "= Model storage
(He et.al., 2017) (Real et.al., 2017) (Zhu et.al, 2017)

= Compression strategy = Reinforcement learning = Computational FLOPs
(Wang et.al., 2019) (Zoph et.al., 2017) (He et.al., 2017)

Network Compression and Architecture Search in Deep Learning 6/58

Overview: Neural Architecture Search (NAS)

=" NAS pipeline

Sample architecture

a= f(A)

AN

. *
Performance Optimal a

n

Search space A — Search strategy f(-) .

N

Architecture reward R(a)

\

»

Re-training

Challenge 3: NAS efficiency with parameter sharing

= Individually evaluating each candidate can take up to 1,000 GPU hours
= Existing solutions: parameter sharing
= However, the mechanism behind is not well studied

kernel size

max
input
channels

N J
Y
max output channels

Network Compression and Architecture Search in Deep Learning

7158

Overall Taxonomy

Pruning

Types

Network
Compression

Efficient Deep Learning

Data Access

—— Unstructured, Stripe, Filter, Channel

Full Data: CP, ThiNet, DCP, CCP

Few Data: FSKD, CURL

Quantization
Training

QAT: DoReFa, PACT, LSQ

Quantization

PTQ: Bit-split, AdaRound, BRECQ

Bit-width

m-bit: DoReFA, PACT, LSQ

2-bit: TWN, TTQ, LAQ, RTN

1-bit: BWN, BiReal, XNOR, ReActNet

Architecture
Search

Search space

Cell, Width/Depth,
Compression

Search Strategy

Differentiable, RL,
Evolutionary

Performance
Estimation

—— NAS, FBNet, Auto-slim, TAS

DARTS, ENAS, MetaPruning

Parameter sharing

NAS, ENAS, DARTS, TAS

g Ch3: AAAI 2020

Challenge 1: network compression with

limited training resources

e d Ch4: In submission

Challenge 2: extreme network compression

with sharp performance drop

mmmd Chs: ACL 2021

Challenge 3: NAS efficiency with

parameter sharing

e d Ch6: NeurlPS 2020

Network Compression and Architecture Search in Deep Learning

8/58

Outline

Challenge 1: Network Compression with Limited Training Resources

0 Few-shot Network Pruning via Cross Distillation (AAAI 2020)

Network Compression and Architecture Search in Deep Learning 9/58

Background: Network Pruning

= Given convolutional kernel w € R *¢>Xk*F find a mask m € {0, 1}cxcixhxk

suchthatw = w O m
* Types of pruning

(a) Unstricuterd Pruning.| (b) Stripe Pruning. (c) Channel Pruning. | (d) Filter Pruning.

* Pruning criteria (by minimizing the loss change)

()~ (w) + (W) (% — w) + (% — w) TH(w) (% — w).

1. Magnitude 2. Gradient (sensitivity) 3. Hessian (loss curvature)

Network Compression and Architecture Search in Deep Learning 10/58

Motivation

* Typical paradigm for network pruning

;& User Pruning service

Pruning
+

finetuning

Light-weight model

* However, passing the training data can be risky ——
* New paradigm: few-shot network pruning (e.g., 5 images per class)

Network Compression and Architecture Search in Deep Learning 11/58

Prior Methods

" Pruning resembles knowledge distillation

FT:Teacher (original unpruned model) JF°: Student (pruned model)
* Minimize the layer-wise Euclidean distance
* Objective function i @ @‘k
-
1 |
w = arg min NHWT +h! — w® x h”|| %4+ AR(W®),

Conv-| Conv-(I+1)

* Layer-wise training: sample-efficient (Zhou et.al., 2020)

* Poor generalization due to over-fitting to few-shot data

e Error propagation layer-wisely

Network Compression and Architecture Search in Deep Learning 12 /58

Our Approach: Cross Distillation

s : ﬁ

Nen
2
=

S
Conv-| Conv-(I+1) Conv-I Conv-(I+1)
= Motivation = Motivation
Student receives clean signal from Teacher becomes aware of the error
teacher to reduce error propagation accumulated on student
= Student discrepancy = Teacher discrepancy
S = [|[WxhT —W?*xh%|2, el = |[WTxh%—WTxhT|%

Network Compression and Architecture Search in Deep Learning 13 /58

Our Approach: Cross Distillation

= Correction = |mitation

LE(w?) = ||lw! *hT —w" «x h'|% LY(w) = |[w! *h® —w® « h®||%

» Trade-off between correction and imitation
* Convex combination of loss terms

L=pls+(1—p)L, pelol].

 Convex combination of cross connections

H@ Lﬁztti h” o l—af b’
|[: flS — 1_ﬁ 5 hS ? &,56[0,1]

S%@L j:tﬁs LW = (whshT) = (w® b,

Conv-I Conv-(I+1)

D

Network Compression and Architecture Search in Deep Learning 14 /58

Pruning with Regularization R(W?)

= Different regularizations on student parameters

e Structured pruning: R(W?) = [W?5; = >, W72 where w$ ¢ Reoxkxk

+ Unstructured pruning: R(WS) =[W5|l; = Y, (W,
= Solve by proximal gradient descent:
: A
e Structured pruning: Prox,.,(w;) = max(1 — S| 0)-w?
Will2
* Unstructured pruning:
,
Wz’?hw — A Wighw > A
Proxy ., (Wijhw) = < 0 Wi h| <A
S S
Network Compression and Architecture Search in Deep Learning 15/58

Experimental Results: Structured Pruning

" 50% channel sparsity
= VGG-19 on CIFAR-10
» Few-shot data: {1, 2, 3, 5, 10, 50} data / per class

= CD: convex combin. over loss terms

= SCD: convex combin over feature maps

Methods 1 2 3 5 10 50
Ll—norm 14.36i0.00 14.36;&0.00 14.3610.00 14.3610.00 14.36:&0.00 14.36;&0,00
BP 49.2441 76 49.3241 88 51.394+1.53 55.73+1.19 57.48+0.91 64.6910.43
FSKD 47.91:t1.82 55.44:t1.71 61.76:]:1_39 65.69:]:1_08 72.20:};0.74 75.46:}:0,49
FitNet 48.51i2,51 71.51i2_03 76.22i1_95 81.10;&1_13 85.40j:1.02 88.46j:o_76
ThiNet 58.06+1.71 72.07+1.68 75.37+1.59 78.03+1.24 81.1540.85 86.1210.45
CP 66.03i1,56 75-23:t1.49 77.98:|:1_47 81.53:]:1,29 83.59j:o,78 87.27i0_27
W/O CD 65-57;{;1,61 75-44:t1.69 78.4011,53 81.20i1,13 84.0710,83 87.67i0,29
CD 69.25:&1,39 80.65;{;1,47 82.08;t1.41 84-9110.98 86.61:&0.71 87.64:{30.24
SCD 68.93+1.59 76.83+1.43 80.1641.32 84.28+1.19 86.30+0.79 88.65410.33

16/ 58

Network Compression and Architecture Search in Deep Learning

Experimental Results: Unstructured Pruning

" 50% sparsity

" VGG-19 on ImageNet

= Few-shot data:
* {50, 100, 500} randomly sampled data in any classes
* {1, 2, 3} data / per class

Methods 50 100 500 1 2 3
LI-norm 0.540.00 0.540.00 0.5+0.00 0.5+0.00 0.5+0.00 0.540.00
BP 42.87+9.07 48.78 41 43 65.47+1.15 71.2540.97 74.8540.71 76.0440 48
FitNet 52.664+2 93 57.094+9 14 76.99+1.45 80.1441 23 82.27+0.70 83.1410.51
w/o CD 78.7311.78 83.2941 12 85.044+0.93 895.36+0 .61 89.2140.41 89.4940.46
CD 83.811149 86.214109 87.19+0.96 87.61+0. 892 87.7840.45 87.8640.39
SCD 83.67+150 86.72411203 87.821104 88.141974 88231061 88.38:0u43

Network Compression and Architecture Search in Deep Learning

17 /58

Experimental Results: Discussions

* How cross distillation alleviate the error propagation
= Compare the ratio of estimation error on the test set

L
Ratio = ~2"* (||w” «h” —w « h%[2%)
['prev

»

CD (K1) 49— SCD (K1)
4— CD (K10) 9— SCD (K10)

1.3

.5

B ».

3 1.0 | S——

© 0.9 4 + ®
0.8-
e .

= 4

conv2.1 conv3.1 conv3.3 conv4.3 Iogjits

Ratio < 1: generalize better

Network Compression and Architecture Search in Deep Learning 18 /58

Summary

* We study the problem of few-shot network pruning, a new pruning paradigm that
considers data security issues for users

= We propose cross distillation, a new layer-wise pruning technique with knowledge
distillation. The interconnection between teacher and student layers alleviate the
error propagation

= Experiments on popular network architectures show that our approach can bring
consistent improvement for pruning even when only 1~10 images per class are
available

Network Compression and Architecture Search in Deep Learning 19/58

Outline

Challenge 1: Network Compression with Limited Training Resources

e Efficient Post-training Quantization for Pre-trained Language Models
(In submission)

Network Compression and Architecture Search in Deep Learning 20/ 58

Network Quantization in NLP Tasks

* The increasing size of pre-trained models (Sanh et.al., 2020)

10000
MegatronLM
8300
m []
c
] <
= 7500]
s NVIDIA.
£
2
I
g
& 5000
©
o
-
o
4
o w
g o AT UNIVERSITY of WASHINGTON
pen Gfover-
2 2500 K2 crr2 Mega
A2 ® Google A 1500 g ﬁ 1500 ﬁ =
Transformer
OpenAl ° ° -
P BERT-Large ELMo MT-DNN LM 665 ROBERT: a
LMo GPT 340 46 330 340 355 DistilBERT
94 110 e XLNET . 66
d b Carnegie ° °
0 vieriom
N Universif
Q Q a;b Q Q
& » & & &
IS} N

* The huge pre-training corpus: slow training

* BERT (Devlin et.al., 2018) uses BookCorpus (800M words) & English Wikipedia (2500M words)
* Even resource-demanding for network compression
= Efficient quantization pipelines

Network Compression and Architecture Search in Deep Learning 21/58

Background: Quantization

= Given the full-precision parameter w
* Multi-bit quantization (b-bit):
w = Qy(w) = s lgp(Ww/s), Qb) == {-2"",..,0,..,271 -1}

« Ternarization (2-bit) ign(w;) |wg| > A
Q- s1gn(w;) |(w;| =2

@szgz(wi):{

* Binarization (1-bit) W = Q;(w;) = a - sign(w;).
Bias
b;
STE: St =1 V(W) |
" Quantization workflow T 0=

— Forward Pass «<— Backward Pass

Network Compression and Architecture Search in Deep Learning 22/ 58

Background: Quantization

" Training
 Quantization-aware training (QAT): cross entropy over full data

min Eyp (x;W,s)], s.t. W= Qu(w).

* Post-training quantization (PTQ): reconstruction error over few data

. s T T 12 " . . .
min |[W' a —w a||”, s.t. w= Qu(w). (Similarto layer-wise pruning)
wW,S
= Comparison
29.84-----------
~2,3401 - - st 80 -
=) (%)
E So1s © o
o e - ©
E]] 5 60
= 5 GTX 1080 Ti # ¥
2 211.3 5 9
< 609 - 2 g 40| —®— QAT
= O 4.37--- - a4 ~o- PTQ
al || | A - BEH [N
FT QAT PTQ FT QAT PTQ QAT PTQ 328 76 5 4 32
(a) Training Time. (b) Memory. (c) Data Accessibility. (d) Weight Quantization.
Network Compression and Architecture Search in Deep Learning 23 /58

Methodology: Model Splitting

[Full-prec. Model [] Quant. Model — Forward Pass <— Backward Pass ---> Teacher Forcing

Device: 1 Device: 2 Device: N
> T n—
Il i i
D Input | P i (N
> Queue :. :. >
> s ll‘ e i ll‘ oo
Calibration Set — »CH_ T — . =3y =
7,

= Goal: improve post-training quantization while keeping its advantages
= Approach: split the language model into multiple modules
" Improvement: layer-wise -> module-wise

T 2 . n é 7 2
I£1V1£1||W a—w al, V{,Iilglf() = > = £l
lE[ln, n+1)
where f;and ¥, are the full-precision and quantized output ot each module
Network Compression and Architecture Search in Deep Learning 24/ 58

Methodology: Parallel Training

[Full-prec. Model [] Quant. Model — Forward Pass <— Backward Pass ---> Teacher Forcing

Device: 1 Device: 2

'15 £ Input
4 > Queue

> s

[TTp—

Calibration Set

Device: N

,ﬁ

£

___-_---_--__—1

o 7

I
I
<

A4
E
e
y

!

" Training procedure:
* Sequential training: one by one

* Parallel training: an input queue help achieve theoretical speedup

» Teacherforcing f, =Af, +(1=Nf,, A€0,1],

= Adapt to normal training: A, = max(1 — 7, 0)

Network Compression and Architecture Search in Deep Learning 25/ 58

Experiments: Main Results

» Text classification (MNLI)
* Only 4K training instances (original dataset: 393K instances)

» Qur approach: MREM-S (sequential) and MREM-P (parallel)

4Bits Quant . BERT-base ' BERT-large
(W-E-A) Method Time Mem #Data Acc Acc Time Mem #Data Acc Acc

(min) (G) (K) m(%) mm(%) | (min) (G) (K) m(%) mm(%)

full-prec N/A 220 8.6 393 84.5 84.9 609 21.5 393 86.7 85.9

QAT 1,320 11.9 393 84.6 84.9 3,180 29.8 393 86.9 86.7
4-4-8 REM 28 2.5 4 73.3+03 T74.9402 84 5.5 4 70.0404 71.8403
MREM-S 36 4.6 4 83.5401 83.9401 84 10.8 4 86.1101 859401
MREM-P 9 Sk 4 834401 83.7+01 21 8.6 4 85.5401 85.4402

= QAT 882 11.9 393 844 84.6 2,340 29.8 393 86.5 86.1
Z 2-2-8 REM 24 2.5 4 T1.6404 73.4404 64 5.9 4 66.9404 68.6407
= MREM-S 24 4.6 4 82.7192 82.7402 64 10.8 4 85.4402 85.3+02
MREM-P 6 3.7x4 4 82.3402 82.6402 16 8.6x4 4 84.6402 84.6401

QAT 875 11.9 393 83.5 84.2 2::280 29.8 393 85.8 85.9
2-2-4 REM 24 2:9 4 58.3105 60.6406 64 9.9 4 488106 514408
MREM-S 24 4.6 4 8l.1192 81.5402 64 10.8 4 83.6102 83.7+02
MREM-P 6 3.7x4 4 80.8402 81.2409 16 8.6x4 4 83.0103 83.2402

Network Compression and Architecture Search in Deep Learning

26/ 58

Experiments: Compare with Existing SOTA

» Compare with existing SOTA (both QAT and PTQ baselines)
" On GLUE benchmark

1\(42;?:;1 (‘:]_sét_sA) (ifl‘;) PTQ | MNLIm QQP QNLI SST-2 CoLA STS-B MRPC RTE | Ave
- full-prec. 418 - 84.9 91.4 92.1 93.2 59.7 90.1 86.3 72.2 83.9
Q-BERT 2-8-8 43 X 76.6 - - 84.6 - - - - -
Q-BERT 2/4-8-8 53 X 83.5 - - 92.6 - - - - -
Quant-Noise PQ 38 X 83.6 - - - - - - - -
TernaryBERT 2-2-8 28 X 83.3 90.1 91.1 92.8 55.7 87.9 87.5 72.9 82.7
GOBO 3-4-32 43 v 83.7 - - - - 88.3 - - -
GOBO 2-2-32 28 v 71.0 - - - - 82.7 - - -
MREM-S 4-4-8 50 v | 835101 90.2401 912401 914104 55.110s 891101 84.8400 71.8400 | 82-4401
2-2-8 28 v 82.7+0.2 89.6401 90.3402 91.2404 523410 88.7401 86.0400 71.1400 | 81.5402
MREM-P 4-4-8 50 7 | &3dagy 90255 OlOhgs OL545s BlTngs S%lisg B63ngy Tldege | 822w
2-2-8 28 v 82.3402 89.4101 903402 9134104 5294192 88.3402 85.8400 72.9400 | 81.64002
Network Compression and Architecture Search in Deep Learning 27/ 58

Experiments: Effect of Teacher Forcing

= Loss curves with 250 training steps (up) and 2,000 training steps (down)

w/o. TF 1.25 1 w/o. TF w/o. TF
» 0.8 w. TF W g w. TF w 1.51 w. TF
: : :
| | 1-00 1 -
£%° £ 0.75 £10
£ £ £
© 0.4 © ©
. L L
= = 0.50 =
0.5
0.2 | , [. : . 025{ ~— | . | . . .
o 50 100 150 200 250 0 50 100 150 200 250 o 50 100 150 200 250

Steps Steps Steps

(c) 250 Steps, Module-3

(a) 250 Steps, Module-1 (b) 250 Steps, Module-2

1.0 w/o. TF 1.5 w/o. TF 2.0 w/o. TF
8 w-TF o w. TF " w. TF
¢ 0.8 “ 2 1.5
- - 1.0 - 0.40
o o
20.6- 0.14 ‘ : S 0.225 g' 1.0
= | = ‘e 0.35
‘s 0.4 | a=t2 = 0.200 =
© 0. 1400 1700 ® o5 1400 1700 © 1400 1700
= [F 0.5

0.2

0 400 800 1200 1600 2000 0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
Steps Steps Steps

(e) 2,000 Steps, Module-1 (g) 2,000 Steps, Module-3

(f) 2,000 Steps, Module-2

Training Loss

8 w/o. TF

. w. TF
n

S6;

o

c

£4

®

F o

0 50 100 150 200 250
Steps

(d) 250 Steps, Module-4

8 w/o. TF
w. TF
6-
0.6
4
0.4
2 1400 1700
o .

0 400 800 1200 1600 2000
Steps

(h) 2,000 Steps, Module-4

Network Compression and Architecture Search in Deep Learning

28 /58

Summary

Accuracy (%) | g4 6

/
“re3.3

Memory (G)/llﬂ/ 3.7 |9 \‘\1\5329 Training

Per GPU] s 7 Time (min)
Waos | QAT
#Data (K)\ MREM

4

* We investigate post-training quantization (PTQ) for pre-trained language models

» The proposed PTQ method enjoys quick training (36x ~ 144x faster), light memory
consumption (3x savings) with only 4K instances (<1%) and reasonable performance
(1.3% drop compared with QAT)

* The designed parallel strategy further achieves theoretical training speed-up
(e.g., 4x on 4 GPUs)

Network Compression and Architecture Search in Deep Learning 29/ 58

Outline

Challenge 2: Extreme Compression with Sharp Performance Drop

€) BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)

Network Compression and Architecture Search in Deep Learning 30/58

Introduction

» Advantages of binarization (1-bit):
* The most size reduction
* Conversion of floating-point multiplication to cheap integer addition
* Fast and energy-saving on edge devices

* However, it is HARD to train a binary BERT directly

86 93.0
>
§85 8 92.5 g
g 2 :
< 83 Shj;?sl;f P < 92.0 Shf;‘.)ol;rf P <
82
a1l ' . . ' . ‘ , . . . : 91.5 . . ' ' ' . ' ‘ ' ‘ ' .
32 8 4 3 2 1 32 8 4 3 2 1 32 8 4 3 2 1 32 8 4 3 2 1
Bits # Bits # Bits # Bits
(a) MRPC. (b) CoLA. (c) SST-2. (d) MNLI-m.
Network Compression and Architecture Search in Deep Learning 31/58

Background: Underlying Challenges

= Visualization of loss landscape

4

o
w
°©

w
«
N
o

w
°
N
N
Training Loss

w
°
N
»
Training Loss

N

»
Training Loss

-

]

=
©

-
w

(b) Ternary Model. (c) Binary Model. (d) All Together.

(a) Full-precision Model.

= Perturbation as follows:
Wx:Waj_I_x'].x, Wy:Wy—l_y']_y7
where w,; is the average value of w,, and

r € {+0.2w,,+0.4w,, ..., +1.0w,}

Network Compression and Architecture Search in Deep Learning 32/58

Background: Underlying Challenges

* The top-1 eigenvalue of Hessian matrix H at different parts

.g 5 5 - 8

g 20

o 4] a

3

€ 3 3 ot

c

g‘ 21 2] 101

7]

l-.| 11 1 5 -

Q.

2o . 0 . 0 0- . 0 .

FP Ternary Binary FP Ternary Binary FP Ternary Binary FP Ternary Binary FP Ternary Binary

(a) MHA-QK. (b) MHA-V. (c) MHA-O. (d) FEN-Mid. (e) FFN-Out.

* Measuring the steepness of loss curvature
(W) — 6(w) ~ €' He < Apax| €]?,

« € = W — W js the quantization noise
* Top-1 eigenvalue reflects the quantization sensitivity

Network Compression and Architecture Search in Deep Learning 33 /58

Methodology: Ternary Weight Split

* First train a ternary BERT as the bridge model

t

= For each ternary weight W' and its quantized counterpart W', we apply ternary

weight splitting (TWS) as

wl=wbl +wh, w=w+w.

* TWS ensures equivalency, inheriting knowledge from ternary model
= We assign the following form of solution

(a-w! if w! #0 [(1—a)w! if W #0
wili=<{ b4+w! if w=0,w!>0 [whi=<{ —b if ! =0,w!>0
b otherwise . —b+w! otherwise

= Next: solvea and b

Network Compression and Architecture Search in Deep Learning 34 /58

Methodology: Ternary Weight Split
= TWS allows closed-form solution as

Ziez \wﬂ + Zjej ‘w}t — Zkelc ‘w};‘
2) e [wi] ’

a =

7 ier [wil = 225 [w;

2(171 =+ 1K) |

= where 7 = {i|w! #0} ,T = {j| @} = 0andw} >0}, K = {k |}, = 0and wj, < 0}.
= TWS can be finished immediately
» Detailed derivations can be found in the thesis

Network Compression and Architecture Search in Deep Learning 35/58

Methodology: Ternary Weight Split

TernaryBERT w x5 28 BinaryBERT
Classifier | Classifier |
A TWS Operator A
:'l- '\ :'l' i
FFN FFN
A N
L I
& > ADD&LN | M S ADD&LN |
A
MHA I MHA MHA
-precisi) 7 S S
Wi Full precusuon» [W?,Wg] |
AL mmemmm——e——=- ~b b
W i Wi, W
Embedding Quantized [, ¥ Embedding

Figure 4: The overall workflow of training BinaryBERT. We first train a half-sized ternary BERT model, and then
apply ternary weight splitting operator (Equations (6) and (7)) to obtain the latent full-precision and quantized
weights as the initialization of the full-sized BinaryBERT. We then fine-tune BinaryBERT for further refinement.

Network Compression and Architecture Search in Deep Learning 36 /58

Methodology: Adaptive Splitting

* Adaptive splitting: fit BinaryBERT to various edge devices
* Train a ternary and binary mixed BERT, and split the ternary (sensitive) ones
» Equivalent to mixed-precision, but enjoy hard-ware efficiency

* Formulation: a combinatorial optimization problem

maxXg u's

s.t. c's<C—0Cy se {0,1}7,
s € {0,1}7

where C is the resource constraint,and u €]Rf is the utility vector
* The utility u can be measured by performance gain from ternarization
= A knapsack problem, solved by dynamic programing

Network Compression and Architecture Search in Deep Learning 37 /58

Experiments: Main Results

» GLUE benchmark (test set results)
= TWS (ours): ternary weight splitting

= BWN: train binary model from scratch

|| Quant (foét_;) (ifg) FI(‘(?)PS DA 1:14]/1:1:;1 QQP QNLI SST-2 CoLA STS-B MRPC RTE | Avg.
1 . full-prec. 417.6 22.5 - | 84.5/84.1 895 91.3 93.0 549 84.4 879 699 | 82.2
2 || BWN 1-1-8 13.4 3.1 X [833/834 889 901 923 38.1 81.2 86.1 63.1 | 78.5
31 TWS 1-1-8 16.5 3.1 X | 84.1/83.6 89.0 900 931 505 834 86.0 65.8 | 80.6
4 || BWN 1-1-4 13.4 15 X [835/825 89.0 894 923 26.7 78.9 842 599 | 76.3
5| TWS 1-1-4 16.5 15 X |83.6/829 89.0 8.3 931 374 82.5 859 62.7 | 785
6 || BWN 1-1-8 134 3.1 v [83.3/834 889 903 91.3 484 83.2 86.3 66.1 | 80.1
71 TWS 1-1-8 16.5 3.1 v | 84.1/835 89.0 898 919 51.6 82.3 859 67.3 | 80.6
8 || BWN 1-1-4 13.4 1.5 v | 835/825 89.0 899 920 45.0 81.9 852 64.1 | 79.2
91 TWS 1-1-4 16.5 1.5 v | 83.6/829 89.0 89.7 931 479 82.9 86.6 65.8 | 80.2
Network Compression and Architecture Search in Deep Learning 38 /58

Experiments: More Results

= Compare with SOTA » Optimization trajectory after splitting
Table 4: Comparison with other state-of-the-art meth- * Follow (Li et.al, 2017)
ods on development set of MNLI-m and SQuAD vl1.1.
Method #Bits Size Ratio MNLI SQuAD MR PN 8
(W-E-A) (MB) (|) -m vi.1 oo .
BERT-base full-prec. 418 1.0 84.6 80.8/88.5 o 1 m
DistilBERT | full-prec. 250 1.7 81.6 79.1/86.9 @ "
LayerDrop-6L | full-prec. ~ 328 1.3 82.9 - 4 g =4 . o
LayerDrop-3L | full-prec. 224 1.9 78.6 - 2 T -5 -
TinyBERT-6L | full-prec. ~ 55 7.6 828 79.7/87.5 _ | 9
ALBERT-E128 | full-prec. ~ 45 93 81.6 82.3/89.3 2L /
ALBERT-E768 | full-prec. 120 35 820 81.5/88.6 20 s A0SO ST RN S8 S8 i
Quant-Noise PQ 11.0 38 83.6 -
Q-BERT 2/4-8-8 53 79 835 79.9/87.5 (c) 8-bit Activation. (d) 4-bit Activation.
Q-BERT 2/3-8-8 46 9.1 81.8 79.3/87.0
Q-BERT 288 28 150 76.6 69.7/79.6 Moving towards a better minima
GOBO 3432 43 97 837 .
GOBO 2-2-32 28 150 710 -
TernaryBERT 2-2-8 28 15.0 83.5 79.9/87 .4 . .
BinaryBERT | 1-1-8 17 246 842 80.8/88.3 Size reduction
BinaryBERT | 1-1-4 17 246 839 793/87.2 418/17 = 24.5
Network Compression and Architecture Search in Deep Learning 39/58

Experiments: Adaptive Splitting Results

» Maximal Gain

split the most sensitive

= Random Gain

split in the random way

= Minimal Gain

split the most insensitive

81.50
81.25

= 81.00

1%}

» 80.75

o

2 80.50

o

> 80.25

g
80.00

79.75

Network Compression and Architecture Search in Deep Learning

—A- Random Gain

—® - Minimal Gain

Maximal Gain J

Full Widtyal

3 {

%
(@) Half Width

9.8 10.6 11.4 12.2 13.0 13.8 16.5
Model Size (MB)

(a) 8-bit Activation.

80.8
80.6
80.4
80.2
80.0
79.8
79.6
79.4
79.2
79.0

Full width

4
Half Width

9.8 10.6 11.4 12.2 13.0 13.8 16.5
Model Size (MB)

(b) 4-bit Activation.

40/ 58

Summary

* We find that directly training a BinaryBERT suffers from large performance drop
due to the steep loss landscape issues

* We thus propose ternary weight splitting, by first training a ternaryBERT as the
initialization of the full-sized BinaryBERT

* The proposed approach also supports adaptive splitting, which can flexibly adjust
the model size depending on hardware constraints

* We achieve new state-of-the-art BERT quantization results, being 24x smaller in
size with only 0.4% accuracy drop compared with the full precision model

Network Compression and Architecture Search in Deep Learning 41 /58

Outline

Challenge 3: NAS Efficiency with Parameter Sharing

a Revisit Parameter Sharing for Automatic Neural Channel Number
Search (NeurlPS 2020)

Network Compression and Architecture Search in Deep Learning 42 /58

Background: Reinforcement Learning based NAS

= Bi-level optimization problem
* Inside: minimize the loss function w.r.t. candidate parameter w(a)
* Outside: level: maximize the reward function by policy gradient

max J(0) = Egr,R(a) (a, w*(a)),

s.t. w'(a) = arg minL(a,W(a)) and B(a) < B,

w(a)

» Computationally intractible to compute w*(«a) for evaluation
" Associating a with different w(a) make the supernet too large

Network Compression and Architecture Search in Deep Learning 43 /58

Background: Parameter Sharing

» Recall the workflow of neural architecture search (Eisken et.al., 2019)

architecture b Ig

AcA
Search Space _— | Performance
> Search Strategy Estimation
A S~ Strategy
performance

estimate of A | slOwW

* Parameter sharing is widely used to improve the searching efficiency

Y%
SRR
solele
\\\ \'/‘ '4
ORKK)
LR\
&

1.0x 0.75x 0.5x 0.25x

Slimmable Net (Yu et.al., 2018)

Network Compression and Architecture Search in Deep Learning 44 /58

Previous Parameter Sharing Schemes

* Summarization of previous parameter sharing schemes

choice 1 choice 2

kernel size 2-/\

/

V4

max
input <
channels

-

\ J 3 J

max output channels selected channels

Ordinal selection Independent selection

* We aim at a better understanding of parameter sharing in NAS

Network Compression and Architecture Search in Deep Learning 45/58

Methodology: Affine Parameter Sharing

* Parameter sharing can be achieved by affine transformation
= Meta weight W , transformation matrices P Q

Wi,o _ (Qz)T X o %Y, % PO,

‘ v Pl I P2 kernel size 2f\
I\T 100 0 — Wit 1000 7
Q) ol Kl ol G 29 0100 : :
W2 max Ordinal selection
Q)T 0010 ’ 0010 jnput
chann€ls
08 RO KON 00 1
Q w P S 7
max output channels
Pt |P?
QYT 1000 _,ywi1] 1000
01 0|10 O S i .
T Independent selection
(Q2)T W2’2 0010
oS A (e 1 | 0 [ENita
Q W P selected channels
Network Compression and Architecture Search in Deep Learning 46/ 58

Methodology: Affine Parameter Sharing

= Quantitative measurement with affine parameter sharing

Definition 3.1. Assuming each element of meta weight YV follows the standard normal distribution,
the level of affine parameter sharing is defined as the Frobenius norm of cross-covariance matri

. ' Ll . Yo~ - 75 2
between candidate parameters W*° and W"°, i.e. ¢(i,0;1,0) = H COV(W“O, W“O) HF
>The cross-covariance matrix between X € R™*™ and Y € R™*™ is defined as

Cov(X,Y) = E[(X — E(X)) ® (Y — E(Y))"] € R™*™*™X%" " where ® is the Kronecker
product.

Theorem 3.1. For Vi < i and Yo < 6, the overall level ® of APS is maximized z:fR(Qi) C R(Q;)
and R(PO) C R(Pﬁ) . ® is minimized l:fR(Qi) CR+ (Q;) and R(PO) CR* (Pa).

 Ordinal selection: maximum
* Independent selection: minimum

Network Compression and Architecture Search in Deep Learning 47/ 58

Methodology: Parameter Sharing Effect

The two sides of parameter sharing

* Parameter sharing benefits efficient searching

cos(g, g) = g &
’ g2 - lIgll2

, where g = Vwﬁ(Wi’o), g = VWC(WM)

A positive cosine value indicates a descent direction

* Parameter sharing couples architecture optimization

t\Tpt
= (Q") WP —n§: Q' (VwL(WH))(—n Y Q) QN (VwL(WH)(PH)TP
—’Lf f;é?,t or
t o 0;F 0t
. s o’ b Vv 4
Normal updates on the current candidate Coupled updates from other candidates

Network Compression and Architecture Search in Deep Learning 48 / 58

Methodology: Affine Parameter Sharing

* How does the parameter sharing level relate to the following aspects

T s 3 .
COS(g, g) g g~ T Z (Qt)TQt (vwﬁ(wt))(Pt)TPt T
||g||2) ||g||2 'i{;éit,or
oFFot
0.8 —
s | | = 0
) : = —|—
2 0.6 ’ S 50 |
o 20 -
o _]_ — =
g | o =
= 0.4 » @ 157
E}I * 3 gl
< 0.2 EEI % O 10
7.3 8.1 8.9 10.0 10.8 7.3 8.1 8.9 9.9 10.8
log® log®
49/ 58

Network Compression and Architecture Search in Deep Learning

Methodology: Transitionary Affine Parameter Sharing

= Alarge cosine value benefits efficient training

= Alarge coupled gradient norm may bring less discriminative architectures
= |nitialize ¢ with maximum and gradually anneal it by:

mln d 2 ZZ H COV(WM W¢ O) ‘

z<20 o

Y

s.t. HngQ =1, for z € {1,...,c,} and o € A,
Hqé“i =1, for y € {1,....,¢;} and i € A,

where in each update, we project them back to unit length:

P, < Iy (py — Tvpgq’)7 qg L Hu(qg — TVq;fD)

Network Compression and Architecture Search in Deep Learning 50/ 58

Experiments: Effect of Parameter Sharing

= Efficient training

Training Acc. Eval. Acc. (Avg.) Eval. Acc. (Best)

100 1 e 90 1 e e W ey 90 -
? 80 - 80 —N‘/ 80 nM-W———
X !
> 70 - ‘
§ 60 5 70 1
5 |
9 40 |
> 50 60

20 40 - 50 -

0 100 200 300 400 500 200 300 400 500 200 300 400 500
Epochs Epochs Epochs
w— APS-T — APS-O e APS-|

» Architecture discrimination
APS-O APS-I APS-T

',,,0’* PP e o © o
gos*wnz 0.75 0.3 | et
.-a """"""""""""""
-§02 ,,,,,,,,,,,,, 050 02
nh- i 0. 0.
01 'Vrk.\"*COOHOQ 025 01 “\"“-
0.0 0.00¢ 0.0 [
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Layers Layers Layers
Cand. 16 Cand. 32 —— Cand. 64 —— Cand. 96J

Network Compression and Architecture Search in Deep Learning 51/58

Experiments: Main Results

* ImageNet Results

Methods Types Top-1 Acc Top-5 Acc FLOPs Ratio]|
Resnet-18 [5] - 69.76% 89.08% 1.82G 0.0%
LCCL. [1] HC 66.33% 86.94% 1.19G 34.6%
SFP [6] HC 67.10% 87.78% 1.06G 41.8%
FPGM [7] HC 68.41% 88.48% 1.06G 41.8%
TAS [2] Auto 69.15% 89.19% 1.21G 33.3%
APS-T Auto 69.34% 88.89% 1.05G 41.8%
APS-T Auto 70.17% 89.59% 1.36G 24.9%
APS-T Auto 71.67% 90.36% 1.83G -0.9%
MobileNet-V2 [19] - 71.80% 91.00% 314M 0.0%
% 0.65 scaling HC 67.20% - 140M 55.4%
MetaPrune [15] Auto 68.20% - 140M 53.3%
MetaPrune [15] Auto 72.70% - 300M 4.4%
AutoSlim [25] Auto 72.49% 90.50% 305M 2.9%
AutoSlim* [25] Auto 74.20% - 305M 2.9%
APS-T Auto 68.96% 88.48% 156M 50.3%
APS-T Auto 72.83% 90.75% 314 M 0.0%

= ACCs under varying FLOPs

Uniform we = TAS-W

== ASP-T J

ResNet-20@CIFAR-10

Accuracy (%)

1

K
-
”
- "
//

-
’/

-T1a
z’//

/7 £
”4

2.0

25 30 35 4.0
FLOPs x10°

ResNet-18@ImageNet

70.0
* 69.51
© 69.0 1
9

$ 68.5]

68.0 1

-

e
7
/*— 7

1.0 13 1.2 1.3 1.4
FLOPs x10°

Network Compression and Architecture Search in Deep Learning

Summary

* We propose affine parameter sharing as a general framework to unify previous
hand-crafted parameter sharing heuristics

= We define a metric to qualitatively measure the parameter sharing level, and find it
improves searching efficiency but at the cost of less architecture discrimination

= We thus design a transitionary parameter sharing strategy that balances searching
efficiency and architecture discrimination, which can stably pick out the best
architecture choices

» Extensive empirical results show that our searching algorithm outperforms a
number of strong NAS baselines across different model sizes and architectures

Network Compression and Architecture Search in Deep Learning 53 /58

Outline

Challenge 1: Network Compression with Limited Training Resources

a Few Shot Network Pruning via Cross Distillation (AAAI 2020)

e Efficient Post-training Quantization for Pre-trained Language Models
(In submission)

Challenge 2: Extreme Compression with Sharp Performance Drop

€) BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)

Challenge 3: NAS Efficiency with Parameter Sharing

a Revisit Parameter Sharing for Automatic Neural Channel Number
Search (NeurlPS 2020)

Network Compression and Architecture Search in Deep Learning 54 /58

Future Work

" Network compression
 Data unavailable: domain adaptation

* Trillion-scale models

= Neural architecture search
* Few-shot NAS: fast-training before evaluation

* Refining the search space

Network Compression and Architecture Search in Deep Learning 55/58

Acknowledgement

" My supervisors:
Prof. Michael R. Lyu and Prof. Irwin King

* My committee members:
Prof. Laiwan Chan, Prof. Andrej Bogdanov and Prof. Hsuan-Tien Lin

= Research collaborators
" Our research group members

* My parents and girlfriend

Network Compression and Architecture Search in Deep Learning 56/ 58

Publication * . equal contributions

= Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael R. Lyu, Irwin King.
BinaryBERT: Pushing the Limit of BERT Quantization. ACL, 2021.

= Xianghong Fang*, Haoli Bai*, Jian Li, Zenglin Xu, Michael R. Lyu, Irwin King. Discrete Auto-regressive
Variational Attention Models for Text Modeling. IJCNN, 2021.

= Jiaxing Wang¥*, Haoli Bai, Jiaxiang Wu, Xupeng Shi, Junzhou Huang, Irwin King, Michael R. Lyu, Jian
Cheng. Revisiting Parameter Sharing for Automatic Neural Channel Number Search. NeurlPS, 2020.

= Haoli Bai, Jiaxiang Wu, Irwin King, Michael R. Lyu. Few Shot Network Compression via Cross Distillation.
AAAI, 2020.

= Haoli Bai, Zhuangbin Chen, Irwin King, Michael R. Lyu, Zenglin Xu. Neural Relational Topic Models for
Scientific Article Analysis. CIKM, 2018.

Preprints:

= Haoli Bai, Jiaxiang Wu, Mingyang Yi, Irwin King, Michael R. Lyu. Cross Distillation: A Unified Approach for
Few-shot Network Compression. Under submission, 2021.

= Haoli Bai, Lu Hou, Lifeng Shang, Xin Jiang, Irwin King, Michael R. Lyu. Towards Efficient Post-training
Quantization of Pre-trained Language Models. Under submission, 2021.

= Chung Yiu Yau, Haoli Bai, Michael R. Lyu, Irwin King. DAP-BERT: Differentiable Architecture Pruning of
BERT. Under submission, 2021.

Network Compression and Architecture Search in Deep Learning 57 /58

Thank you!

HHEF LKEF

¢ The Chinese University of Hong Kong

