Random Unit-Test Generation with MUT-aware
Sequence Recommendation

Waujie Zheng, Qirun Zhang, Michael Lyu
Computer Science and Engineering
The Chinese University of Hong Kong, China

{wjzheng,qrzhang,lyu}@cse.cuhk.edu.hk

ABSTRACT

A key component of automated object-oriented unit-test
generation is to find method-call sequences that generate
desired inputs of a method under test (MUT). Previous
work cannot find desired sequences effectively due to the
large search space of possible sequences. To address this is-
sue, we present a MUT-aware sequence recommendation ap-
proach called RecGen to improve the effectiveness of random
object-oriented unit-test generation. Unlike existing random
testing approaches that select sequences without considering
how a MUT may use inputs generated from sequences, Rec-
Gen analyzes object fields accessed by a MUT and recom-
mends a short sequence that mutates these fields. In addi-
tion, for MUTs whose test generation keeps failing, RecGen
recommends a set of sequences to cover all the methods that
mutate object fields accessed by the MUT. This technique
further improves the chance of generating desired inputs.
We have implemented RecGen and evaluated it on three li-
braries. Evaluation results show that RecGen improves code
coverage over previous random testing tools.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification, Reliability

1. INTRODUCTION

Unit testing is one of the most commonly used techniques
to assure high quality of software systems. A primary ob-
jective of unit testing is to achieve high structural coverage
such as statement coverage. To this end, a method under
test (MUT) needs to be executed with specific inputs. For
object-oriented programs, the desired inputs including the
receiver and arguments of a MUT are often objects that have
specific values in their fields. As directly modifying object

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASE’10, September 20-24, 2010, Antwerp, Belgium.

Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

293

Tao Xie
Department of Computer Science
North Carolina State University, USA

xie@csc.ncsu.edu

fields may violate class invariants, it is necessary to em-
ploy method-call sequences (in short as sequences) to create
and mutate objects to generate desired inputs. Therefore, a
key component of object-oriented unit-test generation is to
find method-call sequences that generate desired inputs of a
MUT.

There are two main approaches to generate desired method-
call sequences: random sequence generation and bounded-
exhaustive sequence generation. Random sequence genera-
tion approaches generate sequences randomly from the whole
space. Csallner and Smaragdakis [8] developed a random
testing tool named JCrasher to generate sequences randomly.
Pacheco et al. [12] proposed a feedback-directed random test
generation approach and implemented it in a tool named
Randoop. Adaptive Random Testing (ART) [7, 10] ap-
proaches such as ART'Gen [10] select inputs evenly across the
input space. These random sequence generation approaches
cannot generate desired sequences effectively from the large
space of possible sequences. Bounded-exhaustive sequence
generation approaches [13, 16, 17] generate sequences ex-
haustively up to a small bound of sequence length. How-
ever, generating desired inputs, including the receiver and
arguments, often requires longer sequences beyond the small
bound that can be handled by the bounded-exhaustive ap-
proaches.

To address the challenges faced by these existing sequence-
generation approaches, in this paper, we propose a MUT-
aware sequence recommendation approach called RecGen to
improve the effectiveness of random object-oriented unit-test
generation. Unlike existing random testing approaches that
select sequences without considering how a MUT may use
inputs generated from sequences, RecGen analyzes object
fields accessed (i.e., read and write) by a MUT and rec-
ommends a short sequence that mutates these fields. The
rationale is that a sequence that mutates object fields ac-
cessed by a MUT has a higher chance to explore different
behaviors of the MUT. RecGen first analyzes the methods
that mutate object fields accessed by a MUT. These meth-
ods are called relevant methods of the MUT. RecGen then
recommends a short sequence that consists of relevant meth-
ods of the MUT for generating the receiver or an argument.
Finally, for MUTs whose test generation keeps failing (i.e.,
the resulting sequence is duplicate or throws uncaught ex-
ceptions), RecGen recommends a set of sequences to cover
the MUT’s all relevant methods. This technique further im-
proves the chance of generating desired inputs.

To illustrate the idea of RecGen, we present an exam-
ple MUT named openDatabase, which belongs to the Envi-

ronment class in the Berkeley DB Java Edition [5], in Fig-
ure 1. The MUT calls setupDatabase, which subsequently
calls getAllowCreate to check the field allowCreate of the
DatabaseConfig argument. To achieve high structural cover-
age of the MUT (and the private methods called by it) needs
various inputs. In particular, to cover the code under the
true branch of dbConfig.getAllowCreate in the setupDatabase
method and create a new database, the field allowCreate of
the DatabaseConfig argument of the MUT should have the
true value, which by default has the false value and can be
mutated by invoking DatabaseConfig.setAllowCreate.

// Environment.java
public synchronized Database openDatabase(
Transaction txn,
String databaseName,
DatabaseConfig dbConfig)
throws DatabaseException {
checkHandleIsValid();
checkEnv();
try {
if (dbConfig null) {
dbConfig = DatabaseConfig.DEFAULT;
}

Database db = new Database(this);
sgyggggygyaﬁgﬂtxn, db, databaseName,
dbConfig,
false,
false,
envImpl.isReplicated());

return db;

} catch (Error E) {
envImpl.invalidate(E);
throw E;

}

private void setupDatabase(..., DatabaseConfig
dbConfig, ...)
throws DatabaseException {

if (databaseExists) {
} else {

/* No database.
Create if we’re allowed to. */

if (dbConfig.getAllowCreate()) {
}

}

// DatabaseConfig.java

public boolean getAllowCreate() {
return allowCreate;

}

public void setAllowCreate(boolean allowCreate) {
this.allowCreate = allowCreate;

Figure 1: The openDatabase MUT and related code

When selecting previously generated sequences for the
DatabaseConfig argument, existing random testing tools have
a low chance to select a sequence that includes the DatabaseC-
onfig.setAllowCreate method. On the other hand, RecGen

294

identifies that DatabaseConfig.setAllowCreate is a relevant
method of the MUT since it mutates the field allowCreate
that is accessed by the MUT. RecGen then recommends

short sequences with the DatabaseConfig.setAllowCreate method,

and thus improves the chance of generating desired sequences.
We have implemented RecGen and evaluated it on three
Java libraries. Evaluation results show that RecGen im-
proves code coverage over previous random testing tools [8,
10, 12]. RecGen and the evaluation data are available at

https://sites.google.com/site/recgentool/

2. APPROACH

2.1 Overview

RecGen accepts a set of methods or classes under test. By
default, RecGen filters out subclasses of java.lang.Exception,
since these classes are often used to handle exceptional cases
and may corrupt the program states for further testing. Rec-
Gen then repeats the following steps to test the MUTs up
to a given time limit.

e Select a MUT randomly.
e For each input (the receiver or arguments) of the MUT

— If the input is a primitive value, randomly select
a primitive value from a fixed pool of values.

— If the input is an object, select a sequence using
MUT-aware sequence recommendation.

— If the input is an array, construct a random-sized
array whose elements (primitive values or objects)
are selected as described earlier.

e Generate a new sequence for the MUT by concatenat-
ing selected sequences with the MUT at the end.

e Add test oracles (the same as those used in Randoop
[12]) to the new sequence.

e Execute the new sequence; only valid and unique se-
quences are used for further sequence generation.

2.2 MUT-aware Sequence Recommendation

2.2.1 Identifying Relevant Methods

RecGen identifies relevant methods for the methods under
test by analyzing the code using the Eclipse JDT Compiler
[2]. Basically, RecGen checks whether two methods may
access the same object fields. If so, we consider the two
methods relevant; otherwise, we consider them non-relevant.
Let N(f) denote the set of object fields that a method f may
access. The relevance between a method g and f is defined
as follows.

relevance(f,g) = { 1,

0,

if IN(f)NN(g)| >0
otherwise

relevance(f, g) indicates whether g may affect the execution
of f, and vice versa.

To compute the set of object fields that a method may
access, RecGen first analyzes which object fields a method
accesses directly in its method body. RecGen then merges
the set of object fields accessed by a given method and the
methods that the given method calls. Actually, we are inter-
ested in only methods that may write object fields accessed
by a MUT. However, our current implementation of RecGen
does not distinguish read and write operations.

2.2.2 Recommending a Single Sequence

Correlation Weights. RecGen recommends sequences
that include more relevant methods of a MUT and fewer
other methods. The correlation of a sequence seq to a
method f is defined as follows.

weight_corr(seq, f) = Z relevance(segqs, f)/n
i=1

where segq; is the ith method in the sequence and n is the
total number of method calls in the sequence.

Size Weights. RecGen also recommends shorter sequences

so as to search the space of short sequences more thoroughly.
RecGen assigns size weights to sequences as follows.

weight_size(seq, f) = 1/n

where n is the total number of method calls in the sequence.

Overall Weights. RecGen employs a normalization which

divides the correlation weight of each sequence for a MUT f
by the sum of all the correlation weights. RecGen employs
the same normalization for the size weights of sequences.
RecGen then combines the weights equally as follows:

weight(seq, f) = (weight_corr(seq, f)+weight_size(seq, f))/2

RecGen randomly selects a sequence to generate the in-
put of a MUT based on the overall weights of sequences. In
particular, the chance of a sequence to be selected is pro-
portional to the ratio of its weight over the total weights of
sequences.

Priority of Receiver Sequences. Finally, RecGen rec-
ommends to use the receiver sequence, i.e., the sequence
that is used to generate the receiver, to generate arguments,
if possible. Given an argument to generate, if the receiver
sequence can produce objects of the argument type, RecGen
selects the receiver sequence to generate the argument with
a predefined probability, which is 0.5 by default.

2.2.3 Recommending a Set of Sequences

If the test generation of a MUT keeps failing, i.e., return-
ing invalid or duplicate sequences, RecGen identifies that
this MUT is difficult to test. Given an input of such a
MUT, RecGen recommends a set of sequences, which cover
all relevant methods of the MUT appearing in the candidate
sequences, for the input. This technique avoids the problem
of missing a desired relevant method by chance.

3. EVALUATIONS
3.1 Evaluation Setup

To evaluate our approach, we apply our approach on three
Java libraries: a database library Berkeley DB [5], a data
structure library JDSL [3], and a science computation li-
brary JScience [4].

We compare RecGen with three well-known random test
generation approaches, including JCrasher [8], Randoop [12],
and ARTGen [10]. JCrasher uses an undirected random test-
ing approach, Randoop applies a feedback-directed random
testing approach, and ARTGen employs an adaptive ran-
dom testing approach. We run these tools on each subject
library for two minutes (JCrasher does not have a time limit
option and we use its default options). The evaluations are
conducted on a 2.80GHz Intel(R) Core (TM)2 PC with 3GB
physical memory, running Ubuntu 9.04.

295

Table 1: Statement coverage (%) on Berkeley DB
(LOC: lines of code, JCr: JCrasher, Rand: Ran-
doop, ART: ARTGen, Rec: RecGen)

Package #LOQ JCr| Rand ART| Rec
com.sleepycat.je 4755 | 9.8| 36.6| 32.5| 44.3
com.sleepycat.je.cleaner 2850 | 1.6] 30.6| 8.5| 52.8
com.sleepycat.je.config 764 | 89.1 95.9| 95.5| 95.2
com.sleepycat.je.dbi 4401 | 10.4 40.0| 27.9| 53.4
com.sleepycat.je.evictor 456 | 0.0 11.2| 0.2| 8.6

com.sleepycat.je.incomp 318 | 0.3| 23.3] 0.3| 16.0
com.sleepycat.je.jca.ra 278 | 0.0/ 0.0| 0.0| 0.0

com.sleepycat.je.jmx 441 | 49.2 58.3| 57.8| 64.6
com.sleepycat.je.latch 215 | 27.00 74.9| 67.4| 76.7
com.sleepycat.je.log 3789 | 9.6 36.3| 15.1| 49.6
com.sleepycat.je.log.entry] 366 | 15.00 47.5| 29.8| 65.6
com.sleepycat.je.recovery| 1954 | 7.0| 33.9| 7.8| 34.4
com.sleepycat.je.tree 4398 | 9.3| 34.8| 22.0| 47.4
com.sleepycat.je.txn 2608 | 6.6| 37.6| 22.1| 52.5
com.sleepycat.je.util 1564 | 5.9 22.9| 22.5| 34.6
com.sleepycat.je.utilint 678 | 19.3 63.7| 50.7| 64.5
Total 29835(11.00 37.4| 24.2| 48.4

on JDSL (LOC:
Randoop, ART:

Table 2: Statement coverage (%)
lines of code, JCr: JCrasher, Rand:
ARTGen, Rec: RecGen)

Package #LOC JCr | Rand ART| Rec
jdsl.core.algo.sorts 91 24.2 | 48.4| 24.2| 48.4
jdsl.core.algo.traversaly 26 0.0 0.0 0.0 0.0

jdsl.core.api 62 69.4 | 93.5| 90.3| 25.8
jdsl.core.ref 2497 | 26.1 | 49.4| 39.4| 67.4
jdsl.core.util 60 | 30.0 | 67| 67| 1.7

jdsl.graph.algo 602 8.7 40.0| 20.1{ 41.4
jdsl.graph.api 46 | 47.8 | 89.1| 82.6| 37.0
jdsl.graph.ref 541 | 15.7 | 29.6| 25.9| 51.9
Total 3925 | 23.2 | 45.5| 35.2| 58.9

We use statement coverage to measure the effectiveness
of our approach, because tests that achieve high structural
coverage often have a higher chance to reveal more bugs and
improve the software reliability [6]. We apply a Java code
coverage tool EclEmma [1] to collect the statement coverage
of executing the generated tests.

3.2 Results

Tables 1, 2, and 3 show the statement coverage results of
RecGen and other approaches on Berkeley DB, JDSL, and
JScience, respectively. The counted lines of code include
only lines that are not comments, blanks, standalone braces,
or parenthesis.

The results show that JCrasher achieves low statement
coverage. It is because JCrasher excludes void-returning
methods, e.g., the DatabaseConfig.setAllowCreate method,
to reduce the search space. But void-returning methods,
which may mutate objects, are critical in generating desired
inputs. Randoop improves the statement coverage much
over JCrasher by using execution feedback to prune ille-
gal and duplicate sequences. ARTGen performs compara-
bly with Randoop on JScience, but worse than Randoop on
Berkeley DB and JDSL. The poor performance of ARTGen

Table 3: Statement coverage (%) on JScience (LOC:
lines of code, JCr: JCrasher, Rand: Randoop,
ART: ARTGen, Rec: RecGen; GEO.COOR: geog-
raphy.coordinates, MATH: mathematics)

Package #L0OC| JCr[RandART|Rec
org.jscience. 396 | 3.0/ 4.5 |4.8|4.8
org.jscience.economics.money | 55 | 43.6/87.3|85.5(96.4
org.jscience. GEO.COOR 667 | 17.4/61.9(60.9|21.9
org.jscience. GEO.COOR.crs 198 | 52.564.1|61.6/61.1
org.jscience. MATH.function 692 | 32.832.7(37.3139.6
org.jscience. MATH.number 1683 | 68.1/83.1(79.3186.1
org.jscience. MATH.vector 1551 | 22.0,39.8 |46.1(82.8
org.jscience.physics.amount 614 | 36.5/67.4|57.8(70.5)
org.jscience.physics.model 60 | 58.3]96.7(96.7|100
Total 5916 | 37.756.1|56.0/64.9|

may be caused by non-rigorous weights associated with ob-
ject fields. RecGen improves the statement coverage much
over Randoop. By focusing on relevant methods, RecGen im-
proves the chance of generating desired sequences for each
attempt and further improves the chance by covering all rel-
evant methods. For some packages, RecGen achieves lower
code coverage than Randoop. For example, the package
jdsl.core.api of JDSL consists of mainly simple classes that
are subclasses of java.lang.Exception. RecGen filters out
the methods of these classes by default, and thus achieves
lower code coverage for the package.

4. RELATED WORK

‘We have described the main sequence generation approaches

in Section 1. Thummalapenta et al. [14] also proposed an ap-
proach named MSeqGen to generate desired sequences for a
MUT using client code. But client code may not be available
in testing code under development. Alternatively, RecGen
assists random test generation by recommending sequences
based on object-field-access information of the methods in
the application under test, without requiring any client code.

Besides sequence generation, primitive argument genera-
tion is another key component of test generation. Random
approaches [7, 8, 10, 12] generate primitive arguments from
all possible values or a set of predefined values randomly.
Symbolic execution approaches [9, 13, 15, 16, 18] gener-
ate primitive arguments systematically to cover all feasible
paths in the MUTs. The symbolic execution approaches
execute method sequences with symbolic parameters (un-
specified arguments), builds path constraints on the param-
eters, and solves the constraints to create actual test inputs
with concrete arguments. For large or complex programs,
it is computationally intractable to precisely maintain and
solve the constraints required for test generation. Dynamic
symbolic execution approaches [13, 15] address this issue by
substituting the symbolic parameters in the constraints with
random concrete values. RecGen generates primitive argu-
ments randomly, but it is possible to combine the sequence
recommendation approach of RecGen with the symbolic ex-
ecution approaches.

Our approach is inspired by an implementation-based API
recommendation approach named Altair [11]. Altair recom-
mends related methods for a given method in C programs
according to the methods’ shared data. Our approach ex-
tends Altair to recommend sequences for test generation.

296

5. CONCLUSIONS

In this paper, we propose a MUT-aware sequence recom-
mendation approach, called RecGen, to improve the effec-
tiveness of random object-oriented unit-test generation. The
main idea of RecGen is to recommend short sequences that
mutate object fields accessed by a MUT to generate the in-
puts. We have implemented RecGen in Java. Evaluation
results show that RecGen improves code coverage over pre-
vious random testing tools. We plan to combine RecGen
with test selection approaches [19] and symbolic execution
approaches in future work.

6. ACKNOWLEDGMENTS

We would like to thank Linchun Sun, Xi Wang, Xin Xin,
and Jackie Zhu for their useful feedback. The work described
in this paper was fully supported by a grant from the Re-
search Grants Council of the Hong Kong Special Adminis-
trative Region, China (Project No. CUHK4154/09E), and
supported in part by USA NSF grants CCF-0725190, CCF-
0845272, CCF-0915400, and CNS-0958235.

7. REFERENCES
(1

2]
(3]
(4]
5

(6]

EclEmma: Java code coverage for Eclipse.
http://www.eclemma.org/.

Eclipse Java development tools (JDT).
http://www.eclipse.org/jdt/index.php.

JDSL: the data structures library in Java.
http://www.jdsl.org/.

JScience: Java tools and libraries for the advancement of
sciences. http://jscience.org/.

Oracle Berkeley DB. http://www.oracle.com/technology/
products/berkeley-db/index.html.

M. Chen, M. R. Lyu, and E. Wong. Effect of code coverage on
software reliability measurement. IEEE Trans. on Reliability,
50(2):165-170, 2001.

I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO:
adaptive random testing for object-oriented software. In ICSE,
pages 71-80, 2008.

C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. Softw., Pract. Exper.,
34(11):1025-1050, 2004.

P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI, pages 213-223, 2005.

Y. Lin, X. Tang, Y. Chen, and J. Zhao. A divergence-oriented
approach to adaptive random testing of Java programs. In
ASE, pages 221-232, 2009.

F. Long, X. Wang, and Y. Cai. API hyperlinking via structural
overlap. In ESEC/SIGSOFT FSE, pages 203-212, 2009.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE, pages
75-84, 2007.

K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing
and explicit path model-checking tools. In CAV, pages
419-423, 2006.

S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and
W. Schulte. MSeqGen: object-oriented unit-test generation via
mining source code. In ESEC/SIGSOFT FSE, pages 193-202,
2009.

N. Tillmann and J. de Halleux. Pex-white box test generation
for NET. In TAP, pages 134-153, 2008.

W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java Pathfinder. In ISSTA, pages 97-107,
2004.

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. In ASE, pages
196-205, 2004.

T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A
framework for generating object-oriented unit tests using
symbolic execution. In TACAS, pages 365-381, 2005.

W. Zheng, M. R. Lyu, and T. Xie. Test selection for result
inspection via mining predicate rules. In ICSE Companion,
pages 219-222, 2009.

(7]

8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

