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Abstract—Front-running attacks have been a major concern on
the blockchain. Attackers launch front-running attacks by insert-
ing additional transactions before upcoming victim transactions to
manipulate victim transaction executions and make profits. Recent
studies have shown that front-running attacks are prevalent on the
Ethereum blockchain and have caused millions of US dollars loss.
It is the vulnerabilities in smart contracts, which are blockchain
programs invoked by transactions, that enable the front-running
attack opportunities. Although techniques to detect front-running
vulnerabilities have been proposed, their performance on real-
world vulnerable contracts is unclear. There is no large-scale
benchmark based on real attacks to evaluate their capabilities.
We make four contributions in this paper. First, we design an
effective algorithm to mine real-world attacks in the blockchain
history. The evaluation shows that our mining algorithm is more
effective and comprehensive, achieving higher recall in finding real
attacks than the previous study. Second, we propose an automated
and scalable vulnerability localization approach to localize code
snippets in smart contracts that enable front-running attacks.
The evaluation also shows that our localization approaches are
effective in achieving higher precision in pinpointing vulnerabilities
compared to the baseline technique. Third, we build a benchmark
consisting of 513 real-world attacks with vulnerable code labeled
in 235 distinct smart contracts, which is useful to help understand
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the nature of front-running attacks, vulnerabilities in smart con-
tracts, and evaluate vulnerability detection techniques. Last but not
least, we conduct an empirical evaluation of seven state-of-the-art
vulnerability detection techniques on our benchmark. The evalua-
tion experiment reveals the inadequacy of existing techniques in de-
tecting front-running vulnerabilities, with a low recall of ≤ 6.04%.
Our further analysis identifies four common limitations in existing
techniques: lack of support for inter-contract analysis, inefficient
constraint solving for cryptographic operations, improper vulner-
ability patterns, and lack of token support.

Index Terms—Benchmark, dataset, empirical study, ethereum,
front-running, smart contract, vulnerability, blockchain.

I. INTRODUCTION

FRONT-RUNNING [1] attacks in financial markets refer to
the practice of leveraging the knowledge of future transac-

tions and trading before them to make profits. Front-running
attacks also occur in blockchain systems like Ethereum [2],
where transactions are published before execution. Upcoming
transactions are available to all blockchain users, including po-
tential attackers. By adjusting transaction execution orders with
miners [3], malicious attackers can attack victims by executing
transactions before victim ones so that the victim transactions
would be executed on different blockchain states from what was
expected. As a result, the attackers can make profits from the
attack and cause financial losses to the victims.

Smart contracts, the programs invoked by transactions to
perform actions on the blockchain, could make front-running
profitable for attackers. Fig. 1 shows an example smart contract
vulnerable to front-running attacks. A relayer (msg.sender)
provides a relay service for off-chain users, who may not have
enough Ethers to pay for transaction fees, to perform on-chain
operations. The relayer calls function relayOperation to
execute user operations (Line 15) and charges ERC20 [4] tokens
(line 18) as the profits of providing the service. Front-running
attacks may occur since the users’ operations and signatures used
to invoke this contract are publicly available once the relayer
submits the transaction. One attacker can invoke this contract
before the relayer and take the profits, which should have been
given to the relayer. As a consequence, the relayer’s transaction
fails since each user operation can only be executed once (line 9).
The profits are taken by the attacker even if it is the relayer who
makes efforts to provide the relay service (e.g., maintaining an
easy-to-use interface like Web Apps).
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Fig. 1. Simplified version of TransferManager contract [5] on Ethereum.
Attackers attack by invoking relayOperation function before victim trans-
actions.

Recent studies have revealed the prevalence and severity of
front-running attacks on Ethereum by conducting measurement
studies [3], [6], [7]. Torres et al. [7] found that front-running
attacks are prevalent on the Ethereum blockchain and have
caused a total loss of over 18.41 M USD. Daian et al. [3]
pointed out that front-running attacks also pose a major threat
to the ecosystem of blockchain since the profits of front-running
attacks could be larger than the cost of forking the blockchain.
Attackers could share part of the profits to attract miners to fork
the blockchain. Given the great impact, many researchers aimed
to curb front-running in smart contracts. Vulnerabilities under
front-running attacks have been named in different ways, such
as transaction order dependency [8], event ordering bugs [9],
and state inconsistency bugs [10]. In this paper, we refer to
them generally as front-running vulnerabilities. Various tech-
niques [8], [9], [10], [11], [12], [13] have been proposed to
detect such vulnerabilities in smart contracts. However, these
techniques are usually evaluated in terms of detection precision
on real-world smart contracts. The recall rate is hard to evaluate
due to the lack of ground truth. Ghaleb and Pattabiraman [14]
propose to inject vulnerable code into contracts to evaluate the
vulnerability detection recall of contract analyzers. However, the
front-running vulnerabilities injected are limited to a few rigid
code snippets and cannot represent vulnerabilities in real-world
contracts. There still lacks a large-scale systematic study to
evaluate and understand the performance of these detection
techniques on real-world front-running vulnerabilities.

To address the research gap and evaluate the detection tech-
niques, the major challenge is how to build a large-scale and
representative benchmark with ground truth of vulnerabilities.
Existing studies cannot fill the gap due to two major limitations.
On the one hand, the existing benchmark is neither large-scale
nor contains representative contracts to evaluate front-running
vulnerability detection tools. An existing empirical study [15]
offers a benchmark with only four simple vulnerable contracts,
with 33.75 lines of code in each on average. On the other hand,
datasets of real-world attacks built by the previous measurement

studies [3], [7] cannot be used as benchmarks for the evaluation
of vulnerability detection techniques. There are two main rea-
sons. First, the measurement studies rely on several predefined
patterns and heuristic rules to match attacks in history, which
may not be comprehensive and potentially miss many attacks. As
to be shown in Section IV-D, the approach proposed by our study
is able to identify 24.42x time attacks than the existing dataset [7]
with 98.69% precision, indicating that many attacks are actually
missed by the existing work. Second and most importantly, none
of the measurement studies can localize vulnerabilities in smart
contracts. Only attacks, each consisting of several transactions,
are identified, while it is still unknown which code in the un-
derlying smart contracts enables the possibility of front-running
attacks.

To tackle the limitations of previous studies, we first propose
a general attack model and mine historical front-running attacks
using the model. The mined attacks serve as ground truth, from
which we propose a novel technique to localize front-running
vulnerabilities in smart contracts and build a benchmark. To
demonstrate the usefulness of our approach, we systematically
evaluate seven state-of-the-art tools and investigate the limita-
tions in their techniques.

Our attack mining algorithm enumerates all transactions in
history with efficient pruning strategies and a generic attack
model. Previous works [3], [7] rely on a limited number of
predefined patterns to find historical attacks, which can miss
many attacks. Our evaluation results show that our algorithm
can achieve 90.19% recall on a baseline dataset [7] and find
24.42x more attacks than the state-of-the-art technique. It also
has precision as high as 98.69% since we strictly follow the def-
inition of front-running in the attack model. We mine historical
attacks in the latest 800,000 blocks on the Ethereum mainnet
and collect 188,700 attacks in total.

With a large-scale dataset of real attacks, we localize vul-
nerable code in smart contracts. For each attack, we consider
the blockchain shared data manipulated by the attacker as taint
sources and perform dynamic taint analysis with the victim
transaction. We consider the program location where victim
profits are directly affected as the taint sink. Then we mark the
contract code executed along the taint flow trace from source
to sink as vulnerable. Our manual analysis among three authors
on a sample of attacks shows that the code localized by our
approach can cover the exploited vulnerable contract logic in
all attacks. In addition, we also find that our approach is precise
and marks 99.66% less code than the baseline. In the end, we
build a benchmark with 513 real-world attacks and identify the
vulnerabilities in 235 contracts whose source code is available.

Based on the benchmark, we perform an empirical study to
evaluate existing techniques. We aimed to answer the following
research questions.
� How many vulnerabilities can existing tools detect in our

benchmark?
� What are the limitations of existing tools in detecting front-

running vulnerabilities?
We conduct a systematic literature review on state-of-the-art

works and select seven tools that implement techniques support-
ing front-running vulnerability detection. We use these tools to
detect vulnerabilities in our benchmark. Our results show that
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existing tools have poor performance and can only detect vulner-
abilities exploited by at most 6.04% attacks. We then investigate
the limitations of the underlying techniques of each tool through
manual analysis of samples of missed vulnerabilities. Our major
findings include:
� Existing techniques can hardly perform precise inter-

contract analysis, failing to capture many vulnerabilities
involving cross-contract invocations.

� The wide use of cryptographic operations in contracts
makes it difficult to generate concrete transactions using
SMT solvers, limiting the capability of the techniques in
exploring transaction executions.

� Vulnerability detection patterns of existing techniques are
weak in capturing many front-running vulnerabilities.

� Many vulnerabilities are missed due to the negligence of
profit-making in tokens instead of Ethers.

To sum up, we make the following contributions in this work.
� We design an effective algorithm to comprehensively mine

front-running attacks in the Ethereum transaction history.
� We propose a novel approach to automatically localize

vulnerable code from a historical attack.
� We build a benchmark consisting of 513 real-world attacks

with vulnerable code localized in 235 distinct contracts,
which can be used to evaluate existing vulnerability detec-
tion techniques.

� We conduct an empirical evaluation on seven state-of-
the-art vulnerability detection tools and find that none of
them are effective, only with a low recall ≤ 6.04%. We
investigate and summarize four common limitations of the
techniques, providing insights for future improvements of
front-running vulnerability detection.

The implementation of our attack mining and vulnerability
localization, our benchmark, as well as the results of our evalu-
ations of existing tools, are made publicly available on GitHub:
https://github.com/Troublor/erebus-redgiant.

The following of this paper is organized as follows: Section II
introduces the background knowledge of front-running on the
blockchain. Section III discusses literature related to front-
running attacks and vulnerabilities in smart contracts. Section IV
aims to build a high-quality dataset of historical front-running
attacks. Section V is meant to build a front-running vulnerability
benchmark by localizing vulnerabilities from the attack dataset
built in Section IV. Section VI evaluates state-of-the-art contract
analyzers using the benchmark built in Section V and discusses
the limitation of these analyzers.

II. BACKGROUND

This section introduces the background knowledge of the
Ethereum blockchain and front-running attacks. We base our
presentation on Ethereum since it is the most popular blockchain
that supports Turing-complete smart contracts. In this paper,
blockchain refers to the Ethereum blockchain unless otherwise
specified.

A. Ethereum State Transition Model

Ethereum blockchain can be considered a state machine [2].
State transitions occur when transactions get executed in new

blocks mined by miners. A global state called world state is
maintained by Ethereum. The blockchain world state comprises
account cryptocurrency balances (in Ethers), smart contract
code, and key-value mapping storage for each smart contract.
Every executed transaction modifies the world state by perform-
ing a simple cryptocurrency transfer or invoking a smart con-
tract, which is the program stored on the blockchain specifying
the logic of world state modification. In order to achieve the
consensus of state transitions across all blockchain miners, the
execution of a transaction is deterministic given a pre-execution
world state, and transactions are executed sequentially according
to an order determined by miners.

B. Transaction Order in Blocks

The order transactions executed in each block are determined
by miners to enlarge their profits. Miners make profits by charg-
ing execution fees for each transaction [16]. The execution fee
is calculated by the multiplication of gas, which measures the
amount of computing resource consumed in the execution, and
the gas price. To maximize profits, miners usually prioritize
transactions that specify higher gas prices [3]. Users of Ethereum
can set a relatively higher gas price to prioritize the transaction
execution. Note that executing transactions in descending order
of gas price is not a must. Miners are free to order transactions
to their interest.

C. Front-Running Attacks

Front-running attacks have been clearly defined by several
Ethereum vulnerability taxonomies [17], [18]. Attackers lever-
age the information revealed by future transactions, execute
attack transactions in advance to make profits, and result in unex-
pected behavior in the victim transactions. On Ethereum, before
execution, pending transactions are stored in a pool, broadcast
to all miners, and known to attackers. Attackers can easily
obtain the information revealed by the pending transactions and
construct attack transactions to perform front-running attacks.
To execute attack transactions before the victim, the attacker
can either set a higher gas price or mine blocks themselves, as
mentioned in Section II-B. As a result, the victim transaction
has an execution outcome different from that without the attack
transaction executed, causing loss to the victim transaction user.

Front-running can occur in traditional financial markets. For
instance, in foreign exchange markets [20], malicious traders
can leverage internal information about upcoming large EUR
purchase orders, buy EUR using USD in advance at a lower price,
and sell them back to USD afterward at a much higher price. As
a result, the upcoming (victim) transaction buys EUR at a higher
price, while the malicious traders (attackers) obtain profits from
the price difference. Such markets are also implemented on the
blockchain. Fig. 2 shows the simplified logic of a popular token
exchange market, Uniswap [19], which contains front-running
vulnerabilities and enables attacks similar to those in foreign
exchange markets. The contract Pair holds the reserves of two
tokens to swap (token0 andtoken1) in variablesreserve0
and reserve1, respectively. The exchange rate between these
two tokens is determined by the ratio of reserves held by con-
tract Pair. The swap function swaps the given amount of
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Fig. 2. Simplified version of UniswapV2 [19] contract. Attackers invoke
function swap before victims. Attackers can buy token1 with token0 at
a lower price, and sell token1 afterward at a higher price to make arbitrage.

token0 (amount0) to token1. The swapped amount1 is
calculated using reserves of contractPair at line 10. The victim
transaction swapping token0 for token1 can be attacked if
the attacker invokes function swap in advance. The attacker’s
transaction will modify the values in variables reserve0 and
reserve1 at line 28, changing the ratio of two tokens’ reserves.
As a result, the victim receives less token1, according to the
calculation ofamount1 at line 10, i.e., the victim buystoken1
at a higher price. The attacker can later sell token1 at a much
higher price after the victim transaction to make profits.

Front-running is illegal in traditional markets regulated by
the government. However, there is no similar governance on the
blockchain. Attacks are much easier to launch since malicious
users can easily know upcoming transactions from the public
pool of pending transactions. Inserting attack transactions before
victims is possible since the execution orders are determined by
miners without any restrictions. Therefore, front-running attacks
are prevalent on the blockchain and cause much damage [7].

III. LITERATURE REVIEW

A. Smart Contract Vulnerability and Detection

Researchers have identified many different types of vul-
nerabilities in smart contracts [17], including integer over-
flow/underflow, reentrancy, denial of service, and etc. Various

techniques have been proposed to detect these vulnerabilities [8],
[9], [10], [11], [12], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41]. Among them, we focus on those techniques
capable of detecting front-running vulnerabilities in smart con-
tracts. Such vulnerability captures the key of front-running
attacks: transaction order could influence the execution results.
The authors then proposed Oyente [8] the first one detecting
front-running vulnerabilities, bycheckingE whether there are
different ther transfer flows in different execution paths using
symbolic execution [42]. Following Oyente, many other vulner-
ability analyzers support transaction order dependency detection
using various techniques. Ethracer [9] adopts dynamic symbolic
execution to generate concrete transactions and checks whether
the resulting blockchain world state is sensitive to the execution
orders of these transactions. Mythril [12] and Conkas [43]
leverage symbolic execution and static taint analysis [44] to
detect front-running vulnerabilities by checking whether there
are feasible execution paths where Ether transfers are affected by
taint sources, which are contract storage that another transaction
can modify. Securify [11] uses abstract intepretation [45] to
match contract with security property patterns, i.e., the receiver,
amount, and path conditions of Ether transfers should not depend
on variables that another transaction can manipulate. Similarly,
Sailfish [10] builds the smart contract state dependency graph,
summarizing the read-write dependencies between different
public functions, which different transactions invoke. Then,
the same security patterns of Securify are applied to the state
dependency graph to detect vulnerabilities.

B. Vulnerability Empirical Studies and Benchmarks

In addition to various vulnerability detection techniques pro-
posed, researchers have made efforts to evaluate the capability
of these techniques from different aspects. Durieux et al. [15]
collect two datasets of smart contracts. One dataset has vulner-
abilities labeled, which can be used to evaluate the vulnerability
detection recall rate. However, this dataset is small-scale, only
containing four simple contracts suffering from front-running
vulnerabilities, with 33.75 lines of code on average. The other
dataset built by Durieux et al. [15] is large-scale, containing
47,518 contracts. However, this dataset does not have the ground
truth of the vulnerabilities. Ghaleb and Pattabiraman [14] pro-
pose to inject vulnerabilities into real-world smart contracts to
obtain the ground truth of vulnerabilities for detection technique
evaluation. However, However, their approach can only inject a
few rigid vulnerable code snippets in smart contracts, which
may not be the real vulnerable code exploited in real-world
attacks. In addition, in our study, we find that sometimes the
front-running vulnerability resides in the business logic of in-
teraction among multiple contracts, e.g., the example in Fig. 2.
Such cross-contract vulnerability is closely coupled with the
semantics of the underlying contracts and can not be injected
with the proposed injection approach. Our study is meant to
build a large-scale benchmark with vulnerability ground truth
in real-world contracts, which significantly differs from the
previous studies. As shown in Section VI, our benchmark is able
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to reveal the performance of various contract analyzers in real-
world contracts. Perez and Livshits [46] conduct an empirical
study on the contracts that are reported as vulnerable by various
analyzers. Their results show that most front-running vulner-
abilities reported by analyzers are benign and have not been
exploited in history. Their study focuses on the exploitability of
the vulnerabilities reported by analyzers and only mines attacks
on those reported contracts. However, as shown in our study
(Section VI), state-of-the-art analyzers miss a large number of
vulnerable contracts that suffer from front-running attacks. As
a result, most of the front-running attacks are not included in
the dataset collected by Perez and Livshits [46]. Besides, their
study has different objectives from ours. Their objective is to
study the precision of analyzers in terms of exploitability while
ours is meant to build a benchmark and evaluate the detection
recall rate in real-world contracts.

C. Real-World Attacks and Measurement Study

Although researchers have identified front-running attacks for
years, such attacks have always been prevalent in real-world
smart contracts. Daian et al. [3] analyzed the transaction traffic
on the Ethereum blockchain, showing that many arbitrage bots
are competing with each other to perform front-running attacks
on transactions submitted by ordinary users automatically. Es-
kandari et al. [6] conducted a case study on four categories of
smart contracts and found that front-running attacks could hap-
pen in contracts designed for cryptocurrency exchange markets,
crypto-collectible games, gambling, and name services. From
the case study, the authors identified three attack patterns, i.e.,
displacement, insertion, and suppression. Displacement attacks
usually observe the input of the victim transaction, invoke the
contract in advance as the victim would do, and obtain any profit
that would be given to the victim transaction sender. The example
contract in Fig. 1 is vulnerable to displacement attacks. An
insertion attack is performed by inserting a transaction before the
victim transaction, altering the state that the victim transaction
will executethe based on, and then executing another transaction
after the victim to collect profits. The example attack in financial
market mentioned in Section II-C is a typical insertion attack. A
suppression attack is meant to attack time-sensitive transactions
by filling the current block and delaying the victim transaction.
Based on the findings from Eskandari et al. Torres et al. [7] took
the first step to measure the real-world front-running attacks on
Ethereum. They identified around 200 thousand attacks from the
blockchain transaction history and found that displacement and
insertion attacks take the majority, obtaining an accumulated
profit of 18.41 M USD. Qin et al. [47] also conducted a similar
measurement study on the Ethereum blockchain, also showing
that front-running attacks are prevalent and causing considerable
financial loss.

IV. ATTACK MINING AND DATASET

We aim to build a benchmark of vulnerable contracts from
real-world front-running attacks. However, it is non-trivial to
mine historical attacks given the large search space, and there
exists no generic attack model to identify front-running attacks.

This section introduces our attack model, based on which we
propose an algorithm to effectively and comprehensively mine
attacks in the blockchain transaction history.

A. Attack Model

We model one front-running attack in blockchain transaction
history with a tuple of transactions: 〈Ta, Tv, T

p
a 〉, whereTv is the

victim transaction being attacked, andTa andT p
a are transactions

from the attacker. We define two transaction execution scenarios:
Definition 1 (Attack Scenario): The tuple of transactions are

executed in the order Ta → Tv → T p
a .

Definition 2 (Attack-Free Scenario): The tuple of transactions
are executed in the order Tv → Ta → T p

a .
The attack scenario refers to the execution order in the

blockchain history where the attack occurred. The attack-free
scenario refers to the execution order without interference from
attackers, which was intended by the victim.

We consider A = 〈Ta, Tv, T
p
a 〉 as a front-running attack if it

satisfies two properties:
Property 1 (Attacker Gain): The attacker obtains financial

gain in the attack scenario compared with the attack-free sce-
nario.

Property 2 (Victim Loss): The victim suffers from financial
loss in the attack scenario compared with the attack-free sce-
nario.

The financial gain and loss of attackers and victims are mea-
sured by the amount of cryptocurrency and tokens that attackers
and victims receive in the transactions. We consider Ether, the
native cryptocurrency on Ethereum, as well as four popular token
standards as quantitative financial profits, namely ERC20 [4],
ERC721 [48], ERC777 [49], and ERC1155 [50], which are
all the token standards1 listed in the official documentation of
Ethereum [52]. It is possible that in some specific contracts, the
attacker may target other forms of assets besides the standard
cryptocurrency and tokens. We do not include non-standard
assets since our attack model is designed to be general and not
limited to specific contracts. If necessary, our attack model can
be easily extended to support other non-standard forms of assets.
One only needs to define profit gain or loss on the non-standard
asset, and our approach will work seamlessly.

The intuition of our attack model is that the attacker should
steal benefits from the victim by inserting Ta and manipulating
the world state on which Tv executes. The Attacker Gain prop-
erty specifies that the attacker benefits from front-running victim
transactions. If not, the attacker has no incentive to front-run the
victim transaction since prioritizing the execution of transactions
requires extra costs (Section II-B). The Victim Loss property
specifies that the victim is harmed due to the attack transaction
executed in the front. The Victim Loss property is designed to
exclude the case where some transactions can gain more profits
without harming other transactions. Without considering the
Victim Loss property, it is hard to validate whether such a case is
a real attack since there is no victim. To minimize the possibility

1We do not include ERC4626 [51] here since it is an extension of ERC20.
Supporting ERC20 will support ERC4626 tokens intrinsically.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 13,2023 at 08:17:37 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: COMBATTING FRONT-RUNNING IN SMART CONTRACTS: ATTACK MINING, BENCHMARK CONSTRUCTION 3635

of including a false attack, we require that there must be a victim
who loses profits in the attack-free scenario.
T p
a is optional to perform an attack. Eskandari et al. [6] found

that attackers may or may not need to execute another transaction
after Tv to collect profits2 (Section II-C). If 〈Ta, Tv〉 already
satisfies the above attack properties, it is considered as an attack
without T p

a .
Discussion: Our attack model is designed to capture tuples

of transactions indicating that the underlying smart contracts
contain front-running vulnerabilities, i.e., allow some users
front-run other users’ transactions to make profits. Tuples of
transactions identified by our attack model serve as poofs of
concepts [53] for front-running vulnerabilities in the underlying
smart contracts. In other words, transactions identified by our
attack model demonstrate the feasibility of attacking Tv by
insertingTa andT p

a before and afterTv to obtain financial profits.
In blockchain history, the submitter of Ta may not deliberately
manipulate the transaction orders to make profits, though Ta is
accidentally executed before Tv , causing financial loss to the
victim. However, Ta is still a valid attack to Tv and will be
identified by our attack model. What is captured by our attack
model is the de-facto attack based on the transaction execution
result instead of the intention of the attackers.

Our attack model may also miss some attacks. The purpose
of attackers may not be to obtain financial profits as captured
by our two attack properties. However, such incentives are hard
to validate. Therefore, we limit our scope to attacks that make
financial profits. In addition, attackers may also insert multiple
transactions before and after Tv to perform an attack, but there is
no evidence that such a scenario is common. In the measurement
study conducted by Torres et al. [7], only 0.025% of front-
running attacks they found involved multiple attack transactions
before and afterTv . This is because blockchain users need to pay
extra fees for each separate transaction. Rational attackers will
merge multiple attack transactions into an atomic one to reduce
costs. Therefore, we limit our scope to those attacks involving
only one attack transaction before and after Tv for the sake of
scalability. The search space will otherwise grow exponentially
if we consider multiple attack transactions, while there may not
be many more attacks to be mined.

Popular front-running attack cases well-known to the
blockchain community are in line with our attack model. Max-
imum Extractable Value (MEV) [3] is a well-known concept
in the Ethereum community, which refers to the digital assets
that can be withdrawn from contracts permissionlessly. Assets
cumulatively worth more than 696 M US dollars have been with-
drawn by March 2023 [54]. Daian et al. [3] have shown that MEV
withdrawal transactions are generally subject to front-running
attacks, and the attacks prevalently occur on the blockchain.
Any blockchain user is qualified to withdraw the MEV. Only
the first of many transactions withdrawing the same MEV will
successfully obtain the MEV as profits, while others will end
up with no profits but still paying transaction fees. Therefore,
different users compete for the same MEV, and the first executed
transaction is attacking others for grabbing the limited number of

2The superscript p in T p
a means profit collection.

Algorithm 1: Mine Attacks in Transaction History.

MEV as profits. The front-running attacks on MEV transactions
satisfy our attack properties, and they can be captured by our
attack model.

B. Attack Mining

Existing measurement studies attempt to mine attacks using
predefined patterns of transaction data or execution traces to
characterize attacks [3], [7]. For instance, they consider transac-
tions that copy the data of another transaction as attacks or search
for transactions swapping tokens in the same way as described
in Fig. 2 in a limited number of already known vulnerable
token exchange contracts. As proposed below, we do not rely
on any predefined patterns and mine attacks comprehensively in
the transaction history by enumerating all possible transaction
combinations and identifying attacks based on our attack model.

Algorithm 1 shows the attack mining procedure in a transac-
tion history, which is represented as a sequence of transactions
T. It searches for the combinations of historical transactions
that satisfy the attack model. The key idea of the mining al-
gorithm is that a successful front-running attack must result
in a transaction sequence in the transaction history matching
the attack scenario (Ta → Tv → T p

a ). We can then simulate its
corresponding attack-free scenario (Tv → Ta → T p

a ) to validate
whether the transaction sequence satisfies our two attack prop-
erties defined in Section IV-A. We consider every transaction
in the history as a potential Ta (line 2) and then search for
any subsequent transaction Tv (line 4) that was successfully
attacked by Ta. Function satisfyProperties executes the
given transactions in the attack and attack-free scenarios and
checks whether the execution result satisfies the two properties.
As explained, an attack can be accomplished by two or three
transactions. If the attack properties based on the two execution
scenarios can be satisfied by Ta and Tv , it is an attack by two
transactions. Otherwise, the algorithm continues to search in
subsequent transactions for the third transaction T p

a (line 11)
such that 〈Ta, Tv, T

p
a 〉 forms an attack.
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In satisfyProperties function, we consider the trans-
action sender of Ta and Tv as the attacker and victim, respec-
tively. Given that many attackers use bot contracts [7] to perform
attacks, we also consider the first contract that Ta invokes as the
attacker. Financial gain or loss is determined using the difference
in the amount of digital assets (Ether, ERC20 [4], ERC721 [48],
ERC777 [49], and ERC1155 [50]) that the attacker or victim
receives in two transaction execution scenarios.

When checking whether the transactions satisfy the prop-
erties, we consider the existing execution in the blockchain
history as the attack scenario and aggregate the total profits of
attackers and victims. For the attack-free scenario, we simulate
the execution ofTv based on the blockchain world state in history
before Ta. Then, Ta and T p

a are simulated after Tv. Profits of
attackers and victims in the attack-free scenario are collected
from the execution result of this simulation.

Executing transactions in attack and attack-free scenarios is
expensive, especially when we aim to enumerate all possible
combinations of transactions to mine attacks. The worst case
time complexity of Algorithm 1 is O(t|T|3), where t is the
average execution time of a transaction. We make improve-
ments to the algorithm efficiency without missing attacks. We
verify the necessary conditions of the attack properties in the
shouldPrune function and prune the search space early if
the conditions are not satisfied without missing any attacks. The
primary necessary condition is that Ta and Tv must have read-
write conflicts [55] on some shared data in the blockchain world
state [56], i.e., the account balance, contract code, and contract
storage. Inferring from the execution trace in the blockchain
history, we consider Ta and Tv have read-write conflicts if Ta

modifies the same shared data that Tv performs a def-clear [57]
read. Def-clear reads refer to those read operations the variables
read by which are not written previously in the execution trace
of the same transaction. Otherwise, the execution outcome of
Ta and Tv is irrelevant to the order between them, and the attack
properties will not be satisfied. In addition, we also prune the
search space if Ta and Tv are submitted by the same account.

C. Front-Running Attack Dataset

We use our attack mining algorithm to mine front-running
attacks in the block range 13,000,000 −13,800,000, which are
the latest 800,000 blocks when this study is conducted. We split
the entire blockchain history into windows of three blocks and
slide the window with an offset of one block. In the range of
history that we are about to analyze, there are 799,998 block
windows. In each window, transactions in the consecutive blocks
are concatenated into one sequence and we mine attacks in
this sequence with Algorithm 1. We analyze 16 block windows
in parallel, and the mining timeout in each block window is
60 s. The mining is performed on a CentOS 8 machine with an
AMD Ryzen 3975WX CPU and 512 GB RAM. It takes in total
69.54 days to finish the mining in all block windows, 7.51 s
for each block window on average. We do not mine attacks in
the entire blockchain history because the contracts exploited by
older attacks may no longer be active. Although the average
mining time of each block window is only around half of the
average Ethereum block interval (15 s) [58], it is also impractical

TABLE I
NUMBER OF ATTACKS IN BASELINE DATASET THAT CAN BE FOUND BY OUR

ATTACK MINING ALGORITHM

to mine the entire Ethereum history. In the end, we obtain the
datasetDA, comprising 188,700 attacks, from the attack mining.

D. Attack Mining Evaluation

To ensure the quality of dataset DA, we evaluate our attack
mining algorithm by answering RQ1:
� RQ1: Is our mining algorithm effective in finding attacks?

� RQ1-1: Can our algorithm effectively find real attacks?
� RQ1-2: Can our attack model effectively characterize

attacks?
� RQ1-3: Can our algorithm outperform the state-of-the-

art attack mining technique in finding attacks?
Methodology: To evaluate the algorithm’s precision in RQ1-1,

we manually analyze 383 attacks (DS), which are randomly sam-
pled among all attacks (DA) to achieve 95% confidence level and
5% confidence interval. To facilitate manual analysis, we only
sample those attacks whose invoked smart contracts have source
code available. Three authors individually analyze the execution
traces of each transaction in each sampled attack, interpret the
semantics of underlying smart contracts, and check whether
each attack found by our algorithm is an actual front-running
attack according to the attack definition [17], [18], which states
that attackers leverage the knowledge of future transactions to
make profits. If the three authors have different opinions, which
cannot be solved after discussions, we will consider the attack
as a false positive. In the manual check, we check whether the
attacker leverages the knowledge of the future victim transaction
by checking whether the attacker can still obtain profits if no
victim transaction is submitted. If the attacker can no longer get
profits, then it means the attacker does leverage the knowledge
of the future transaction and we will consider the attack as a
real front-running attack. For instance, in Fig. 1, if the victim
transaction that reveals the user’s signature is not submitted, the
attack transaction will have no way to pass a valid signature
argument to the relayOperation function. Similarly, in
Fig. 2, if the victim transaction that swaps token0 to token1
is never submitted, the exchange rate will not change after the
attack transaction, and the attacker will not make profits from
the price difference. To answer RQ1-2 and RQ1-3, we consider
the measurement study conducted by Torres [7] as the baseline,
which proposes an approach mining historical attacks using
predefined transaction patterns for displacement, insertion, and
suppression attacks, respectively (Section III-C). Baseline offers
a dataset of three categories of attacks, as shown in the first row
of Table I. To answer RQ1-2, we apply our attack algorithm
to mine all the attacks in the baseline dataset and check if our
model can capture those attacks. For RQ1-3, we apply our algo-
rithm to mine attacks in the latest 1,000 blocks (block number
11,299,000-11,300,000, containing 175,552 transactions) that
the baseline mined and check whether our algorithm can find
more attacks.
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Results: For RQ1-1, there are only five falsely reported at-
tacks, giving 98.69% precision. All of them are caused by inap-
propriate attack-free scenario execution. In blockchain history,
there could be many other transactions between Ta, Tv , and T p

a .
When we change the transaction orders to mimic attack-free
scenarios, the relative orders between Ta (or Tv) and other
transactions are also changed. Financial profits of the attack or
victim could be affected by such relative orders. As a result, the
financial profits in the attack-free scenario could be incorrectly
calculated, and false-positively reported attacks may be induced,
but our manual check shows that such cases are rare.

Table I shows the experiment results for RQ1-2. Out of the
total 199,724 attacks in the baseline, our attack model can iden-
tify 90.19% (180,125), indicating the generality of our attack
model. We further investigate the reasons for missed attacks.
Among the three types of front-running attacks collected by
the baseline, all the suppression attacks involve multiple attack
transactions before the victim transaction, which do not fit
our attack model. This is not a significant flaw in our attack
model since suppression attacks only comprise a tiny portion
(0.03%) of all attacks. We sample 61 out of 73 and 377 out of
19,469 (95% confidence level, 5% confidence interval) missed
displacement attacks and insertion attacks to analyze the reason,
respectively. We find that 215 attacks are missed because our
model is more conservative and stricter than the patterns used
by the baseline. For instance, two transactions compete to buy
the same NFT [59] with ERC20 tokens, and only one of them
will succeed. The baseline considers such a case as an attack.
However, it is unknown whether the NFT is worth more than
the paid ERC20 tokens, so our model does not consider it an
attack. In 160 cases, the attacker obtains zero profits or loses
profits in the attack scenario. For 19 missed attacks, we cannot
re-execute the transactions in the attack-free scenario due to a
violation of blockchain protocol (e.g., transaction nonce, block
limit, etc.). Thus our algorithm does not report these attacks. The
rest 44 missed cases are caused by the inappropriate attack-free
scenario execution as described in the previous paragraph.

In the experiment for RQ1-3, the baseline is able to find 277 at-
tacks in the block range, while our algorithm is able to find 6,765
attacks, 24.42x more. All the attacks found by the baseline can
be found by our algorithm. This result shows that our algorithm
has a much higher recall rate in finding attacks. This is because
our algorithm comprehensively enumerates transactions in the
blockchain history instead of relying on the heuristic patterns
like the baseline.

Answer to RQ1: Our attack mining algorithm can effectively
find 24.42x more attacks than those by baseline with 98.69%
precision. The effectiveness of our mining algorithm ensures
the quality of dataset DA, which serves as a basis for the
following study.

V. VULNERABILITY LOCALIZATION AND BENCHMARK

While Section IV-C describes the construction of the dataset
D

Afor front-running attacks, the dataset cannot be used directly
to evaluate various techniques’ performance in front-running

vulnerability detection. Each entry in D
Ais an attack consisting

of two or three transactions but it does not pinpoint the vulnerable
code snippet(s), which provide essential information to validate
if vulnerabilities are correctly detected. In this section, we
present our approach to localizing the vulnerable code snippets
from the transactions.

A. General Ideas in a Nutshell

Pinpointing the vulnerable code snippet(s) responsible for
an attack is an open problem. In many cases, it could be the
overall logic design of the vulnerable contract instead of a single
line of code or a function. For instance, in Fig. 2, it is the
algorithm design, which calculates the exchange rate of tokens,
that enables front-running transactions. None of the functions
alone is vulnerable without considering the logic of others. In
this example, the attack transaction Ta calls the swap function
(Line 3) before the victim transactionTv , reducing the amount of
swapped tokens obtained by Tv. A naive approach is to consider
all the code in Fig. 2 executed by Tv in an attack scenario to
be vulnerable. However, this approach is too coarse and may
falsely consider a large portion of code as vulnerable. The code
at Line 5–6 to pay a constant swap fee, and the body of function
logSwap invoked at Line 12 are falsely marked vulnerable,
although they are unrelated to the vulnerable logic to compute
the amount of swapped tokens.

This motivates us to devise a more accurate mechanism that
can scale to the large dataset DAto localize vulnerable code. In a
nutshell, our approach identifies the blockchain data accessed by
the victim transaction Tv but altered by the attack transaction Ta

(attack altered data), and performs a dynamic taint analysis [44]
with Tv using attack altered data as taint sources. We consider
taint sinks the program location where profits earned by the
victim are directly affected. We extract the taint flow trace from
source to sink and consider the contract code executed along
this trace as vulnerable. Specifically, the attack altered data of
an attack is defined as follows:

Definition 3 (Attack Altered Data): The attack altered data
in an attack A = 〈Ta, Tv, T

p
a 〉 is the blockchain data that Tv

performs a def-clear read after the data has been stored by Ta in
the attack scenario.

In Fig 2, both Ta and Tv invokes function swap. Ta modifies
contract variables at line 28, which are later loaded by Tv

at line 10. We consider these two variables (reserve0 and
reserve1) as taint sources in the dynamic taint analysis of
Tv . Profits earned by the victim are transferred at line 31, whose
amount is decreased because of the attack. We thus consider
line 31 as the taint sink. We then compute the vulnerable code
snippet by extracting the flow from source to sink, i.e., line 10→
14→ 31. The vulnerable logic that computes the token exchange
rates using attack altered data is identified, while contract code
at line 5–6 andlogSwap function are excluded. Compared with
the naive approach, which marks all lines of code, we only mark
three lines in function swap and doSwap as vulnerable.

B. Localize Vulnerability With Influence Trace

Now we present how to mechanically localize vulnerable code
snippet(s) from an attack A = 〈Ta, Tv, T

p
a 〉. First, we localize
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the taint sources by identifying attack altered data in the attack
scenario. Blockchain shared data, i.e., account balances, contract
code, and contract storage, which are modified in Ta and read
without preceding writes (def-clear [57] reads) in Tv , is consid-
ered as attack altered data. Those operations in Tv that perform
def-clear reads on attack shared data are considered taint sources.
Second, we localize the taint sink that is held responsible for the
loss of victim’s financial profits. We conduct a manual analysis
on the same set of attack samples D

Sas in Section IV-D and
check how victims’ financial profits are influenced by attack
altered data. We make an interesting finding that all attacks
can be summarized into three attack patterns based on how
the attack altered data influences victim transactions, namely
Path Condition Alteration, Computation Alteration, and Gas
Estimation Griefing. Taint sinks are defined accordingly for
different attack patterns.

Path Condition Alteration:

1 if (altered(sharedData)) {
2 uint profit = computeProfit();
3 victim.transfer(profit);
4 }

The above code snippet shows the first attack pattern. The
victim’s profit depends on a path condition evaluated using
attack altered data. The example shown in Fig. 1 falls into this
pattern. In this pattern, the root cause is that the path condition
is manipulatable by attackers, while the computation of profits
is not. We consider the conditional statement as the taint sink.
Note that we cannot use the profit transfer operations as taint
sinks since they do not necessarily data-depend on the attack
altered data.

Computation Alteration:

1 uint profit = calculateProfits(
2 altered(sharedData)
3 );
4 victim.transfer(profit);

The above code snippet shows the computation alteration
pattern. The computation of the victim’s financial profit is ma-
nipulated without changing the execution path. Attacks on the
example exchange contract in Fig. 2 falls into this pattern. We
consider the statement that transfers profits to the victim as the
taint sink.

Gas Estimation Griefing:

1 parameterizedExpensiveOperation(
2 altered(sharedData)
3 );
4 victim.transfer(profit);

Gas estimation griefing is different from the previous two
patterns. Instead of manipulating the execution path or compu-
tation outputs, the attacker attacks by leveraging the gas model
of Ethereum. Blockchain users need to estimate and specify a

sufficient gas limit before submitting transactions, otherwise
the execution fails. The gas consumption of transactions may
depend on the attack altered data, in which case attackers can
make the actual gas consumed by the victim transaction larger
than the user-specified limit. As a result, attackers could make
victim transaction fail to their own benefit. Note that the underly-
ing smart contracts may not contain vulnerabilities because the
attack will not succeed if the victim transactions are equipped
with sufficient gas. Therefore, we do not define taint sink or
localize vulnerabilities for gas estimation griefing attacks.

We classify the attack A into attack patterns by inspecting
the execution traces of Tv in the two execution scenarios, and
identify the taint sink δ accordingly. Let τ and τf denote the two
execution traces of Tv in the attack and attack-free scenarios,
respectively. If τ throws an out-of-gas exception while τf does
not,A is considered a gas estimation griefing attack and excluded
from our vulnerability localization. To classify the attack into
the other two patterns, we first extract the sequences of program
locations performing digital asset transfers in τ and τf , and
denote them as [τ0, τ1, . . ., τp] and [τf0 , τ

f
1 , . . ., τ

f
q ], respectively.

We distinguish the attack patterns of an attack by checking the
proper prefix of τ and τf .

Case 1 (Path condition alteration): ∃i, 0 ≤ i ≤ max(p, q)

such that τi �= τfi and ∀j, 0 ≤ j < i ∧ τj = τfj . We categorize
attack A as a path condition alteration attack, and consider the
first divergence point between τ and τf as δ for this attack, where
τi and τfi control-depend on δ.

Case 2 (Computation alteration): ∀i, 0 ≤ i ≤ max(p, q) ∧
τi = τfi . We categorize attack A as a computation alteration
attack. Note that there must exist j,0 ≤ j ≤ max(p, q), such that
the transfer operation at program location τj (or τfj ) transfers
a different amount of digital assets. We consider the program
location τj as δ for this attack.

Finally, we extract the flow trace from the taint source to the
sink. We call this flow trace influence trace, covering the code
that depends on attack altered data and influences the victim’s
financial profits. Note that for one attack, there can be multiple
taint sources and thus multiple influence traces since the attack
altered data may be loaded as tainted values in different places.
We use influence traces to over-approximate the vulnerability
location of an attack by considering all code executed in an
influence trace as vulnerable. It is a trade-off between localizing
a smaller range of vulnerable code and ensuring the vulnerability
is covered by the marked code, because it is hard to precisely
and correctly localize without contract specifications from de-
velopers.

C. Vulnerability Localization Evaluation

We evaluate the effectiveness of our vulnerability localization
approach with the following research question:
� RQ2: Can our approach precisely identify the exploited

vulnerabilities from real-world attacks?
Methodology: We answer RQ2 from two aspects with the

dataset D
Sas mentioned in Section IV-D. First, we check

whether the exploited vulnerability can be localized by our
approach, given a real-world attack. We perform a manual
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analysis on each attack in D
S . The five falsely reported at-

tacks identified previously are excluded. As pointed out by
previous studies [6], [8], [9], [10], [11], [23], [56] and SWC
Registry [17], the root cause of front-running vulnerability is
the race condition [60] in the smart contract where the execution
result depends on the order of transactions. Specifically, in the
manual check, we consider vulnerability locations to be the code
locations where the victim transaction loads the attack altered
data modified by the attack transaction, i.e., locations of the
read-write conflicts between the victim and attack transactions.
We do not consider locations of write-write conflicts as vulner-
ability locations since in these cases, the victim transaction’s
execution result is not affected. If the code snippet identified by
our approach includes the vulnerability locations, we consider
our vulnerability localization result as a true positive. Three
authors individually check for each attack, and all disagreements
are discussed until they are resolved. Second, we check whether
our approach can precisely pinpoint vulnerable code without
including many unrelated code. We build a baseline based on
the naive approach mentioned in Section V-A, i.e., considering
all code executed by Tv as vulnerable. We collect and compare
the number of EVM [2] instructions identified as vulnerable code
by the baseline and our approach, respectively. We measure how
many unrelated code our approach can reduce compared to the
baseline.

Results: In our manual inspection, we find that the identified
vulnerable code is able to cover the vulnerable logic exploited
in all 378 attacks of D

S . As shown in Fig. 3, on average,
25.25 EVM instructions are marked vulnerable for each attack.
Compared to the baseline, our approach marks only 0.34% of
those instructions marked by the baseline as vulnerable, resulting
in a 99.66% reduction rate. One can leverage our approach
to construct effective and large benchmarks on front-running
vulnerabilities in the absence of contract specifications.

Answer to RQ2: Our localization approach is effective in
pinpointing vulnerable code to a much smaller range than the
baseline without missing any exploited vulnerabilities.

D. Benchmark Construction

To build a benchmark for the comparison of vulnerability
detection tools, we extract influence traces for each attack in
dataset DA. Attacks that result in multiple influence traces are
excluded to avoid ambiguities in vulnerability localization. We
mark all public contract functions that are executed in the influ-
ence traces as vulnerable. We label vulnerable functions because
the contract analyzers evaluated in Section VI commonly report
problems at the function level.

We do not have the ground truth of all vulnerabilities in each
contract. For each contract included in the benchmark, we are
unsure if our benchmark has labeled most of the vulnerabilities
ever exploited in blockchain history, because we did not mine the
entire blockchain history in Section IV-C. To mitigate this threat,
we focus on a set of most popularly attacked contracts and check

Fig. 3. Distribution of the number of EVM instructions marked as vulnerable
by the baseline and our approach for each attack in DS .

Fig. 4. The total number of distinct vulnerable functions in top-1200 contracts
saturates as more attacks are sampled from DP .

if additional vulnerabilities in these contracts can be labeled
when more attacks in the blockchain history are considered.

The following strategy is adopted for benchmark construction.
We select top-N popularly attacked contracts and only consider
vulnerable functions in these contracts in our benchmark. The
popularity is measured by the invocation frequency of each con-
tract in all the influence traces of all attacks in dataset DA. From
D

A, we select a subsetDP of attacks whose influence traces only
involve contracts in these top-N contracts. Then, n% attacks are
sampled from D

P . We increase n from 1 to 100 with step 1 and
compute the number of distinct vulnerable functions localized in
each sample. If the total number of distinct vulnerable functions
saturates as n increases, it indicates that we are unlikely to
find new vulnerable functions in these top-N contracts even
if we keep mining for more attacks in the blockchain history.
In other words, the occurrence of saturation hints that exploited
vulnerable functions in the selected contracts have been mostly
labeled. Intuitively, we want to include more contracts in the
benchmark while saturation is observed. In our study, we set N
to 1200. Fig. 4 shows the total number of distinct vulnerable
functions against the sampling size of D

P . The number of
vulnerable functions only increases by 0.36% (from 1,365 to
1,370) between 90% and 100% samples. The saturation would
gradually disappear when the number of contracts considered
increases beyond 1,200.

Therefore, we build benchmark B
A on the 1,200 selected

contracts by analyzing the attacks in dataset DP . Vulnerable
functions in these contracts are labeled with influence traces, as
previously explained for each attack. In addition, we also use
influence traces to remove those attacks that exploited the same
vulnerability. If multiple attacks have the same influence trace,
we consider that they are duplicate exploitation and include only
one of them. To facilitate manual analysis, we include only those
attacks occurring at the functions whose source code is available
on Etherscan [61]. As a result, we construct the benchmark B

A
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consisting of 513 attacks with vulnerable functions localized in
235 distinct contracts.

VI. EVALUATION OF EXISTING TOOLS

In this section, we demonstrate the use of BA to understand
the status quo of front-running vulnerability detection. We eval-
uate tools that implement state-of-the-art vulnerability detection
techniques and answer the following research question.
� RQ3: How many vulnerabilities can existing tools detect

in our benchmark?
� RQ4: What are the limitations of existing tools in detecting

front-running vulnerabilities?

A. Tool Selection

We conduct a systematic literature review to collect tools that
implement representative state-of-the-art smart contract analysis
techniques detecting front-running vulnerabilities. Based on the
guideline from Brereton et al. [62], we search for related pub-
lications in top-tier conferences and journals, perform a back-
ward snowballing to find more literature, and collect available
tools from them. To largely include the state-of-the-art tools,
we use contract, ethereum as search keywords and search for
publications in all CORE [63] A/A* ranked venues in software
engineering and security fields with research code: 4612, 4604,
and 0803. For each matching publication, we read the abstract
and apply the following criteria: 1) Empirical studies and lit-
erature reviews are excluded. 2) Only papers about detecting
contract vulnerability without requiring additional information
from developers are included. At this step, we are able to collect
47 publications in 18 venues. We continue to perform a backward
snowballing by searching for related literature in the references
of these publications. In the end, we find 17 additional papers,
technical reports, and GitHub repositories. From these literature,
we collect available tools, which implement the techniques that
support the detection front-running vulnerabilities. In the end,
we collect seven tools suitable for our empirical evaluation,
namely Oyente [8], Securify [11], Ethracer [9], Mythril [12],
Conkas [43], Securify2 [64], and Sailfish [10]. The techniques
used in these tools are discussed in Section III-A.

B. Experiment Design

For each attack in benchmark B
A, we run experiments to

check whether the exploited vulnerability can be detected by
each tool. We use each tool to analyze all contracts whose
code is marked vulnerable in B

A . Note that none of the se-
lected tools support analyzing a group of contracts together,
so we let each tool analyze contracts individually. Two tools,
i.e., Securify2 and Sailfish, can only analyze contracts in source
code in a single file. We use Hardhat [65] toolchain to flatten
contract source code into a single file and let these two tools
analyze the flattened source file. For all other tools that analyze
contract bytecode, we compile the contract source code into
Byzantium EVM bytecode [66], which is the most compatible
version supported by all tools. Different tools may detect various
types of vulnerabilities. However, we are only interested in the

TABLE II
VULNERABILITY DETECTION RESULT OF EACH TOOL ON BENCHMARK BA

result of front-running vulnerability, i.e., event ordering bugs
in Ethracer, state inconsistency bugs in Sailfish, and transaction
order dependency in all other tools.

We set the analysis timeout of each tool equally to three hours,
which is larger than the longest timeout among the evaluation
experiments of these tools’ original papers. With benchmark
B
A, we adopt the following approach to check whether a vul-

nerability exploited by an attack is detected by each tool. In
the detection results of one tool, we consider one attack is true
positive (TP) if the tool reports problems in any of the vulnerable
functions localized with this attack as described in Section V-D.
If none of these functions is reported vulnerable by the tool,
we consider the attack is false negative (FN). The recall rate
of each tool is computed with the total number of TP attacks
divided by the total number of attacks in B

A . Note that our
benchmark does not label vulnerable functions that have not
been exploited in the blockchain history. If one tool reports
problems in other functions outside our benchmark, we cannot
conclude whether they are false alarms or not. Thus, we do not
evaluate the precision of these tools.

C. Evaluation Results

Table II shows the vulnerability detection result of each tool.
On the left side, we report the number of TP and FN attacks for
each tool using the criteria mentioned in Section VI-B. For all
tools, the number of missed vulnerabilities is significant. The
best tool, Securify, only has a 6.04% recall rate. The majority
of vulnerabilities are missed by all tools. Our evaluation shows
the poor performance of state-of-the-art tools with a large-scale
benchmark. A similar conclusion was drawn by the previous
study [15] with a small benchmark of four contracts, which
are not representative since the average lines of code for each
contract is only 33.75, and none of them is a real-world contract
used on the blockchain. In comparison, our benchmark con-
tains much more representative vulnerable contracts and can
better reveal the real performance of vulnerability detection
techniques.

We also found that several tools could not successfully analyze
many contracts, as shown on the right side of Table II. Some
tools timeout on the analysis of a few complex contracts, as
shown in the Timeout column. Securify2 and Sailfish work on
Solidity source code and can only analyze contracts written in
a single file. The source code of 116 out of 235 contracts in

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 13,2023 at 08:17:37 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: COMBATTING FRONT-RUNNING IN SMART CONTRACTS: ATTACK MINING, BENCHMARK CONSTRUCTION 3641

TABLE III
MANUAL ANALYSIS RESULTS FOR THE LIMITATIONS OF EACH TOOL

our benchmark spreads across multiple files. Although we try to
flatten multi-file contracts into a single file, there are 23 contracts
that cannot be flattened due to cyclic dependencies between
source files, as shown in the N/A column. In addition, we also
found that Securify2 and Sailfish have poor support for contracts
written in newer Solidity versions, resulting in a large amount
of analysis failure. We found that other bytecode analyzers,
especially Conkas, crash on a large portion of contracts. Similar
crashes are encountered by other users according to the tools’
issue tracker and they have not been fixed by developers.

Answer to RQ3: Existing tools detect at most 6.04% of
vulnerabilities in B

A, suggesting their weaknesses in ex-
posing front-running vulnerabilities in real-world contracts.
Effective detection tools are urgently needed.

D. Discussion on Limitations of Existing Techniques

We randomly sample FN attacks for each tool with 95% con-
fidence level and 5% confidence interval and manually analyze
them to understand the reasons behind the poor performance
of existing techniques. We focus only on those FN attacks
whose concerned contracts can all be successfully analyzed
by the tool since we aim to investigate the limitations of each
tool’s technique rather than its implementation. The large second
column of Table III shows the number of sampled attacks.

Existing tools commonly detect vulnerabilities in two phases,
namely code analysis and oracle checking. First, bytecode or
source code is analyzed to extract the semantics of contracts
such as control flow and data flow using symbolic execution
or static analysis. The extracted semantics are then examined
against predefined vulnerability oracles to detect the existence
of vulnerabilities. A tool can exhibit limitations in any of the
two phases. Table III shows the number of attacks whose vul-
nerabilities were missed by each tool due to the limitations in
each vulnerability detection phase. Note that tools may miss
some vulnerabilities due to limitations in both phases. For such
cases, we followed the order of tools’ working procedures and
categorized them into the code analysis phase. For the other
limitations that cannot be categorized into the two phases, we
put them into the Unknown column.

1) Two Limitations in Code Analysis: In the code analysis
phase, we found two common limitations of existing tools:

lack of support for inter-contract analysis and unavailability of
efficient constraint solvers for non-linear computation such as
cryptographic and hashing operations. Column IC and CS in
Table III present the number of attacks whose vulnerabilities
are missed due to each limitation.

Inter-Contract Analysis: We find that existing techniques lack
support for inter-contract analysis of the scenarios where a
contract invokes another contract during its execution. Exist-
ing techniques are designed to analyze contracts individually,
while ignoring their possible interactions with other contracts.
For example, the vulnerability in Fig 2 cannot be detected if
each contract is individually analyzed because the vulnerable
exchange rate computation (line 10) and the loading of attack
altered data (reserve0 and reserve1) reside in different
contracts. In tools based on symbolic execution, i.e., Oyente,
Mythril, Conkas, and Ethracer, the execution details of the exter-
nal contract code are omitted (e.g., line 14 in Fig. 2). In addition,
their symbolic execution does not properly handle the return
value of external calls. The symbolic execution using the return
value will halt because the EVM opcode RETURNDATACOPY is
not properly defined in their implementation. Similarly, Sailfish
also omits external contract invocations during its interpretation
of contract semantics. As a result, contract semantics are not
fully analyzed by these tools. To show the impact of this limita-
tion, we manually inspected the attacks in dataset DSand found
that in 222 out of 383 sampled attacks, the influence traces span
across multiple contracts, i.e., external contract calls are involved
in exploiting the vulnerabilities. This result shows that the lack
of inter-contract analysis support can lead to many undetected
vulnerabilities.

Supporting inter-contract analysis is, however, challenging.
The address of external contracts being invoked is usually not
statically decidable. The address may be stored in a contract
storage variable set by other users or provided as input by
transactions. In other words, any contract on the blockchain can
be a potential callee during analysis. Worse still, each potential
callee contract may have further external contract invocations,
making the size of the contract code to analyze grow expo-
nentially. Future techniques should adopt effective strategies to
prune irrelevant code so that the detection is scalable to find
inter-contract vulnerabilities.

Securify and Securify2, however, adopt an over-
approximation approach by simply considering that every
external contract call is manipulatable by attackers and the
return value is malicious. Thus they are not subject to this
limitation. Nonetheless, as shown in the study from Durieux
et al. [15], such over-approximation can induce many false
alarms, which, however, is out of the scope of our study.

Finding 1: Existing tools cannot properly handle exter-
nal contract calls to perform precise inter-contract analysis.
Such limitations make them miss the detection of many
vulnerabilities. Future detection techniques of front-running
vulnerabilities should include inter-contract analysis.
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Constraint Solving: In addition to inter-contract analysis,
Ethracer also suffers from the limitation of constraint solving
in the code analysis phase. Ethracer uses dynamic symbolic
execution to generate concrete transactions invoking functions
and covering as many execution paths as possible for the con-
tract under analysis. Such concrete transactions are executed
in different orders to trigger the front-running vulnerabilities
in a fuzzing process. SMT solver is used to resolve function
inputs. However, it is impossible to solve constraints involv-
ing cryptographic operations. The path condition at line 8 in
Fig 1 involves digital signature verification. It is impossible
for techniques like that of Ethracer to resolve a valid input to
satisfy this path condition using existing SMT solvers. Another
unsolvable operation is the keccak256 hash operation, which is
widely used in smart contracts, such as computing the address of
values in mapping or array variables. If such types of variables
are used in path conditions, Etheracer will also fail to generate
concrete transactions to cover some or all execution paths and
thus cannot detect the vulnerabilities in those uncovered paths.
Other symbolic execution-based tools do not suffer from this
limitation since they do not need to generate concrete inputs for
functions. A common workaround solution for the cryptographic
and hashing operations in constraints is to replace their results
with new intermediate symbolic values.

For techniques that need to generate concrete transactions, it
may not be feasible to generate inputs that satisfy various path
conditions involving cryptographic operations. However, the
large transaction history can be leveraged to tackle the issue. In
the transaction history, there may be some transaction inputs that
can satisfy the various constraints that an SMT solver can hardly
resolve. Analyzers can mutate from those inputs to generate
concrete transactions to test other contracts.

Finding 2: The widely used cryptographic operations in
smart contracts make it hard for an SMT solver to generate
concrete inputs, weakening the capability of existing tools in
exploring transaction executions for attack scenarios. Future
studies should seek better approaches to effectively generate
concrete transactions that satisfy path conditions with cryp-
tographic and hashing operations.

2) Two Limitations in Oracle: Limitations of detection ora-
cles occur in two ways. First, some tools fail to define proper
vulnerability patterns for effective vulnerability detection. Sec-
ond, many tools only check whether the vulnerability can cause a
loss of Ethers while lacking the support of digital assets in token
standards (e.g., ERC20, ERC721, ERC777, and ERC1155). As
a result, they fail to detect many vulnerabilities that cause the
loss of these tokens. Table III presents the number of attacks
whose vulnerabilities are missed due to each limitation.

Patterns: Each technique defines specific patterns to identify
vulnerabilities in smart contracts. Oyente computes the number
of digital assets transferred with symbolic execution. Oyente
reports front-running vulnerabilities if there exist two execution
paths transferring in different symbolic amounts. However, vul-
nerable contracts of computation alteration attacks like Fig. 2

do not fall into this pattern since the amount of digital assets
that the victim obtains in the attack and attack-free scenarios
are symbolically the same. In addition, some path condition
alteration attacks may also not fall into the pattern if there is
no digital asset transfer in some execution paths, e.g., Fig. 1.

Mythril and Conkas identify vulnerabilities by checking if the
receiver or amount of digital asset transfers depends on shared
variables modifiable by other transactions. However, some path
condition alteration attacks like Fig. 1 may be missed since the
profit transfer control-depends, instead of data-depends, on the
attack altered data.

Ethracer checks whether different invocation orders of two
different functions result in different blockchain world states
after the execution. However, it does not consider failed victim
transactions as attack consequences. Vulnerabilities are not re-
ported if one of the functions throws exceptions in one of the
execution orders. In fact, attacks on contracts may result in failed
victim transactions, e.g., Fig. 1. Thus, Ethracer will also miss
this vulnerability.

Securify, Securify2, and Sailfish use a general pattern, check-
ing whether digital asset transfers depend on blockchain-shared
data through either control flow or data flow. This generic pattern
can conceptually capture all vulnerabilities in our benchmark.
However, these tools lack the support of tokens, as discussed
below, and thus miss most of the vulnerabilities that result in
the loss of tokens. Another limitation of adopting such a general
pattern is that a lot of false alarms in the reported problems.
Durieux et al. [15] has shown the high false positive rate of Se-
curify. This is because the dependency on global variables does
not necessarily result in profitable opportunities that attackers
can exploit.

The two attack properties proposed in our attack model can
also serve as a general oracle in front-running vulnerability
detection techniques. In other words, contract analyzers can
check if there exists a tuple of transactions invoking the contract
under analysis, such that the two attack properties are satisfied.
One major challenge to adopt this oracle is the large search space
for analyzers. Oracles used by existing tools, except for Ethracer,
are based on the execution of a single transaction. However,
checking our attack properties requires the ordered execution
result of multiple transactions. The complexity of analysis will
grow exponentially as the size of contract code increases. Novel
techniques to reduce the search space during analysis are desired.

Finding 3: The detection patterns of many tools are weak
in capturing front-running vulnerabilities in real-world smart
contracts. Vulnerability detection tools should be updated
with patterns based on real-world vulnerable contracts.

Token Support: In addition to detection patterns, the negli-
gence of profit making in tokens by existing techniques causes
many attacks undetected. All tools except Ethracer support
only Ether as digital assets in pattern matching of vulnerability
detection. As a result, the vulnerabilities of many attacks where
victims lose tokens instead of Ethers are missed. In contracts of
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TABLE IV
THE NUMBER OF ATTACKS IN WHICH EACH TYPE OF VICTIM’S FINANCIAL

PROFITS DECREASES

Fig. 2 and Fig. 1, attackers and victims obtain financial profits in
terms of ERC20 tokens instead of Ethers. Tools not supporting
ERC20 are not aware of such attack profits and thus do not report
vulnerabilities. Note that in Table III, we analyzed the limitation
of detection patterns supposing the tool supports Ethers and all
tokens. We concluded that a vulnerability is missed due to the
token support limitation only when the pattern can capture the
vulnerability and the tool does not support tokens. The reason
is that it is easy to extend the support for tokens. To identify a
token transfer, tool developers only have to check whether the
data of an external call matches the transfer function signature
of the standard token interface. We considered token support
as the least impacting limitation. To show the impact of this
limitation, we collect the total number of attacks in which each
type of financial profit is involved in the attack, as shown in
Table IV. Note that each attack can have more than one type of
financial profit, i.e., there can be overlaps between different types
in Table IV. Tokens are even more prevalent than Ether in the
dataset presented in Section IV-C. The other three types of tokens
also have a non-negligible share in the profits of front-running
attacks. The support of profit analysis in tokens is essential to
vulnerability detection for smart contracts.

Finding 4: Many front-running vulnerabilities are missed
by existing detection tools due to their negligence of profit
making in tokens. The support of profit analysis in tokens is
essential to detect front-running vulnerabilities in real-world
smart contracts.

E. Other Vulnerabilities Identified by Existing Tools

Given the poor performance of existing tools on our
front-running vulnerability benchmark, one further question is
whether existing tools can detect other front-running vulnera-
bilities that are missed by our benchmark. Therefore, we inspect
the detection results of all seven tools on all 235 contracts in our
benchmark B

A .
As mentioned before, each tool has named vulnerabilities

resulting in front-running attacks in different ways. We only
focus on vulnerability reports related to front-running attacks,
i.e., the event ordering bugs in Ethracer, state inconsistency bugs
in Sailfish, and transaction order dependency bugs in all other
tools. The seven tools in total report a total of 293 front-running
vulnerable functions, which is much more than the number of
vulnerabilities they can catch in our benchmark as shown in
Table II. However, as pointed out by previous studies, existing
tools have a high false positive rate [15], [46]. It is unknown
whether these 293 reported vulnerabilities are true positives or
not. We do not have ground truth on the reported vulnerable
functions, so we follow a similar practice of a previous study [15]

and consider a function is truly vulnerable if at least two tools
raise the alarm for this function. The rationale behind this is that:
a vulnerability is more likely a true positive if several tools have
an agreement on it.

As a result, there are only 24 functions that are reported as
vulnerable by at least two tools, indicating that the majority
of reported vulnerabilities are likely to be false positives. This
result aligns with previous studies [15], [46], which evaluate
the detection precision of existing tools. Of the 24 vulnerable
functions, one is included in our benchmark, while others are
not. We investigate all of the rest 23 functions and find that
they are all false positives. There are four main reasons that
these functions are not vulnerable. Eight functions are false
positives since they are view functions in smart contracts, which
cannot transfer any assets or modify any blockchain state. Eight
functions are false positives since they can only be called by
one specific account (e.g., admin or owner). Malicious attackers
are not allowed to invoke the functions. Four functions are false
positives since transactions invoking these functions can only
access or update the state space belonging to the transaction
submitter. Different transactions have no shared data so it is im-
possible to launch front-running attacks on another transaction
submitted by different users. The rest three functions are false
positives since transactions invoking these functions can obtain
more profits if front-run by other transactions according to the
semantics of the contracts. We do not consider them exploitable
vulnerabilities since victims do not suffer from loss. Therefore,
our investigation shows that existing tools can hardly identify
issues that are not included in our benchmark. They may report
many vulnerabilities, but the majority of them are false positives.

Nevertheless, it is possible that some vulnerabilities detected
by existing tools are missed by our benchmark because we do
not search the entire blockchain history, and some vulnerabilities
may never be exploited in history. As mentioned in Section V-D,
for vulnerabilities exploited in the not-searched history, the
number of them in our selected contracts is likely small. For
vulnerabilities never exploited, our study gives a high priority to
the soundness of our benchmark (i.e., included vulnerabilities
are true positives). Therefore, we only consider exploited vul-
nerabilities as ground truth, and those unexploited ones may be
missed.

VII. THREATS TO VALIDITY

A validity threat in our study is that our analysis is based on
the attacks in 800,000 blocks instead of the entire blockchain
history. We mitigate this threat by using the latest blocks to
improve the representativeness of the attacks in our benchmark.
We also focus on 1200 popularly attacked contracts, as discussed
in Section V-D, and show that most exploited vulnerabilities
in these contracts have been identified in our benchmark. In
addition, we may execute existing contract analyzers improperly.
We mitigate this threat by strictly following the instructions and
actively communicating with the tool authors when encounter-
ing issues. Another validity threat arises from the subjectivity in
manual analysis when evaluating our attack mining algorithm
and influence trace. We mitigate this threat by setting objective
criteria for the ground truth of true front-running attacks and real
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vulnerable contract code in manual analysis (Section IV-D and
Section V-C). In addition, the manual analysis result is obtained
by a consensus among independent manual checks from three
different authors, all of whom have more than three years of
experience in the security analysis of smart contracts.

VIII. CONCLUSION

In this paper, we design an algorithm to automatically mine
real-world front-running attacks. We localize vulnerable con-
tract code using dynamic taint analysis on the found attacks and
build a benchmark of front-running vulnerabilities. Based on
the benchmark, we perform an empirical evaluation of seven
state-of-the-art vulnerability detection techniques. We find that
the performance of these techniques is still limited and identify
four limitations in their code analysis process and vulnera-
bility detection oracles. The implementation of our approach,
benchmark, and tool evaluation results are available on GitHub:
https://github.com/Troublor/erebus-redgiant.
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