
Mining Test Oracles of Web Search Engines
Wujie Zheng1, Hao Ma2, Michael R. Lyu1, Tao Xie3 and Irwin King1,4

1Computer Science and Engineering, The Chinese University of Hong Kong, China
2Internet Services Research Center (ISRC), Microsoft Research, Redmond, USA

3Department of Computer Science, North Carolina State University, USA
4AT&T Labs Research, San Francisco, USA

{wjzheng, lyu, king}@cse.cuhk.edu.hk, haoma@microsoft.com, xie@csc.ncsu.edu

Abstract—Web search engines have major impact in people’s
everyday life. It is of great importance to test the retrieval
effectiveness of search engines. However, it is labor-intensive
to judge the relevance of search results for a large number of
queries, and these relevance judgments may not be reusable since
the Web data change all the time. In this work, we propose to
mine test oracles of Web search engines from existing search
results. The main idea is to mine implicit relationships between
queries and search results, e.g., some queries may have fixed top
1 result while some may not, and some Web domains may appear
together in top 10 results. We define a set of items of queries and
search results, and mine frequent association rules between these
items as test oracles. Experiments on major search engines show
that our approach mines many high-confidence rules that help
understand search engines and detect suspicious search results.

I. INTRODUCTION

Web search engines are becoming more and more important
for people to search for information in the World Wide Web.
Given a query, a good search engine should return desired
search results that possess various properties such as relevance,
authority, and freshness. Providing inadequate search results
could mislead or dissatisfy users. As an example, Figure 1
shows the clarification message put in the official PuTTY (a
free telnet/ssh client) Website due to the unexpected change
of Google’s search results.

However, it is difficult to test search engines due to the
lack of test oracles. In particular, since the Web data and the
information need of users keep changing, the desired search
results may change along the time, even when the search
engines do not change. Existing approaches on search en-
gine testing/evaluation rely on relevance judgments of search
results, collected either explicitly [1] or implicitly [2]. It is
labor-intensive to manually label a large number of relevance
judgments of search results, i.e., test oracles for the queries,
and these relevance judgments may not be reusable due to
the dynamic nature of the Web. On the other hand, implicit
relevance judgments such as clickthrough data (the set of
results that the users click on) suffer from various biases such
as the position bias and summary bias [3]. In particular, if
a desired result is not found by a search engine, there is no
clickthrough data of it.

In this work, we propose to reduce the effort of manual
labeling by mining pseudo test oracles of Web search engines.
Previous work on specification mining [4], [5], [6] suggests
that one can mine likely invariants or frequent patterns as

Fig. 1. Declaration from the official PuTTY Website for Google’s search
result change

specifications (i.e., test oracles) from the execution of existing
tests. Violations of these mined test oracles are suspicious
and may reveal potential faults of the systems under test.
Using such approaches, testers of Web search engines can
label only the suspicious search results, which are often in
a small number, without missing many bugs.

However, mining specifications of Web search engines is a
non-trivial task. Many interesting patterns of search engines
may need to be mined from search results of multiple days
or multiple search engines. We need to integrate all these
search results for mining, regardless of the changes in a
search engine’s implementation or the differences in differ-
ent search engines’ implementations. Existing specification
mining approaches often mine patterns with regard to system
implementations, and therefore are not suitable for Web search
engines.

To address this problem, we define a set of items for
search results of Web search engines, and mine rules between
these items as pseudo test oracles. Our approach first defines
items of queries, search results, matches between queries and
search results, and search engine identities. These items reveal
many aspects of the search results, and are not affected by
the differences of the search engine implementations. Search
results of different search engines in different time are trans-
formed to itemsets of these items. Our approach then applies
association rule mining [7] to mine rules between the items.
The mined rules are saved as pseudo test oracles. Given new
search results, our approach detects the search results that
violate the mined rules, and presents them to testers for manual
labeling.

978-1-4577-1639-3/11/$26.00 c© 2011 IEEE ASE 2011, Lawrence, KS, USA

408

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:20 UTC from IEEE Xplore. Restrictions apply.

We evaluate our approach on search results of Google and
Bing for 4232 queries within 4 months, which were collected
by ourselves. We choose Google and Bing to test because
they are the most popular search engines nowadays. These
two search engines, together with many other search engines
powered by them (e.g., Yahoo! Search is now powered by Bing
and AOL Search is powered by Google), possess more than 90
percent search market share in U.S. [8]. The queries consist of
800 common queries used in the KDD-Cup 2005 competition
task [9] and 3432 hot queries of Google and Yahoo1. We
collected the search results of the queries from December
25, 2010 to April 21, 2011. Our approach mines many high-
confidence rules that help to understand search engines. Our
approach can also detect suspicious search results that may
reveal potential search engine faults.

II. BACKGROUND OF ASSOCIATION RULE MINING

Our approach is based on a data mining technique called
association rule mining [7]. For ease of discussion, we briefly
review some basic terminologies of association rules.

Let I = {i1, i2, . . . , im} denote a set of items. Let D
be a database of transactions, where each transaction T is
a set of items such that T ⊆ I . A collection of zero or
more items is called an itemset. T contains an itemset X if
X ⊆ T . The support of an itemset X , denoted as sup(X),
is the number of transactions in D that contain X . We call
an itemset X a frequent itemset if its support is large, i.e.,
sup(X)> minsup, where minsup is a threshold of support. For
example, consider a datebase {{a, b, c}, {a, d, e}, {a, b}}. The
support of the itemset {a} is 3 and the support of the itemset
{a, b, c} is 1. If minsup = 2, the frequent itemsets are {a},
{b}, and {a, b}.

Definition 1 (Association rule) An association rule is an im-
plication expression of the form X ⇒ Y , where X ⊆ I and
Y ⊆ I are two disjoint itemsets, i.e., X ∩ Y = ∅.

We can measure the importance of an association rule
X ⇒ Y using support and confidence. The support of X ⇒ Y
is equal to the support of the union set X∪Y . The confidence
of the rule X ⇒ Y , denoted as conf(X ⇒ Y), is the
percentage of transactions containing X that also contain Y .
For example, in the example database described above, the
support and confidence of the rule a ⇒ b is 2 and 2/3,
respectively.

For a database of itemsets, the problem of mining associ-
ation rules is to find all association rules with support ≥
minsup and confidence ≥ minconf , where minsup and
minconf are the corresponding support and confidence thresh-
olds, respectively.

III. APPROACH

Figure 2 presents an overview of our approach. The main
idea of our approach is to mine rules between items of queries
and search results automatically. An item describes a property

1Bing used to have a service of hot queries named Bing xRank, which
however has been shut down.

Extracting Input/Output

Properties as Items

Queries and Search

Results For Mining

Mining Association Rules

Examined by Testers

Association Rules

as Test Oracles

Suspicious Search

Results

Detecting Violations

Queries and Search

Results For Testing

Itemset Database

Fig. 2. Approach

TABLE I
EXAMPLE ITEMS

Category Item Description (Example) Items
Query The query. Q:ase 2011
Query A word in the query. QW:ase
Query The query type (hot, common). HotQ
Query The number of words in the query. OneWord
Query The number of words in the query. TwoWords
Search The domain of the top 1 search result. top1:
Result continuinged.ku.edu
Search The domain of a top 10 search result. top10:
Result continuinged.ku.edu
Search The Alexa Ranks of the top 10 ALLGE1K
Result results’ top private domains are

all greater than 1,000.
Match The whole query does not NoTitleHasQ

appear in the title of any top 10 result.
Search The search engine that returns the SE:google
Engine search results.

of the input (query) or the output (search results), e.g., a
word in the query, the URL domain of a top 10 search result,
and whether the URLs contain the query. Our approach first
extracts input/output items from existing queries and search
results. Our approach then mines association rules of the items.
The mined rules are saved as pseudo test oracles. Given new
queries and search results, our approach detects suspicious
search results that violate mined rules, and presents them to
testers for manual labeling.

A. Extracting Items from Queries and Search Results

We consider items of four broad categories: (i) items based
on the query, (ii) items based on the results, (iii) items based
on the matching between the query and the results, and (iv)
search engine identities. Items of the query category consist
of the query words, the query type, the number of words in
the query, etc. Items of the search result category consist of
the URL domain of the top 1 search result, the URL domains
of top 10 search results, etc. Items of the matching category
consist of whether the query appears in the title of any top 10
search result, etc. Items of the search engine category consist
of the search engine names. Table I provides a list of example
items. In general, any properties of the queries and the search

409

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:20 UTC from IEEE Xplore. Restrictions apply.

results, such as the link and traffic information of the Webpage
that a search result points to, can be used as items.

Given a set of search results (and their queries), our ap-
proach extracts the items and builds a database of itemsets for
the search results.

B. Mining Association Rules

Our approach employs association rule mining to mine
implicit rules between different items. It first mines frequent
itemsets from the database. In practice, we may not be inter-
ested in rules that contain too many items, because they are
too complex to understand and the implications are more likely
to be coincidences. Therefore, our approach uses a threshold
for the length of rules (i.e., the number of items in the rules),
denoted as maxL. Given a length threshold maxL, our approach
adopts the Apriori algorithm [7] to generate frequent itemsets
up to length maxL iteratively. Apriori employs an iterative
approach known as a level-wise search, where k-itemsets are
used to explore (k + 1)-itemsets.

Our approach then generates the rules with high confi-
dences from the frequent itemsets. Given a frequent itemset
X = {x1, x2, ..., xn}, we can generate 2n − 2 association
rules from it. However, these rules could be highly redun-
dant. Therefore, our approach generates only the rules whose
righthand side has just one item from the frequent itemsets.
That is, for each xi in X , our approach generates a rule
{x1, ..., xi−1, xi+1, ..., xn} ⇒ xi.

Our approach also designs a set of controlling schemes,
including left-hand-side patterns, right-hand-side patterns, and
stop words, to guide the rule generation. These patterns specify
what items are allowed or disallowed to be parts of association
rules. For example, left-hand-side patterns specify the items
that can be employed in the left-hand-side of rules. A pattern
can represent many possible items, e.g., a “top10:” pattern
represents all possible items for the top 10 search results. In
this way, we do not need to enumerate all possible items in
advance.

Testers may examine the mined rules to learn and examine
search engines’ behaviors. If there is any rule that seems
unreasonable, there may be drawbacks in some modules of
the search engine under test.

C. Detecting Violations of Mined Rules

After mining association rules, our approach automatically
detects violations of these rules in any given search results.
Our approach ranks the mined rules in descending order of
confidence and support. Given a set of search results, our
approach transforms them to a database of itemsets, and then
checks the rules as follows. From top to bottom, our approach
picks a rule and checks it against all the itemsets. If the rule
is violated by any itemset, which represents a query and its
search results, our approach outputs the violation as well as
the rule. The testers can then examine the violation, i.e., a
suspicious search result, manually.

IV. EVALUATION

A. Data Collection

We collect two sets of queries for the evaluation. The first
set consists of 800 queries that were used for evaluation in
KDD-Cup 2005 Competition [9]. The second set consists
of 3432 queries that are collected from Google Trends and
Yahoo! Buzz from November 25, 2010 to April 21, 2011.
These two indexes provide the hottest queries submitted to
the corresponding search engine everyday.

We collect the search results of the prepared queries from
December 25, 2010 to April 21, 2011. We apply the Web
services of Google and Bing to collect the top 10 search results
of each query every day. In total, we collect 390797 ranked
lists of search results (each list contains the top 10 search
results of a query).

B. Mining Rules as Test Oracles

We apply our approach to mine rules from search results
of Google and Bing during December, 25, 2010 to March
31, 2011. We set minsup = 200, minconf = 0.95, and
maxL = 2. For the rules that indicate the best top 1
search results of queries, there may be much fewer supporting
documents. Therefore, we mine this kind of rules separately
by specifying the left-hand-side and right-hand-side patterns
and set minsup = 20.

1.top10:quotes.nasdaq.com, => top10:finance.yahoo.com,
: 314/314=1.0

2.top10:finapps.forbes.com, => top1:finance.yahoo.com,
: 262/262=1.0

3.top10:absoluteastronomy.com, => SE:bing, : 7657/7657=1.0
4.Q:facebook, => top1:facebook.com, : 182/182=1.0

Fig. 3. Example association rules of items

Figure 3 shows some examples of the mined rules. These
rules can be classified into three categories: implications
between Websites, the different opinions of search engines to
certain Websites, and the best top 1 results of queries.

Rules 1 and 2 are example rules between Websites. Rule 1
says that there are 314 itemsets (queries and results) where
the top 10 search results contain “quotes.nasdaq.com”. In
all these 314 itemsets, the top 10 search results always
contain “finance.yahoo.com”. In other words, the rule says
that “quotes.nasdaq.com” being ranked top 10 often implies
“finance.yahoo.com ”being ranked top 10 for the same query.
Rule 2 describes a similar rule. It says that when the top 10
search results contain “finapps.forbes.com”, the top 1 search
result is always “finance.yahoo.com” in the database.

Rule 3 is an example rule that shows different opinions
of search engines to certain Websites. It says that if the top
10 results contain “absoluteastronomy.com”, the search engine
is likely to be Bing (the confidence is 1.0). In other words,
Google seldom ranks the Website as one top 10 result for
queries while Bing often does. No matter the Website is good
or not, such rules are helpful for understanding the differences

410

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:20 UTC from IEEE Xplore. Restrictions apply.

of search engines, and may help testers find drawbacks of
search engines’ spiders or ranking functions.

Rule 4 is an example rule of the best top 1 search results of
queries. It says that for the query “facebook”, “facebook.com”
is always ranked top 1 by the search engines in the collected
search results. Violations of such rules, which might be caused
by spamming or phishing Websites, can confuse users and
cause user dissatisfaction. On the other hand, many queries
may not have stable top 1 results since their meanings are
ambiguous and the Web data keep changing. Therefore, it is
important to identify whether a query has the most suitable
top 1 search result automatically.

Note that we do not always need the search results of
multiple search engines in multiple days for mining the rules.
For example, implications between Websites can be mined
from search results of a single search engine in one day. The
different opinions of search engines to certain Websites can
be mined from search results of multiple search engines in
one day. The best top 1 results of queries can be mined from
search results of a single search engine in multiple days.

C. Detecting Violations

We also apply our approach to check the mined rules against
the search results of Google and Bing between April 1, 2011
to April 22, 2011. Figure 4 shows an example violation of the
mined rules.

Q:where to login to john carroll university email, =>
top1:mirapoint.jcu.edu, : 172/180=0.96

Fig. 4. An example suspicious search result

The high confidence of the rule in Figure 4 suggests that
for the query “where to login to john carroll university email”,
the URL “mirapoint.jcu.edu” is often the best answer. Both
Google and Bing agree on this result for most of the time. We
check this URL manually, and find that it is the entrance of the
webmail system of the John Carroll University. However, on
April 1st, 2011, Bing violates this rule. We check the search
results of the query of Bing in that day. The top 1 search result
of Bing is the URL “http://www.jcu.edu/index.php”, which
points to the homepage of the John Carroll University. A
manual investigation of the URL shows that it is not easy to get
the answer of the query, i.e., the entrance of the mail system,
from the URL. Therefore, the change of the top 1 search result
for this query is inadequate. Collecting such suspicious cases
automatically can help testers identify problems in the search
engines more quickly.

V. RELATED WORK

Our approach is related to dynamic specification mining,
which mines test oracles from the execution of existing tests.
Existing approaches mainly mine three kinds of specifications:
temporal models [4], algebraic models [6], and operational
models [5], [10]. These approaches focus on mining models

of a specific system implementation. Instead, our approach
designs a set of items for the inputs and outputs of search
engines, so as to integrate the search results of different search
engines in different time for mining.

Using the mined test oracles, our approach can reduce the
efforts of manually labeling search results, essentially a test
selection task. Various kinds of code coverage criteria have
been proposed for test selection [11]. Dickinson et al. [12]
employed clustering analysis to select executions from clusters
for result inspection. These approaches select tests based on
the information related to the system implementation, while
our approach mines frequent patterns in the system level and
thus can easily integrate the tests of different systems in
different time.

VI. CONCLUSION

We propose to mine test oracles of Web search engines from
existing search results. We define a set of items of queries and
search results, and mine frequent association rules between
these items as test oracles. We collect a data set that contains
the search results of two major search engines, namely Google
and Bing, for 4232 queries in a period of 4 months. Evaluation
on this data set shows that our approach mines many high-
confidence rules whose violations are suspicious search results
for manual investigation.

ACKNOWLEDGMENT

This work was supported by grants from the Research
Grants Council of the Hong Kong Special Administrative
Region, China (Project No. CUHK 415311 and CUHK
413210), NSF grants CCF-0725190, CCF-0845272, CCF-
0915400, CNS-0958235, and ARO grant W911NF-08-1-0443.

REFERENCES

[1] K. S. Jones and C. van Rijsbergen, “Report on the need for and provision
of an ”ideal” information retrieval test collection,” in British Library
Research and Development Report 5266, University of Cambridge.

[2] T. Joachims, “Evaluating retrieval performance using clickthrough data,”
in Text Mining, 2003, pp. 79–96.

[3] Y. Yue, R. Patel, and H. Roehrig, “Beyond position bias: examining
result attractiveness as a source of presentation bias in clickthrough
data,” in WWW, 2010, pp. 1011–1018.

[4] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining specifications,” in
POPL, 2002, pp. 4–16.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Trans. Software Eng., vol. 27, no. 2, pp. 99–123, 2001.

[6] J. Henkel and A. Diwan, “Discovering algebraic specifications from java
classes,” in ECOOP, 2003, pp. 431–456.

[7] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in VLDB, 1994, pp. 487–499.

[8] “comscore,” http://comscore.com/Press Events/Press Releases/2010/10
/comScore Releases September 2010 U.S. Search Engine Rankings.

[9] Y. Li, Z. Zheng, and H. K. Dai, “KDD CUP-2005 report: facing a great
challenge,” SIGKDD Explorations, vol. 7, no. 2, pp. 91–99, 2005.

[10] W. Zheng, M. R. Lyu, and T. Xie, “Test selection for result inspection
via mining predicate rules,” in ICSE, Companion Volume, 2009, pp.
219–222.

[11] J. C. Huang, “An approach to program testing,” ACM Comput. Surv.,
vol. 7, no. 3, pp. 113–128, 1975.

[12] W. Dickinson, D. Leon, and A. Podgurski, “Finding failures by cluster
analysis of execution profiles,” in ICSE, 2001, pp. 339–348.

411

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:20 UTC from IEEE Xplore. Restrictions apply.

