2010 29th IEEE International Symposium on Reliable Distributed Systems

CloudRank: A QoS-Driven Component Ranking Framework for Cloud
Computing

Zibin Zheng, Yilei Zhang, and Michael R. Lyu
Department of Computer Science and Engineering
The Chinese University of Hong Kong
Hong Kong, China
{zbzheng,ylzhang,lyu} @cse.cuhk.edu.hk

Abstract

The rising popularity of cloud computing makes build-
ing high quality cloud applications a critical and urgently-
required research problem. Component quality ranking ap-
proaches are crucial for making optimal component selec-
tion from a set of functionally equivalent component can-
didates. Moreover, quality ranking of cloud components
helps the application designers detect the poor perform-
ing components in the complex cloud applications, which
usually include huge number of distributed components. To
provide personalized cloud component ranking for differ-
ent designers of cloud applications, this paper proposes a
QoS-driven component ranking framework for cloud appli-
cations by taking advantage of the past component usage
experiences of different component users. Our approach re-
quires no additional invocations of the cloud components
on behalf of the application designers. The extensive ex-
perimental results show that our approach outperforms the
competing approaches.

1. Introduction

Cloud computing [1, 8] is Internet-based computing,
whereby shared resources, software and information are
provided to computers and other devices on-demand, like
a public utility. Strongly promoted by the leading indus-
trial companies (e.g., Microsoft, Google, IBM, Amazon,
etc.), cloud computing is quickly becoming popular in re-
cent years. Cloud applications, which involve a number of
distributed cloud components, are usually large-scale and
very complex. With the rising popularity of cloud com-
puting, building high-quality cloud applications becomes an
urgently-required and critical research problem.

Similar to the component-based systems [7, 21], cloud
applications are also composed of a number of components.

In traditional component-based systems, the components
are usually invoked locally, while in the cloud environment,
cloud components are typically invoked remotely by com-
munication links. Performance of the cloud applications
is greatly influenced by the unpredictable communication
links as well as a lot of other factors, such as service request
provisioning, management, and so on. In addition, the cloud
components are usually reusable by a lot of different cloud
applications. Influenced by the unpredictable communica-
tion links, different cloud applications will receive different
levels of quality for the same cloud component. Person-
alized component quality ranking is thus a crucial task for
building high-quality cloud applications.

Non-functional performance of cloud components are
usually described by Quality-of-Service (QoS). There are
usually a lot of redundant components in the cloud. When
making cloud component selection from a set of alterna-
tive components, QoS-driven component quality ranking
provides valuable information to assist the decision mak-
ing of cloud application designers. Moreover, for the func-
tionally non-equivalent components within a cloud applica-
tion, component quality ranking helps cloud application de-
signers effectively detect poor-performing components. By
replacing or improving these low quality components, the
overall quality of cloud applications can be improved.

The major challenge for making QoS-driven component
quality ranking is that the component quality ranking of a
user (i.e., designer of the cloud application) cannot be trans-
ferred directly to another user, since the locations of the
cloud applications are quite different. Personalized compo-
nent quality ranking is therefore required for different cloud
applications. The most straightforward approach of person-
alized cloud component ranking is to evaluate all the com-
ponents at the user-side and rank the components based on
the observed QoS performance. However, this approach is
impractical in reality, since conducting component evalua-
tion is time consuming and resource consuming. Moreover,

. IEEE
@) computer
N soclety

1060-9857/10 $26.00 © 2010 IEEE 184
DOI 10.1109/SRDS.2010.29

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

it is difficult for the cloud application designers to evaluate
all the cloud components themselves, since there may exist
a huge number of components in the cloud.

To attack this critical challenge, we propose a collabo-
rative QoS-driven ranking framework to predict the quality
ranking of cloud components without requiring additional
real-world component invocations from the intended user.
Our approach takes advantage of the past usage experiences
of other users for making ranking prediction for the current
user. The contribution of this paper is two-fold:

o This paper identifies the critical problem of personal-
ized component quality ranking for cloud applications
and proposes a collaborative QoS-driven quality rank-
ing framework (named CloudRank) to achieve person-
alized component quality ranking. To the best of our
knowledge, CloudRank is the first collaborative rank-
ing framework for cloud components.

e Extensive real-world experiments are conducted to
study the ranking performance of our CloudRank algo-
rithm compared with other competing algorithms. The
experimental results show the effectiveness of our ap-
proach. Comprehensive investigations on the impact
of the algorithm parameters are also provided.

The rest of this paper is organized as follows: Section
2 introduces a motivating example and the idea of compo-
nent usage experiences sharing between users. Section 3
describes our collaborative component ranking framework.
Section 4 presents experiments. Section 5 discusses related
work and Section 6 concludes the paper.

2. Preliminaries
2.1. Motivating Example

We begin by using a motivating example to show the
research problem of this paper. Figure 1 shows the sys-
tem architecture. As shown in Figure 1, there are a num-
ber of distributed and reusable components in the cloud.
These cloud components are employed by application de-
signers to implement various cloud applications. The de-
signers of cloud applications are named component users,
since the cloud components are used by these designers to
implement their cloud applications. Since the cloud com-
ponents are invoked by the cloud applications, the servers
running the components are the server-side and the servers
running the cloud applications are the client-side in this pa-
per. The end-users of the cloud applications are called cus-
tomers. Since cloud applications are deployed in different
geographic locations and Internet is employed for invoking
the cloud components, different cloud applications may ob-
serve different levels of component quality. The following

X

Application Designer

Functional Equivalent Components
Cloud Component at
la—> Cloud Component a2
Cloud Component am
Functional Equivalent Components

Cloud Component b
> Cloud Component b2
Cloud Component bm

Cloud Application 1

X

Customer

Cloud Application 2

JETIE

Cloud Application n
O-O-O-O-O-0O

—>l

<

Figure 1. System Architecture

are two scenarios to show why personalized cloud compo-
nent quality ranking is needed:

e When designing a cloud application (e.g., cloud ap-
plication 1 shown in Fig. 1), the application designer
wants to select the optimal cloud component from a set
of functionally equivalent component candidates (i.e.,
al, .., am). The optimal component highly relies on
the locations of the cloud applications. Personalized
quality ranking of the functionally equivalent cloud
components is required for the application designer to
make an optimal component selection.

e For the components within a cloud application, the ap-
plication designer wants to identify the poor perform-
ing components. By improving these performance boz-
tlenecks, the overall performance of the cloud applica-
tion can be improved. In this case, personalized quality
ranking of the functionally inequivalent cloud compo-
nents provides valuable information for detecting low-
quality components.

These two scenarios show that personalized component
quality ranking of the cloud components is important in
building high quality cloud applications. To provide effec-
tive QoS-driven component quality ranking approach, we
introduce the idea of cloud component usage experiences
sharing in Section 2.2 and propose a collaborative quality
ranking framework in Section 3.

2.2. Component Usage Experience Sharing
Quality-of-Service (QoS) can be measured at the server-

side and the client-side. While the server-side QoS proper-
ties of cloud components provide good indications of the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

component capacities, client-side QoS properties provide
more realistic measurements of the performance experi-
enced by the component users. The commonly-used client-
side QoS properties include response-time, throughput, fail-
ure probability, user-rating, etc.

In our previous work [28], a user-collaborative mecha-
nism is proposed for collecting performance information of
Web service components from different service users. The
observed Web service QoS values can be contributed by the
users by running a client-side Web service evaluation appli-
cation [26] or employing a client-side middleware [25]. Dif-
ferent from service-oriented applications, the component
usage experiences of the cloud components are much eas-
ier to obtain in the cloud environment, since the cloud ap-
plications are typically running on the same cloud. These
cloud applications invoke and record the client-side QoS
performance of the invoked cloud components. The cloud
provider can collect these component QoS values from dif-
ferent cloud applications easily as long as the application
owners agree. Based on the collected cloud component QoS
values from different cloud applications, we propose a col-
laborative quality ranking framework for the new cloud ap-
plications in the next section.

3. Collaborative Quality Ranking Framework

This section presents our collaborative component qual-
ity ranking framework, which is designed as a four-phase
process. In Phase 1, we calculate the similarity of the
users with the current user based on their rankings on the
commonly-invoked components. Then, in Phase 2, a set of
similar users are identified. After that, in Phase 3, a pref-
erence function is defined to present the quality priority of
two components. Finally, in Phase 4, a greedy order al-
gorithm is proposed to rank the employed components as
well as the unemployed components based on the prefer-
ence function and making use of the past usage experiences
of other similar users. Details of these phases are presented
at Section 3.1 to Section 3.4, respectively.

3.1. Ranking Similarity Computation

In our approach, the ranking similarity between users
is determined by comparing their personalized cloud com-
ponent quality rankings on the commonly-invoked compo-
nents. Suppose we have a set of three components, on which
two users have observed response-times (seconds) of {1, 2,
4} and {2, 4, 5}, respectively. The response-time values
on these components by the two users are clearly different;
nevertheless their rankings are very close as the components
are ordered in the same way, based on the response-time
values. Given two rankings on the same set of components,

the Kendall rank correlation coefficient (KRCC) [15] eval-
uates the degree of similarity by considering the number of
inversions of component pairs which would be needed to
transform one rank order into the other. The KRCC value
of user a and user w can be calculated by :

C—-D
N(N —1)/2’
where N is the number of components, C' is the number
of concordant pairs between two lists, and D is the num-
ber of discordant pairs. Since C = N(N —1)/2 — D,
Eq. (1) is equal to Sim(u,v) = 1 — N(4TD71)- Employing
Kendall rank correlation coefficient, the similarity between
two component rankings can be calculated by:

4 x Z j((Qu,i - Qu,j) (QU,i - qv,j))

i,j€l,NI,

(M

Sim(u,v) =

Sim(u,v) =1—

[T, NI, x (|[I, N T,| — 1)

)
where I, N I, is the subset of cloud components commonly
invoked by user u and user v, g, ; is the QoS value (e.g.,
response-time, throughput, etc.) of component % observed
by user u, and I () is an indicator function defined as:

f(x):{(l)

From above definition, the ranking similarity between
two rankings, Sim(u,v), is in the interval of [-1,1], where
-1 is obtained when the order of user u is the exact reverse
of user v, and 1 is obtained when order of user u is equal
to the order of user v. Since KRCC compares component
pairs, the intersection between two users has to be at least 2
(|1, N I,| > 2) for the similarity computation.

ifx <0
otherwise

3)

3.2. Find Similar Users

By calculating the KRCC similarity values between the
current user and other users, the users similar to the current
user can be identified. Previous ranking approaches [13, 22]
usually employ information of all the users for making rank-
ing prediction for the current user, which may include dis-
similar users. However, employing QoS values of dissimi-
lar users will greatly influence the prediction accuracy for
the current user. To address this problem, our approach
employs only the top-K similar users for making ranking
prediction and excludes the users with negative correlations
(negative KRCC values). In our approach, a set of similar
users S(u) is identified for the current user u by:

N(u) = {v|v € Ty, Sim(u,v) > 0,v #u}, (@)

where T, is a set of the top-K similar users to the user u and
Sim(u,v) > 0 excludes the dissimilar users with negative
KRCC values. The value of Sim(u,v) in Eq. (4) can be
calculated by Eq. (2).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

3.3. Preference Function

A user’s preference on a pair of components can be mod-
eled in the form of ¥ : I x I — R [13], where ¥(7,j) > 0
means that quality of component ¢ is higher than component
7 and is thus more preferable for the user and vice versa.
The value of the preference function ¥(i, 7) indicates the
strength of preference and a value of zero means that there is
no preference between the two components. The preference
function W (4, §) is anti-symmetric, i.e. U(i,j) = =¥ (4, 7).
We set W(i,i) =0 foralli € I.

Given the user-observed QoS values on two cloud com-
ponents, the preference between these two components can
be easily derived by comparing the QoS values, where
U(i,j) = g; — g;. To obtain preference information re-
garding the pairs of components that have not been in-
voked/observed by the current user, the QoS values of sim-
ilar users S(u) is employed. The basic idea is that the
more often the similar users in S(u) observe component
1 as higher quality than component j, the stronger the ev-
idence for (7, j) > 0 and ¥(4,¢) < O for the current user.
This leads to the following formula for estimating the value
of the preference function ¥ (3, j), where component ¢ and
component j are not explicitly observed by the current user

Uu.
(i, j) = Z wv(qv,i - %,j)a

vEN (u)d

®)

where v is a similar user of the current u, N (u) is a subset
of similar users, who obtain QoS values of both component
1 and j, and w, is a weigh factor which can be calculated
by:

Sim(u,v)
ZUEN(U)U Sim(u,v)

w,, makes sure that a similar user with higher similarity has
greater impact on the preference value prediction for the
current user u.

By Eg. (5) and Eq. (6), the preference value between a
pair of components can be obtained by taking advantage of
the past usage experiences of the similar users. Assuming
there are n components to be ranked and user u already
obtains QoS values of a components, the total number of
component pairs that can be derived explicitly is a(a—1) /2,
and the total number of pairs that needs to be predicted from
similar users is: n(n — 1)/2 — a(a — 1)/2.

(6)

Wy =

3.4. Greedy Order Algorithm

Given a preference function ¥ which assigns a score to
every pair of components ¢,j € I, we want to choose a
quality ranking of components in [that agrees with the pair-
wise preferences as much as possible. Let p be a ranking
of components in I such that p(7) > p(j) if and only if 7 is

187

ranked higher than j in the ranking p. We can define a value
function V¥ (p) as follows that measures the consistency of
the ranking p with the preference function:

>

1,5:p(4)>p(3)

V¥ (p) W(i,). @)

Our goal is to produce a ranking p* that maximizes the
above objective value function. One possible approach to
solve the component ranking problem is to search through
the possible rankings and select the optimal ranking p* that
maximizes the value function defined in Eq. (7). However,
there are n! possible rankings for n components. It is im-
possible to search all the rankings when the value of n is
large. Cohen et al. [6] have showed that finding the optimal
ranking p* is an NP-Complete problem.

To enhance the calculation efficiently, we propose
a greedy order algorithm in Algorithm 1 (named as
CloudRank) for finding an approximately optimal ranking:

Algorithm 1: Greedy Order Algorithm: CloudRank

Input: an employed component set E, a full
component set I, a preference function ¥
Output: a component ranking p
F=F,
while F' £ () do
t = arg maxX;ecr q;;
pe(t) = |E| - |F| + 1;
F=F—{t};
end
foreach i € I do
| 7)) =3, Ui, 5);
end
n=1I;
while I # () do
t = arg max;e; 7(1);
p(t) =n—|I| +1;
I=1-{t}h
foreach i € I do
| (i) =7(@) — (i, t)
end

NI B B Y 2)

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24

—

end

while E # () do

e = arg minge g peis
indexr = min;ec g p(1);
p(e) = index;
E=FE—{e};

end

Algorithm 1 includes the following steps:

e Step 1 (lines 1 - 6): Rank the employed cloud compo-
nents in F based on the observed QoS values. p.(t)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

stores the ranking, where ¢ is a component and the
function p.(t) returns the corresponding order of this
component. The values of p.(t) are in the range of
[1, |E|], where a smaller value indicates higher quality.

e Step 2 (lines 7 - 9): For each component in the
full component set I, calculate the sum of prefer-
ence values with all other components by 7(i) =
> jer ¥(i, 7). As introduced in Section 3.3, W(i,4) =
0. Therefore, including W (i,) in the calculation does
not influence the results. Larger 7(¢) value indi-
cates more components are less preferred than ¢ (i.e.,
U(i,7) > 0). In other word, component ¢ should be
ranked in higher position.

e Step 3 (lines 10 - 18): Components are ranked from the
highest position to the lowest position by picking the
component ¢ that has the maximum 7 (¢) value. The se-
lected component is assigned a rank equal to n—|I|+1
so that it will be ranked above all the other remaining
components in I. The ranks are in the range of [1, n]
where n is the number of components and a smaller
value indicates higher quality. The selected compo-
nent ¢ is then deleted from I and the preference sum
values U (%) of the remaining components are updated
to remove the effects of the selected component ¢.

e Step 4 (lines 19 - 24). Step 3 treats the employed
components in E and the non-employed component
in I — F identically which may incorrectly rank the
employed components. In this step, the initial com-
ponent ranking p(z) is updated by correcting the rank-
ings of the employed components in E. By replacing
the ranking results in pAz with the corresponding cor-
rect ranking of p.(t), our approach makes sure that the
employed components in I are correctly ranked.

Algorithm 1 has a time complexity of O(n?), where n
is the number of components. Compared with the other
greedy algorithm [6], our approach guarantee that the em-
ployed components are correctly ranked. As will be shown
in the experiments of Section 4, our approach provides bet-
ter ranking accuracy more consistently than the greedy al-
gorithm in [6].

4. Experiments
4.1. Dataset Description

We evaluate the ranking algorithms using our WS-
DREAM! Web service QoS dataset [28]. The WS-DREAM

dataset includes QoS performance of about 1.5 million real-
world Web service invocations of 100 publicly available

Thttp://www.wsdream.net

Table 1. WS-DREAM Dataset Descriptions

Statistics \ Values
Num. of Web service invocations 1,542,884
Num. of service users 150
Num. of Web services 100
Num. of user countries 24
Num. of Web service countries 22
Minimum response-time value 0.009 s
Maximum response-time value 28.96 s
Mean of response-time 1.73 s
Standard deviation of response-time 3.65s
Minimum throughput value 0.03 kBps
Maximum throughput value 643.36 kBps
Mean of throughput 4.10 kBps
Standard deviation of throughput 12.17 kBps

Web services observed by 150 distributed users. In our ex-
periments, a Web service presents a cloud component, while
a cloud application is composed by a set of service compo-
nents. The QoS values of the 100 Web services observed
by the 150 service users can be presented as a 150 x 100
user-item matrix, where each entry in the matrix is a vector
including values of different QoS properties. In the experi-
ment, the response-time and throughput QoS values are em-
ployed independently to rank the components. Response-
time is the time duration between the user sending out a re-
quest to a component and receiving a response. Throughput
represents the data transfer rate over the network. Table 1
shows descriptions of the WS-DREAM dataset.

As shown in Table 1, the minimum and maximum val-
ues of response-time are 0.009 seconds and 28.96 seconds,
respectively. The mean and standard deviation of all the
15,000 response-time values in the user-item matrix ob-
served by 150 users on 100 Web services are 1.73 and 3.65
seconds, respectively, indicating that the response-time val-
ues of different Web services observed by different users ex-
hibit a great variation. The mean and standard deviation val-
ues of throughput are 4.1 kilo-Byte per second (kBps) and
12.17 kBps. The throughput values also exhibit a great vari-
ation. The distributions of the response-time and through-
put values of the user-item matrix are shown in Fig. 2(a) and
Fig. 2(b), respectively. Figure 2 shows that a large part of
response-time values are between 0.2 seconds and 1.6 sec-
onds, while most throughput values are between 0.4 kBps
(kilo-Byte per second) and 3.2 kBps.

4.2. Evaluation Metric

To evaluate the component ranking performance,
we employ the Normalized Discounted Cumulative
Gain(NDCG) [2] metric, which is popular metric for evalu-

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

<0.2 0.2-0.40.4-0.80.8-1.61.6-32 >3.2
Values of Response-Time (seconds)

(@ (b)

<0.4 0.4-0.80.8-161.6-323.2-6.4 >6.4
Values of Throughput (kBps)

Figure 2. Value Distribution of User-Item Matrix

ating ranked results in information retrieval. Given an ideal
descending component ranking and a predicted descending
component ranking, the NDCG performance of the top-K
ranked components can be calculated by:

DCGy,

ND — Tk
CGx IDCGy’

)
where DCG), and IDCG), are the discounted cumulative
gain (DCQG) values of the top-K components of the pre-
dicted component ranking and ideal component ranking, re-
spectively. The value of DCG, can be calculated by:

rel;

k
DCGy, = rel; + Z ©)
1=2

logai’

where rel; is the graded relevance (QoS value) of the com-
ponent at position ¢ in the ranking. The premise of DCG is
that high quality component appearing lower in a the rank-
ing list should be penalized as the graded relevance value is
reduced logarithmically proportional to the position of the
result. The DCG value is accumulated cumulatively from
the top of the result list to the bottom with the gain of each
result discounted at lower ranks. The ideal rank achieves the
highest gain among all different rankings. The NDCGy,
value is on the interval of 0.0 to 1.0, where larger value
stands for better ranking accuracy since the predicted rank-
ing is more near the ideal ranking. The value of p is on the
interval of 1 to number of components.

4.3. User-based and Item-based Models

Before conducting performance comparison of our ap-
proach with other approaches, we first briefly introduce
some well-known neighbor-hood based collaborative filter-
ing approaches in this section. Assume that there are m
users, n components, and the relationship between users
and Web services is denoted by an m X n user-item ma-
trix. Each entry g, ; in the matrix represents the QoS value
of component ¢ observed by user a. ¢,; = null if user a
did not invoke component 7 previously.

Vector similarity (VS) views each user as a vector in a
high dimensional vector space based on his/her QoS values.
The cosine of the angle between the two corresponding vec-
tors is used to measure the similarity between user a and

user u:
§ Ga,iqu,i

i€l,NIy,

Sim(a,u) = , (10)

Z qg,i Z qiL

i€l N1y i€l NIy,

where I, N I, is a set of commonly invoked components by
both user a and user u, g, ; is the QoS value of component
1 observed by the user a.

Pearson Correlation Coefficient (PCC), another popu-
lar similarity computation approach, employs the following
equation to compute the similarity between service user a
and service user u based on their commonly invoked com-

ponents:
Z (Qa,i - qu) (qu,i - qiu)
Sim(a,u) = SR ,
Z (Gai — Ga)? Z (Qu,i — Tu)?
i€l NIy, i€l,NI,

(1
where G, is the average QoS value of all the components
invoked by user a. The PCC similarity Sim(a,u) of two
users is in the interval of -1 and 1, where a larger value
indicates higher similarity.

Employing the similar users, the user-based collabora-
tive filtering approaches [4, 19] predict a missing value g, ;
in the matrix by the following equation:

>aes() Sim(a,u)(¢a,i — Ta)
D aes(u) Simla,) ’

where Sim(a,u) can be calculated by VS or PCC, and g,
and ¢, are the average QoS values of different components
observed by user w and a, respectively.

Similar to the user-base approaches, Eq.(10) and Eq.(11)
(VS and PCC) can also be employed to calculate the sim-
ilarity between two items (components). The item-based
approaches [16] predict the missing value employing the
similar items. The user-based and item-based approaches
can be combined for making missing value prediction [28]:

Qui = Ay + (1= N)ap (13)

where g ; is predicted by the user-based approach and q?m
is predicted by the item-based approach.

These above collaborative filtering approaches are
rating-oriented, since they first predict the missing values
in the matrix before making component ranking. Different
from these rating-oriented approaches, our approach rank
the items directly without predicting the missing values in
the matrix.

Qu,i = Qu + (12)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

Table 2. NDCG Comparison of Response Time (Larger value indicates better ranking accuracy)

Matrix Density = 10% Matrix Density = 30% Matrix Density = 50%

Methods NDCG3 | NDCG10 | NDCG100 | NDCG3

NDCG10 | NDCG100 | NDCG3 | NDCG10 | NDCG100

UVS: 0.9491 0.9104 0.9514 0.9689 0.9476 0.9726 0.9547 0.9408 0.9663
UPCC: 0.9347 0.8968 0.9414 0.9696 0.9489 0.9729 0.9541 0.9417 0.9666
IVS: 0.9710 0.9308 0.9637 0.9689 0.9442 0.9690 0.9548 0.9417 0.9661
IPCC: 0.9737 0.9359 0.9656 0.9688 0.9466 0.9702 0.9588 0.9484 0.9695
UIVS: 0.9719 0.9304 0.9639 0.9689 0.9441 0.9696 0.9553 0.9423 0.9663

UIPCC: 0.9730 0.9354 0.9653 0.9691

0.9477 0.9711 0.9584 0.9482 0.9695

Greedy 0.9789 0.9523 0.9755 0.9816

0.9728 0.9860 0.9939 0.9843 0.9921

CloudRank | 0.9792 0.9532 0.9763 0.9854

0.9760 0.9888 0.9959 0.9864 0.9947

0.63% 1.85% 1.11% 1.63%

2.85% 1.63% 3.87% 4.01% 2.60%

Table 3. NDCG Performance Comparison of Throughput

Matrix Density = 10% Matrix Density = 30% Matrix Density = 50%

Methods NDCG3 | NDCG10 | NDCG100 | NDCG3

NDCG10 | NDCG100 | NDCG3 | NDCG10 | NDCG100

UVS: 0.8588 0.8644 0.9096 0.9164 0.9075 0.9431 0.9061 0.9165 0.9447
UPCC: 0.8473 0.8547 0.9010 0.9173 0.9141 0.9456 0.9152 0.9241 0.9504
IVS: 0.8752 0.8778 0.9193 0.9173 09112 0.9454 0.9133 0.9288 0.9522
IPCC: 0.8731 0.8736 0.9185 0.9163 0.9207 0.9482 0.9249 0.9438 0.9603
UIVS: 0.8793 0.8800 0.9219 0.9184 0.9100 0.9453 0.9100 0.9236 0.9492
UIPCC: 0.8789 0.8772 0.9217 0.9176 0.9215 0.9487 0.9227 0.9406 0.9583
Greedy 0.8951 0.9002 0.9325 0.9109 0.9274 0.9493 0.9229 0.9411 0.9596
CloudRank | 0.8984 0.9020 0.9341 0.9198 0.9351 0.9551 0.9411 0.9528 0.9689
2.17% 2.49% 1.33% 0.15% 1.48% 0.68% 1.75% 0.95% 0.90%

4.4. Performance Comparison

To study the personalized component ranking perfor-

mance, we compare our ranking approach (named as
CloudRank) with seven other approaches:

e UVS (User-based collaborative filtering method using
Vector Similarity): This method employs vector simi-
larity for calculating the user similarities and uses the
similar users for the QoS value prediction.

e UPCC (User-based collaborative filtering method us-
ing Pearson Correlation Coefficient): This is a very
classical method. It employs PCC for calculating the
user similarities and employs the similar users for the
QoS value prediction [4, 19].

e IVS (Item-based collaborative filtering method using
Vector Similarity): This method employs vector simi-
larity for computing the item (components) similarity
when making QoS value prediction.

e [PCC (Item-based collaborative filtering method us-
ing Pearson Correlation Coefficient): This method is
widely used in industry company like Amazon. In this
paper, it employs similar items (components) for the
QoS value prediction [16].

e UIVS (User-based and item-based Collaborative filter-
ing using Vector Similarity): This method combines
the user-based and item-based collaborative filtering
approaches and employs the vector similarity for the
similarity computation for users and items.

e UIPCC (User-based and item-based Collaborative fil-
tering using Pearson Correlation Coefficient): This
method combines the user-based and item-based col-
laborative filtering approaches and employs PCC for
the similarity computation [28].

e Greedy: This method is proposed for ranking a set of
items, which treats the explicitly rated items and the
unrated items equally [6]. It doesn’t guarantee that the
explicitly rated items will be ranked correctly.

In real-world, the user-item matrices are usually very
sparse since a user usually only employs a small number
of components. In order to conduct our experiments realis-
tically, we randomly remove entries from the user-item ma-
trix to make the matrix sparser with different density. Ma-
trix density (i.e. proportion of nonzero entries) 10%, for
example, means that we randomly select 10% of the QoS
entries to predict the quality rankings of the users. The
rankings based on the original full matrix are employed as
ideal rankings to study the ranking performance. The above

190

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

seven methods together with our CloudRank method are
employed for making quality components rankings based
on the incomplete information. We set top-K=10 in our
CloudRank method in the experiments. Detailed investi-
gations of the parameter settings (e.g., top-K values) will
be conducted in Section 4.5. The experimental results are
shown in Table 2 and Table 3.

Table 2 and Table 3 show the NDCG performance
of response-time and throughput, respectively employing
10%, 30% and 50% density user-item matrices. In the sec-
ond row of the table, NDCGS3 indicates that the ranking
accuracy of the top 3 items is investigated. The value of
NDCG3 can be calculated by Eq. (8). The first six methods
in the table are rating-oriented methods, while the last two
methods are ranking-oriented methods. For each column in
the Tables, we have highlighted the best performer among
all methods and the best performer among all the rating-
based methods. The values shown in the bottom row are the
performance improvements achieved by the best methods
over the best rating-oriented methods.

Table 2 and Table 3 show that:

e Among all the ranking methods, our CloudRank
approach obtains better prediction accuracy (larger
NDCG values) for both response-time and throughput
under all the experimental settings consistently.

e The improvements on NDCG3, NDCGS5 and
NDCG100 of the best method over the best rat-
ing oriented method are 1.92%, 2.27% and 1.38% on
average.

e Compared with the Greedy approach, our CloudRank
method consistently achieves better ranking perfor-
mance on NDCG3, NDCGI10 and NDCG100. As
introduced in Section 3.4, our CloudRank approach
makes sure that the employed components are cor-
rectly ranked.

e When the density of the user-item matrix is increased
from 10% to 50%, the ranking accuracy (NDCG val-
ues) is also enhanced, since denser user-item matrix
provides more information for the missing value pre-
diction.

e The approaches that combine user-based and item-
based approaches (UIVS and UIPCC) outperform the
user-based approaches (UVS and UPCC) and item-
based approaches (IVS and IPCC) under most ex-
perimental settings. This observation indicates that
by combining the user-based and item-based ap-
proaches, better component ranking performance can
be achieved.

4.5. Impact of Parameters

4.5.1 Impact of Top-K

The Top-K value determines the number of similar users
employed in our CloudRank method. To study the impact
of the parameter Top-K on the ranking results, we vary the
values of Top-K from 1 to 10 with a step value of 1. We set
matrix density=20% in this experiment. Two CloudRank
versions are implemented, where the first one employs the
enhanced Top-K algorithm proposed in Section 3.2 and the
second one employs traditional Top-K algorithm without
excluding dissimilar users.

Figure 3(a) and Figure 3(b) show the NDCGS5 and
NDCG100 results of response-time, while Figure 3(c) and
Figure 3(d) show the NDCGS and NDCGI100 results of
throughput. Figure 3 shows that the NDCG performance
of traditional Top-K algorithm of both response-time and
throughput decreases when the Top-K value is increased
from 1 to 10. This is because large Top-K value will in-
troduce noise and include dissimilar users, which will hurt
the ranking accuracy. In all the four figures from Figure 3(a)
to Figure 3(d), our enhanced Top-K algorithm obtains stable
NDCG performance and outperform the traditional Top-K
algorithm consistently.

4.5.2 TImpact of Matrix Density

The ranking accuracy is influenced by the matrix density.
To study the impact of the matrix density on the ranking
results, we change the matrix density from 5% to 50% with
a step value of 5%. We set Top-K=10 in this experiment.
Two ranking-based methods (i.e., CloudRank and Greedy)
are compared in this experiment.

Figure 4 shows the experimental results, where Fig-
ure 4(a) and Figure 4(b) are the NDCG5 and NDCG100
results of response-time, and Figure 4(c) and Figure 4(d)
are the NDCGS5 and NDCG100 results of throughput. Fig-
ure 4 shows that when the matrix density is increased from
5% to 50%, the ranking accuracies of both the CloudRank
and Greedy methods are significantly enhanced. This obser-
vation indicates that the prediction accuracy can be greatly
enhanced by collecting more QoS values to make the ma-
trix denser, especially when the matrix is very sparse. In all
the figures from Figure 4(a) to Figure 4(d), our CloudRank
method outperforms the Greedy method consistently.

5. Related Work and Discussion

Quality-of-Service (QoS) have been widely employed
for presenting the non-functional characteristics of the soft-
ware systems and components [17, 23, 27]. The non-
functional QoS performance of cloud components can be

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

Response-time

Response-time
0—o a

Throughput Throughput

o
™

4
o

o

NDCG100

o
N

—— Enhanced Top-K Algorithm
—@- Traditional Top-K Algorithm

——Enhanced Top-K Algorithm
—@— Traditional Top-K Algorithm

—— Enhanced Top-K Algorithm
—~ Traditional Top-K Algorithm

——Enhanced Top-K Algorithm
= Traditional Top-K Algorithm

o

2 10

4 6 8
Values of Top-K

(b)

4 6 8
Values of Top-K

(a)

10 10

V4alues ofeTop—K8
(d)

4 6. 8
Values of Top-K

©

Figure 3. Impact of Top-K

Response-time Response-time Throughput Throughput
1 1 1 1
—»— CloudRank —— CloudRank —%— CloudRank —%— CloudRank
—o— Greedy 0.995| —e— Greedy 0.98}| —e— Greedy 0.98| —*— Greedy
0.995 0.96
o g 099 g o 7 e
- 9 0.94 e, e
Q @ - /
O 099 (D0.985 3 —~_ Qoo
%) 8 B 0927 o O
z 2 09 Z (’27 0.92
0.985 -
_ 0.975 0.88 09
i) \
0.98 0.86" 0.88

0.97

10 0 50 10 0

20 30 4
Matrix Density

(b)

20 30 4
Matrix Density

(@)

0 50 10 0 50

20 30 4
Matrix Density

(@

20 30 4
Matrix Density

©

Figure 4. Impact of Matrix Density

measured from either the user’s perspective (e.g., response-
time, throughput, etc.) or the component provider’s per-
spective (e.g., price, availability, etc.). Based on the compo-
nent QoS performance, various approaches have been pro-
posed for component selection [3, 23, 24], which enables
optimal software component to be identified from a set of
functionally similar or equivalent candidates. To enable op-
timal cloud component selection, in this paper, we focus
on components quality ranking by collaborative filtering ap-
proach.

Collaborative filtering methods are widely adopted in
recommender systems [5, 14, 16]. neighborhood-based
is one type of the most widely studied collaborative
filtering approaches. The most analyzed examples of
neighborhood-based collaborative filtering include user-
based approaches [4, 10, 11], item-based approaches [9,
12, 18], and their fusion [14, 20, 28]. User-based and
item-based approaches often use the vector similarity algo-
rithm [4] and the PCC algorithm [16] as the similarity com-
putation methods. Compared with vector similarity, PCC
considers the differences in the user rating style when cal-
culating the similarity.

The neighborhood-based collaborative filtering ap-
proaches usually try to predict the missing values in the
user-item matrix as accurately as possible. However, in the
ranking-oriented scenarios, accurate missing value predic-

tion may not lead to accuracy ranking. Therefore, ranking-
oriented collaborative filtering approaches are becoming
more and more attractive. Liu et al. [13] propose a ranking-
oriented collaborative filtering approach to rank movies.
Yang et al. [22] propose another ranking-oriented approach
for ranking books in digital libraries. Different from these
previous work [13, 22], our work provides a comprehensive
study of how to provide accurate component quality ranking
for cloud applications, which is a new and urgent-required
research problem.

6. Conclusion and Future Work

In this paper, we propose a QoS-driven collaborative
quality ranking framework for cloud components, which
requires additional invocations of the cloud components.
By taking advantage of the past usage experiences of other
users, our ranking approach identifies and aggregates the
preferences between pair of components to produce a rank-
ing of components. We propose a greedy method for com-
puting the component ranking based on the component pref-
erences. Experimental results show that our approach out-
performs existing rating-based collaborative filtering ap-
proaches and the traditional greedy method.

For future work, we would like to investigate different
techniques proposed for improving the ranking accuracy

192

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

(e.g.,

data smoothing, random walk, matrix factorization,

utilizing content information, etc.). We will also conduct
more investigations on the correlations and combinations of
different QoS properties (our current approach ranks differ-
ent QoS properties independently).

Acknowledgement

The work described in this paper was fully supported by
a grant (Project No. CUHK4154/09E) from the Research
Grants Council of the Hong Kong Special Administrative
Region, China.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]
[91

[10]

[11]

[12]

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical Report, EECS-2009-28, University of
Texas at Dallas, 2009.

K. J. arvelin and J. Kekalainen. Cumulated gain-based eval-
uation of ir techniques. ACM Transactions on Information
Systems, 20(4):422-446, 2002.

P. A. Bonatti and P. Festa. On optimal service selection. In
Proc. 14th Int’l Conf. World Wide Web (WWW’05), pages
530-538, 2005.

J. S. Breese, D. Heckerman, and C. Kadie. Empirical anal-
ysis of predictive algorithms for collaborative filtering. In
Proc. 14th Annual Conf. Uncertainty in Artificial Intelli-
gence (UAI'98), pages 43-52, 1998.

R. Burke. Hybrid recommender systems: Survey and ex-
periments. User Modeling and User-Adapted Interaction,
12(4):331-370, 2002.

W. W. Cohen, R. E. Schapire, and Y. Singer. Learning
to order things. Journal of Artificial Intelligent Research,
10(1):243-270, 1999.

V. Cortellessa and V. Grassi. A modeling approach to
analyze the impact of error propagation on reliability of
component-based systems. In Proc. 10th Int’l Symp.
Component-Based Software Eng., pages 140-156, 2007.

M. Creeger. Cloud computing: An overview. ACM Queue,
7(5), June 2009.

M. Deshpande and G. Karypis. Item-based top-n recommen-
dation. ACM Trans. Information System, 22(1):143-177,
2004.

J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative filter-
ing. In Proc. 22nd Int’l ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR’99), pages
230-237, 1999.

R. Jin, J. Y. Chai, and I.. Si. An automatic weighting
scheme for collaborative filtering. In Proc. 27th Int’l ACM
SIGIR Conf. on Research and Development in Information
Retrieval (SIGIR’04), pages 337-344, 2004.

G. Linden, B. Smith, and J. York. Amazon.com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet
Computing, 7(1):76-80, 2003.

193

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

N. N. Liu and Q. Yang. Eigenrank: a ranking-oriented ap-
proach to collaborative filtering. In Proc. 31st Int’l ACM
SIGIR Conf. on Research and Development in Information
Retrieval (SIGIR’08), pages 83-90, 2008.

H. Ma, 1. King, and M. R. Lyu. Effective missing data pre-
diction for collaborative filtering. In Proc. 30th Int’l ACM
SIGIR Conf. on Research and Development in Information

Retrieval (SIGIR’07), pages 39-46, 2007.

J. Marden. Analyzing and Modeling Ranking Data. Chap-
man & Hall, New York, 1995.

P. Resnick, N. lacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: An open architecture for collabora-
tive filtering of netnews. In Proc. of ACM Conf. Computer
Supported Cooperative Work, pages 175-186, 1994.

S. Rosario, A. Benveniste, S. Haar, and C. Jard. Probabilis-
tic qos and soft contracts for transaction-based web services
orchestrations. IEEE Trans. Services Computing, 1(4):187—

200, 2008.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In Proc.
10th Int’l Conf. World Wide Web (WWW’01), pages 285—
295, 2001.

L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei. Per-
sonalized qos prediction for web services via collaborative
filtering. In Proc. 5th Int’l Conf. Web Services (ICWS’07),
pages 439-446, 2007.

J. Wang, A. P. de Vries, and M. J. Reinders. Unifying user-
based and item-based collaborative filtering approaches by
similarity fusion. In Proc. 29th Int’l ACM SIGIR Conf.
on Research and Development in Information Retrieval (SI-
GIR’06), pages 501-508, 2006.

S. M. Yacoub, B. Cukic, and H. H. Ammar. Scenario-based
reliability analysis of component-based software. In Proc.
Int’l Symp. Software Reliability Engineering (ISSRE’99),
pages 22-31, 1999.

C. Yang, B. Wei, J. Wu, Y. Zhang, and L. Zhang. Cares:
a ranking-oriented cadal recommender system. In Proc.
9th ACM/IEEE-CS joint conference on Digital libraries
(JCDL’09), pages 203-212, 2009.

T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms for web
services selection with end-to-end qos constraints. ACM
Trans. the Web, 1(1):1-26, 2007.

L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-aware middleware for
web services composition. IEEE Trans. Software Engeering,
30(5):311-327, 2004.

Z. Zheng and M. R. Lyu. A qos-aware middleware for fault
tolerant web services. In Proc. Int’l Symp. Software Relia-
bility Engineering (ISSRE’08), pages 97-106, 2008.
Z.Zheng and M. R. Lyu. Ws-dream: A distributed reliability
assessment mechanism for web services. In Proc. 38th Int’l
Conf. Dependable Systems and Networks (DSN’08), pages
392-397, 2008.

7. Zheng and M. R. Lyu. A qos-aware fault tolerant middle-
ware for dependable service composition. In Proc. 39th Int’l
Conf. Dependable Systems and Networks (DSN’09), pages
239-248, 2009.

7. 7heng and M. R. Lyu. Collaborative reliability prediction
for service-oriented systems. In Proc. IEEE/ACM 32nd Int’l
Conf. Software Engineering (ICSE’10), pages 35-44, 2010.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

