
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Generating Distractors for Reading
Comprehension Questions from Real Examinations

Yifan Gao,1∗ Lidong Bing,2† Piji Li,3 Irwin King,1 Michael R. Lyu1

1Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

2R&D Center Singapore, Machine Intelligence Technology, Alibaba DAMO Academy
3Tencent AI Lab

1{yfgao,king,lyu}@cse.cuhk.edu.hk 2l.bing@alibaba-inc.com 3pijili@tencent.com

Abstract

We investigate the task of distractor generation for multiple
choice reading comprehension questions from examinations.
In contrast to all previous works, we do not aim at prepar-
ing words or short phrases distractors, instead, we endeavor
to generate longer and semantic-rich distractors which are
closer to distractors in real reading comprehension from ex-
aminations. Taking a reading comprehension article, a pair of
question and its correct option as input, our goal is to generate
several distractors which are somehow related to the answer,
consistent with the semantic context of the question and have
some trace in the article. We propose a hierarchical encoder-
decoder framework with static and dynamic attention mech-
anisms to tackle this task. Specifically, the dynamic attention
can combine sentence-level and word-level attention varying
at each recurrent time step to generate a more readable se-
quence. The static attention is to modulate the dynamic at-
tention not to focus on question irrelevant sentences or sen-
tences which contribute to the correct option. Our proposed
framework outperforms several strong baselines on the first
prepared distractor generation dataset of real reading com-
prehension questions. For human evaluation, compared with
those distractors generated by baselines, our generated dis-
tractors are more functional to confuse the annotators.

Introduction
Reading comprehension (RC) is regarded as an avant-garde
task in NLP research for practising the capability of lan-
guage understanding. Models with recent advances of deep
learning techniques are even capable of exceeding human
performance in some RC tasks, such as for questions with
span-based answers (Yu et al. 2018). However, it is not
the case when directly applying the state-of-the-art mod-
els to multiple choice questions (MCQs) in RACE dataset
(Lai et al. 2017), elaborately designed by human experts
for real examinations, where the task is to select the correct
answer from a few given options after reading the article.
The performance gap between the state-of-the-art deep mod-
els (53.3%) (Tay, Tuan, and Hui 2018) and ceiling (95%)
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Article:
. . .

The Yanomami live along the rivers of the rainforest in the

north of Brazil. They have lived in the rainforest for about

10,000 years and they use more than 2,000 different plants for

food and for medicine. But in 1988, someone found gold in

their forest, and suddenly 45,000 people came to the forest and

began looking for gold. They cut down the forest to make

roads. They made more than a hundred airports. The

Yanomami people lost land and food. Many died because new

diseases came to the forest with the strangers.

. . .

In 1987, they closed fifteen roads for eight months. No one cut

down any trees during that time. In Panama, the Kuna people

saved their forest. They made a forest park which tourists pay

to visit. The Gavioes people of Brazil use the forest, but they

protect it as well. They find and sell the Brazil nuts which grow

on the forest trees.

Question: 

Those people built roads and airports in order to   _  .

A. carry away the gold conveniently (Answer)

B. make people there live a better life (Distractor)

C. stop spreading the new diseases (Distractor)

D. develop the tourism  there (Distractor)

Figure 1: Sample multiple choice question along with the
corresponding article. The question, options and their rele-
vant sentences in the article are marked with the same color.

(Lai et al. 2017) is significant. One possible reason is that
in MCQs, besides the question and the correct answer op-
tion, there are a few distractors (wrong options) to distract
humans or machines from the correct answer. Most dis-
tractors are somehow related to the answer and consistent
with the semantic context of the question, and all of them
have correct grammar (Goodrich 1977; Liang et al. 2018;
Ma, Lyu, and King 2010). Furthermore, most of the distrac-
tors have some trace in the article, which fails the state-of-
the-art models utilizing context matching only to yield de-
cent results.

The MCQs in the RACE dataset are collected from the
English exams for Chinese students from grade 7 to 12. Con-
structing RACE-like MCQ dataset is important and nontriv-
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ial, because poor distractor options can make the questions
almost trivial to solve (Welbl, Liu, and Gardner 2017) and
reasonable distractors are time-consuming to design. In this
paper, we investigate the task of automatic distractor gener-
ation (DG) . The task aims to generate reasonable distrac-
tors for RACE-like MCQs, given a reading comprehension
article, and a pair of question and its correct answer orig-
inated from the article. Figure 1 shows an example multi-
ple choice question with four options. We can find that all
options are grammatically coherent with the question, and
semantically relevant to the article. Distractor generation is
of great significance in a few aspects. It can aid the prepa-
ration of MCQ reading comprehension datasets. With large
datasets prepared, it is expectable that the performance of
reading comprehension systems for MCQs will be boosted,
as we have observed such improvements (Yang et al. 2017)
by applying generated question-answer pairs to train models
to solve SQuAD questions. It could also be helpful to allevi-
ate instructors’ workload in designing MCQs for students.

Automatic DG is different from previous distractor prepa-
ration works, which basically follow an extraction-selection
manner. First, a distractor candidate set is extracted from
multiple sources, such as GloVe vocabulary (Pennington,
Socher, and Manning 2014), noun phrases from textbooks
(Welbl, Liu, and Gardner 2017) and articles (Araki et al.
2016). Then similarity based (Guo et al. 2016; Stasaski and
Hearst 2017; Kumar, Banchs, and D’Haro 2015; Mitkov
2003; Zhou, Lyu, and King 2012; Yang et al. 2011) or
learning based (Liang et al. 2018; Sakaguchi, Arase, and
Komachi 2013; Liang et al. 2017; Yang et al. 2010) algo-
rithms are employed to select the distractors. Another man-
ner is to apply some pre-defined rules to prepare distrac-
tors by changing the surface form of some words or phrases
(Chen, Liou, and Chang 2006). Automatic DG for RACE-
like MCQs is a challenging task. First, different from previ-
ous works that prepare word or short phrase distractors (1.46
tokens on average in SciQ (Welbl, Liu, and Gardner 2017)),
we here endeavor to generate longer and semantic-rich dis-
tractors. Specifically, the average length of the distractors in
our experimental dataset is 8.1. Furthermore, the generated
distractors should semantically related to the reading com-
prehension question, since it is trivial to identify a distrac-
tor having no connection with the article or question. More-
over, the distractors should not be paraphrases of the correct
answer option. Finally, the generated distractors should be
grammatically consistent with the question, especially for
questions with a blank in the end, as shown in Figure 1. Pre-
vious works following the extraction-selection manner can-
not meet these requirements.

We formulate the task of automatic distractor generation
as a sequence-to-sequence learning problem that directly
generates the distractors given the article, and a pair of ques-
tion and its correct answer. We design our framework to
explicitly tackle the above mentioned challenges by using
a data-driven approach to learn to meet these requirements
automatically. More specifically, we employ the hierarchi-
cal encoder-decoder network, which has already shown po-
tentials to tackle long sequential input (Tan, Wan, and Xiao
2017; Ling and Rush 2017), as the base model for building

our framework. On top of the hierarchical encoding struc-
ture, we propose the dynamic attention mechanism to com-
bine sentence-level and word-level attentions varying at each
recurrent time step to generate a more readable sequence.
Furthermore, a static attention mechanism is designed to
modulate the dynamic attention not to focus on question-
irrelevant sentences or sentences which contribute to the cor-
rect answer option. Finally, we use a question-based initial-
izer as the start point to generate the distractor, which makes
the distractor grammatically consistent with the question. In
the generation stage, we use the beam search to generate
three diverse distractors by controlling their distance.

In the evaluations, we conduct experiments on a distractor
generation dataset prepared from RACE using n-gram based
automatic evaluation metrics such as BLEU and ROUGE.
The results show that our proposed model beats several base-
lines and ablations. Human evaluations show that distractors
generated by our model are more likely to confuse the ex-
aminees, which demonstrates the functionality of our gen-
erated distractors in real examinations. We will release the
prepared dataset and the code of our model to facilitate other
researchers to do further research along this line 1.

Framework Description
Task Definition
In the task of automatic Distractor Generation (DG), given
an article, a pair of question and its correct option originated
from the article, our goal is to generate context and question
related, grammatically consistent wrong options, i.e. distrac-
tor, for the question.

Formally, let P denote the input article containing multi-
ple sentences: s1, s2, ..., sn, q and a denote the question and
its correct answer, respectively. The DG task is defined as
finding the distractor d, such that:

d = arg max
d

log P(d|P, a, q), (1)

where log P(d|P, a, q) is the conditional log-likelihood of
the predicted distractor d, give P , a and q.

Framework Overview
A straightforward strategy for distractor generation is to em-
ploy the standard sequence-to-sequence learning network
(Sutskever, Vinyals, and Le 2014) to learn the mapping from
the article to the distractor. Unfortunately, an article can be
too long as the input, which cannot receive decent results.
Here we advocate the hierarchical encoder-decoder frame-
work to model such long sequential input. The architecture
of our overall framework is depicted in Figure 2.

First, we employ the hierarchical encoder to obtain hi-
erarchical contextualized representations for the whole ar-
ticle, namely, word-level representation and sentence-level
representation. Before decoding the encoded information,
we design a static attention mechanism to model the global
sentence importance considering the fact that the distractor

1Our code and data are available at https://github.com/
Evan-Gao/Distractor-Generation-RACE
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Figure 2: A overview of our model that jointly utilizes static and dynamic attentions. (Better viewed in color).

should be semantically related to the question and should not
share the same semantic meaning with the correct answer.
The static attention distribution is used in the decoder as a
soft gate to modulate the dynamic attention. For the decoder
part, we first employ a language model to compress the ques-
tion information into a fixed length vector to initialize the de-
coder state, making the distractor grammatically consistent
with the question. During each decoding step, the dynamic
hierarchical attention combines the sentence-level and word-
level information to attend different part at each decoding
time step. With the combined architecture, our model can
generate grammatically consistent, context and question re-
lated wrong options (distractors) in an end-to-end manner.

Hierarchical Encoder
Word Embedding. An embedding lookup table is firstly
used to map tokens in each sentence si in the article P into
word dense vectors (wi,1,wi,2, ...,wi,m), where wi,j ∈
Rdw having dw dimensions.

Word Encoder. For each sentence si, the word encoder
takes its word vectors (wi,1,wi,2, ...,wi,m) as input. Specif-
ically, we use bidirectional LSTMs to encode the sequence
to get a contextualized representation for each word:
−−→
he
i,j =

−−−−→
LSTM(

−−−→
he
i,j−1,wi,j),

←−−
he
i,j =

←−−−−
LSTM(

←−−−
he
i,j+1,wi,j),

where
−−→
he
i,j and

←−−
he
i,j are the hidden states at the j-th time step

of the forward and the backward LSTMs. We concatenate
them together as he

i,j = [
−−→
he
i,j ;
←−−
he
i,j ].

Sentence Encoder. On top of the word encoding layer, we
combine the final hidden state of the forward LSTM and the
first hidden state of the backward LSTM of each sentence
as the sentence representation and employ another bidirec-
tional LSTMs to learn the contextual connection of sen-

tences. We denote the contextualized representation of the
sentence sequence as (u1,u2, ...,un).

Static Attention Mechanism

Recall that the generated distractors should be semantically
relevant to the question, but must not share the same se-
mantic meaning with the answer. To achieve this goal, here
we introduce a static attention mechanism which learns
an importance distribution (γ1, γ2, ..., γn) of the sentences
(s1, s2, ..., sn) in the article. Here we use the answer a and
the question q as queries to interact with all sentences to
learn such distribution.

Encoding Layer. In the encoding layer, we transform the
answer a, the question q and all sentences (s1, s2, ..., sn)
into fixed length vector representations. Specifically, two in-
dividual bidirectional LSTM networks are employed to en-
code a and q separately to derive the contextualized repre-
sentation for each token in them and obtain (a1,a2, ...,ak)
and (q1,q2, ...,ql), respectively. Then an average pooling
layer is employed to acquire the representation for the ques-
tion and answer:

a =
1

k

k∑
t=1

at,q =
1

l

l∑
t=1

qt. (2)

For the sentence representation, we do not reuse the sentence
representation ui from the sentence encoder since ui is re-
sponsible for learning the semantic information for a whole
sentence, while here we only want to learn the importance
distribution of sentences according to the query (i.e. a pair
of question and answer). Therefore, we only reuse the word-
level contextualized representations he

i,j learned in the hier-
archical encoder and employ the same average pooling layer
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to get the representation of each sentence:

si =
1

m

m∑
t=1

he
i,t. (3)

Matching Layer. For generating non-trivial distractors,
we should emphasize the sentences that are relevant to the
question, and suppress the sentences relevant to the answer.
For this reason, we learn a score oi for si that combines
the above two aspects with bilinear transformation similar
to (Chen et al. 2018):

oi = λqs
>
i Wmq− λas>i Wma + bm, (4)

where Wm and bm are learnable parameters.

Normalization Layer. Before feeding the raw sentence
importance score oi into the Softmax function to compute
the final static attention distribution, we use the question to
learn a temperature τ ∈ (0, 1):

τ = sigmoid(wq
>q + bq), (5)

where wq and bq are learnable parameters. Then, we derive
the static attention distribution as:

γi = softmax(oi/τ). (6)

The intuition behind using the temperature τ is that if a
question asks for some specific details in the article, it is only
relevant to one or two sentences. While if a question requires
summarizing or reasoning, it could be relevant to many sen-
tences in the article. Therefore, we propose the above data-
driven approach to learn the temperature τ according to the
property of the question. If τ is close to 0, then it works
together with oi to yield a peaked distribution γ which sim-
ulates the case of detailed questions. Otherwise, if τ is close
to 1, it will not peak any sentence attention score γi.

Distractor Decoder
We use another LSTMs as the decoder to generate the dis-
tractor. Instead of using the last hidden state of the encoder
to initialize the decoder, we design a special question-based
initializer to make the distractor grammatically consistent
with the question. During the decoding, we introduce the dy-
namic attention mechanisms to combine the sentence-level
and word-level attentions varying at each recurrent time step
to generate a more readable sequence. We also incorporate
the static attention here to modulate the dynamic attention to
ensure the semantic relevance of the generated distractors.

Question-based Initializer. We design a question-based
initializer to initialize the initial state of the decoder. Specif-
ically, we use a question LSTM to encode the question, and
use the last time step information of the LSTM in the fol-
lowing manner:
• Instead of using BOS (i.e. the Begin of Sentence indica-

tor), we use the last token in the question (qlast) as the
initial input of the decoder.

• Other than using the final state of the hierarchical encoder
to initialize the decoder, we here use the final cell state
and hidden state of the question LSTM to initialize the
decoder.

Dynamic Hierarchical Attention Mechanism. The stan-
dard attention mechanism treats an article as a long sequence
and compares the hidden state of the current decoding time
step to all encoder hidden states. This approach is not suit-
able for long input sequences for the following reasons.
First, the standard LSTM cannot model such long inputs (on
average, 343.9 words per article in our training set). Second,
we will lose the sentence structure if we treat the tokens
of different sentences equally. Last but not least, usually a
question or a distractor is only related to a small number of
sentences in the article, we should only use the related sen-
tences to generate the distractor, but the standard attention
has no emphasis on difference sentences.

Given the above reasons, we employ the dynamic hierar-
chical attention to only focus on important sentences during
each decoding time step. We call it dynamic because both
word-level and sentence-level attention distributions change
at each time step. When generating a word at the time step t,
the decoder reads the word embedding dt−1 and the hidden
state hd

t−1 of the previous time step to generate the current
hidden state hd

t = LSTM(hd
t−1,dt−1). Then it calculates

both the sentence-level attention βi and the word-level at-
tention αi,j at the same time:

βi = u>i Wd1
hd
t , αi,j = he

i,j
>Wd2

hd
t , (7)

where Wd1
and Wd2

are trainable parameters. The
sentence-level attention determines how much each sentence
should contribute to the generation at the current time step,
while the word-level attention determines how to distribute
the attention over words in each sentence.

Finally, we use the static attention γi to modulate the dy-
namic hierarchical attention βi and αi,j by simple scalar
multiplication and renormalization. Thus, the combined at-
tention for each token in the article is:

α̃i,j =
αi,jβiγi∑
i,j αi,jβiγi

. (8)

Then the context vector ct is derived as a combination of all
article token representations reweighted by the final com-
bined attention α̃i,j :

ct =
∑
i,j

α̃i,jh
e
i,j . (9)

And the attentional vector is calculated as:
h̃d
t = tanh(Wh̃[hd

t ; ct]). (10)
Then, the predicted probability distribution over the vocab-
ulary V at the current step is computed as:

PV = softmax(WV h̃
d
t + bV ), (11)

where Wh̃, WV and bV are learnable parameters.

Training and Inference
Given the training corpusQ in which each data sample con-
tains a distractor d, an article P , a question q and an answer
a, we minimize the negative log-likelihood with respect to
all learnable parameters Θ for training:

L = −
∑
d∈Q

log P(d|P, a, q; Θ). (12)

6426



# Train Samples 96501
# Dev Samples 12089
# Test Samples 12284
Avg. article length (tokens) 347.0
Avg. distractor length 8.5
Avg. question length 9.9
Avg. answer length 8.7
Avg. # distractors per question 2.1

Table 1: The statistics of our dataset.

During generation, if UNK (i.e. unknown words) is decoded
at any time step, we replace it with the word having the
largest attention weight in the article.

Since there are several diverse distractors (2.4 on aver-
age according to Table 1) corresponding to the same ques-
tion in our dataset, we use beam search with beam size k in
the testing stage and receive k candidate distractors with de-
creasing likelihood. The ultimate goal is to generate several
diverse distractors, however, usually the successive output
sequences from beam search would be similar. Therefore we
design the following protocol to generate three diverse dis-
tractors. Firstly, we select the distractor with the maximum
likelihood as dg1. Then we select dg2 among the remaining
candidate distractors along the decreasing order of the like-
lihood, restricting that the Jaccard distance between dg1 and
dg2 is larger than 0.5. Finally, dg3 is selected in a similar way
where its distances to both of dg1 and dg2 are restricted.

Experimental Settings
Dataset
We evaluate our framework on a distractor generation
dataset prepared with the RACE (Lai et al. 2017) dataset.
RACE contains 27,933 articles with 97,687 questions from
English examinations of Chinese students from grade 7 to
12. We first extract each data sample as a quadruple of ar-
ticle, question, answer and distractor from RACE, followed
by some simple preprocessing steps, such as tokenization,
sentence splitting, and lower-casing.

After some investigation on the RACE dataset, we ob-
serve that some distractors have no semantic relevance with
the article, which can be easily excluded in the examination
and also do not make sense for the task of distractor gen-
eration since our goal is to generate confusing distractors.
Hence, we first filter out such irrelevant distractors by simply
counting meaningful tokens in individual distractors. We de-
fine a token meaningful if it is not a stop word and has a POS
tag from {‘JJ’, ‘JJR’, ‘JJS’, ‘NN’, ‘NNP’, ‘NNPS’, ‘NNS’,
‘RB’, ‘RBR’, ‘RBS’, ‘VB’, ‘VBD’, ‘VBG’, ‘VBN’, ‘VBP’,
‘VBZ’}. Then, we prune the dataset based on the following
constraint: For those meaningful tokens in a distractor that
also appear in the article, if their total weighted frequency is
no less than 5, the distractor will be kept. Here the weighted
frequency of a meaningful token means the multiplication of
its frequency in the distractor and its frequency in the arti-
cle. Moreover, we remove the questions which need to fill
in the options at the beginning or in the middle of the ques-
tions. Table 1 reports the statistics of the processed dataset.

We randomly divide the dataset into the training (80%), val-
idation (10%) and testing sets (10%).

Implementation Details

We keep the most frequent 50k tokens in the entire training
corpus as the vocabulary, and use the GloVe.840B.300d
word embeddings (Pennington, Socher, and Manning 2014)
for initialization and finetune them in the training. Both
source and target sides of our model share the same word
embedding. All other tokens outside the vocabulary or can-
not found in GloVe are replaced by the UNK symbol. We set
the number of layers of LSTMs to 1 for the hierarchical en-
coder (for both word encoder and sentence encoder) and the
static attention encoder, and 2 for the decoder. The bidirec-
tional LSTMs hidden unit size is set to 500 (250 for each di-
rection). For the LSTM used in the question-based initialier,
we use 2 layers unidirectional LSTMs with hidden size 500.
The hyperparameters λq and λa in static attention are initial-
ized as 1.0 and 1.5 respectively. We use dropout with proba-
bility p = 0.3. All trainable parameters, except word embed-
dings, are randomly initialized with U(−0.1, 0.1). For opti-
mization in the training, we use stochastic gradient descent
(SGD) as the optimizer with a minibatch size of 32 and the
initial learning rate 1.0 for all baselines and our model. We
train the model for 100k steps and start halving the learning
rate at step 50k, then we halve the learning rate every 10k
steps till ending. We set the gradient norm upper bound to 5
during the training. We employ the teacher-forcing training,
and in the generating stage, we set the maximum length for
output sequence as 15 and block unigram repeated token, the
beam size k is set to 50. All hyperparameters and models are
selected on the validation set based on the lowest perplexity
and the results are reported on the test set.

Baselines and Ablations

We compare our framework with the following baselines
and ablations. Seq2Seq: the basic encoder-decoder learning
framework (Sutskever, Vinyals, and Le 2014) with atten-
tion mechanism (Luong, Pham, and Manning 2015). Here
we adopt the global attention with general score function.
The hidden size of LSTMs for both encoder and decoder
is 500. We select the model with the lowest perplexity
on the validation set. HRED: the HieRarchical Encoder-
Decoder (HRED) with hierarchical attention mechanism.
This architecture has been proven effective in several NLP
tasks including summarization (Ling and Rush 2017), head-
line generation (Tan, Wan, and Xiao 2017), and text gen-
eration (Li, Luong, and Jurafsky 2015). Here we keep the
LSTMs size as 500 for fairness and set the number of the
word encoder and sentence encoder layers as 1 and the de-
coder layer as 2. We employ the question-based initializer
for all baselines to generate grammatically coherent distrac-
tors. In the generation stage, we follow the same policy and
beam size for baselines and ablations during the inference
stage to generate three distractors.
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BLEU1 BLEU2 BLEU3 BLEU4 ROUGE1 ROUGE2 ROUGEL

1st Distractor
Seq2Seq 25.28 12.43 7.12 4.51 14.12 3.35 13.58
HRED 26.10 13.96 8.83 6.21 14.83 4.07 14.30

Our Model 27.32 14.69 9.29 6.47 15.69 4.42 15.12

2nd Distractor
Seq2Seq 25.13 12.02 6.56 3.93 13.72 3.09 13.20
HRED 25.18 12.21 6.94 4.40 13.94 3.11 13.40

Our Model 26.56 13.14 7.58 4.85 14.72 3.52 14.15

3rd Distractor
Seq2Seq 25.34 11.53 5.94 3.33 13.78 2.82 13.23
HRED 25.06 11.69 6.26 3.71 13.65 2.84 13.04

Our Model 26.92 12.88 7.12 4.32 14.97 3.41 14.36

Avg. Performance
Seq2Seq 25.25 11.99 6.54 3.92 13.87 3.09 13.34
HRED 25.45 12.62 7.34 4.77 14.14 3.34 13.58

Our Model 26.93 13.57 8.00 5.21 15.13 3.78 14.54

Table 2: Automatic evaluation results on all systems by BLEU and ROUGE. 1st, 2nd and 3rd distractors are generated under
the same policy. The best performing system for each compound row is highlighted in boldface.

Results and Analysis
Automatic Evaluation
Here we evaluate the similarity of generated distractors with
the ground truth. We employ BLEU (1-4) (Papineni et al.
2002) and ROUGE (R1, R2, R-L) (Lin 2004) scores to eval-
uate the similarity. BLEU evaluates average n-gram preci-
sion on a set of reference sentences, with a penalty for overly
long sentences. ROUGE1 and ROUGE2 is the recall of un-
igrams and bigrams while ROUGEL is the recall of longest
common subsequences.

Table 2 shows the automatic evaluation results of all sys-
tems. Our model with static and dynamic attentions achieve
the best performance across all metrics. We can observe a
large performance gap between Seq2Seq and models with
hierarchical architectures (HRED and our model), which re-
veals the hierarchical structure is useful for modeling the
long sequential input. Another reason could be that some
distractors can be generated only use information in several
sentences, and sentence-level attentions (both static and dy-
namic) are useful to emphasize several sentences in the arti-
cle. Moreover, our model with static attention achieves bet-
ter performance than its ablation HRED, which shows the
static attention can play the role of a soft gate to mask some
irrelevant sentences and modulate the dynamic attention.

By comparing the three distractors generated by beam
search with a predefined Jaccard distance, we find that the
performance drops a little for the second and third distrac-
tors. The reason can be two-folds: 1) The second and third
distractors have lower likelihood; 2) We set a Jaccard dis-
tance threshold as 0.5 to select the second and third distrac-
tors, thus they are forced to use some words different from
those in the first distractor which is likely to be the best gen-
eration.

It is worth to mention that another automatic evalua-
tion method can be applying a state-of-the-art reading com-
prehension pipeline for RACE to test its performance on
our generated distractors. However, the current best per-
formance of such reading comprehension pipeline is only
53.3% (Wang et al. 2018; Zhu et al. 2018; Xu et al. 2017;
Tay, Tuan, and Hui 2018), which means half questions in

Annotator 1 Annotator 2 Annotator 3 # Selected
Seq2Seq 31 35 30 96
HRED 33 40 35 108

Our Model 43 45 36 124
Human 75 70 79 224

Table 3: Human evaluation results. Note that we allow an-
notators to choose more than one options if the generated
outputs are accidentally the same or very semantically sim-
ilar, therefore, the total number of selected options (552) is
larger than the total number of annotated questions (540).

the dataset cannot be answered correctly. Therefore, we do
not employ such reading comprehension pipeline to evaluate
our generated distractors, instead we hire human annotators
to conduct a reliable evaluation, given in the next section.

Human Evaluation
We conduct a human evaluation to investigate if the gener-
ated distractors can confuse the examinees in the real human
test. We employ three annotators with good English back-
ground (at least holding a bachelor degree) to answer the
MCQs with the generated distractors from different meth-
ods. Specifically, for each MCQ, we give 4 distractors as its
options: One is a sample from the ground truth, the other
three are generated by Seq2Seq, HRED, and our model re-
spectively. Note that we did not give the correct answer op-
tion to the annotators, because the current human ceiling per-
formance on RACE dataset is about 95% (Lai et al. 2017).
Thus, we need to do a huge amount of annotation for collect-
ing enough questions that are answered wrongly. During the
annotation, we told the annotators to select the most suitable
option without considering whether there exists a correct op-
tion.

For comparison, we count how many times of individ-
ual pipelines (the ground truth and three compared meth-
ods) are successful in confusing the annotators, i.e. their
distractors are selected as answers. We give each annotator
60 articles, and 3 questions per article. In total, we anno-
tated 540 questions, and the results are given in Table 3. We
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1. Dear friends, The recent success of children's books has made the

general public aware that there's a huge market out there.

2. And there's a growing need for new writers trained to create the $3

billion worth of children's books bought each year... plus stories and

articles needed by over 650 publishers of magazines for children and

teenagers.

3. Who are these needed writers?

4. They're ordinary people like you and me.

5. But am I good enough?

6. I was once where you might be now.

7. My thoughts of writing had been pushed down by self-doubt, and I

didn't know where to turn for help.

8. Then, I accepted a free offer from the Institute to test my writing ability,

and it turned out to be the inspiration I needed.

9. The promise that paid off The Institute made the same promise to me

that they will make to you, if you show basic writing ability: you will

complete at least one manuscript suitable to hand in to a publisher by the

time you finish our course.

10. I really didn't expect any publication before I finished the course, but

that happened.

11. I sold three stories.

12. And I soon discovered that was not unusual at the Institute.

13. Since graduation, I have written 34 nationally published children's

books and over 300 stories and articles.

14. Free test and brochure We offer a free ability test and will send you a

copy of our brochure describing our recognized home-study courses on

the basis of one-on-one training.

15. Realize your writing dream today.

16. There's nothing sadder than a dream delayed until it disappears

forever.

17. Sincerely, Kristi Hill Institute of Children's Literature

Article:

A. show basic ability B. finish the course

C. have sold three stories D. have passed the test 

Options:

Question 1: You are promised to publish one 

manuscript when you   _  .

Seq2Seq:
1. have made a mistake

2. have written a lot of books

3. have been writing a newspaper

1. have finished the course

2. have a free test

3. have been opened

HRED: Our Model:
1. have sold three stories

2. write a book

3. have passed the test

A. To introduce the home-study courses.

B. To show she has realized her dream. 

C. To prove she is a qualified writer.

D. To promote the writing program.

Options:

Question 2: Why does Kristi Hill mention her own

experience of attending the courses?

Seq2Seq:
1. To show she is a successful publisher. 

2. To show how inspiring her books are.

3. To show her interest in writing books.

1. To encourage readers to buy more books.

2. To show she wanted to improve her reading skills.

3. To prove she is a well-known courses publisher.

HRED:

Our Model:
1. To prove she is a qualified writer.

2. To show her great achievements in literature.

3. To encourage readers to be interested in writing. 

Question 1 Question 2

Static Attention Distribution

Figure 3: Sample generated distractors. On the right, two example questions are given in dotted lines of yellow and green, and
their corresponding static attention distributions are given in the middle by the bars of the corresponding colors.

find that the ground truth distractors (i.e. by “Human”) have
the strongest capability to confuse the annotators. Among
the compared automatic methods, our model performs the
best, while Seq2Seq performs the worst, which is a consis-
tent conclusion as drawn from the previous section.

Case Study
In Figure 3, we present some sample distractors generated
by human instructors, the Seq2Seq baseline, HRED and our
model. To validate the effectiveness of the static attention,
we show the static attention distributions over the sentences
of the article for the two example questions. The correct op-
tions of the questions are marked in red.

Question 1 asks a detailed aspect in the article, which
can be directly answered according to the 9th sentence.
Since our static attention mechanism suppresses the sen-
tences which contain the answer information, we can see
the score for the 9th sentence is relatively smaller than oth-
ers. The distractor outputs also justify our intuitions. Specif-
ically, the first distractor by HRED is semantically identical
to the correct option, thus it is not an appropriate distrac-
tor. With the help of the static attention, our model does not
generate distractors like this. Another effect of the static at-
tention is that it highlights the sentences that are relevant
to the question, such as 11th, 13th, and 14th sentences, so
that our model can generate better distractors. We can see
the distractors generated by our model are semantically rel-

evant to these highlighted sentences. Last but not least, we
find that the distractors generated by Seq2Seq baseline ei-
ther focus on some frequent words in the article such as pub-
lish and write, or contain some completely irrelevant words
such as mistake and newspaper. HRED and our model do not
have this problem, because the dynamic hierarchical atten-
tion can modulate the word-level attention distribution with
the sentence-level attention.

By looking at Question 2, we can also find that the distrac-
tors generated by our system are more appropriate and rele-
vant. Because Question 2 requires some inference, it is thus
relevant to several sentences across the article. The static at-
tention distribution yields the same conclusion. Specifically,
the distribution shows that the 5th to 13th sentences are all
relevant to the question, while the 14th sentence which is
relevant to the answer option is suppressed. The generated
distractors from our system are also semantically relevant to
the 5th to 13th sentences.

Conclusions
In this paper, we present a data-driven approach to generate
distractors from multiple choice questions in reading com-
prehension from real examinations. We propose a hierar-
chical encoder-decoder framework with dynamic and static
attention mechanisms to generate the context relevant dis-
tractors satisfying several constraints. We also prepare the
first dataset for this new setting, and our model achieves the
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best performance in both automatic evaluation and human
evaluation. For the future work, one interesting direction is
to transform this one-to-many mapping problem into one-
one mapping problem to better leverage the capability of the
sequence-to-sequence framework. Another promising direc-
tion could be explicitly adding supervision signals to train
the static attention. From the perspective of RACE-like read-
ing comprehension tasks with multiple choice questions, al-
though the performance of existing reading comprehension
methods are still quite unsatisfactory, by introducing the dis-
tractor generation task, it might open another door for im-
proving the performance, i.e. making adversarial approaches
for solving this reading comprehension task possible.
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