
Learning in the Wild: Towards Leveraging Unlabeled Data for
Effectively Tuning Pre-trained Code Models

Shuzheng Gao
The Chinese University of Hong Kong

Hong Kong, China
szgao23@cse.cuhk.edu.hk

Wenxin Mao
Harbin Institute of Technology

Shenzhen, China
maowx5519@mails.jlu.edu.cn

Cuiyun Gao∗
Harbin Institute of Technology

Shenzhen, China
gaocuiyun@hit.edu.cn

Li Li
Beihang university
Beijing, China

lilicoding@ieee.org

Xing Hu, Xin Xia
Zhejiang university
Zhejiang, China

xinghu@zju.edu.cn,xin.xia@acm.org

Michael R. Lyu
The Chinese University of Hong Kong

Hong Kong, China
lyu@cse.cuhk.edu.hk

ABSTRACT
Pre-trained code models have recently achieved substantial im-
provements in many code intelligence tasks. These models are first
pre-trained on large-scale unlabeled datasets in a task-agnosticman-
ner using self-supervised learning, and then fine-tuned on labeled
datasets in downstream tasks. However, the labeled datasets are
usually limited in size (i.e., human intensive efforts), which may hin-
der the performance of pre-trained code models in specific tasks. To
mitigate this, one possible solution is to leverage the large-scale un-
labeled data in the tuning stage by pseudo-labeling, i.e., generating
pseudo labels for unlabeled data and further training the pre-trained
code models with the pseudo-labeled data. However, directly em-
ploying the pseudo-labeled data can bring a large amount of noise,
i.e., incorrect labels, leading to suboptimal performance. How to
effectively leverage the noisy pseudo-labeled data is a challenging
yet under-explored problem.

In this paper, we propose a novel approach named HINT to im-
prove pre-trained code models with large-scale unlabeled datasets
by better utilizing the pseudo-labeled data. HINT includes two main
modules: HybrId pseudo-labeled data selection and Noise-tolerant
Training. In the hybrid pseudo-data selection module, considering
the robustness issue, apart from directly measuring the quality of
pseudo labels through training loss, we propose to further employ
a retrieval-based method to filter low-quality pseudo-labeled data.
The noise-tolerant training module aims to further mitigate the
influence of errors in pseudo labels by training the model with a
noise-tolerant loss function and by regularizing the consistency of
model predictions. We evaluate the effectiveness of HINT on three
popular code intelligence tasks, including code summarization, de-
fect detection, and assertion generation. We build our method on
top of three popular open-source pre-trained code models. The
∗Corresponding author. The author is also affiliated with Peng Cheng Laboratory and
Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639216

experimental results show that HINT can better leverage those
unlabeled data in a task-specific way and provide complementary
benefits for pre-trained models, e.g., improving the best baseline
model by 15.33%, 16.50%, and 8.98% on code summarization, defect
detection, and assertion generation, respectively.

CCS CONCEPTS
• Software and its engineering→ Software development tech-
niques;

ACM Reference Format:
ShuzhengGao,WenxinMao, CuiyunGao, Li Li, XingHu, Xin Xia, andMichael
R. Lyu. 2024. Learning in the Wild: Towards Leveraging Unlabeled Data
for Effectively Tuning Pre-trained Code Models. In 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE ’24), April 14–20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3597503.3639216

1 INTRODUCTION
Recently, code intelligence has become a popular research field in
software engineering. It aims at improving developers’ productiv-
ity by providing real-time coding assistance and suggestions for
them [9, 28]. The advent of deep learning techniques, especially pre-
training techniques [12, 53], has significantly advanced progress in
this area. Different from previous supervised learning methods that
train the model from scratch [1, 71], these pre-trained code models
are first pre-trained on large-scale unlabeled datasets using self-
supervised learning tasks and then fine-tuned on labeled datasets in
downstream tasks. For example, Masked LanguageModeling (MLM)
is one of the most popular self-supervised pre-training tasks and is
used in many pre-trained code models such as CodeBERT [14] and
GraphCodeBERT [21]. It works by training themodels to predict the
masked tokens based on the context of surrounding words. Since
this process does not require human annotation, it can be applied
on large-scale unlabeled datasets, enabling the models to acquire a
vast amount of general programming knowledge. Equipped with
this ability, these pre-trained code models achieve state-of-the-art
performance on a variety of code intelligence tasks, such as code
summarization and defect detection [14, 17, 20, 21].

Despite the promising results, deep learningmodels are known to
be data-hungry and the size of labeled datasets in downstream tasks
is important for the performance of pre-trained models [23, 65].
However, the sizes of labeled datasets in downstream tasks are

https://doi.org/10.1145/3597503.3639216
https://doi.org/10.1145/3597503.3639216
https://doi.org/10.1145/3597503.3639216
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639216&domain=pdf&date_stamp=2024-04-12

usually limited due to two main reasons. On one hand, the datasets
crawled from open-source websites like Github or Stackoverflow
are small in size and of low quality. For example, as mentioned in
the literature [31], only 6.8% JavaScript code snippets from popu-
lar GitHub repositories contain corresponding comments, making
only a few of them usable for tasks like code summarization. Fur-
thermore, recent studies have revealed that the quality of existing
crawled datasets is also quite poor [11, 56, 57]. For example, as
indicated in a recent work [56], over 40% of data in the widely-used
code summarization datasets contain various types of noise. On the
other hand, due to the requirement of domain expert knowledge,
the annotation cost of code intelligence tasks is higher than other
tasks in natural language processing or computer vision, such as
sentiment analysis and image classification [59]. With insufficient
annotated data in downstream tasks, the performance of pre-trained
code models is limited.

One possible solution to this problem is to leverage the large-
scale unlabeled data in the tuning stage by pseudo-labeling. Pseudo-
labeling first trains a base model on the limited labeled dataset,
which subsequently serves as a teacher model to annotate the unla-
beled dataset [34, 40, 47]. The pseudo-labeled dataset is thenmerged
with the original labeled dataset to help improve the training of
a new student model. By replacing the teacher model with the
stronger student model, the above process can be iterated multiple
times, aiming at improving the models themselves. This technique
leverages the unlabeled data in a task-specific way and has shown
promising results in tasks such as image classification [40] and
dialog systems [47]. Although pseudo-labeling can enrich the la-
beled dataset, directly employing the pseudo-labeled data can bring
a large amount of noise [47]. For example, as shown in Figure 1
(a), the pseudo-labeled summary of the top code snippet is not a
meaningful sentence and contains redundant tokens. Training with
such noisy pseudo labels may amplify the incorrect knowledge
in the teacher model and ultimately degrades the model’s perfor-
mance. However, identifying and removing noisy pseudo labels is
non-trivial due to the complex semantic of source code. Besides,
it is difficult and impractical to ensure that the filtered dataset is
noise-free [63, 73]. Therefore, how to effectively leverage the noisy
pseudo-labeled data and enable the model to be noise-tolerant for
code intelligence tasks is of vital importance, yet under-explored.

In this paper, we propose HINT with two main components, i.e.,
the HybrId pseudo-labeled data selection module and the Noise-
tolerant Training module. First, in the hybrid pseudo-labeled data
selection module, we propose to combine the training loss of the
teacher model and a retrieval-based method for removing the low-
quality data. Specifically, we filter out pseudo-labeled samples that
present high training loss or low label similarity with the retrieved
similar training sample. To further mitigate the influence of data
noise on model performance, we propose a noise-tolerant training
objective that includes a noise-tolerant symmetric loss function and
a consistency regularization of model predictions. To evaluate the
performance of HINT, we conduct experiments on three popular
code intelligence tasks including code summarization, defect detec-
tion, and assertion generation. Following previous work [18, 50, 62],
we build our method on top of three popular open-source pre-
trained models: CodeBERT [14], CodeT5 [64], and UniXcoder [20].

#Sample from the unlabeled dataset
#Code
def validate_float(s)
 try:
 return float(s)
 except ValueError:
 raise ValueError('Could not convert %s to float' % s)

#Pseudo-labeled Summary

#Retrieved sample from the training dataset
#Code
def validate_int(s)
 try:
 return int(s)
 except ValueError:
 raise ValueError('Could not convert %s to int' % s)

#Summary

#converts a string to s s.

#convert s to int or raise.

Low
similarity

Low Training
Loss

× Low quality

(a) A Python example of low-quality pseudo-labeled data (top).

//Sample from the unlabeled dataset
//Code
static boolean areEqual(Object a, Object b){
 return (a==null?b==null:a.equals(b));
}
//Pseudo-labeled Summary
//check if two possibly null objects are equal.

//Retrieved sample from the training dataset
//Code
public static boolean equal(Object a, Object b){
 return a==b||(a!=null&&a.equals(b));
}
//Summary
//returns true if two possibly null objects are equal.

High
similarity

High Training
Loss

√ HIgh quality

(b) A Java example of high-quality pseudo-labeled data (top).

Figure 1: Examples in the code summarization task for il-
lustrating the motivation of the hybrid pseudo-labeled data
selection method, which indicates the loss-based data selec-
tion strategy alone may incorrectly measure the quality of
pseudo labels.

Extensive experiments demonstrate that HINT can consistently im-
prove the performance of pre-trained code models on these code in-
telligence tasks. For example, HINT improves UniXcoder by 15.33%,
16.50%, and 8.98% in terms of BLEU-4, F1, and EM on code summa-
rization, defect detection, and assertion generation, respectively,
indicating that our proposed HINT method can provide comple-
mentary benefits for the pre-trained code models.

In summary, the main contributions of this work are as follows:
(1) To the best of our knowledge, we are the first to leverage

the large-scale unlabeled data in a task-specific way in the
turning phase for code intelligence tasks.

(2) We propose HINT, a novel framework to leverage large-scale
unlabeled data for effectively tuning pre-trained codemodels.
It first selects high-quality pseudo-labeled data in a hybrid
way and then improves the model’s tolerance to noisy data
in the training process.

(3) Extensive experiments on three tasks demonstrate that our
method can be built on top of a range of existing strong pre-
trained models and consistently improve their performance
on many downstream tasks.

2

Labeled data D

Unlabeled data U

Teacher model

① Pseudo Label Generation

Pseudo-labeled data P

Initialization
Training

Student model

③ Noise-tolerant Training

Code

Transformed Code

Prediction

g(.)

Model Substitution

public long read(
ByteBuffer buffer) { long

public long read(
<MASK> buffer) { long

Code: public int read(final
String path, final Buffer ...
Summary: reads the int
value of id from the ...

KL loss

SCE loss

SCE loss

② Hybrid Pseudo-labeled Data Selection

Pseudo labeled code

Retrieved code

Selected pseudo-
labeled data S

Code: public long read(
ByteBuffer buffer) { long ...
Summary: reads the int
value of id from the ...

Code: public int read(final
String path, final Buffer ...
Summary: reads the int
value of id from the ...

Retrieved code

Code: public long read(
ByteBuffer buffer) { long ...
Summary: reads the int
value of id from the ...

Loss-based
selection

pass √

fail ×
Retrieval-based

selection

Figure 2: The overview of HINT.

2 PROPOSED APPROACH
2.1 Problem Setup and Overview
In this section, we explicate the detailed design of HINT. Formally,
in code intelligence tasks such as code summarization, we have
a set of source codes 𝑋 and summaries 𝑌 . Let 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑁

𝑖=1
denotes the labeled training dataset, where 𝑥𝑖 ∈ 𝑋,𝑦𝑖 ∈ 𝑌 and 𝑁
denotes the size of 𝐷 . Let𝑈 = {𝑥𝑖 }𝑀

𝑖=1 denote the large unlabeled
dataset, where𝑀 denotes the size of𝑈 and𝑀 > 𝑁 in general. Our
goal is to learn a model 𝑓 : 𝑋 ↦→ 𝑌 from both 𝐷 and 𝑈 that can
well predict the label of input 𝑥𝑖 in the test set.

The overall framework of HINT is shown in Figure 2. We first
train a teacher model on the original labeled dataset 𝐷 and 1 use
the teacher model to generate pseudo labels for the unlabeled
dataset. Then, 2 a hybrid pseudo-labeled data selection method
that contains loss-based selection and retrieval-based selection is
proposed to filter the code with low-quality pseudo labels (in-
troduced in Section 2.2). For further mitigating the influence of
noise in pseudo labels during model training, we propose 3 a
noise-tolerant training strategy that trains the student model with
noise-tolerant symmetric cross entropy loss and consistency reg-
ularization (introduced in Section 2.3). The above procedure can
be iterated multiple times, enabling the models to be self-improved
(introduced in Section 2.4). The algorithm is shown in Algorithm 1.

2.2 Hybrid Pseudo-labeled Data Selection
Oncewe get a trained teachermodelF𝑡 , we use it to generate pseudo
labels for unlabeled dataset 𝑈 , producing a pseudo labeled dataset
𝑃 = {(𝑥𝑖 , 𝑦𝑖)}𝑀

𝑖=1. The pseudo-labeled data cannot be employed
directly, since they may contain substantial noise and impact the
model performance. Previous studies in machine learning [22, 30]
mainly employ loss-based selection by filtering the data with high
training loss based on the insight that neural models can well dis-
tinguish the quality of each sample (i.e., noisy data are generally
associated with higher training loss). However, code intelligence

models are known to suffer from the robustness issue [25], so solely
relying on the model training loss for noise filtering is ineffective.
For the example in Figure 1 (a), we can observe that although the
quality of this generated summary is pretty poor, its loss is low
in value. Specifically, when comparing the loss of all the pseudo-
labeled data, it exhibits a lower loss than 83% of the pseudo-labeled
data. Besides, in Figure 1 (b), the generated pseudo summary can
well describe the meaning of checking the equivalence of two ob-
jects in the Java code snippet but its training loss value is relatively
high, i.e., surpassing 52% of the pseudo-labeled data.

Considering that code reuse is widespread in software develop-
ment [35, 37], apart from the loss-based selection, we propose to
further select high-quality data through a retrieval-based method.
As shown in Figure 1, by comparing the pseudo-labeled summaries
and retrieved summaries, we can systematically identify the pseudo-
labeled data in Figure 1 (b) as a high-quality sample and filter the
low-quality pseudo-labeled data in Figure 1 (a). Specifically, in the
retrieval-based selection, for each unlabeled data 𝑥𝑖 , we first use
the widely-used BM-25 method [44] to retrieve the most similar
code 𝑥 𝑗 in the labeled training set. Then we propose to compare
the similarities of 𝑥𝑖 and 𝑥 𝑗 and their corresponding pseudo label
𝑦𝑖 and groud truth label 𝑦 𝑗 through normalized edit distance:

𝑁𝐸𝐷 (𝑥,𝑦) =
{

𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥,𝑦)
| |𝑥 | | if 𝑥,𝑦 ∈ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

I{𝑥 ≠ 𝑦} if 𝑥,𝑦 ∈ 𝑙𝑎𝑏𝑒𝑙
(1)

where | |.| | denotes the length of the sequence and I{.} is an indica-
tor function that returns 1 if the condition is true and 0 otherwise.
Specifically, if both 𝑁𝐸𝐷 (𝑥𝑖 , 𝑥 𝑗) and 𝑁𝐸𝐷 (𝑦𝑖 , 𝑦 𝑗) are not higher
than the threshold 𝑡 , we consider this sample (𝑥𝑖 , 𝑦𝑖) as a correctly
predicted sample and add it to the selected dataset 𝑆 . On the con-
trary, if 𝑁𝐸𝐷 (𝑥𝑖 , 𝑥 𝑗) is lower than 𝑡 while 𝑁𝐸𝐷 (𝑦𝑖 , 𝑦 𝑗) is above
1 − 𝑡 , we choose to filter it as it has a higher probability of being a
noisy data (Line 9-11 in Algorithm 1). Here 𝑡 is a hyperparameter

3

Algorithm 1 Algorithm of HINT
Input: labeled dataset 𝐷 , unlabeled dataset 𝑈 , threshold of edit

distance 𝑡 , the threshold in loss-based selection 𝐾 , code trans-
formation function 𝑔, iteration number 𝐼

Output: neural model F
1: Train the teacher model F𝑡 on 𝐷
2: for each 𝑖 in 𝐼 do
3: Generate pseudo data 𝑃 for𝑈 using F𝑡
4: Calculate the loss of samples in 𝑃 using F𝑡
5: TK← samples with the least top 𝐾% loss value in 𝑃
6: 𝑆 ← ∅
7: for each sample {𝑥𝑖 , 𝑦′𝑖 } in 𝑃 do
8: Retrieve the most similar sample (𝑥 𝑗 , 𝑦 𝑗) from 𝐷

9: if 𝑁𝐸𝐷 (𝑥𝑖 , 𝑥 𝑗) ≤ 𝑡 ∧ 𝑁𝐸𝐷 (𝑦𝑖 , 𝑦′𝑗) ≤ 𝑡 then
10: 𝑆 .insert ({𝑥𝑖 , 𝑦′𝑖 })
11: else if 𝑁𝐸𝐷 (𝑥𝑖 , 𝑥 𝑗) ≤ 𝑡 ∧ 𝑁𝐸𝐷 (𝑦𝑖 , 𝑦′𝑗) ≥ 1 − 𝑡 then
12: continue
13: else if F𝑡 (𝑥𝑖 , 𝑦′𝑖) ∈ TK then
14: 𝑆 .insert ({𝑥𝑖 , 𝑦′𝑖 })
15: end if
16: end for
17: 𝐿 ← 𝐷 ∪ 𝑆
18: Train the student model F𝑠 with dataset 𝐿 and transforma-

tion function 𝑔 through Equation 4
19: F𝑡 ← F𝑠
20: end for
21: return model F𝑡

to control the filtering threshold. For samples that cannot be de-
cided by the retrieval-based selection, we first calculate the training
loss of each pseudo-labeled data by re-feeding each code 𝑥𝑖 into
the teacher model F𝑡 and using the generated pseudo label 𝑦𝑖 as
the ground-truth label. We then select the top 𝐾% data with the
lowest loss values among all pseudo-labeled data and add them
to 𝑆 (Line 4-5, 13-14 in Algorithm 1). Finally, we obtain a dataset
𝑆 = (𝑥𝑖 , 𝑦𝑖)𝑀

′

𝑖=1 containing high-quality pseudo-labeled data. The
dataset 𝑆 is employed to train the student model, together with the
labeled dataset 𝐷 .

2.3 Noise-tolerant Training
Despite the dedicated data selection effort, it is still difficult and
impractical to ensure that the selected samples 𝑆 are noise-free.
Besides, the pseudo-labeled samples with minor noise are not com-
pletely harmful and can also provide rich information for model
training. For example, as shown in Figure 3, the assertion statement
generated by the teacher model mistakenly predicts the assertion
type as “assertionEquals”. If we directly use it as ground truth to
train the model, the model may be misled. Nevertheless, this sam-
ple still contains much valuable information since the predictions
on other positions such as the parameters are correct. Therefore,
instead of directly discarding these samples with a more strict filter-
ing process, we propose to leverage the pseudo-labeled data with
noise-tolerant loss function and consistency regularization during
model training.

Ground truth assertion:
org.junit.Assert.assertSame(value,adapter.getPreserved("prop"))

Pseudo-labeled assertion:
org.junit.Assert.assertEquals(value,adapter.getPreserved("prop"))

//Code from the Unlabeled dataset:
testPreserveProperty(){
 java.lang.Object value = new java.lang.Object();
 adapter.preserve("prop",value);
 "<AssertPlaceHolder>";
}
getPreserved(java.lang.String)
{
 throw new java.lang.UnsupportedOperationException();
}

Figure 3: An example of a pseudo label with a minor error.

Noise-tolerant Loss Function: Previous studies [63, 73] have
found that the widely-used cross entropy (CE) loss function is
sensitive to noisy training data. Specifically, the coefficient in the
gradient of the CE loss function− 1

𝑓
𝑦𝑖
(𝑥𝑖 ;𝜃) ∇𝑓𝑦𝑖 (𝑥

𝑖 ;𝜃) assigns larger
weights to samples with higher loss and smaller weights to samples
with lower loss. Since noisy data often obtain a high training loss
in the training process [22, 30], models trained with CE loss easily
focus on those noisy data and tend to be misled. However, the re-
weighting coefficient in the gradient of CE is also beneficial for
model training. Directly removing it as −∇𝑓𝑦𝑖 (𝑥𝑖 ;𝜃) might bring
the slow convergence problem [73]. To deal with this problem, we
propose to employ the Symmetric Cross Entropy loss (SCE) [63]:

𝑙𝑠𝑐𝑒 (𝑥,𝑦) = −
𝐶∑︁
𝑐=1
(𝑝 (𝑐 |𝑥𝑖) log(𝑞(𝑐 |𝑥)) + 𝑞(𝑐 |𝑥𝑖) log(𝑝 (𝑐 |𝑥))), (2)

where 𝑞(𝑐 |𝑥) is the prediction of the model and 𝑝 (𝑐 |𝑥) is the cor-
responding ground truth label in the dataset. 𝐶 denotes the num-
ber of classes in the classification task or the size of vocabulary
in the generation task. The former item represents the CE loss,
while the latter item corresponds to the Reverse Cross Entropy
(RCE) [63] which assigns the same weights for all samples, i.e.,
−∇𝑓𝑦𝑖 (𝑥𝑖 ;𝜃). Note that log 𝑝 (𝑐 |𝑥) is 0 for the ground truth class
and the same negative value for other classes. Based on the relation
𝑝 (𝑐∗ |𝑥) = 1 −∑𝐶

𝑐=1,𝑐≠𝑐∗ 𝑝 (𝑐 |𝑥) where 𝑐
∗ denotes the ground class,

we can achieve the above result. In this way, the student model is
less likely to be influenced by minor errors in pseudo labels.

Consistency Regularization: According to Equation 2, the
noise-tolerant loss relies on the quality of pseudo labels. Consider-
ing that such supervision signals from pseudo labels might be noisy
and unreliable, we further propose to add consistency regulariza-
tion between predictions of the original code and the transformed
code. It could enrich the supervision signals and provide the stu-
dent model with a more reliable objective function without manual
labels. Specifically, given a code snippet 𝑥 , we first apply a code
transformation function 𝑐𝑡 (·) and obtain the transformed input
𝑐𝑡 (𝑥). Then, the consistency regularization is applied to align the
distributions of the predictions F𝑠 (𝑥) and F𝑠 (𝑐𝑡 (𝑥)):

𝑙𝑐𝑟 = 𝐾𝐿(F𝑠 (𝑥) | |F𝑠 (𝑐𝑡 (𝑥))) + 𝐾𝐿(F𝑠 (𝑐𝑡 (𝑥)) | |F𝑠 (𝑥)), (3)

where 𝐾𝐿(·| |·) denotes the Kullback-Leibler Divergence [38]. For
generation tasks, we approximate it by the average value per token.
For code transformation methods, we follow previous work [55]

4

and employ four effective transformation methods, including Dy-
namic Masking, Dynamic Replacement, Dynamic Replacement of
Specified Type, and Dynamic Masking of Specified Type. For each
sample, we randomly select one transformation function in each
epoch. Different from previous task-agnostic contrastive learning
pre-training methods that only focus on aligning the representation
of code and transformed code [20, 33], our method directly con-
strains the prediction F𝑠 (𝑥) and F𝑠 (𝑐𝑡 (𝑥)) of code and transformed
code on downstream tasks and regularizes them in a task-specific
way.

Finally, HINT trains the student model by combining the noise-
tolerant loss function and consistency regularization as follows:

𝑙 =
∑︁

(𝑥,𝑦) ∈𝐷∪𝑆
[𝑙𝑠𝑐𝑒 (𝑥,𝑦) + 𝑙𝑠𝑐𝑒 (𝑐𝑡 (𝑥), 𝑦) + 𝜇 · 𝑙𝑐𝑟], (4)

where 𝜇 is a hyperparameter to balance the training signals from
pseudo labels and the consistency regularization.

2.4 Iterative Training
Based on the aforementioned process, we can obtain a stu-
dent model that has better performance than the teacher model.
Then, we can build upon this student model and repeat the pro-
cess described above to further boost the models themselves
(1 → 2 → 3 → 1). Specifically, at the end of each iteration,
the student model substitutes the teacher model, which is then
employed to generate pseudo labels for the unlabeled dataset 𝐷
in the subsequent iteration. In general, the better the base model,
the higher the quality of the pseudo labels. In this way, the stu-
dent model in the next iteration is more likely to be trained on
pseudo-labeled data with higher quality and thus achieves better
performance. We follow previous work [47] and reinitialize the new
student model from the pre-trained code models in every iteration.
After all iterations, the student model in the last iteration will be
used as the final model for predictions on the test set.

3 EXPERIMENTAL SETUP
3.1 Research Questions
As we claimed above, HINT is a generic framework that works
without imposing specific assumptions regarding data distribution,
underlying models, or task characteristics, except for the require-
ment that the input needs to be in the form of code. To validate
the generalizability of HINT, we propose to evaluate the perfor-
mance of HINT on a variety of pre-trained code models and three
semi-supervised code intelligence tasks with code as input. As for
the data distribution, we also evaluate the performance of HINT
on cross-domain scenarios that do not have sufficient training data
and may present data distribution gap between training and unla-
beled data. Furthermore, we also explore the effectiveness of each
component in HINT and the influence of hyperparameters on its
performance. In summary, we evaluate HINT by addressing the
following four research questions:

RQ1: How much improvement can HINT provide to existing
pre-trained code models?

RQ2: What is the impact of each component on the perfor-
mance of HINT?

RQ3: How well does HINT perform in cross-domain scenarios?
RQ4: How does HINT’s performance vary under different pa-

rameter settings?

3.2 Evaluation Tasks
We conduct experiments on three representative code intelligence
tasks: code summarization, defect detection, and assertion genera-
tion, for covering different task types, i.e., Code→ Text, Code→
Label, and Code→ Code. Due to the space limitation, we provide a
more detailed description of evaluation metrics and statistics of the
benchmark datasets in our replication packages [26].

3.2.1 Code Summarization. Code Summarization aims to generate
useful comments for a given code snippet. It can help alleviate the
developers’ cognitive efforts in comprehending programs [7, 19].

Datasets. In this study, we conduct experiments on two popu-
lar benchmark datasets JCSD and PCSD, which contain Java and
Python source code, respectively. The JCSD dataset we used is pub-
licly released by Hu et al. [27], which contains 87,136 pairs of Java
methods and comments collected from 9,714 GitHub repositories.
The PCSD dataset comprises 92,545 functions with their respective
documentation, which is originally collected by Barone et al. [3] and
later processed by Wei et al. [68]. For our experiments, we directly
used the benchmark datasets released by previous studies [1, 27],
in which the datasets are divided into training, validation, and test
sets in a ratio of 8 : 1 : 1 and 6 : 2 : 2 for Java and Python, respec-
tively. As reported in previous work [48, 54], there are duplicated
data in the training and test set of the JCSD dataset. Therefore,
following them, we remove the test samples that also appear in the
training or validation set and finally get a deduplicated test set with
6,489 samples. Since there has been no dataset for the evaluation of
code intelligence tasks in a semi-supervised setting, we propose to
simulate it by extending existing datasets. Specifically, following
previous studies [36, 47], we randomly dividing the initial train-
ing data into two subsets: labeled training data and an unlabeled
dataset, with the ratio of 9:1.

Metrics. For code summarization, we follow previous work [1,
16, 48] and use four popular metrics BLEU-4 [52], ROUGE-L [43],
METEOR [2], and CIDEr [60] for evaluation.

3.2.2 Defect Detection. Defect detection aims at identifying the
vulnerabilities in the given program, which is crucial to defend a
software system from cyberattack [13, 74].

Datasets. In our experiments, we utilize the widely-used Big-
Vul dataset created by Fan et al. [13]. This dataset contains 188,636
C/C++ code snippets sourced from more than 300 GitHub projects
dating from 2002 to 2019 in Common Vulnerabilities and Expo-
sures (CVE) database. Following previous studies [13], we partition
the dataset into training, validation, and test sets with a ratio of
8:1:1. Same with code summarization, we also further construct the
labeled training data and unlabeled data by dividing the original
training set of Big-Vul with a ratio of 1:9.

Metrics. We follow previous work [41, 74] and evaluate the
results by Precision (P), Recall (R), and F1.

3.2.3 Assertion Generation. Assertion Generation is the task of
automatically generating meaningful assert statements for unit

5

Table 1: Experimental results on code summarization. “*” denotes statistical significance in comparison to the base models (i.e.,
two-sided 𝑡-test with 𝑝-value< 0.01).

Approach JCSD PCSD
BLEU-4 ROUGE-L METEOR CIDEr BLEU-4 ROUGE-L METEOR CIDEr

CodeBERT
Base model 13.30 26.75 8.10 0.58 17.94 32.35 9.79 0.59
+HINT(1) 14.58* 29.06* 8.74* 0.69* 18.81* 34.18* 10.52* 0.69*
+HINT(5) 14.64* 29.00* 8.87* 0.71* 18.86* 34.25* 10.87* 0.72*

CodeT5
Base model 16.67 34.28 11.39 1.05 21.13 40.27 15.69 1.22
+HINT(1) 18.32* 35.49* 12.36* 1.22* 22.33* 41.42* 16.31* 1.35*
+HINT(5) 18.48* 35.63* 12.29* 1.24* 22.55* 41.67* 16.21* 1.36*

UniXcoder
Base model 17.16 32.56 11.05 1.11 22.42 35.84 15.38 1.31
+HINT(1) 18.90* 35.16* 12.38* 1.28* 23.77* 41.67* 16.64* 1.48*
+HINT(5) 19.79* 35.83* 13.12* 1.36* 23.98* 41.93* 16.83* 1.50*

tests. It can reduce the manual efforts in writing test cases and
facilitate faster detection and diagnosis of software failures [46, 72].

Datasets. For assertion generation, we follow previous work [46,
72] and use the ATLAS dataset [67]. It contains 188,154 real-world
test assertions obtained from open-source projects in GitHub. The
dataset is composed of eight categories of assertions, and each
sample in ATLAS is comprised of a focal method and a test method
which serve as the context for generating a single assertion for the
given test method. We use the original partition of ATLAS and split
it into three subsets: training, validation, and test, in an 8:1:1 ratio.
The construction of an unlabeled dataset for assertion generation
is also the same as the above two tasks. We randomly extract 90%
of the training data for the construction of the unlabeled dataset
and use the remaining data as the labeled dataset.

Metrics.We follow previous work [49, 72] in this field and use
Exact Match (EM), Longest Common Subsequence (LCS), and Edit
Distance (ED) as evaluation metrics.

3.3 Baselines
We evaluate the performance of HINT by building it on the top
of three popular open-source pre-trained code models, namely
CodeBERT [14], CodeT5 [64], and UniXcoder [20]. CodeBERT is
a representative pre-trained code model that is pre-trained with
six programming languages and uses Masked Language Modeling
and Replace Token Detection as pre-trained tasks. CodeT5 is a
sequence-to-sequence pre-trained model which involves two code-
related pre-training objectives: identifier tagging and masked iden-
tifier prediction. It achieves state-of-the-art performance in many
sequence generation tasks. UniXcoder is a unified cross-modal
pre-trained model which incorporates code semantic and syntax
information from AST. It is pre-trained with two new pre-training
tasks multi-modal contrastive learning and cross-modal generation
to learn code fragment representation. These models are all pre-
trained on CodeSearchNet [31] and CodeT5 is also pre-trained with
C/CSharp code snippets from BigQuery [4].

3.4 Implementation Details
We reproduce the results of all pre-trained models based on the
official repositories released by the model authors. In order to fa-
cilitate a fair comparison, we ensure that the hyperparameters

such as training epochs and learning rates for the models with and
without HINT are exactly the same. In our experiments, we set 𝜇
and 𝑡 to 0.5 and 0.4, respectively. The maximum iteration is set to
five. To determine the percentage of selected samples, we tune the
threshold 𝐾 in 10, 15, 20, 25, 30, or 35 and select the best results
for different datasets. Our rationale for hyperparameter selection is
discussed in Section 4.3. When applying our pseudo-labeled data se-
lection methods to the classification task, we conduct Algorithm 1
for each class respectively and balance the class distribution by
random down-sampling [5]. All the experiments are conducted on
an Ubuntu 20.04 server with an Intel Xeon Platinum 8276 CPU, and
4 Nvidia Tesla A100 GPUs which have 40 GB graphic memory.

4 EXPERIMENTAL RESULTS
4.1 RQ1: Performance Evaluation
In this section, we evaluate the effectiveness of HINT on three code
intelligence tasks including code summarization, defect detection,
and assertion generation. We present the results of HINT on the
first iteration and the best results of HINT on all the five iterations,
namely HINT(1) and HINT(5). The results are displayed in Table 1-3.
HINT consistently improves three pre-train code models on all
the tasks and metrics. In particular, HINT achieves 15.33%, 16.50%,
and 8.98% improvements in BLEU-4, F1, and EM over the best pre-
trained model UniXcoder on the three datasets, respectively. We
detail the results on each task respectively as below.

Code Summarization. As shown in Table 1, HINT can signifi-
cantly improve the performance of different existing pre-trained
code models on all datasets and metrics even with only one itera-
tion. For example, HINT(1) improves the BLEU-4 score of CodeT5 by
9.90% and 5.68% on two datasets, respectively.Meanwhile, compared
with the most powerful pre-trained model UniXcoder, HINT(1) can
still achieve consistent improvement, e.g., improving UniXcoder on
JCSD dataset by 10.14%, 12.04%, 7.99%, and 15.32% with respect to
BLEU-4, METEOR, ROUGE-L, and CIDEr, respectively. This indi-
cates that HINT is effective in leveraging the unlabeled data and
benefits the strong task-agnostic pre-trained code models in the
downstream tasks.

Defect Detection. Table 2 presents the results of defect detec-
tion. We can observe consistent improvement on overall perfor-
mance as in the defect detection task: HINT(5) improves the F1 of

6

Table 2: Experimental results on defect detection. Statistical
significance is not applicable to these metrics [10].

Approach Precision Recall F1

CodeBERT
Base model 29.64 17.63 22.11
+HINT(1) 30.81 21.52 25.34
+HINT(5) 32.09 22.36 26.35

CodeT5
Base model 31.38 20.32 24.66
+HINT(1) 36.79 22.36 27.81
+HINT(5) 37.66 22.36 28.06

UniXcoder
Base model 31.30 17.63 22.55
+HINT(1) 33.28 20.96 25.73
+HINT(5) 32.04 22.26 26.27

Table 3: Experimental results on assertion generation. “*”
denotes statistical significance in comparison to the base
models (i.e., two-sided 𝑡-test with 𝑝-value< 0.01).

Approach EM LCS ED

CodeBERT
Base model 31.82 65.99 21.68
+HINT(1) 37.75* 69.46* 19.05*
+HINT(5) 38.58* 69.48* 19.20*

CodeT5
Base model 43.64 72.56 20.30
+HINT(1) 46.53* 74.32* 18.47*
+HINT(5) 47.66* 75.22* 18.17*

UniXcoder
Base model 43.64 72.67 17.82
+HINT(1) 47.13* 74.72* 16.61*
+HINT(5) 47.56* 74.76* 16.21*

three pre-trainedmodels by 19.18%, 13.79%, and 16.50%, respectively.
This indicates that HINT can help pre-trained models to capture
the patterns of vulnerable code snippets. Besides, by comparing
the results of HINT(1) and HINT(5), we can also observe that af-
ter multiple iterations, HINT can achieve better performance, e.g.,
improving HINT(1) by 2.10% F1 in average on UniXcoder.

Assertion Generation. For assertion generation, as shown in
Table 3, we can observe that HINT can improve all baseline pre-
trained models by a large margin. On average, HINT(1) and HINT(5)
improve the EM of these models by 11.09% and 13.14%, respectively.
Specifically, on CodeBERT, HINT(5) improves its baseline by 21.24%,
5.29%, and 11.44% in terms of EM, LCS, and ED, respectively. This
indicates that the ability to better utilize the unlabeled data of HINT
is also beneficial to generate accurate assertion statements.

Answer to RQ1: HINT consistently improves three pre-trained
code models on all tasks and metrics, indicating its effectiveness
in leveraging unlabeled data for the pre-trained code models.

4.2 RQ2: Ablation Study
In this section, we explore the contribution of the hybrid pseudo-
labeled data selection and the noise-tolerant training modules pro-
posed in HINT. We use UniXcoder as the base model since it shows
the best performance in the first research question. Besides, consid-
ering the time and resource limitation of multiple iterations, we use
HINT with one iteration for the following experiments. Due to the

page limit, we only present the results on Java in this paper for code
summarization, with results for other languages and pre-trained
models presented on our GitHub repository [26].

4.2.1 Impact of hybrid pseudo-labeled data selection. We compare
HINT with four other data selection methods including Random
selection, HINT w/o retrieval-based selection, HINT w/o loss-based
selection, and HINT w/o data selection. In HINT w/o loss-based se-
lection and HINT w/o retrieval-based selection, we validate the
effectiveness of two methods in hybrid pseudo-labeled data selec-
tion respectively. In HINT w/o data selection, we remove the whole
data selection process and directly use all the generated pseudo-
labeled data, which aims at verifying the benefit of data selection. In
Random selection, we randomly select a subset from pseudo-labeled
data that has the same size as the subset selected by HINT. This is
usually used in controlled experiments to eliminate the potential
confounding effect of dataset size [56]. The experimental results
are presented in Table 4.

Loss-based selection.We conduct this experiment by remov-
ing the loss-based selection (Line 4-5, 13-14 in Algorithm 1). From
Table 4, we can observe that, without loss-based selection, the per-
formance of HINT decreases consistently on all the tasks. Specif-
ically, removing this component leads to an obvious decrease in
defect detection, with the decrease at 19.26%, 11.02%, and 14.42%
regarding Precision, Recall, and F1, respectively. This demonstrates
the benefits of removing the noisy data by the training loss.

Retrieval-based selection. We conduct this experiment by
removing the retrieval-based selection (Line 9-11 in Algorithm 1).
As can be seen in Table 4, excluding the retrieval-based selection
process leads to a consistent drop in all tasks and metrics. The
results demonstrate the effectiveness of involving the retrieval-
based strategy for data selection.

Data selection and Random selection. As shown in Table 4,
the model suffers from a large degradation after removing the data
selection procedure. Specifically, on defect detection, the F1 of using
all pseudo-labeled data is only 22.29, much lower than the results of
our method, i.e., 25.73. The performance of random selection is even
worse. For example, on assertion generation, random selection has a
decrease of 3.95%, 1.43%, and 2.95% with respect to EM, LCS, and ED,
respectively, indicating the importance of the data selection process
in HINT. This also demonstrates that directly using pseudo-labeling
cannot achieve promising results on code intelligence tasks.

4.2.2 Impact of noise-tolerant training. In this section, we validate
the effectiveness of two components of the noise-tolerant training
module, i.e., noise-tolerant loss function and consistency regular-
ization.

Noise-tolerant loss function. We conduct this experiment by
removing the noise tolerant loss in Equation 4, i.e., directly using
the cross entropy loss. From Table 4, we can observe that removing
the noise-tolerant loss results in a performance decrease in the vast
majority of cases. For example, on defect detection, HINT without
the noise-tolerant loss suffers from a decrease of 4.47% in terms
of F1. This shows the importance of using noise-tolerant loss to
mitigate the negative impact of errors in pseudo labels on the model
performance.

Consistency regularization.We conduct this experiment by
removing the noise tolerant loss in Equation 4, i.e., only use the first

7

Table 4: Ablation study of HINT. Best and second best results are marked in bold and underline respectively.

Approach Code Summarization Defect Detection Assertion Generation
BLEU-4 ROUGE-L METEOR CIDEr Precision Recall F1 EM LCS ED

UniXcoder+HINT 18.90 35.16 12.38 1.28 33.28 20.96 25.73 47.13 74.72 16.61
Random selection 18.34 34.11 11.70 1.23 34.39 16.14 21.97 45.27 73.65 17.10
-w/o loss-based selection 18.54 34.09 12.34 1.24 26.87 18.65 22.02 45.55 73.96 17.10
-w/o retrieval-based selection 18.71 34.91 12.21 1.26 32.33 19.94 24.67 45.03 73.50 17.16
-w/o data selection 18.27 34.44 12.03 1.21 34.71 16.42 22.29 47.03 74.64 16.65
-w/o noise tolerant loss 18.93 34.96 12.26 1.29 33.02 19.57 24.58 46.64 74.46 16.56
-w/o consistency regularization 18.78 35.03 12.40 1.27 33.82 19.29 24.57 46.81 74.55 16.70

Table 5: Experimental results on cross-domain scenario. “*” denotes statistical significance in comparison to the base models
(i.e., two-sided 𝑡-test with 𝑝-value< 0.01).

Approach Python→ Java Java→ Python
BLEU-4 ROUGE-L METEOR CIDEr BLEU-4 ROUGE-L METEOR CIDEr

CodeBERT 9.98 20.01 4.99 0.21 12.65 22.35 7.02 0.25
CodeBERT+HINT 13.82* 27.71* 8.10* 0.60* 16.14* 30.33* 9.89* 0.58*
CodeT5 7.75 12.55 7.12 0.29 14.81 30.59 9.66 0.84
CodeT5+HINT 14.09* 22.51* 9.28* 0.88* 16.85* 33.70* 10.77* 1.07*
UniXcoder 12.68 26.03 8.33 0.66 13.18 20.94 10.70 0.64
UniXcoder+HINT 16.33* 32.22* 10.54* 1.03* 17.26* 28.28* 13.14* 0.97*

term in Equation 4. As can be seen in Table 4, removing the adaptive
regularization also leads to a drop in most tasks and metrics. Specif-
ically, removing consistency regularization leads to a decrease of
0.63%, 4.51%, and 0.68% on three tasks regarding BLEU-4, F1, and
EM, respectively, indicating the effectiveness of providing reliable
training objectives for leveraging the pseudo-labeled data.

Answer to RQ2: All components in hybrid pseudo-labeled data
selection module and noise-tolerant training module demonstrate
a positive effect on the performance of HINT.

4.3 RQ3: Evaluation on Cross-domain Scenario
In some programming languages, there is often a shortage of train-
ing data. For the data-limited scenarios, transfer learning is a popu-
lar solution which transfers the knowledge of similar domains with
sufficient data to the target domains [42, 61]. In this section, we
conduct experiments to study the effectiveness of HINT in cross-
domain scenarios, in which the model is trained on the source
domain and tested on the target domain with a different program-
ming language. We use the code summarization task for evaluation
as it contains two kinds of programming language. Specifically, we
first train a model on the Java/Python dataset as the source do-
main and then evaluate its performance on the test set of the other
(Python/Java) dataset as the target domain. As shown in Table 5,
HINT can improve the performance of pre-trained code models in
the cross-domain scenario by a large margin. Specifically, HINT
improves the BLEU-4 score of UniXcoder by 28.79% and 30.96% on
Java to Python and Python to Java, respectively, indicating that
HINT can effectively utilize the knowledge in those unlabeled data

45.50

46.00

46.50

47.00

47.50

10% 15% 20% 25% 30% 35%

EM

(a) Assertion generation.

24.00

24.50

25.00

25.50

26.00

10% 15% 20% 25% 30% 35%
F1

(b) Defect detection.

18.75

18.80

18.85

18.90

18.95

10% 15% 20% 25% 30% 35%

BL
EU

(c) Code summarization (UniX-
coder).

14.00

14.15

14.30

14.45

14.60

10% 15% 20% 25% 30% 35%

BL
EU

(d) Code summarization (Code-
BERT).

Figure 4: Parameter analysis on threshold 𝐾 .

by pseudo-labeling. This also shows HINT’s ability to enhance pre-
trained code models in new programming languages, regardless of
any disparities in their data distributions.

Answer to RQ3: HINT can substantially boost the performance
of pre-trained code models in cross-domain scenarios where no
annotated data exist in the target domain.

8

18.70
18.80
18.90
19.00

0 0.25 0.5 0.75 1

BL
EU

-4

46.50
46.75
47.00
47.25

0 0.25 0.5 0.75 1

EM

24.00
24.70
25.40
26.10

0 0.25 0.5 0.75 1

F1

46.50
46.75
47.00
47.25

0.2 0.3 0.4 0.5

EM

24.00
24.70
25.40
26.10

0.2 0.3 0.4 0.5

F1

18.70
18.80
18.90
19.00

0.2 0.3 0.4 0.5

BL
EU

-4

Defect DetectionCode Summarization Assertion Generation

(a) Analysis of the parameter t (b) Analysis of the parameter μ

Figure 5: Parameter analysis on 𝑡 and 𝜇.

17.0

18.0

19.0

20.0

0 1 2 3 4 5 6

B
LE

U

(a) Code sumamrization (JCSD).

22.0

22.8

23.6

24.4

0 1 2 3 4 5 6

B
LE

U

(b) Code sumamrization (PCSD).

22.0

23.5

25.0

26.5

0 1 2 3 4 5 6

F1

(c) Defect detection.

43.5

45.0

46.5

48.0

0 1 2 3 4 5 6

EM

(d) Assertion generation.

Figure 6: Performance on each Iteration.

4.4 RQ4: Parameter Analysis
In this section, we study the impact of four parameters on the per-
formance of HINT, including the threshold 𝐾 in loss-based data
selection, the edit distance threshold 𝑡 in retrieval-based data selec-
tion, the weight of consistency regularization 𝜇, and the iteration
number 𝐼 . Due to the page limitation, we only present the results
of UniXcoder and JCSD dataset for 𝑡 and 𝜇 on code summarization,
with results for other languages and pre-trained models presented
on our GitHub repository [26].

The threshold 𝐾 in loss-based data selection. We conduct
experiments to evaluate howHINT performs under different thresh-
olds, i.e., 10%, 15%, 20%, 25%, 30%, and 35%. The larger the𝐾 is set to,
the more the pseudo labeled samples will be selected. As shown in
Figure 4, the model performance shows a similar trend along with
the increase of 𝐾 on all pre-trained code models and tasks. HINT
first increases and achieves its peak, and then sharply descends with
a larger 𝐾 . Larger 𝐾 has the risk of involving more noisy data while
smaller 𝐾 might be too strict and filter many high-quality sam-
ples. Besides, we can find that the optimal value of 𝐾 for different
models and tasks varies a lot. For example, on code summarization,

UniXcoder achieves the best performance when 𝐾 is set to 25%,
while the optimal value for CodeBERT is 10%. We suggest that it is
because the capability of the base model on each task is different.
Specifically, the performance of UniXcoder on code summarization
is very strong, i.e. achieving 17.16 BLEU-4 on the Java dataset, while
for CodeBERT, its performance on the Java dataset is only 13.30.
The poorer the performance of the based model is, the lower the
quality of pseudo-labeled data is. Therefore, when applying HINT
on different pre-trained code models, a relatively larger 𝐾 can be
used on a stronger base model and vice versa.

The edit distance threshold 𝑡 . We study the effect of 𝑡 , as
introduced in Section 2.3, by varying it from 0.2 to 0.5. As shown
in Figure 5 (a), for both defect detection and assertion generation,
HINT achieves the best performance when 𝑡 is set to 0.4. Larger
or lower values do not give better results. On code summarization,
setting 𝑡 to 0.5 only performs slightly better than 0.4. This indicates
that setting 𝑡 to 0.4 is more appropriate for HINT. Thus, we set 𝑡 to
0.4 in this work.

The consistency regularizationweight 𝜇. To study the impact
of 𝜇 in HINT, we vary it from 0 to 1 and show the results in Figure 5
(b). Larger 𝜇 tends to give a stronger regularization to the model.
For both defect detection and assertion generation, HINT achieves
the best performance when 𝜇 is set to 0.5. However, on code summa-
rization, increasing 𝜇 leads to a decrease in performance. Therefore,
we set 𝜇 to 0.5 to enable HINT to produce relatively better results
on different tasks.

The iteration number 𝐼 .We evaluate the performance of HINT
on different iterations by setting the maximum iteration to six, and
present the results in Figure 6. Iteration 0 represents the baseline
results that do not use HINT. From the results, we can observe
that HINT can get better results with the growth of iterations and
achieves the peak at around the fifth iteration, indicating that HINT
can achieve self-improvement by leveraging the unlabeled data.

Answer to RQ4: Different settings of hyperparameters can in-
fluence the performance of HINT on different tasks. Our hyper-
parameter settings achieve relatively better results.

5 DISCUSSION
5.1 What Makes HINT Work?
5.1.1 HINT can better utilize the unlabeled data for downstream
tasks. To better understand howpseudo-labeling benefits pre-trained
code models, we give two examples in Figure 7 and Figure 8. The
case in Figure 7 shows a Java code snippet with summaries gen-
erated by UniXcoder and UniXcoder+HINT. From the example,
we can see that the summary generated by UniXcoder only con-
tains a simple description without a detailed introduction to the
parameters. HINT can avoid this problem and give a more precise
prediction since it can learn from more ⟨unlabeled data, pseudo
label⟩ pairs that have a similar summary pattern. We also present
another case in the assertion generation task in Figure 8. The as-
sertion statement generated by UniXcoder mistakenly predicts the
assertion type as “assertionTrue” since it does not learn the meaning
of “empty” well. However, since UniXcoder+HINT uses the code
snippet in Figure 8 as training data which has the same assertion

9

types as this test sample, it can correctly predict the assertion type
in Figure 8.

5.1.2 HINT can select pseudo-labeled data with higher quality. An-
other advantage of HINT comes from our data selection process.
HINT can select high-quality pseudo labels for model training. As
shown in Figure 1 and 2, HINT identifies low-quality pseudo-labeled
data by employing both the implicit loss-based selection and ex-
plicit retrieval-based selection. To further validate this, we calculate
the edit distance of the pseudo labels generated by UniXcoder to the
ground truth labels of the unlabeled dataset, and use the average
distance on the whole selected dataset to measure the quality of
our selected dataset. Specifically, on JCSD the average edit distance
of all pseudo labels without filtering is 53.70, which is much higher
than the dataset selected by HINT, i.e., 37.16. The results on as-
sertion generation are the same. HINT achieves an average edit
distance of 5.34 while the average edit distance of all pseudo labels
is 17.86. This further shows that HINT can filter noisy data and
select pseudo-labeled data with higher quality for model training.

5.2 Limitation of HINT
To gain a deeper understanding of HINT’s behavior and limitations,
we further investigate cases where HINT fails to make accurate
predictions and conclude two possible limitations of HINT.

The first limitation pertains to HINT’s inability to introduce
additional knowledge and rectify factual knowledge errors. From
the example in the above Figure 9, UniXcoder misinterprets the
term “bucket_acl” as the name of a bucket and fails to rectify this
misunderstanding even after additional training on pseudo-labeled
data. This shows that without external feedback HINT is hard to
identify and rectify the problem on factual knowledge, which also
aligns with recent findings on the limited self-correction ability of
large language models [29]. To potentially alleviate this limitation,
integrating factual knowledge into pre-trained code models via
the interaction with a knowledge base or search engine could be
further studied.

The second limitation of HINT is the reliance on the capacity
of the base model. HINT aims at autonomously synthesizing more
labeled data for model training. However, when the base model
lacks sufficient capacity, the benefits of additional training data are
diminished. As depicted in the Figure 10, despite the presence of
training sample in the pseudo-labeled data illustrating the usage
of “assertEquals”, UniXcoder still fails to learn this and erroneously
generates “assertThat” for the given function. We attribute this
limitation to the inherent constraints of the model’s capacity and
believe that it could be mitigated by using more advanced pre-
trained code models.

5.3 Threats to Validity
We identify four main threats to validity of our study:

(1) The selection of code intelligence tasks. We evaluate
HINT on three commonly-used code intelligence tasks: code
summarization, defect detection, and assertion generation.
We aim to expand the validation of HINT in the future by
testing it on more code intelligence tasks.

(2) The selection of pre-trained code models. In this pa-
per, we select three popular open-source pre-trained code

//Code from the test set:
public Exchange(final Request request, final Origin origin){
 this.currentRequest = request;
 this.origin = origin;
 this.timestamp = System.currentTimeMillis();
}

Summary generated by Unixcoder:
constructs a new exchange object.
Summary generated by Unixcoder+HINT:
constructs an exchange with the given request and origin.
Ground truth summary:
creates a new exchange with the specified request and origin.

Code from the Unlabeled dataset:
public ScannerException(ErrorMessages message, int line){
 this(null, ErrorMessages.get(message), message, line, -_NUM);
}

Pseudo-labeled summary:
creates new scannerexception with message and line number.

Figure 7: Case study on the code summarization task. The
green texts highlight the similar part between the prediction
of UniXcoder+HINT and pseudo-labeled summary.

Assertion generated by Unixcoder:
org.junit.Assert.assertTrue(fixture.hasSubscriptionId());
Assertion generated by Unixcoder+HINT:
org.junit.Assert.assertFalse(fixture.hasSubscriptionId());
Ground truth assertion:
org.junit.Assert.assertFalse(fixture.hasSubscriptionId());

Code from the Unlabeled dataset:
hasNext_on_an_empty_collection__returns_false(){
 com.artemis.utils.IntBagIterator intBagIterator = new
com.artemis.utils.IntBagIterator(new com.artemis.utils.IntBag(99));
 "<AssertPlaceHolder>";
}
hasNext(){
 return (this.cursor)<(size);
}

Pseudo-labeled assertion:
org.junit.Assert.assertFalse(intBagIterator.hasNext());

//Code from the test set:
hasSubscriptionId_emptyID(){
 when(fixture.getSubscriptionId()).thenReturn("");
 "<AssertPlaceHolder>";
}
hasSubscriptionId(){
 return
((getSubscriptionId())!=null)&&(!(getSubscriptionId().isEmpty()));
}

Figure 8: Case study on the assertion generation task. The
red and green texts highlight the difference in predictions
made by UniXcoder and UniXcoder+HINT.

models CodeBERT, CodeT5, and UniXcoder for evaluation.
These models are all representative and have shown state-of-
the-art performance on benchmarks [20, 64]. Recent studies
propose pre-trained models with much larger sizes such as
ChatGPT [6] and GPT-4 [51] which also show impressive pro-
gramming ability. However, since the weight of these models
is not publicly available, we cannot evaluate our framework
on those large language models. Besides, our framework is
flexible and easy to be applied to different pre-trained code
models.

(3) The selection of languages. The datasets that we choose
in experiments only contain two kinds of languages, i.e., Java
and Python. They are both popular languages. Additionally,
our method is language-agnostic and can be easily adapted
to other programming languages.

10

Code from the test set:
def print_bucket_acl_for_user(bucket_name, user_email):
 storage_client = storage.Client()
 bucket = storage_client.bucket(bucket_name)
 bucket.acl.reload()
 roles = bucket.acl.user(user_email).get_roles()
 print roles

Summary generated by Unixcoder:
print the current users name for the specified user.
Summary generated by Unixcoder+HINT:
prints the name for the specified bucket and user.
Ground truth summary:
prints out a buckets access control list for a given user.

Figure 9: Error case on the code summarization task.

Focal-test from test set:
testIdAccessor(){
 java.lang.Long id = 3L; instance.setId(id);
 "<AssertPlaceHolder>";}
getId(){
 return id;
}

Assertion generated by Unixcoder+HINT:
org.junit.Assert.assertThat(id, instance.getId());
Ground truth assertion:
org.junit.Assert.assertEquals(id, instance.getId());

Focal-test from Unlable dataset:
testGetName(){
 java.lang.String id = "id"; togglePanelItem.setId(id);
 "<AssertPlaceHolder>";}
getId(){
 return id;
}

Generated pseudo label:
org.junit.Assert.assertEquals(id, togglePanelItem.getId());

Figure 10: Error case on the assertion generation task.

(4) The limitation of selected metrics. We evaluate HINT
using a variety of commonly used metrics for different tasks.
However, these metrics are mainly used for evaluating accu-
racy and may not reflect other evaluation aspects such as the
diversity of generated code summaries. In the future, we plan
to conduct human studies to provide a more comprehensive
evaluation.

6 RELATEDWORK
6.1 Code Intelligence
In this section, we introduce related neural code models in three
tasks that are covered in our work, including both non-pre-trained
code models and pre-trained code models,

6.1.1 Non-pre-trained code models. Iyer et al. [32] formulate code
summarization as a neural machine translation (NMT) problem and
propose CODE-NN to translate code snippets to code summaries.
For better utilizing code structure information, many works [15, 39]
in code summarization also incorporate code-related graphs and
GNN to boost performance. Recent studies [58, 69] further incorpo-
rate various code structure information into the Transformer model
and achieve promising performance. As for vulnerability detection,
many deep learning-based methods [41, 74] are proposed. For ex-
ample, Devign [74] is proposed to learn the various vulnerability
characteristics with a composite code property graph and graph
neural network. IVDetect [41] uses the program dependency graph
and feature attention GCN to detect vulnerabilities in the code.
In assertion generation, recent studies adopt the T5 transformer

model and achieve promising results [45, 46]. Yu et al. [72] further
involve information retrieval to generate more accurate assertion
statements.

6.1.2 Pre-trained code models. Recently, a series of pre-trained
code models [14, 21, 64] are proposed and achieve state-of-the-
art performance on various code intelligence tasks such as code
summarization and defect detection. CodeBERT [14] is a pioneer
work that is pre-trained with six programming languages and uses
Masked Language Modeling and Replace Token Detection as pre-
trained tasks. CodeT5 [64] is a sequence-to-sequence pre-trained
model which involves two code-related pre-training objectives:
identifier tagging and masked identifier prediction. UniXcoder [20]
is a unified cross-modal pre-trained model which incorporates code
semantic and syntax information from AST.

6.2 Pseudo-labeling
Pseudo-labeling is one of the most widely-used semi-supervised
learning methods. It has been applied to different kinds of tasks
such as image classification [40, 70], machine translation [24, 34],
and dialog systems [47]. To further boost the performance of self-
training in sequence generation tasks, He et al. [24] and Mi et
al. [47] explore the data augmentation technique and use random
noise or gradient-based data augmentation to improve the gener-
alization of the student model. Another line of work [8, 34, 66]
focus on the data selection procedure and propose to select high-
quality pseudo labeled data based on the uncertainty or the model
confidence, respectively. However, these methods mainly filter the
pseudo-labeled data only with training loss and do not take the
noisy data problem into consideration. Different from them, we
propose a hybrid data selection method with the training loss and
a retrieval-based method based on the code reuse. Additionally, we
also propose a noise-tolerant training module to further mitigate
the influence of noise on model performance.

7 CONCLUSION
In this paper, we investigate leveraging large-scale unlabeled datasets
for effectively tuning pre-trained code models by pseudo-labeling.
We propose a method called HINT which consists of two main
components, the hybrid pseudo-labeled data selection module and
the noise-tolerant training module. Extensive experiments on three
code intelligence tasks show that HINT can be built on a variety of
pre-trained models and provide complementary benefits for them.
Our replication package including our source code, experimental
data, and detailed experiment results is at [26].

ACKNOWLEDGMENT
The work described in this paper was supported by the Research
Grants Council of the Hong Kong Special Administrative Region,
China (No. CUHK 14206921 of the General Research Fund). The
work was also supported by Natural Science Foundation of Guang-
dong Province (Project No. 2023A1515011959), Shenzhen Basic Re-
search (General Project No. JCYJ20220531095214031), Shenzhen
International Cooperation Project (No. GJHZ20220913143 008015),
and the Major Key Project of PCL (Grant No.PCL2022A03).

11

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.

A Transformer-based Approach for Source Code Summarization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, ACL
2020. Association for Computational Linguistics, 4998–5007.

[2] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for
MT Evaluation with Improved Correlation with Human Judgments. In Proceed-
ings of the Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization@ACL 2005, Ann Arbor, Michigan, USA, June 29,
2005. Association for Computational Linguistics, 65–72.

[3] Antonio Valerio Miceli Barone and Rico Sennrich. 2017. A parallel corpus of
Python functions and documentation strings for automated code documentation
and code generation. arXiv preprint arXiv:1707.02275 (2017).

[4] BigQuery. 2022. BigQuery. https://console.cloud.google.com/marketplace/details/
github/github-repos.

[5] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and
machine learning. Vol. 4. Springer.

[6] ChatGPT. 2022. ChatGPT. https://openai.com/blog/chatgpt.
[7] Jie-Cherng Chen and Sun-Jen Huang. 2009. An empirical analysis of the impact

of software development problem factors on software maintainability. J. Syst.
Softw. 82, 6 (2009), 981–992.

[8] Yiming Chen, Yan Zhang, Chen Zhang, Grandee Lee, Ran Cheng, and Haizhou
Li. 2021. Revisiting Self-training for Few-shot Learning of Language Model. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11
November, 2021. Association for Computational Linguistics, 9125–9135.

[9] Matteo Ciniselli, Luca Pascarella, Emad Aghajani, Simone Scalabrino, Rocco
Oliveto, and Gabriele Bavota. 2023. Source Code Recommender Systems: The
Practitioners’ Perspective. In 45th IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 2161–2172.

[10] William Jay Conover. 1999. Practical nonparametric statistics. Vol. 350. john wiley
& sons.

[11] Roland Croft, Muhammad Ali Babar, and M. Mehdi Kholoosi. 2023. Data Quality
for Software Vulnerability Datasets. In 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE,
121–133.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, 4171–4186.

[13] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries. In MSR ’20: 17th
International Conference on Mining Software Repositories, Seoul, Republic of Korea,
29-30 June, 2020. ACM, 508–512.

[14] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020 (Findings of ACL,
Vol. EMNLP 2020). Association for Computational Linguistics, 1536–1547.

[15] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2019. Structured
Neural Summarization. In 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

[16] Shuzheng Gao, Cuiyun Gao, Yulan He, Jichuan Zeng, Lunyiu Nie, Xin Xia, and
Michael R. Lyu. 2023. Code Structure-Guided Transformer for Source Code
Summarization. ACM Trans. Softw. Eng. Methodol. 32, 1 (2023), 23:1–23:32.

[17] Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang,
and Michael R. Lyu. 2023. What Makes Good In-Context Demonstrations for
Code Intelligence Tasks with LLMs?. In 38th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2023, Luxembourg, September 11-15, 2023.
IEEE, 761–773.

[18] ShuzhengGao, Hongyu Zhang, CuiyunGao, and ChaozhengWang. 2023. Keeping
Pace with Ever-Increasing Data: Towards Continual Learning of Code Intelligence
Models. In 45th IEEE/ACM International Conference on Software Engineering, ICSE
2023, Melbourne, Australia, May 14-20, 2023. IEEE, 30–42.

[19] Golara Garousi, Vahid Garousi-Yusifoglu, Günther Ruhe, Junji Zhi, Mahmood
Moussavi, and Brian Smith. 2015. Usage and usefulness of technical software
documentation: An industrial case study. Inf. Softw. Technol. 57 (2015), 664–682.

[20] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Pro-
ceedings of the 60th AnnualMeeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022. Association
for Computational Linguistics, 7212–7225.

[21] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,

and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. In 9th International Conference on Learning Representations, ICLR 2021.
OpenReview.net.

[22] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W.
Tsang, and Masashi Sugiyama. 2018. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada. 8536–8546.

[23] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Yuan Yao, Ao Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin,
Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie
Tang, Ji-RongWen, Jinhui Yuan, Wayne Xin Zhao, and Jun Zhu. 2021. Pre-trained
models: Past, present and future. AI Open 2 (2021), 225–250.

[24] Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. 2020. Revisiting
Self-Training for Neural Sequence Generation. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

[25] Jordan Henkel, Goutham Ramakrishnan, Zi Wang, Aws Albarghouthi, Somesh
Jha, and Thomas W. Reps. 2022. Semantic Robustness of Models of Source Code.
In IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2022, Honolulu, HI, USA, March 15-18, 2022. IEEE, 526–537.

[26] HINT. 2023. Replication package of HINT. https://github.com/shuzhenggao/
HINT.

[27] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing
Source Code with Transferred API Knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden. ijcai.org, 2269–2275.

[28] Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Thomas Zimmer-
mann. 2022. Practitioners’ Expectations on Automated Code Comment Gener-
ation. In 44th IEEE/ACM 44th International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 1693–1705.

[29] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei
Yu, Xinying Song, and Denny Zhou. 2023. Large Language Models Cannot
Self-Correct Reasoning Yet. CoRR abs/2310.01798 (2023).

[30] Jinchi Huang, Lie Qu, Rongfei Jia, and Binqiang Zhao. 2019. O2U-Net: A Simple
Noisy Label Detection Approach for Deep Neural Networks. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019. IEEE, 3325–3333.

[31] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. CoRR abs/1909.09436 (2019).

[32] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing Source Code using a Neural Attention Model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, ACL 2016.
The Association for Computer Linguistics.

[33] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph Gonzalez, and Ion
Stoica. 2021. Contrastive Code Representation Learning. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021. Association
for Computational Linguistics, 5954–5971.

[34] Wenxiang Jiao, Xing Wang, Zhaopeng Tu, Shuming Shi, Michael R. Lyu, and
Irwin King. 2021. Self-Training Sampling with Monolingual Data Uncertainty
for Neural Machine Translation. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021. Association for Computational Linguistics,
2840–2850.

[35] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE Trans. Software Eng. 28, 7 (2002), 654–670.

[36] Pei Ke, Haozhe Ji, Zhenyu Yang, Yi Huang, Junlan Feng, Xiaoyan Zhu, and Minlie
Huang. 2022. Curriculum-Based Self-Training Makes Better Few-Shot Learners
for Data-to-Text Generation. In Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022.
ijcai.org, 4178–4184.

[37] Miryung Kim, Vibha Sazawal, David Notkin, and Gail C. Murphy. 2005. An
empirical study of code clone genealogies. In Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2005, Lisbon, Portugal,
September 5-9, 2005. ACM, 187–196.

[38] Solomon Kullback. 1997. Information theory and statistics. Courier Corporation.
[39] Alexander LeClair, SakibHaque, LingfeiWu, and CollinMcMillan. 2020. Improved

Code Summarization via a Graph Neural Network. In ICPC ’20: 28th International
Conference on Program Comprehension, Seoul, Republic of Korea, July 13-15, 2020.
ACM, 184–195.

[40] Dong-Hyun Lee et al. 2013. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. InWorkshop on challenges
in representation learning, ICML, Vol. 3. 896.

12

https://console.cloud.google.com/marketplace/details/github/github-repos
https://console.cloud.google.com/marketplace/details/github/github-repos
https://openai.com/blog/chatgpt
https://github.com/shuzhenggao/HINT
https://github.com/shuzhenggao/HINT

[41] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Vulnerability detection with
fine-grained interpretations. In ESEC/FSE ’21: 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021. ACM, 292–303.

[42] Zhiming Li, Xiaofei Xie, Haoliang Li, Zhengzi Xu, Yi Li, and Yang Liu. 2022.
Cross-lingual transfer learning for statistical type inference. In ISSTA ’22: 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual
Event, South Korea, July 18 - 22, 2022. ACM, 239–250.

[43] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74–81.

[44] Christopher DManning. 2009. An introduction to information retrieval. Cambridge
university press.

[45] Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Simone Scalabrino,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2022. Using Transfer
Learning for Code-Related Tasks. IEEE Transactions on Software Engineering
(2022).

[46] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the
usage of text-to-text transfer transformer to support code-related tasks. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
336–347.

[47] Fei Mi, Wanhao Zhou, Lingjing Kong, Fengyu Cai, Minlie Huang, and Boi Faltings.
2021. Self-training Improves Pre-training for Few-shot Learning in Task-oriented
Dialog Systems. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 7-11 November, 2021. Association for Computational Linguistics, 1887–
1898.

[48] Fangwen Mu, Xiao Chen, Lin Shi, Song Wang, and Qing Wang. 2022. Automatic
Comment Generation viaMulti-Pass Deliberation. In 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2022, Rochester, MI, USA,
October 10-14, 2022. ACM, 14:1–14:12.

[49] Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023. Retrieval-Based Prompt
Selection for Code-Related Few-Shot Learning. (2023).

[50] Changan Niu, Chuanyi Li, Vincent Ng, Dongxiao Chen, Jidong Ge, and Bin Luo.
2023. An Empirical Comparison of Pre-Trained Models of Source Code. In 45th
IEEE/ACM International Conference on Software Engineering, ICSE 2023, Melbourne,
Australia, May 14-20, 2023. IEEE, 2136–2148.

[51] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023).
[52] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a

Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, July 6-12,
2002, Philadelphia, PA, USA. ACL, 311–318.

[53] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[54] Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi Han, Hongyu Zhang, Dong-
mei Zhang, and Hongbin Sun. 2022. On the Evaluation of Neural Code Summa-
rization. In 44th IEEE/ACM 44th International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 1597–1608.

[55] Ensheng Shi, Yanlin Wang, Wenchao Gu, Lun Du, Hongyu Zhang, Shi Han,
Dongmei Zhang, and Hongbin Sun. 2023. CoCoSoDa: Effective Contrastive
Learning for Code Search. In 45th IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 2198–2210.

[56] Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie Wang, Ye Yang, Ge Li, Xin
Xia, and Qing Wang. 2022. Are we building on the rock? on the importance of
data preprocessing for code summarization. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022.
ACM, 107–119.

[57] Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li. 2022. On the Importance
of Building High-quality Training Datasets for Neural Code Search. In 44th
IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pitts-
burgh, PA, USA, May 25-27, 2022. ACM, 1609–1620.

[58] Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, Zheling Zhu, and Bin
Luo. 2022. AST-Trans: Code Summarization with Efficient Tree-Structured At-
tention. In 44th IEEE/ACM 44th International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. IEEE, 150–162.

[59] Amazon Mechanical Turk. 2023. Amazon Mechanical Turk. https://www.mturk.
com/.

[60] Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. 2015. CIDEr:
Consensus-based image description evaluation. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE
Computer Society, 4566–4575.

[61] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and
Michael R. Lyu. 2022. No more fine-tuning? an experimental evaluation of
prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022. ACM,

382–394.
[62] Deze Wang, Boxing Chen, Shanshan Li, Wei Luo, Shaoliang Peng, Wei Dong,

and Xiangke Liao. 2023. One Adapter for All Programming Languages? Adapter
Tuning for Code Search and Summarization. In 45th IEEE/ACM International
Conference on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20,
2023. IEEE, 5–16.

[63] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey.
2019. Symmetric Cross Entropy for Robust Learning With Noisy Labels. In 2019
IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019. IEEE, 322–330.

[64] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021. Association for Computa-
tional Linguistics, 8696–8708.

[65] YaqingWang, Quanming Yao, James T. Kwok, and LionelM. Ni. 2021. Generalizing
from a Few Examples: A Survey on Few-shot Learning. ACM Comput. Surv. 53, 3
(2021), 63:1–63:34.

[66] Zhongyuan Wang, Yixuan Wang, Shaolei Wang, and Wanxiang Che. 2022. Adap-
tive Unsupervised Self-training for DisfluencyDetection. In Proceedings of the 29th
International Conference on Computational Linguistics, COLING 2022, Gyeongju,
Republic of Korea, October 12-17, 2022. International Committee on Computational
Linguistics, 7209–7218.

[67] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. 2020. On learning meaningful assert statements for unit test cases. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing. 1398–1409.

[68] Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and Refine:
Exemplar-based Neural Comment Generation. In 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 349–360.

[69] Hongqiu Wu, Hai Zhao, and Min Zhang. 2021. Code Summarization with
Structure-induced Transformer. In Findings of the Association for Computational
Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021 (Findings of ACL,
Vol. ACL/IJCNLP 2021). Association for Computational Linguistics, 1078–1090.

[70] Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and Quoc V. Le. 2020. Self-
Training With Noisy Student Improves ImageNet Classification. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020. Computer Vision Foundation / IEEE, 10684–10695.

[71] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-
Purpose Code Generation. In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 1: Long Papers. Association for Computational Linguistics,
440–450.

[72] Hao Yu, Yiling Lou, Ke Sun, Dezhi Ran, Tao Xie, Dan Hao, Ying Li, Ge Li, and
Qianxiang Wang. 2022. Automated Assertion Generation via Information Re-
trieval and Its Integrationwith Deep learning. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022. ACM, 163–174.

[73] Zhilu Zhang and Mert R. Sabuncu. 2018. Generalized Cross Entropy Loss for
Training Deep Neural Networks with Noisy Labels. In Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. 8792–8802.

[74] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019. De-
vign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019. 10197–10207.

13

https://www.mturk.com/
https://www.mturk.com/

	Abstract
	1 Introduction
	2 Proposed Approach
	2.1 Problem Setup and Overview
	2.2 Hybrid Pseudo-labeled Data Selection
	2.3 Noise-tolerant Training
	2.4 Iterative Training

	3 EXPERIMENTAL setup
	3.1 Research Questions
	3.2 Evaluation Tasks
	3.3 Baselines
	3.4 Implementation Details

	4 Experimental Results
	4.1 RQ1: Performance Evaluation
	4.2 RQ2: Ablation Study
	4.3 RQ3: Evaluation on Cross-domain Scenario
	4.4 RQ4: Parameter Analysis

	5 Discussion
	5.1 What Makes HINT Work?
	5.2 Limitation of HINT
	5.3 Threats to Validity

	6 Related work
	6.1 Code Intelligence
	6.2 Pseudo-labeling

	7 Conclusion
	References

