Check for
Updates

Fine-Grained Data-Centric Content Protection Policy for Web
Applications

Zilun Wang

Wei Meng

Michael R. Lyu

The Chinese University of Hong Kong The Chinese University of Hong Kong The Chinese University of Hong Kong

Hong Kong SAR, China
zlwang22@cse.cuhk.edu.hk

ABSTRACT

The vast amount of sensitive data in modern web applications has
become a prime target for cyberattacks. Existing browser security
policies disallow the execution of unknown scripts but do not re-
strict access to sensitive web content by “trusted” third-party scripts.
Prior works have observed that over-privileged third-party scripts
can compromise the confidentiality and integrity of sensitive user
data in the applications, which introduces vital security issues to
web applications.

This paper proposes Content Protection Policy (CPP), a new
web security mechanism for providing fine-grained confidential-
ity and integrity protection for sensitive client-side user data. It
enables object-level protection instead of page-level protection by
taking a data-centric design approach. A policy specifies the ac-
cess permission of each script on individual sensitive elements.
Any unauthorized access is denied by default to achieve the least
privilege in the browser.

We implemented a prototype system—DOMINATOR—to enforce
the content protection policies in the browser, and an extension—
policy generator—to help web developers write basic policy rules.
We thoroughly evaluated it with popular websites and showed that
it could effectively protect sensitive web content with a low per-
formance overhead and great usability. CPP complements existing
security mechanisms and provides web developers with a more
flexible way to protect sensitive data, which can further mitigate
the impact of content injection attacks and significantly improve
the security of web applications.

CCS CONCEPTS

« Security and privacy — Browser security, Web Application
Security.

KEYWORDS
Browser security; JavaScript; Security policy

ACM Reference Format:

Zilun Wang, Wei Meng, and Michael R. Lyu. 2023. Fine-Grained Data-Centric
Content Protection Policy for Web Applications. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security (CCS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3623217

Hong Kong SAR, China
wei@cse.cuhk.edu.hk

2845

Hong Kong SAR, China
lyu@cse.cuhk.edu.hk

"23), November 26-30, 2023, Copenhagen, Denmark. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3576915.3623217

1 INTRODUCTION

With the rapid development of the Internet, web applications have
influenced many aspects of our lives. A lot of sensitive information,
e.g., personally identifiable information (PII), authentication tokens,
and online transaction data are presented in modern web applica-
tions that we use on a daily basis. The security—particularly the
confidentiality and integrity—of critical data and web applications
has become extremely important to not only website administrators
but also end users. Traditionally, attackers launch code injection
attacks, e.g., Cross-Site Scripting (XSS), to gain control over such
data and the victim websites. To mitigate content injection attacks,
modern browsers all have implemented the Content Security Pol-
icy (CSP) to control what scripts can be executed in a document.
However, CSP supports all-or-nothing restriction, i.e, a remote
script is allowed either full or no privilege. In other words, the
"trusted" scripts can abuse their privilege to completely access any
data, including sensitive user data.

While providing convenience to web developers and offering rich
features to the end users, the over-privileged third-party JavaScript
code also introduces vital security and privacy issues to websites
and end users. In practice, web developers often have to trade se-
curity for the functionalities provided by trusted scripts. However,
the over-privileged, trusted scripts can potentially compromise the
security of sensitive client content. In fact, some included trusted
scripts themselves are not trustworthy and have been found to per-
form malicious activities in the past. For instance, prior works have
revealed that the over-privileged scripts would exfiltrate sensitive
user data such as email address, password, credit card information,
and health information and leak it to external parties [3, 23]. Re-
searchers have also discovered that the over-privileged third-party
scripts would modify website content to intercept user clicks for
performing ad click fraud and distributing malicious content [32].
Past research has demonstrated the severity of the third-party script
privilege abuse problem, yet billions of web users’ sensitive data is
still at risk due to the all-or-nothing permission model in today’s
browsers.

The research community has proposed many web security mech-
anisms to restrict the privilege of third-party scripts and protect
sensitive user data on the client side. These mechanisms [2, 11, 17,
18, 28] are usually functionality-centric rather than data-centric,
i.e, they limit the available functionalities of third-party JavaScript
code rather than protecting the sensitive data from malicious code
directly. For instance, some mechanisms [2, 11, 17] block the use of
sensitive APIs such as eval Q). They, however, cannot stop the above

https://doi.org/10.1145/3576915.3623217
https://doi.org/10.1145/3576915.3623217
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623217&domain=pdf&date_stamp=2023-11-21

CCS *23, November 26-30, 2023, Copenhagen, Denmark

data confidentiality and integrity attacks because the included
scripts are still granted access to the entire DOM, which is needed
for providing many legitimate functionalities such as content cus-
tomization, data validation, etc. Some works [6, 10, 12, 13, 21, 25]
use information flow control techniques to provide confidential-
ity protection. Nevertheless, these works inevitably introduce in-
credibly huge performance overhead. More importantly, few prior
works consider the content integrity problem and would still make
integrity attacks like click interception feasible. We argue that a
fine-grained, data-centric, and efficient protection mechanism is
needed to defeat the data confidentiality and integrity attacks by
over-privileged JavaScript code. The prior work ScriptInspector [33]
logs script operations and generates policies for specifying what
resources can be accessed. However, it performs an offline analysis
method and cannot enforce any access restriction at runtime. Fur-
ther, it has some limitations in usability and high runtime overhead,
which are discussed in §2.2. Nevertheless, it has made a big step
towards providing fine-grained content protection in the browser.

In this paper, we propose Content Protection Policy (CPP), a new
data-centric web security mechanism to provide fine-grained and
data-centric content protection on the client side. We also develop
a browser-based system—DOMINATOR—to support and enforce the
protection rules, along with a policy generator to help developers
define CPP policies. With CPP, web developers can easily define
policy rules for specific (sensitive) elements to provide flexible
access control over third-party scripts. Different from the browsers’
current all-or-nothing restriction, the fine-grained access control
decision in CPP is made for each DOM element and each accessing
script. CPP follows the fail-safe default and least privilege security
principles: only the explicitly granted scripts in the policy can be
allowed access to the protected content.

To ensure complete mediation, DOMINATOR enforces the access
control at the JavaScript and DOM binding layer in the browser,
such that all DOM accesses are checked for permission. Further-
more, the CPP policies are immutable to any JavaScript code, effec-
tively preventing any circumvention attempts via tampering with
the policies. Our in-browser access control design and implementa-
tion prevent any script from bypassing the permission check. To
ease the burden of writing detailed content protection policies, the
policy generator in DOMINATOR allows the developers to easily
label the sensitive elements through a GUI tool and automatically
generate policy rules based on the collected access traces. To limit
the runtime overhead and compatibility issues, DOMINATOR en-
forces access control for only the sensitive elements specified by
the developers in the policy.

We implemented a prototype of DOMINATOR based on the
Chromium browser with about 1,700 lines of C++ code. We system-
atically evaluated the effectiveness, performance, and usability of
DOMINATOR. By implementing and deploying various confidential-
ity and integrity attacks via different JavaScript injection methods,
we validated the effectiveness of DOMINATOR in protecting sensi-
tive web content from over-privileged third-party scripts. We also
evaluated DOMINATOR on 20 real-world websites reported in [23]
with email and password exfiltration behaviors and demonstrated
that it could effectively prevent sensitive data exfiltration to third
parties with simple policies. We evaluated the performance and the
usability of our prototype on the Tranco top 50 accessible websites.

2846

Zilun Wang, Wei Meng, and Michael R. Lyu

Compared to the vanilla browser, enforcing CPP in the prototype
of DOMINATOR introduced a 0.03% average overhead in memory
consumption and a 1.53% average slowdown in page loading. The
performance overhead is unnoticeable for daily uses and acceptable
given the added security benefits. In usability evaluation, we evalu-
ated the compatibility and maintenance cost of DOMINATOR. We
found that the enforcement of CPP in DOMINATOR did not cause
new errors on the popular websites, and over 86% of the websites
did not require any policy updates in a week. We also observed
that the policies generated for sub-pages of the same website were
mostly similar due to the use of common content layouts and tem-
plates. This indicates that the policy maintenance cost is reasonable,
even considering the numerous sub-pages and frequent updates
on popular websites. Our evaluation shows that DOMINATOR can
effectively protect web content with an unnoticeable performance
overhead and great usability.
In summary, we make the following contributions:

e We propose a new web security mechanism CPP to pro-
vide fine-grained confidentiality and integrity protection for
client-side sensitive data.

e We implement CPP in DOMINATOR based on the Chromium
browser to ensure complete mediation and the least privilege
on third-party JavaScript code.

e We develop an automated policy generation tool to help web
developers write proper protection policies.

e We demonstrate with popular real-world websites that
DOMINATOR can effectively and efficiently prevent over-
privileged content access with good usability.

e We publicly release our research artifact to facilitate future
research at https://github.com/cuhk-seclab/DOMinator.

2 PROBLEM STATEMENT
2.1 Research Problem

The existing client-side security mechanisms deployed in modern
browsers grant full frame access to any included remote scripts and
block accesses from scripts in different origins. Although such all-
or-nothing protection provides effective defense against potential
attacks from untrusted origins, it is still limited due to the little or
even no restriction on the included third-party scripts. The third-
party scripts would have the same privileges as the first-party ones,
i.e., they can access any resources in the context.

The unlimited high privilege could be abused by the included
third-party scripts, which can compromise the confidentiality
and integrity of sensitive first-party data. For instance, the over-
privileged third-party scripts have the ability to access or even
exfiltrate sensitive user information (e.g., PII) presented on a page;
they can also alter the content displayed on the page to deliver false
information or change the application’s behaviors. Previous studies
have demonstrated that over-privileged third-party scripts have
exfiltrated PII [3, 23] and modified page hyperlinks to intercept
clicks [32].

2.1.1 Motivating Examples. We use the following two examples to
demonstrate the third-party script privilege abuse problem. They

https://github.com/cuhk-seclab/DOMinator

Fine-Grained Data-Centric Content Protection Policy for Web Applications

1 // The first-party HTML code

2 <html>

3 <head>

4 <script src= ></script>
5 </head>

6 <body>

7 <input name= type= class= >
8 <input name= type= class= >
9 </body>
10 </html>

11
12 /* a.js */
13 var e = document.getElementsByTagName ();
14 var values = new Array(e.length);
15 for (var i = 0; i < e.length; i++) {
16 e[i].onkeypress = function (k) {
17 values[i] += k.key;
18 };
19 3%
Listing 1: An example of the attack on content confidentiality.

1 // A third-party script modifies hyperlinks

2 var b = document.getElementsByTagName ()

3 for (var 1 = 0; 1 < b.length; 1++) {

4 var h = b[1].href;

5 var p = + encodeURIComponent (h) +

6 b[1l].href = p;

7 if (b[1].id ==) {

8 b[1l].href =

9 }
10 3

Listing 2: An example of the attack on content integrity.

are simplified from known attacks studied in [3, 32]. They respec-
tively show the threats posed by third-party scripts to the confi-
dentiality and integrity of sensitive client-side content.

Attack on Confidentiality. Some third-party scripts were re-
ported to collect sensitive information without user consent [3, 9].
Listing 1 shows an example of a script that exfiltrates the password
from the user input. It registers an event handler to monitor the key-
stroke pressed in the input elements and stores the input sequence
in a string for further processing in a remote server. However, it
does not exclude sensitive information (e.g., password), which is
at the risk of being exfiltrated. The example indicates that the first
party cannot totally trust the third-party scripts and should ac-
tively protect their sensitive data. A research [23] found password
collection on 52 websites out of the top 100K websites by third-
party scripts, 7 of which are in the top 20K. It also highlights that
thousands of websites have email leaks, which is a huge threat to
user privacy. Although password exfiltration is less common, its
serious consequences and difficulty in detection make it impossible
to ignore.

Attack on Integrity. Some third-party scripts were found to
modify the website contents to intercept user clicks for malicious
purposes [32]. Listing 2 shows an example of a third-party script
that modifies a hyperlink to direct victim users’ clicks to a malicious
URL. The script modifies the hyperlink of the anchor element with
the id "target", which can be some key component in the website, to
navigate the users to https://attack.com. A prior work [32] observed
that 437 third-party scripts intercepted user clicks on 613 websites
out of the top 250K websites and found malicious cases in the real
world that direct users to fake anti-virus (AV) software and drive-by
download pages.

These examples show that it is vital to protect both the confi-
dentiality and integrity of client-side contents from over-privileged

2847

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

third-party scripts, and the protection should be fine-grained to
preserve the legitimate functionality of the third-party scripts. In
practice, the attackers may obfuscate the malicious code and per-
form the behavior occasionally to prevent inspections, which makes
detection and defense even harder.

2.1.2 Threat Model. In our research, we assume an over-privileged
third-party script developer as the attacker who aims to exfiltrate
sensitive information and/or modify the content in a client-side
web application. In other words, the attacker aims to compromise
the confidentiality and/or integrity of a target client-side web appli-
cation. Some traditional code injection attacks, e.g., XSS, can largely
be mitigated by defense mechanisms like CSP, which we assume
have been correctly implemented and deployed. Thus, we do not
consider code injection attacks. Instead, we assume the attacker’s
scripts are included, either directly or indirectly, by the target web-
site. The attacker might act as a benign tracking service provider
but exfiltrate ungranted sensitive information on the website, which
is difficult to inspect. He might also hack the server of a content
provider included by the target website and inject malicious code
into the content provider’s script. Consequently, he can gain direct
access to the data of interest by abusing the full privilege in the
target website frame. Enforcing CSP is not sufficient for defend-
ing against such attacks. We also assume that attackers would not
attempt to steal sensitive data through any unknown side channel.

2.2 Existing Solutions

The root cause of the above privilege abuse problems is the lack of
privilege restriction on third-party scripts. The security commu-
nity has proposed many approaches to limiting third-party scripts’
privilege. However, while these techniques offer a certain level
of restriction, they do not make proper trade-offs between secu-
rity, compatibility, performance, and usability, and thus are not
adoptable in practice [24].

JavaScript Restriction. Many prior works [4, 11, 22, 26-28] try to
confine JavaScript in an isolated environment to restrict their func-
tionality in different ways. The scripts are isolated from the data,
including the one that is necessary to their legitimate functionalities,
to prevent direct manipulation, which can incur compatibility issues.
Some other works restrict the untrusted scripts by statically rewrit-
ing or wrapping third-party JavaScript code [1, 2, 17, 18, 20, 29].
They generally restrict some features of JavaScript code to prevent
certain malicious operations from untrusted third-party scripts.
Still, they do not limit access to sensitive web content and cannot
solve the privilege abuse problem fundamentally. Further, code
rewriting can break legitimate functionalities and does not apply to
many scripts that are dynamically included, and thus, it can hardly
be deployed.

Information Flow Control. Many other mechanisms use infor-
mation flow control (IFC) [6, 10, 12, 13, 21, 25] to prevent data ex-
filtration in a website. Although these methods can defend against
data exfiltration, most of them cannot provide integrity protec-
tion to web applications. Moreover, since IFC techniques need to
track the complete data flow of each piece of sensitive data, they
inevitably introduce high runtime overhead (ranging from 50% to
250%), and thus have poor usability for the end users.

https://attack.com

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Script Monitoring. A prior work, ScriptInspector [33], logs script
operations and defines policies for specifying what resources can
be accessed. It uses an offline analysis method and does not enforce
any restriction to scripts at runtime. In fact, the security policies
the authors design cannot be widely utilized due to two critical lim-
itations. First, their policy is designed for individual scripts, which
means web developers need to specify security policies for every
third-party script that might be included. Due to the large number
of third-party scripts and the dynamic inclusion of different scripts,
it is impractical to write a complete policy for a real-world web-
site. Second, this design would introduce high runtime overhead,
which cannot be simply optimized and has been clearly discussed
by themselves. To enforce the policies, they need to record every
access and traverse the resources defined in the policy to determine
whether the access should be allowed. In brief, this design lacks
good usability and runtime performance.

In summary, there is a need for an effective security mechanism
to restrict JavaScript privilege at fine granularity and protect
both the confidentiality and integrity of the sensitive content in
web applications. It also should preserve the compatibility and
not introduce high performance overhead.

2.3 Research Objectives and Challenges

2.3.1 Research Objectives. As discussed above, none of the existing
techniques can well address the third-party privilege abuse issue
that compromises client-side content confidentiality and integrity.
To fundamentally solve the JavaScript privilege abuse problem,
a desired solution is to define and enforce a data-centric permis-
sion policy restricting access to individual elements. Our research
objective is to develop a practical, fine-grained, and data-centric
mechanism to protect both the integrity and the confidentiality of
important client-side web content. We aim to provide access control
at the object level in the browser to mitigate the third-party privi-
lege abuse issues caused by the browsers’ current all-or-nothing
permission model.

2.3.2 Research Challenges. We meet the following research chal-
lenges in achieving our objectives.

Effectiveness. The protection mechanism needs to effectively
detect and deny all unauthorized content access by JavaScript. In
other words, it should ensure complete mediation and cannot be
bypassed. This is difficult due to the various DOM operation APIs
and the dynamic features in JavaScript. For example, to read a
user’s name presented in an HTML element, a third-party script
can invoke APIs like Element . innerHTML and Node . textContent on
the element or any of its ancestor elements. It can also dynamically
inject inline anonymous JavaScript code to bypass defense. To
provide access control to the website contents, we need to cover the
DOM APIs of all HTML elements to ensure complete mediation and
consider all dynamic JavaScript inclusion methods when attributing
access to the scripts.

Usability. The protection mechanism should have good usability
so that it can be largely deployed in browsers and on real-world
websites to offer protection. This requires it to work well with a
large variety of applications that are developed using many different
programming languages, development frameworks, and technolo-
gies and are in different levels of complexity. Furthermore, as a

2848

Zilun Wang, Wei Meng, and Michael R. Lyu

new protection mechanism in the browser, it should not break the
existing browser features and the existing security mechanisms.

Performance. The protection mechanism should not negatively
affect the performance of the billions of websites on the Internet,
as the performance is critical to their service quality and income.
It should incur a runtime overhead to a level that is mostly un-
noticeable for daily uses. Otherwise, the developers might not
choose to use the mechanism at all. Performance overhead is
also a concern of browser vendors. Indeed, many security mech-
anisms are not used mainly because of their high performance
overhead [6, 10, 12, 13, 21, 25].

3 CONTENT PROTECTION POLICY

In this section, we present our solution, Content Protection Policy
(CPP), to address the privilege abuse problems. CPP is a new data-
centric web security mechanism that restricts third-party scripts’
privilege in the browser. The key advantage of CPP is that it pre-
serves the functionality of the third-party scripts in the whole
context. We noticed that the root cause of compatibility issues in
existing techniques (§2.2) is that they try to solve the privilege abuse
problems from a JavaScript perspective by confining some features
or APIs. In our threat model, the essence of scripts’ privilege is
their access right to first-party resources. CPP avoids compatibility
issues by providing protection to individual resources. This data-
centric design lets developers focus on specifying which elements
are sensitive without concern about the detailed behaviors of each
third-party script. Moreover, CPP is designed as a flexible policy to
provide object-level protection.

In the following, we introduce the policy syntax (§3.1), then
describe our design of CPP in detail (§3.2).

3.1 Syntax

In our design, a CPP rule defines the resource of protection, principal
that access the resources, and the access right of the principals. To
provide good usability for web developers, CPP uses a syntax similar
to CSS, which is already familiar to developers. The grammar of
CPP is presented in the following.

= < Resource >* < Declaration >*
< NodeSelector > | < JSAPI >

< Principal >* [< AccessRight >*]

< PolicyRule >

< Resource >

< Declaration >

< Principal >

< URI > | < Origin > | < Domain >
“R* | “W” | “None”

< AccessRight >

We introduce the three components of a CPP rule — resource,
principal, and access right — as follows.

Resource. A web page consists of various resources in terms of
sensitivity, e.g., a password input field or a sensitive JavaScript API
As we discussed in §2.1, existing mechanisms allow third-party
scripts to either access all resources or none at all, resulting in
overly coarse-grained control. On the contrary, CPP allows web
developers to define flexible access control rules for specific re-
source, which can be either a DOM node or a JavaScript API. The
syntax of NodeSelector is the same as the CSS selector. That is,
the developers can simply use id, class, or other CSS selectors to
specify the content they want to protect, which provides flexible

Fine-Grained Data-Centric Content Protection Policy for Web Applications

protection for the HTML elements for the developers. For instance,
they can use input to strictly protect all input elements or use
input[type="password"] to protect password fields. In addition, re-
source can be JSAPI to restrict the invocation of sensitive JavaScript
APIs, which is denoted by using @Api followed by the API name.

Principal. The principal in a CPP rule defines the third-party
scripts to which the rule applies. It refers to the source of
the JavaScript code, such as the URI, origin, or domain, from
which the scripts are loaded. The principal can also accept
wildcards to match multiple scripts. For instance, the princi-
pal matching <script src="https://www.a.com/s.js"> could be
https://www.a.com/s.js, https://*.a.com/ or www.a.com. Third-party
scripts that match the principal are granted access to the correspond-
ing resource. On the other hand, first-party scripts have full access
rights to the resource, regardless of the principal. In our design, user
scripts, such as browser plug-ins and extensions, will be treated as
first-party scripts and have full rights. Although these scripts might
also abuse their privilege, it is out of our research scope (discussed
in §7).

Access Right. The access right in a policy rule specifies the type of
access a principal is authorized to have to a resource. A developer
can explicitly allow a principal to read or/and write the resource.
By default, principals without explicitly granted access rights are
prohibited from accessing the resource i.e., with access right of
"None", to protect its confidentiality and integrity. Specifically, an
API policy (i.e., a policy with a JSAPI resource) does not require the
specification of access right because such a policy is used to restrict
API invocation instead of access control.

We use an example to illustrate the syntax of CPP better. The
highlighted code in Listing 3 is two CPP rules defined in an
HTML page in an internal policy'. The first rule protects the ele-
ments with the "auth” class name. It denies any third-party script
access except for those from "*.example.com". The second rule
means only the third-party scripts from "*.example.com" can invoke
document .write() APL The syntax of CPP is easy to understand
and use, which does not introduce much learning cost to the web
developers.

3.2 Policy Design

In our design, CPP policies are enforced on the client side to control
the access of third-party scripts. To provide reliable security protec-
tion, CPP follows the fail-safe default and least privilege security
principles. In other words, the mechanism allows only data accesses
that are permitted based on security policies specified by the site
administrator. Specifically, we define a default policy, which has
an empty or "default” principal and a default ("None") access right.
All accesses without explicit permission should be denied. Such a
fail-safe default design choice effectively blocks any unauthorized
access to resources, thus restricting the privileges of third-party
scripts to their necessary minimum (least privilege).

Moreover, we also consider policy inheritance in our design. It
is natural that the protection to a container tag should be applied
to the whole subtree under it. That is, all the child nodes should be
protected at least at the same level as the parent node. Therefore, if
a DOM object has child objects, i.e., it is the root node of a DOM

1We will explain the three types of policies using this example in §3.2.

2849

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

1 /* https://example.com */

2 <html >

3 <head>

4 /* External Policy */

5 <cpp src= />

6

7 /* Internal Policy */

8 <cpp>

9 .auth {

10

11 }

12 @Api document.write() {
13

14 }

15 </cpp>

16

17 </head>

18 <body>

19 /* Inline Policy */
20 Username: <input type= class= policy=

/>
21 Password: <input type= class= policy=
/>

22 </body>
23 </html>

Listing 3: Policy Declaration Examples.

sub-tree, and its policy rules should be automatically inherited by
child objects that do not have one. Web developers need to define
only one policy at the root node and can apply it to all objects in
the tree.

There are limited contents in web applications that are of great
importance to end users or web administrators. Except for these
contents, most of the other contents might be accessed by many
third-party scripts for a legitimate purpose (e.g., analytics and ad-
vertisement) and do not need strict protection. Therefore, if a DOM
object does not have a specified or inherited policy, CPP treats it
as insensitive and grants full access privilege ("RW") to all scripts.
This design is backward-compatible and eliminates the work of
writing CPP policies for resources that do not need protection.

CPP supports three different types of policies: inline, internal,
and external. The inline policies can be defined via the new policy
HTML element attribute of the corresponding elements. They are
fairly simple and can be easily adopted on small websites. Inline
policies might not be very suitable for complex web applications,
whose web pages contain thousands of elements that are dynami-
cally constructed from multiple templates and modules. Therefore,
CPP also supports internal policies. Web developers can define poli-
cies using a new <cpp> element under the <head> element. CPP also
supports external policies, which can be reused across multiple web
pages and even included remotely via URL. Listing 3 shows the
examples of defining policies in three ways. In the following, we
mainly take the internal policy as an example for discussion unless
otherwise stated.

4 DOMINATOR

In this section, we introduce DOMINATOR, which is a modified
browser supporting the CPP mechanism, along with a policy gener-
ator extension helping developers write basic policies. In the follow-
ing, we first present an overview of DOMINATOR (§4.1). Then, we
describe how DOMINATOR supports (§4.2) and enforces (§4.3) the
new security mechanism CPP. Finally, we describe how the policy
generator extension helps web developers automatically generate
preliminary policies for their sites (§4.4).

CCS *23, November 26-30, 2023, Copenhagen, Denmark

[AccessCo'l\trol \) \}/\\

2B |

third-party first-party

third-party

|
|
|
:
:
Iy
|
|
|
|

Figure 1: An architecture overview of DOMINATOR.

4.1 Overview

We implement DOMINATOR in the browser to support and enforce
CPP at runtime. We opt for implementation in the browser because
the browser can mediate all JavaScript accesses to the DOM, which
is analogous to the operating system kernel that can mediate all sys-
tem calls. Although it is technically possible to enforce the policies
via other methods e.g., browser extensions or JavaScript rewriting,
they have non-negligible limitations. Browser extensions cannot
easily mediate other scripts’ access and can be easily circumvented.
JavaScript rewriting requires web developers to rewrite every third-
party script that might be included, which is impractical.

The architecture of DOMINATOR is depicted in Figure 1.
DOMINATOR is composed of two parts: a modified web browser
that integrates the CPP mechanism and an extension that helps web
developers write policy rules. The browser can parse policy rules in
an HTML document, associate those rules with protected objects,
and enforce access control at runtime. To enforce access control, it
mediates all scripts’ DOM accesses and denies unauthorized content
accesses and API calls according to the specified policy. Therefore,
only the third-party scripts with explicitly granted permissions can
access the protected resources, which effectively protect sensitive
information. Meanwhile, unprotected resources can be normally
accessed by all the included third-party scripts. Web developers
can use the extension to write policy rules, which can significantly
reduce the potential human effort. They can use the labeling tool to
label the elements they want to protect. With the labeled elements,
the policy generator utilizes the collected access logs to automati-
cally generate and update a basic policy. Specifically, when updating
the policy, it performs automated UI testing to increase JavaScript
code coverage, which can effectively improve the compatibility of
the finally generated policy.

4.2 Policy Support in DOMINATOR

In DOMINATOR, we integrate the CPP mechanism and support
the policy features discussed in §3. When visiting a website with
policies defined, DOMINATOR can correctly parse the policy rules
and apply them to the specified resources. Specifically, when
DOMINATOR parses a document, the pre-defined policies (includ-
ing inline, internal, and external policies) are also parsed and then
applied. All the policy rules applied to the same DOM object are
managed in the access control list data structure, PolicyData. A Pol-
icyData is a list of access control entries associated with the DOM
object and its child objects (if any). Each entry defines the access
right of a principal on the associated object. For the policy rule with

2850

Zilun Wang, Wei Meng, and Michael R. Lyu

a "default" principal or no specified principal, the corresponding
DOM object is applied with a default entry. To ensure a fail-safe
default and least privilege feature, we specify the default entry with
the default access permission ("None") for all third-party scripts.
Whereas for an API policy, DOMINATOR applies it in the whole con-
text instead of some specific DOM object since it restricts JavaScript
methods instead of protecting DOM objects. DOMINATOR stores the
method name and the principal defined in the policy and associates
it with the HTML Document. Since it is infeasible to support restric-
tion to all JavaScript APIs for API policy due to limited manpower,
DOMINATOR supports some representative sensitive interfaces, e.g.,
document.write() and eval().

Particularly, CPP policies are designed to be tamper-resistant
in DOMINATOR. As a security mechanism protecting the integrity
and confidentiality of sensitive resources, CPP should secure itself
against potential tampering to provide reliable protection. There-
fore, DOMINATOR has some designs to defend against potential
attacks on our security mechanism. First, the PolicyData is imple-
mented internally in the browser and not exposed to JavaScript
API. So, it is impossible to manipulate the scripts’ privilege on a
DOM object by directly modifying its PolicyData via JavaScript API
Second, the pre-defined policy rules in a webpage are immutable
to JavaScript. That is, attackers cannot modify the policy rules in
any potential ways through JavaScript. Third, DOMINATOR only
accepts CPP policies pre-defined in the HTML document. In other
words, any other dynamically generated or injected policies would
not be parsed and applied. These designs greatly promise the se-
curity of the CPP mechanism in practice and minimize its attack
surface.

4.3 Policy Enforcement in DOMINATOR

To enforce the CPP policy when a specific script initiates a DOM
access, in the corresponding DOM interface code, we check the
policies of the target objects and determine if this operation by
this script should be granted or not. Given JavaScript’s dynamic
nature and the complexity of web applications, enforcing the policy
effectively and efficiently is not trivial. To achieve this, DOMINATOR
needs to 1) accurately attribute access to the correct script and
identify the script’s principal and 2) completely mediate DOM APIs
to monitor and control JavaScript access to the protected resources.
The challenges of the two requirements are well discussed in §2.3.2.
The following describes how our design in DOMINATOR addresses
these challenges.

4.3.1 ldentifying JavaScript Principal. To enforce policies and pro-
vide access control, DOMINATOR needs to identify the JavaScript
principal of an access attempt. When a JavaScript interface requests
access to a DOM object, DOMINATOR locates the script that initiates
the access attempt and identifies its principal.

When attributing an access operation, it is not correct to straight-
forwardly trace the direct invocation of a function. Some scripts
may make an indirect DOM access through invoking functions in
other scripts, e.g., the jQuery library can be invoked by another
script to make the access. Following prior work [31], DOMINATOR
inspects the JavaScript call stack to identify the bottom script when
access is invoked. This bottom script is regarded as the script that
initiates the access. DOMINATOR can potentially identify all the

Fine-Grained Data-Centric Content Protection Policy for Web Applications

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Rendering Engine

CheckPolicy

GetElement

[Principal | AccessType]

/

1st

attack.com/B.js

[B.js] bar()

3rd

2|

Target
PolicyData

Target: passwd

Principal: attack.com/B.js 4
Access Type: Read

Return: True / False

JS Code : JS Engine :
I exgmple.com/A.js : : .
function foo() { : JS Call Stack : GetValueAttribute
&asswd = : :
getElementByld(“password”); 1 1
return passwd.value; ! : ___________
} : 1 : CPPCheckAccess :
1 1
/I attack.com/B.js 1 1 : GetPrincipal (§4.3.1) I
function bar() { : : | |
| |
\ 1 . !
data = foo(); . . : CheckPolicy (§4.3.2) :
' | [Ajs] foo() < [
1 [
True |...
} : [B.jS] bar() : rue 1 \ False
bar(); : : Return: Value / Null

Figure 2: An example of policy enforcement.

current scripts on the call stack as the principal. However, this
might greatly complicate the access control decision process, espe-
cially when scripts with conflicting permissions are involved—to
ensure security, access should be granted when all scripts on the
stack have access permission. Such a strict access model might
potentially break a lot of real websites. We leave it to future work
to study the feasibility of such a design.

When identifying its principal, we need to consider several situ-
ations. External scripts’ principals can be simply identified via their
source attribute. For inline scripts, it is difficult to identify their
principals because they are anonymous to the browsers. We cannot
simply regard them as first-party scripts because they might be
dynamically injected by other third parties. Therefore, we monitor
dynamic script inclusion for determining whether an inline script
is dynamically injected and assigning it the proper principal (i.e.,
the same as its including/parent script). There are multiple ways
to include scripts dynamically: HTML script element, JavaScript
URLSs, JavaScript event listeners, and eval Q). Prior works like JSIso-
late [31] try to monitor the dynamically included scripts, but they
are incomplete in covering all four methods. For the sake of com-
pleteness, we make some improvements based on the prior works
and monitor all four dynamic inclusion methods. The included
JavaScript code through eval) can be correctly identified by sim-
ply checking the call stack to find its caller (i.e., the bottom script
as we discussed above). For the other three methods, we identify
and assign the including script’s principal to the included inline
script by monitoring the script inclusion process in the browser.
The details of the implementation are introduced in §5.

Figure 2 shows an example to illustrate how DOMINATOR en-
forces the CPP policies in the browser. DOMINATOR identifies the
script attack.com/B.js as the principal of the script initiating the
access attempt to the #password element. It then checks the target el-
ement’s policy to decide if this script is permitted to make the access.
If B.js dynamically injects additional inline scripts, DOMINATOR
would assign their parent script’s principal (i.e., B.js) to them.

4.3.2 Mediating DOM Access. DOMINATOR mediates JavaScript
DOM interfaces for making access control decisions. Since
JavaScript can access objects not only directly via DOM interfaces
but also indirectly through some interfaces of their ancestor nodes,

2851

we consider both direct and indirect accesses. It should be noted
that sensitive information may also be exfiltrated to a script even if
it does not access the DOM. For example, the script with granted
permissions can intentionally store sensitive data in a variable in
the global scope to allow any other script to access it. This situation
is out of our research scope. It could be addressed by IFC techniques,
which provide complete information flow tracking in the JavaScript
code. However, such a solution can significantly degrade the per-
formance of the client-side code. JavaScript isolation mechanisms
like JSIsolate [31] can also be deployed to block indirect sensitive
data access via trusted global JavaScript objects. In the following,
we first discuss how DOMINATOR mediates the direct and indirect
access, and then introduce how DOMINATOR makes access control
decisions at runtime (the CheckPolicy function shown in Figure 2).

Direct Access. There are hundreds of interfaces (including meth-
ods and properties) available in DOM. Intuitively, it is infeasible
to cover all of them with limited effort. According to the HTML
DOM API standard, despite most HTML objects having numerous
properties, most do not have individual methods. We mediate all
the methods that may read or write the contents of objects but filter
out the irrelevant methods, e.g., Node.getRootNode (). Moreover,
the property interfaces are auto-generated by the code generator
in the browser so that we can simply mediate all of them by simply
modifying the templates. The details of the implementation are in-
troduced in §5. Our mediation covers the most common operations
in web applications, including but not limited to node insertion and
removal, setting or getting attributes, and event handler registra-
tion, etc.

Indirect Access. Consider such an HTML code snippet:
<div>secret</div>, where the is protected
from a third-party script, but the <div> is not. In this case, the third-
party script can simply get the secret via getInnerHTML() interface
of the <div> since it has full privilege to the unprotected node. Sim-
ilar interfaces also include Node.textContent, Element.innerText,
etc. When such properties or methods are invoked, DOMINATOR
also checks the accessing script’s permission on the accessed object
and its child objects. If the principal is disallowed to access any child,
DOMIinAaTOR handles the access differently according to the access
type. A Write operation would be entirely disallowed, and none

attack.com/B.js

CCS *23, November 26-30, 2023, Copenhagen, Denmark

of the children’s contents would be overwritten. While for a Read
operation, the protected objects would be ignored, and only the
contents of the other elements would be returned. This design takes
the structure feature of web contents into consideration and is vital
to ensure that the CPP mechanism is effective and non-bypassable.

Access Control Decision. When a script tries to access an
object (either directly or indirectly) through a mediated inter-
face, DOMINATOR checks its authorized permission on the object.
DOMIiINATOR immediately grants access if the object is not asso-
ciated with any PolicyData or the accessing script is first-party.
Otherwise, DOMINATOR searches the PolicyData to find the entry
whose principal best matches the accessing script ("default” matches
all third-party scripts). DOMINATOR compares the requested access
(Read and/or Write) of the invoked interface with the access right
in the policy rule to determine if it should be allowed. If access
should be denied, DOMINATOR returns Null for a Read operation
returns and ignores a Write operation. In our design, the event
registration interface requires both Read and Write permission,
which may be counter-intuitive. This is because such an operation
not only modifies the event property of the object but also might
further obtain information through a registered event. The attack
in Listing 1 is an example.

4.4 Policy Generation

The effectiveness of CPP on protecting web applications depends on
the security policies defined for the applications. However, writing
a policy at the object level may be non-trivial, especially for devel-
opers who are not security experts. On the one hand, they need to
identify the sensitive elements and write the appropriate resource
for them; On the other hand, they need to find all the third-party
script access to the protected resources to write the policy rules.
Considering that a website may have numerous contents and many
scripts, it may be tedious to write a policy manually. Therefore, it
is important to limit the developer’s efforts in order to deploy a
new security mechanism in practice widely. Thus, we develop an
extension in DOMINATOR to help web developers generate a basic
policy for their applications.

To create policy rules for a website, developers first need to spec-
ify the elements that need to be protected. However, finding these
sensitive elements through the webpage source code can be chal-
lenging. The policy generator provides a labeling tool that reduces
the manual effort in identifying sensitive elements. The labeling
tool is a browser extension that enables developers to simply hover
their mouse over an element to label it as sensitive. The tool then
computes an appropriate and unique selector for each labeled ele-
ment. In addition, the extension accepts pre-defined rules to label
corresponding elements automatically. For instance, developers can
set the rule input to label and highlight all input elements. The
labeled elements are then highlighted, allowing developers to make
further adjustments. Once labeling is complete, the extension logs
all generated selectors as the sensitive resource list, which is used
for policy generation.

Given the sensitive resource list, the policy generator can auto-
matically generate and update a basic policy. The policy generation
starts with an initial policy that defines strict policy rules to deny
all access to protected resources. With the initial policy applied,

2852

Zilun Wang, Wei Meng, and Michael R. Lyu

JavaScript Engine | varid = div.id ‘

Rendering Engine void V8Element::IdAttributeGetCallback() {

Element *element = getElement();
if ({CPPCheckAccess(element, READ)) {
return; // Access Denied

Access Control Code

}
String value = element->getldAttribute();
V8SetReturnValue(value);

JavaScript Binding Layer | }

DOM Layer

3
String Element::getldAttribute() { return id_; } ‘

Figure 3: Implementation of DOM access mediation.

DOMINATOR can monitor all the accesses to the protected elements.
For each protected resource, the policy generator updates policy
rules with proper principal and access rights according to the col-
lected access traces. Specifically, to trigger more JavaScript code, we
use automated random UI testing to simulate user interactions so
that we can observe more potential JavaScript accesses. Note that
the generated policy is not the final version since there are some
limitations to this policy generation process. For example, some
third-party script code (e.g. CAPTCHA verification) may be hard
to be triggered through random UI testing. In addition, without
internal knowledge about one specific website, we need to make
an assumption that all the accesses monitored during the policy
generation process are benign. However, some of the third-party
script access can be unnecessary and should be denied, which is
non-trivial to determine automatically. Therefore, web developers
can further adjust the basic policies generated by our tool to disal-
low or allow certain scripts to access specific resources with very
limited human efforts.

5 IMPLEMENTATION

We implemented a prototype of DOMINATOR in the Chromium
browser of version 88.0.4303.1 using around 1700 lines of code. The
extension consists of a labeling tool and a policy generator, which
are implemented in JavaScript and Python, respectively.

5.1 Policy Support and Enforcement

DOMINATOR is primarily implemented in the browser rendering
engine. To support internal CPP policies, we added <cpp> as a new
HTML element in the Blink rendering engine. We disallow any
modification to the policy to ensure the integrity of the mecha-
nism fundamentally. DOMINATOR matches the policy rules with
the corresponding elements as how CSS rules are matched since
CPP uses a similar selector. This process does not increase much
overhead as it shares some underlying interfaces with CSS. The
policy rules are stored as PolicyData in the matched objects and
their child objects (if any). The PolicyData is also immutable—it
cannot be modified by any JavaScript code—to prevent any script
from bypassing the access control. Note that some protected ele-
ments might not be parsed yet by the HTML parser when the policy
is being analyzed. Therefore, DOMINATOR also performs a policy
match for each newly added element.

To correctly identify the principal of dynamically included
scripts, DOMINATOR monitors the script inclusion process via meth-
ods @ HTML script element, @ JavaScript URLs, and @) JavaScript

Fine-Grained Data-Centric Content Protection Policy for Web Applications

event listeners. Since a script is not necessarily executed imme-
diately upon inclusion (especially for @ and), DOMINATOR
needs to record and assign the initiator’s principal to the included
script. DOMINATOR monitors the script inclusion by hooking the
browser’s internal functions. There are many JavaScript APIs that
can be used for each inclusion method, and it is tedious to hook
them one by one. For example, a script can dynamically inject script
through @ by calling document.write(<script>...<script/>)
or document.createElement("script"), or setting outerHTML or
innerHTML attribute of an existing element. We observe that in
the renderer engine, all these APIs need to invoke the script object
constructor. Therefore, we simply hook the constructor function
to cover all possible ways to include scripts through @. Similarly,
we hook the attribute parser function of some tags (as summarized
in [31]) for @ and the event handler object constructor function
for 3. Such a design requires less browser code modification than
JSIsolate, which hooks all possible APIs. When the HTML script
element (D), JavaScript URL in href or src attribute (), and event
handler (®) are created or modified, DOMiNATOR checks the call
stack and records the initiator (if any). When the script is about to
be executed, the recorded initiator is assigned as the principal of the
script so that DOMINATOR can effectively track the dynamic script
inclusion and correctly identify the actual principal. Compared to
prior works, DOMINATOR covers all the methods and applies a more
concise method, which only modifies critical functions instead of
all API entries.

In our prototype, we implemented the policy enforcement code
in the JavaScript-DOM bindings layer to mediate JavaScript access
to the DOM objects. As shown in Figure 3, we mediate JavaScript
interfaces and perform permission checks in the DOM-JS Bind-
ing layer. We need to add such a policy enforcement code to all
the APIs we covered to provide a complete mediation. Chromium
uses a code generator to generate the C++ implementation accord-
ing to the IDL interfaces and corresponding templates. Therefore,
we can directly insert code into the templates instead of chang-
ing the interfaces one by one. When mediating interfaces, we also
need to decide their access type, e.g., READ in the access control
code. For the individual methods, we defined their access type
through the IDL interfaces so that we could modify the code gen-
erator and generate the methods of Read and/or Write operation,
respectively. The property interfaces are implemented with two
internal functions, AttributeGetCallback() (as shown in Figure 3)
and AttributeSetCallback(), which use Read and Write operation,
respectively. Therefore, we can simply modify these two templates
to decide the access type for the interfaces. We specially mark that
event registration-related APIs require both Read and Write per-
missions as discussed in §4.3. To mediate the indirect access, we
manually added access control codes in the internal implementation
of the APIs providing indirect access in the Blink rendering engine.

5.2 Policy Generation

We implemented the labeling tool and policy generator to help
reduce human efforts in writing policy rules for web developers.
The labeling tool is a browser extension implemented based on
Aardvark2. 2 With the extension invoked, developers can hover

Zhttps://chrome.google.com/webstore/detail/aardvark?2

2853

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

over the elements and simply label them as sensitive. The extension
can generate a sensitive resource list by computing the unique CSS
selectors for the labeled elements. Given the sensitive resource list,
the policy generator automatically drives the DOMINATOR to visit
the website and gradually updates the policy based on the collected
violation traces. In our settings, it generates policy rules at the
domain-level granularity, which can be easily configured at other
levels, such as subdomain or URL. The policy generator uses the
gremlins.js 3 library to perform the random UI testing. In addition,
considering some Ul actions may cause the browser to navigate to
a different page, we implemented an interface in DOMINATOR to
disable the navigation during policy generation. We use a man-in-
the-middle proxy * during policy generation to inject the generated
basic policy rules into the websites so that we can enforce the policy
and collect violation logs. It should be noted that, in practice, web
developers do not need to use such a proxy. They can directly insert
policy into the HTML source as an additional step in their HTML
code generation workflow, which can be easily supported in many
common web programming frameworks.

6 EVALUATION

We comprehensively evaluate the effectiveness, performance, and
compatibility of the Content Protection Policy on protecting sensi-
tive client-side data from over-privileged third-party scripts. We
seek to answer the following three research questions: 1) whether
CPP can effectively protect sensitive client-side resources from
confidentiality and integrity attacks by over-privileged third-party
scripts; 2) what the performance overhead of enforcing CPP on
real-world websites is with our prototype; 3) how good the usabil-
ity of the CPP mechanism is, i.e., whether it causes compatibility
issues, and how much effort would be required for maintaining
CPP policies.

6.1 Experiment Setup

We conduct our experiments on a desktop computer running De-
bian 10 with a four-core Intel Xeon W-2223 processor and 32GB
memory. We use a vanilla Chromium browser in the same version
as our prototype as the baseline for comparison. We select the most
popular websites from the Tranco list [15] > for our performance
and usability evaluation. We exclude the invalid domains and those
that provide no content for users (e.g., gltd-servers.net) from our
evaluation, and we finally get the top 50 reachable websites with
the lowest one ranked at 74. We evaluate using only 50 popular web-
sites as they are representative of evaluating a new browser security
mechanism: they are very complex and span across most service
categories if not all. Since most sensitive information only appears
after logging in, we manually registered accounts and logged in on
the websites that support user accounts.

6.2 Policy Generation

We generate policies for the 50 websites and inject them as internal
policies into the websites through a man-in-the-middle proxy in
the experiments. When labeling sensitive elements, we use the

Shttps://github.com/marmelab/gremlins.js
“https://mitmproxy.org/
5 Available at https://tranco-list.eu/list/Q9PN4.

https://chrome.google.com/webstore/detail/aardvark2
gltd-servers.net
https://github.com/marmelab/gremlins.js
https://mitmproxy.org/
https://tranco-list.eu/list/Q9PN4.

CCS *23, November 26-30, 2023, Copenhagen, Denmark

following strategies since it is hard to identify the sensitive elements
without sufficient knowledge of the website: 1) all <input> elements
as users might provide personal data via them; 2) the elements
storing apparent personal information (e.g., name, email address).
Using the strategies, we cannot identify sensitive elements on four
websites and do not generate policies for them, which include
whatsapp.com, t.co, etc. Nevertheless, CPP is able to protect any
content from unauthorized access on these websites if a policy is
specified by the developers. We perform five iterations of policy
updates to get a final policy.

We could generate a final policy for 91.30 % (42/46) of the web-
sites within three iterations, i.e., after three rounds, we did not
observe sensitive element accesses made by new scripts. All web-
sites reach a stable policy within four iterations except for zoom.us,
of which the policy was updated in the fifth round due to the ac-
cesses by https://www.google-analytics.com. The policies for all the
websites have less than 5 policy rules. We do not observe a strong
correlation between the number of policy rules and the complexity
of the websites. The reason might be that the number of identi-
fied sensitive elements across the websites does not differ much.
However, it is possible that the policy of some websites might have
many more rules if the developers specify a lot of sensitive content
for protection. The results show that on most websites, the devel-
opers can use the automated policy generator to easily generate
the policy with limited effort. Again, in practice, the developers can
also flexibly specify the policy rules according to their preferences
and security needs, e.g., they can label sensitive elements based on
their criteria and directly specify the trusted third-party scripts.

6.3 Effectiveness

We design several experiments to evaluate the effectiveness of
DOMINATOR in providing integrity and confidentiality protection
to web contents from over-privileged third-party scripts on websites
deployed locally. We also evaluate the effectiveness on 20 real-world
websites previously reported with data exfiltration [23].

Confidentiality Protection. The confidentiality attack discussed
in §2.1 is possible because third-party scripts can arbitrarily access
any DOM elements in the same frame, including the sensitive ones
that they do not require for providing their services. To mitigate
such confidentiality attacks, we can label elements of auth class
as sensitive and define a default policy for them, like the first rule
shown in Listing 4. The developer can additionally grant access to
some trusted third-party scripts (e.g., the ones hosted on another
domain of the same company) using a policy rule like the second
one in Listing 4. Although we use a resource " .auth" for both rules,
the developers can flexibly adjust the protected resources according
to their security needs, e.g., input [type="password"] or input.

To evaluate the effectiveness of the above CPP rules on pre-
venting unauthorized scripts from reading the protected element
content, we implemented two attacks. In the first attack, a third-
party script attempts to directly read the "value" attribute of the
protected input field. In the second attack, a third-party script at-
tempts to register an event listener that listens for the "keypress"
event on the protected input field to record what the user types
in that field. By deploying and enforcing the above policy with
DOMINATOR, none of the attacks can be successfully launched.

2854

Zilun Wang, Wei Meng, and Michael R. Lyu

1 <cpp>
2 .auth {
3 s // Rule #1
4 , // Rule #2
5 }
6 </cpp>

Listing 4: CPP policy example for password protection.
1 <cpp>
2 #target {
3 , // Rule #1
4 s // Rule #2
5 }
6 a {
7 s // Rule #3
8 }
9 </cpp>

Listing 5: CPP policy example to mitigate click interceptions.

As discussed in §4.3.2, DOMINATOR provides protection from
only accesses to the DOM content. If the sensitive content is stored
in a global JavaScript object by an authorized script, our design
does not prevent third-party scripts from accessing this JavaScript
object, and it is out of our research scope. This can be solved by
either dynamic taint tracking [13] or script isolation [31].

Integrity Protection. Third-party scripts can abuse their privi-
lege to arbitrarily modify the client-side contents, including key
elements like the sign-in button or payment button. For instance,
they can modify existing hyperlinks to perform click interception
attacks Listing 2. To mitigate the attack, developers can define CPP
policy for the key objects to disallow access from third-party scripts,
e.g., the first rule in Listing 5. They can further relax restrictions by
granting write permission to trusted scripts, e.g., the second rule in
Listing 5. They can also tighten restrictions by extending protection
to all the anchor elements in the website as the third rule.

To evaluate the effectiveness of CPP rules for integrity protection,
we implemented two special attacks. In the first attack, a third-party
script attempts to modify the "href" attribute of an <a> element,
which is under a protected <div> element. Although no policy rule
is explicitly defined for the enclosed <a> element, by our design, it
should inherit the rules from its ancestor (the <div> element) and
thus be protected. In the second attack, a third-party script attempts
to modify the hyperlink of a protected <a> element by overwriting
its parent element through the innerHTML API Unsurprisingly, both
attacks were successfully blocked in our experiment.

Circumvention of Protection. Although CPP is designed as
tamper-resistant, it is still necessary to validate if it is implemented
and deployed correctly. To test the completeness of the protection
enforced by DOMINATOR, we also implemented several other ways
to execute the malicious code. In the first way, a third-party script
inserts an inline script into the targeting frame and makes the sen-
sitive content access in the inline script. In the second way, a third-
party script encodes the sensitive content access code in a string and
invokes it through the eval() APL In the third way, a third-party
script registers an event listener on other unprotected elements and
makes the access in the corresponding callback event handler func-
tion. In the fourth way, a third-party script modifies the hyperlink
of an anchor element to a JavaScript URL, i.e., ’ javascript: ...’,
in which the injected code would be executed to make the access to

whatsapp.com
t.co
zoom.us
https://www.google-analytics.com

Fine-Grained Data-Centric Content Protection Policy for Web Applications

1.01 __ pominator with Policy _
0.8 DOMinator
w 0.64
)
0.44
0.24
7
0.01 ;
=15 -10 -5 0 5 10 15 20

Slowdown on average page loading time (%)
Figure 4: CDF of slowdown on average page loading time.

the sensitive elements. We believe that we have covered all the fea-
sible ways of JavaScript execution, as specified in the W3C HTML
specification . We found that none of the script execution attempts
was successful in reading or overwriting the content (including
attributes) of the protected objects.

Considering attackers may also attempt to change or add policy
rules to bypass the protection dynamically, we implemented three
attacks attempting to access the protected objects by changing the
policy rules. In the first attack, a third-party script attempts to re-
move all <cpp> elements from the DOM to remove all the protection
rules. In the second attack, a third-party script attempts to change
the permissions of the protected objects by modifying the policy
rules in an existing <cpp> element. In the third attack, a third-party
script inserts a <cpp> element with a policy rule of the protected
objects to grant additional access to the script. By deploying the
attacks, we validated that CPP rules cannot be dynamically updated
by JavaScript.

Our evaluation demonstrates that our prototype implementation
can correctly prevent circumvention of the protection using the
methods that we tested.

Effectiveness in Real-world Applications. We also evaluate
whether DOMINATOR is effective in defending against real-world
attacks. Since it is difficult to identify attacks on popular websites,
we select 20 real-world websites reported in a recent work [23].
It was found on these websites that email and password were ex-
filtrated by malicious scripts even if the users did not submit the
form. We consider the email and password fields as sensitive re-
sources and define a default policy for them, and then we visit
the websites and fill out the forms but without submission. We
analyzed the violation logs to investigate the suspicious behaviors
and gradually relaxed the policy to allow trustworthy scripts that
belong to the same entity as the first party. We found the scripts
accessing sensitive content were the same as reported in [23] on
two websites and were different on the other 13 websites. It should
be noted that in our experiment, we not only detected but also de-
nied suspicious access attempts from the third-party scripts, which
fundamentally block the attacks. This experiment also shows that
even though the third-party script privilege issues are reported,
neither the first nor third parties can fully address the problems,
which again proves the severity of the problem and the challenges
to address it. DOMINATOR offers an effective and reliable solution.

In summary, our CPP mechanism can effectively protect specified
client-side objects from confidentiality and integrity attacks by over-
privileged third-party scripts. Moreover, it cannot be circumvented

Shttps://html.spec.whatwg.org/multipage/

2855

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

1.0 powminator with Policy -
0.8 DOMinator
w 0.6
S
0.44
0.2
0.0 —/ : : : :
-10 -5 0 5 10

Increase of average memory consumption (%)
Figure 5: CDF of increase of average memory consumption.

by all the methods we covered. We also showed it can effectively
protect from known attacks in real-world applications.

6.4 Performance

We compare the performance of DOMINATOR with the vanilla
Chromium browser on loading the 50 popular websites. To au-
tomate this process, we use Selenium web driver to control the
two browsers. To comprehensively evaluate the performance of
DOMINATOR, we measure DOMINATOR with and without policy en-
forced and respectively compare the results to the vanilla browser’s.
As mentioned in §5, we use a man-in-the-middle proxy to inject
policies when measuring DOMiNATOR with policy. To make a fair
comparison, we also use a proxy but do not inject any policy into
the websites when measuring the vanilla browser and DOMINATOR
without policy.

We measure the average page loading time and peak memory use
of the two browsers for loading each website. We record the page
loading time based on the interface window.performance.timing.
It reports the time from getting the first HTTP response from the
server till the DOM loading is completed. During this process, the
website may still send out requests to load some dynamic content,
which means we cannot entirely eliminate the impact of network
fluctuation. Moreover, our proxy might increase the impact. There-
fore, we repeat the measurement for each website twenty times
to reduce the variation and get more reliable results. In addition,
we filtered out the outliers with a z-score greater than 3. Then,
we computed the average loading time and memory consumption
of each website visited via Vanilla, DOMINATOR, and DOMINATOR
with policy enforced, respectively.

The CDF figures of average increases in page loading time and
memory usage of the websites are shown in Figure 4 and Fig-
ure 5, respectively. The average slowdown of DOMINATOR and
DOMINATOR with policy is -0.71% and 1.53%. With policy enforced,
on 66% websites, the page loading time increased by no more than
5%; and only on one website (https://www.baidu.com) out of the
50 websites, the additional page loading time is over 20%, which
reaches 22.75%. With policy enforced, the average memory over-
head is 0.03%. For DOMINATOR without policy, the average memory
overhead is -0.78%. The slight negative overheads in the figures
were caused by measurement variance or noise, which was observed
even in 20 measurements.

In summary, the experiments show that DOMINATOR introduces
little runtime overhead to popular real-world websites.

https://html.spec.whatwg.org/multipage/
https://www.baidu.com

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Table 1: Policy similarity among sub-pages.

Zilun Wang, Wei Meng, and Michael R. Lyu

Table 2: Observed violations in one week.

Category #URLs # URLs with same policies Percentage (%) Policy Similarity
search 12 12 100 1.00
section 20 14 70 0.54

news 20 20 100 1.00
privacy and terms 4 4 100 1.00
miscellaneous 9 2 22.22 0.25

6.5 Usability

We evaluated the compatibility with policy enforced through both
automated and manual testing and measured the maintenance cost
when taking the various sub-pages and frequent updates in web
applications into consideration.

6.5.1 Compatibility. We investigate if the enforcement of CPP in
DOMinATOR would cause compatibility issues with real-world web-
sites, e.g., the websites might malfunction because of the privilege
limitation enforced by DOMINATOR. Specifically, we use two ap-
proaches to test compatibility. First, we use gremlins.js to perform
random UI testing to detect behavior differences. We perform three
rounds of random UI testing and configure a thirty-second testing
time for each visit. Second, we perform manual interaction with
the websites as normal users. We enlisted the participation of three
individuals with a solid academic background in computer science
to access the websites with the prepared user sessions. In both
settings, we apply almost the same operations using the vanilla
browser and DOMINATOR with the policies enforced. We record
the number of runtime exceptions in each visit and measure the
discrepancies. Since some Ul actions may cause the browser to nav-
igate to a different page, we disabled the navigation in our analysis
to ensure that the test is performed on the same page. We merged
and deduplicated three rounds of results in the two experiments,
respectively.

We inspected the collected runtime JavaScript exceptions in
random UI testing experiments and observed new ones on four
websites. However, they all occurred once in the three rounds of
testing. We repeated the experiments for another five rounds but did
not reproduce the new exceptions, which suggests these exceptions
cannot be stably reproduced. Since the new exceptions on the four
websites cannot be easily reproduced, we cannot determine the
reason. However, since the random UI testing simulates random
user actions in short-time intervals, these new exceptions are likely
due to a series of random operations triggering pre-existing design
issues on the web page (We need to note that we also observed
some exceptions that only occur in the vanilla browser but not
in DOMINATOR). For the manual testing, we did not observe new
exceptions. This suggests that enforcing CPP does not break the
normal operation of popular and complex real-world websites under
common interactions.

6.5.2 Policy Maintenance Cost. In our above experiments, we au-
tomatically generated policies for the main page of each website
with up to 5 rounds of updates, which requires not much effort
if such tests need to be conducted only once. However, different
pages of the same website could serve quite different content and
functionalities, so they require different policies. Furthermore, as
some websites serve quite dynamic content that is constantly being
updated, the policy may also require frequent updates. Considering
these factors, the policy maintenance cost may be significant and
hinder a large-scale deployment.

2856

Day Domain Script Domain
1 outlook live.com https://cdn.adnxs.com/
9 baidu.com https://pss.bdstatic.com/
bing.com https://cdn.adnxs.com/; https://assets.msn.com

3 yahoo.com https://cdn.doubleverify.com/
5 instagram.com https://connect.facebook.net/

163.com https://static.ws.126.net
7 outlook live.com https://resh3.public.cdn.office.net/

We design two experiments to understand the maintenance cost
of CPP policies. First, we measure the similarities among policies
generated for different sub-pages of the same website to find out
if a small number of policies are sufficient for real large websites.
Second, we track the validity of a policy over time to learn if the
update of website contents would also require the update of the
policies and how frequently such policy updates might be required.

Policy Similarity among Sub-pages. In this experiment, we
select a popular news website—Yahoo (https://yahoo.com)—as news
websites typically include quite large amounts of diverse content.
Starting from its main page, we collected all URLs hosted on the
same domain (including subdomains). After deduplicating them
and filtering out the URLs that redirected to other websites, we
finally got 65 sub-pages. According to their content types, these 65
sub-pages can be categorized into five categories—search, section,
news, privacy and terms, and miscellaneous. We then generated
policies for them with the same method in §4.4.

After sorting rules in each policy, we computed the pair-wise
similarity using the longest common subsequence algorithm, of
which the results are shown in Table 1. We found that most websites
in the same category shared the same policy rules. We analyzed
the six sub-pages with different policies in the second category. We
found that five sub-pages with three distinct layouts had policies
that differed significantly from the main policy. However, the policy
of the remaining sub-page with the same layout was found to have a
similarity of 0.7 to the main policy and contained the same resources,
albeit with slightly different principals. These results indicate that
generating policies for various sub-pages mainly depends on the
page layout. The last category includes many types of sub-pages
such as mail, help center, and promotions that cannot be categorized
into one main category for the limited sample sizes. In practice, the
developers can collect more sub-page samples and further generate
per-category policies. In summary, our experiment showed that the
policy similarity among sub-pages is related to the page layouts.

Policy Validity over Time. We did another experiment to test the
policies for one week to evaluate the maintenance cost of deploying
the generated policies across time. Similarly, we used random UI
testing to trigger JavaScript code and collect violations and excep-
tions each day. We did not observe new exceptions compared with
day 0 but observed new violations on 6 out of 46 websites. This
led to the policy update for these six websites. Specifically, five of
them required only one update, and one required two updates in
our evaluation, as shown in Table 2. We did not observe any new
sensitive elements that needed to be protected within one week.
Our results show that most websites (86.96%) did not need to update
the policy within one week.

We manually analyzed the violations on the other six websites
and found these violations were caused by the website update. If

https://cdn.adnxs.com/
https://pss.bdstatic.com/
https://cdn.adnxs.com/
https://assets.msn.com
https://cdn.doubleverify.com/
https://connect.facebook.net/
https://static.ws.126.net
https://resh3.public.cdn.office.net/
https://yahoo.com

Fine-Grained Data-Centric Content Protection Policy for Web Applications

the developers permit the violation, the policy can be automatically
updated via the policy generator. We noticed that the sources of
these violation traces are mostly from the domain of the same entity
as the first party, and thus, they can be permitted. However, on
the website outlook.live.com and bing.com, the third-party scripts
from cdn.adnxs.com, which provide tracking service, requests to
access sensitive resources like profile image and user name. We
believe the access requests are not necessary and should be denied.
It is important to note that the websites in the experiment include
some that are frequently updated, e.g., news websites and shopping
websites. Therefore, although our experiment only lasted one week,
the result shows that the generated policies are usable in a limited
time and do not need to be updated frequently on most websites. In
addition, website updates may introduce potential security issues.
With the recorded violation traces in DOMINATOR, the developers
can easily monitor the newly included scripts and prevent malicious
behaviors.

In summary, the two experiments show that the CPP mechanism
is usable in real-world scenarios: it is compatible with real-world
web applications, and it does not require much human effort to
maintain the policy over time.

7 DISCUSSION AND FUTURE WORK

The third-party script privilege abuse problem is a long-standing
and challenging issue that requires significant community efforts to
address. We propose a data-centric content protection mechanism
to protect sensitive client-side data from over-privileged read or
write access. In this section, we discuss the limitations of our work
and the possible future works.

Protection Scope. The CPP mechanism has some limitations and
can be further improved in the following three aspects to provide
comprehensive protection. First, it does not provide content pro-
tection in the JavaScript engine. An attacker might access sensitive
data indirectly without calling any DOM API. Such problems can
be addressed by further introducing some isolation techniques [31]
in the JavaScript environment. Second, with CPP, developers can
define policies for HTML DOM elements and sensitive JavaScript
APIs, which theoretically can be extended to other resources in
DOM, e.g., Cookies, HTML5 Web Storage, IndexedDB, and files.
Third, we consider browser extensions as trusted, but they might
also abuse their privilege. Our design can be extended to control
browser extensions’ DOM access with modest engineering effort.
We leave them as future work to further enhance the CPP mecha-
nism.

Policy Deployment. By systematically evaluating the effective-
ness, compatibility, and usability, we show the possibility of deploy-
ing the CPP mechanism in the real world. The deployment costs
for both the browser vendor and the web developers are limited. In
addition, our design only requires modifications in the rendering
engine without fundamental architecture changes for extending
to other browsers. Thus, the mainstream browsers can deploy the
CPP mechanism with reasonable human effort. More importantly,
our design explicitly defines the granted third parties to access the
sensitive elements. We can further develop extensions to reveal the
authorized third parties to the end users before they provide any
sensitive information. It can ensure end users’ right to transparency

2857

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

over how their PII is being handled and significantly empower end
users to prevent data exfiltration.

Policy Generation. Although we designed a labeling tool and
a policy generator to help developers write policy rules, it is still
limited and not fully automated. First, we cannot automatically
generate basic policy rules. It still takes some human effort to label
sensitive elements. One possible solution is to automatically detect
sensitive information in web applications, which is still an open
question. Second, we cannot generate proper policy rules with our
tool on some websites. For example, we observed that linkedin.com
dynamically assigned id to the elements; consequently, the id se-
lectors cannot be reliably used for identifying resources on this
website. The dynamically generated elements can be easily sup-
ported by updating the server code for generating the HTML code.
For instance, developers can simply define and assign a new CSS
class name to the sensitive elements in their page templates/views.

8 RELATED WORK

Investigation of Threats from Third-party Scripts. Some pa-
pers have studied the security threats from third-party script in-
clusion and privilege abuse. Lauinger et al. [14] studied the use
of vulnerable or outdated JavaScript libraries over 133K websites,
which can be utilized by other scripts for malicious purposes. Zhang
et al. [32]found that some embedded scripts perform click intercep-
tion attacks. Some recent works [3, 23] investigated data exfiltration
attacks from third-party scripts in the real world. These studies
indicate that threats from third-party scripts widely exist and are
non-trivial to resolve. Our research provides an effective method
to mitigate threats from third-party scripts.

Confining JavaScript. Many prior studies restrict the functional-
ity of untrusted scripts or constrain them in an isolated environment
to limit their privilege. ConScript [17], Treehouse [11], Caja [1], AD-
safe [2], ADsafety [20] and Web]Jail [29] support security policies
that restrict available functionality of third-party scripts or mashup
components. Phung et al. [19], BrowserShield [22], JSand [4], and
JaTE [28] rewrite or wrap JavaScript code to build sandbox or
restrict specific JavaScript functionality. JSIsolate [31] provides run-
time JavaScript isolation to mitigate global name conflicts. While
these techniques offer a certain level of protection, their restrictions
are usually functionality-centric rather than data-centric, which
may lead to compatibility issues and make their deployment difficult
in practice.

Data Protection in Web Applications. Some other research
focuses on preventing malicious scripts from exfiltrating sensitive
data. Ryck et al. [8] places sensitive data in shadow DOM trees.
ScriptInspector [33] inspects JavaScript accesses to sensitive ele-
ments to generate security policies for individual scripts. However,
its design introduces high runtime overhead, which makes it diffi-
cult to be deployed for policy enforcement. In our earlier work [16],
we proposed DOM-ACP to provide fine-grained confidentiality and
integrity protection. However, the prototype implementation’s pol-
icy support is incomplete, and it does not provide good policy gener-
ation assistance. In contrast, DOMINATOR can be easily deployed to
provide protection for popular real websites because of its good us-
ability. Over the past years, many papers [5-7, 10, 21, 25, 30] utilized
information flow control (IFC) techniques to detect or prevent data

outlook.live.com
bing.com
cdn.adnxs.com
linkedin.com

CCS *23, November 26-30, 2023, Copenhagen, Denmark

exfiltration attacks. Such techniques can complement DOMINATOR
in providing confidentiality protection from indirect sensitive data
access to trusted global JavaScript objects. However, these tech-
niques generally cause high performance overhead (ranging from
50% to 250%). JavaScript isolation mechanisms like JSIsolate [31]
can isolate untrusted scripts from trusted ones to protect sensitive
JavaScript data. While being effective in protecting confidentiality,
the aforementioned techniques usually do not provide an integrity
guarantee.

9 CONCLUSION

This paper presents Content Protection Policy (CPP), a new web
security mechanism for providing fine-grained confidentiality and
integrity protection for sensitive client-side user data. It provides
object-level protection instead of page-level protection for critical
content in web applications. With the CPP mechanism, develop-
ers can define flexible policy rules to restrict third-party script
privilege. We design and develop a system—DOMINATOR—to0 sup-
port the CPP mechanism in the browser. We also implemented a
policy generator extension to help developers write basic policies.
We conducted a range of experiments to systematically evaluate
the effectiveness, performance, and usability of DOMINATOR using
popular real-world websites.

ACKNOWLEDGMENT

The work described in this paper was partially supported by a
grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No.: CUHK 24209418).

REFERENCES

[1] 2022. GitHub - googlearchive/caja: Caja is a tool for safely em-
bedding third party HTML, CSS and JavaScript in your website.
https://github.com/googlearchive/caja.

2022. Making JavaScript Safe for Advertising. - Adsafe- gut zu wissen!
https://www.adsafe.org/.

Gunes Acar, Steven Englehardt, and Arvind Narayanan. 2020. No boundaries:
data exfiltration by third parties embedded on web pages. Proceedings on Privacy
Enhancing Technologies 2020, 4 (2020), 220-238.

Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H Phung, Lieven Desmet,
and Frank Piessens. 2012. JSand: complete client-side sandboxing of third-party
JavaScript without browser modifications. In Proceedings of the 28th Annual
Computer Security Applications Conference. 1-10.

Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and
Yuan Tian. 2015. Run-time Monitoring and Formal Analysis of Information Flows
in Chromium.. In NDSS.

Andrey Chudnov and David A Naumann. 2015. Inlined information flow mon-
itoring for JavaScript. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 629-643.

Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
2012. FlowFox: a web browser with flexible and precise information flow control.
In Proceedings of the 2012 ACM conference on Computer and communications
security. 748-759.

Philippe De Ryck, Nick Nikiforakis, Lieven Desmet, Frank Piessens, and Wouter
Joosen. 2015. Protected web components: Hiding sensitive information in the
shadows. IT Professional 17, 1 (2015), 36-43.

Steve Englehardt, Gunes Acar, and Arvind Narayanan. 2018. No boundaries for
credentials: New password leaks to Mixpanel and Session Replay Companies.
Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:
Tracking information flow in JavaScript and its APIs. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing. 1663-1671.

Lon Ingram and Michael Walfish. 2012. Treehouse: Javascript Sandboxes to
Help Web Developers Help Themselves.. In USENIX Annual Technical Conference.
153-164.

Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and

Michael Franz. 2013. Towards precise and efficient information flow control in
web browsers. In Trust and Trustworthy Computing: 6th International Conference,

TRUST 2013, London, UK, June 17-19, 2013. Proceedings 6. Springer, 187-195.

=
22

=
A=A

[11]

[12

2858

Zilun Wang, Wei Meng, and Michael R. Lyu

[13

Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and
Michael Franz. 2015. Crowdflow: Efficient information flow security. In Infor-
mation Security: 16th International Conference, ISC 2013, Dallas, Texas, November
13-15, 2013, Proceedings. Springer, 321-337.

Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2018. Thou shalt not depend on me: Analysing the
use of outdated javascript libraries on the web. arXiv preprint arXiv:1811.00918
(2018).

Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczynski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium (NDSS 2019). https:
//doi.org/10.14722/ndss.2019.23386

Wei Meng. 2017. Identifying and mitigating threats from embedding third-party
content. Ph.D. Dissertation. Georgia Institute of Technology.

Leo A Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and
enforcing fine-grained security policies for Javascript in the browser. 481-496.
Marius Musch, Marius Steffens, Sebastian Roth, Ben Stock, and Martin Johns. 2022.
Scriptprotect: mitigating unsafe third-party javascript practices. In Proceedings
of the 17th ACM Asia Conference on Computer and Communications Security
(ASIACCS). Nagasaki, Japan.

Phu H Phung, David Sands, and Andrey Chudnov. 2009. Lightweight self-
protecting JavaScript. In Proceedings of the 4th International Symposium on Infor-
mation, Computer, and Communications Security. 47-60.

Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha, and Shriram Krish-
namurthi. 2011. ADsafety:Type-Based Verification of JavaScript Sandboxing. In
20th USENIX Security Symposium (USENIX Security 11).

Vineet Rajani, Abhishek Bichhawat, Deepak Garg, and Christian Hammer. 2015.
Information flow control for event handling and the DOM in web browsers. In
2015 IEEE 28th Computer Security Foundations Symposium. IEEE, 366-379.
Charles Reis, John Dunagan, Helen] Wang, Opher Dubrovsky, and Saher Esmeir.
2007. BrowserShield: Vulnerability-driven filtering of dynamic HTML. ACM
Transactions on the Web (TWEB) 1, 3 (2007), 11-es.

Asuman Senol, Gunes Acar, Mathias Humbert, and Frederik Zuiderveen Bor-
gesius. 2022. Leaky Forms: A Study of Email and Password Exfiltration Before
Form Submission. In Proceedings of the 31st USENIX Security Symposium (Security)
(2022). Boston, MA, USA, 1813-1830.

Steven Sprecher, Christoph Kerschbaumer, and Engin Kirda. 2022. SoK: All or
Nothing-A Postmortem of Solutions to the Third-Party Script Inclusion Permis-
sion Model and a Path Forward. IEEE, 206-222.

Deian Stefan, Edward Z Yang, Petr Marchenko, Alejandro Russo, Dave Herman,
Brad Karp, and David Mazieres. 2014. Protecting Users by Confining JavaScript
with COWL. In 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 14). 131-146.

Mike Ter Louw, Karthik Thotta Ganesh, and VN Venkatakrishnan. 2010. AdJail:
Practical Enforcement of Confidentiality and Integrity Policies on Web Adver-
tisements.. In USENIX Security Symposium. 371-388.

Jeff Terrace, Stephen R Beard, and Naga Praveen Kumar Katta. 2012. JavaScript
in JavaScript (js. js): Sandboxing Third-Party Scripts.. In WebApps. 95-100.
Tung Tran, Riccardo Pelizzi, and R Sekar. 2015. Jate: Transparent and efficient
javascript confinement. In Proceedings of the 31st Annual Computer Security
Applications Conference. 151-160.

Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens, and Wouter
Joosen. 2011. WebJail: least-privilege integration of third-party components in
web mashups. In Proceedings of the 27th Annual Computer Security Applications
Conference. 307-316.

Alexander Yip, Neha Narula, Maxwell Krohn, and Robert Morris. 2009. Privacy-
preserving browser-side scripting with BFlow. In Proceedings of the 4th ACM
European conference on Computer systems. 233-246.

Mingxue Zhang and Wei Meng. 2021. JSISOLATE: Lightweight In-Browser
JavaScript Isolation. In Proceedings of the 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). Athens, Greece.

Mingxue Zhang, Wei Meng, Sangho Lee, Byoungyoung Lee, and Xinyu Xing.
2019. All Your Clicks Belong to Me: Investigating Click Interception on the Web.
In Proceedings of the 28th USENIX Security Symposium (Security). Santa Clara, CA,
USA.

Yuchen Zhou and David Evans. 2015. Understanding and monitoring embedded
web scripts. In 2015 IEEE Symposium on Security and Privacy. IEEE, 850-865.

[14

[15

[16]
(17]

[18

(19]

IS
=

[21

[22

[23

[24]

™~
2

[26

[27

(28]

[29]

[30

[31

(32

[33

A APPENDIX
A.1 Policy Generation

The list of tested websites and the number of generated policy rules
are shown in Table 3 and Figure 6, respectively.

https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386

Fine-Grained Data-Centric Content Protection Policy for Web Applications CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 3: Top 50 accessible websites.

Rank Domain | Rank Domain | Rank Domain | Rank Domain | Rank Domain
1 google.com 13 linkedin.com 28 wordpress.org 44 vimeo.com 65 163.com
3 youtube.com 14 wikipedia.org 29 office.com 45 adobe.com 66 webex.com
4 facebook.com 15 cloudflare.com 30 bing.com 46 yandex.ru 67 vk.com
5 microsoft.com 16 yahoo.com 31 pinterest.com 48 zoom.us 68 blogspot.com
7 netflix.com 19 qq.com 32 github.com 50 gandi.net 69 mozilla.org
8 twitter.com 20 live.com 37 doubleclick.net 52 wordpress.com 70 sina.com.cn
9 amazonaws.com 21 amazon.com 39 mail.ru 54 goo.gl 71 intuit.com
10 instagram.com 22 bilibili.com 40 reddit.com 58 bit.ly 72 t.co
11 baidu.com 23 azure.com 41 whatsapp.com 59 windows.net 73 tiktok.com
12 apple.com 27 fastly.net 42 zhihu.com 62 taobao.com 74 googledomains.com

Number of Generated Policy Rules

4 — — — —

Policy Rules
]
]
J
]
]
J
J
J
]
]
J
J
J
]
]
]
J
J
]

1345 7 8 9 10111213 14 15 16 19 20 21 22 23 27 28 29 30 31 32 37 39 40 41 42 44 45 46 48 50 52 54 58 59 62 65 66 67 68 69 70 71 72 73 74
Website Index

Figure 6: Number of generated policy rules.

2859

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Research Problem
	2.2 Existing Solutions
	2.3 Research Objectives and Challenges

	3 Content Protection Policy
	3.1 Syntax
	3.2 Policy Design

	4 DOMinator
	4.1 Overview
	4.2 Policy Support in DOMinator
	4.3 Policy Enforcement in DOMinator
	4.4 Policy Generation

	5 Implementation
	5.1 Policy Support and Enforcement
	5.2 Policy Generation

	6 Evaluation
	6.1 Experiment Setup
	6.2 Policy Generation
	6.3 Effectiveness
	6.4 Performance
	6.5 Usability

	7 Discussion and Future Work
	8 Related work
	9 Conclusion
	References
	A Appendix
	A.1 Policy Generation

