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Abstract

We present a self-supervised learning approach for op-

tical flow. Our method distills reliable flow estimations

from non-occluded pixels, and uses these predictions as

ground truth to learn optical flow for hallucinated occlu-

sions. We further design a simple CNN to utilize tempo-

ral information from multiple frames for better flow estima-

tion. These two principles lead to an approach that yields

the best performance for unsupervised optical flow learn-

ing on the challenging benchmarks including MPI Sintel,

KITTI 2012 and 2015. More notably, our self-supervised

pre-trained model provides an excellent initialization for su-

pervised fine-tuning. Our fine-tuned models achieve state-

of-the-art results on all three datasets. At the time of writ-

ing, we achieve EPE=4.26 on the Sintel benchmark, outper-

forming all submitted methods.

1. Introduction

Optical flow estimation is a core building block for a va-

riety of computer vision systems [30, 8, 39, 4]. Despite

decades of development, accurate flow estimation remains

an open problem due to one key challenge: occlusion. Tra-

ditional approaches minimize an energy function to encour-

age association of visually similar pixels and regularize in-

coherent motion to propagate flow estimation from non-

occluded pixels to occluded pixels [13, 5, 6, 38]. However,

this family of methods is often time-consuming and not ap-

plicable for real-time applications.

Recent studies learn to estimate optical flow end-to-

end from images using convolutional neural networks

(CNNs) [10, 35, 15, 14, 43]. However, training fully su-

pervised CNNs requires a large amount of labeled training

data, which is extremely difficult to obtain for optical flow,

especially when there are occlusions. Considering the re-

cent performance improvements obtained when employing

hundreds of millions of labeled images [40], it is obvious

that the size of training data is a key bottleneck for optical

flow estimation.

∗Work mainly done during an internship at Tencent AI Lab.

In the absence of large-scale real-world annotations,

existing methods turn to pre-train on synthetic labeled

datasets [10, 28] and then fine-tune on small annotated

datasets [15, 14, 43]. However, there usually exists a large

gap between the distribution of synthetic data and natu-

ral scenes. In order to train a stable model, we have to

carefully follow specific learning schedules across different

datasets [15, 14, 43].

One promising direction is to develop unsupervised opti-

cal flow learning methods that benefit from unlabeled data.

The basic idea is to warp the target image towards the ref-

erence image according to the estimated optical flow, then

minimize the difference between the reference image and

the warped target image using a photometric loss [20, 37].

Such idea works well for non-occluded pixels but turns to

provide misleading information for occluded pixels. Recent

methods propose to exclude those occluded pixels when

computing the photometric loss or employ additional spa-

tial and temporal smoothness terms to regularize flow es-

timation [29, 46, 18]. Most recently, DDFlow [26] pro-

poses a data distillation approach, which employs random

cropping to create occlusions for self-supervision. Unfortu-

nately, these methods fails to generalize well for all natural

occlusions. As a result, there is still a large performance

gap comparing unsupervised methods with state-of-the-art

fully supervised methods.

Is it possible to effectively learn optical flow with oc-

clusions? In this paper, we show that a self-supervised ap-

proach can learn to estimate optical flow with any form of

occlusions from unlabeled data. Our work is based on dis-

tilling reliable flow estimations from non-occluded pixels,

and using these predictions to guide the optical flow learn-

ing for hallucinated occlusions. Figure 1 illustrates our idea

to create synthetic occlusions by perturbing superpixels. We

further utilize temporal information from multiple frames to

improve flow prediction accuracy within a simple CNN ar-

chitecture. The resulted learning approach yields the high-

est accuracy among all unsupervised optical flow learning

methods on Sintel and KITTI benchmarks.

Surprisingly, our self-supervised pre-trained model pro-

vides an excellent initialization for supervised fine-tuning.

At the time of writing, our fine-tuned model achieves the
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Figure 1. A toy example to illustrate our self-supervised learning idea. We first train our NOC-model with the classical photometric loss

(measuring the difference between the reference image (a) and the warped target image(d)), guided by the occlusion map (g). Then we

perturbate randomly selected superpixels in the target image (b) to hallucinate occlusions. Finally, we use reliable flow estimations from

our NOC-Model to guide the learning of our OCC-Model for those newly occluded pixels (denoted by self-supervision mask (i), where

value 1 means the pixel is non-occluded in (g) but occluded in (h)). Note the yellow region is part of the moving dog. Our self-supervised

approach learns optical flow for both moving objects and static scenes.

highest reported accuracy (EPE=4.26) on the Sintel bench-

mark. Our approach also significantly outperforms all pub-

lished optical flow methods on the KITTI 2012 benchmark,

and achieves highly competitive results on the KITTI 2015

benchmark. To the best of our knowledge, it is the first time

that a supervised learning method achieves such remarkable

accuracies without using any external labeled data.

2. Related Work

Classical Optical Flow Estimation. Classical variational

approaches model optical flow estimation as an energy

minimization problem based on brightness constancy and

spatial smoothness [13]. Such methods are effective for

small motion, but tend to fail when displacements are large.

Later works integrate feature matching to initialize sparse

matching, and then interpolate into dense flow maps in

a pyramidal coarse-to-fine manner [6, 47, 38]. Recent

works use convolutional neural networks (CNNs) to im-

prove sparse matching by learning an effective feature em-

bedding [49, 2]. However, these methods are often compu-

tationally expensive and can not be trained end-to-end. One

natural extension to improve robustness and accuracy for

flow estimation is to incorporate temporal information over

multiple frames. A straightforward way is to add temporal

constraints such as constant velocity [19, 22, 41], constant

acceleration [45, 3], low-dimensional linear subspace [16],

or rigid/non-rigid segmentation [48]. While these formu-

lations are elegant and well-motivated, our method is much

simpler and does not rely on any assumption of the data. In-

stead, our approach directly learns optical flow for a much

wider range of challenging cases existing in the data.

Supervised Learning of Optical Flow. One promising di-

rection is to learn optical flow with CNNs. FlowNet [10]

is the first end-to-end optical flow learning framework. It

takes two consecutive images as input and outputs a dense

flow map. The following work FlowNet 2.0 [15] stacks

several basic FlowNet models for iterative refinement, and

significantly improves the accuracy. SpyNet [35] proposes

to warp images at multiple scales to cope with large dis-

placements, resulting in a compact spatial pyramid network.
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Figure 2. Our network architecture at each level (similar to PWC-

Net [43]). ẇl denotes the initial coarse flow of level l and F̂
l de-

notes the warped feature representation. At each level, we swap

the initial flow and cost volume as input to estimate both for-

ward and backward flow concurrently. Then these estimations are

passed to layer l − 1 to estimate higher-resolution flow.

Recently, PWC-Net [43] and LiteFlowNet [14] propose to

warp features extracted from CNNs and achieve state-of-

the-art results with lightweight framework. However, ob-

taining high accuracy with these CNNs requires pre-training

on multiple synthetic datasets and follows specific training

schedules [10, 28]. In this paper, we reduce the reliance on

pre-training with synthetic data, and propose an effective

self-supervised training method with unlabeled data.

Unsupervised Learning of Optical Flow. Another inter-

esting line of work is unsupervised optical flow learning.

The basic principles are based on brightness constancy and

spatial smoothness [20, 37]. This leads to the most popular

photometric loss, which measures the difference between

the reference image and the warped image. Unfortunately,

this loss does not hold for occluded pixels. Recent studies

propose to first obtain an occlusion map and then exclude

those occluded pixels when computing the photometric dif-

ference [29, 46]. Janai et al. [18] introduces to estimate

optical flow with a multi-frame formulation and more ad-

vanced occlusion reasoning, achieving state-of-the-art un-

supervised results. Very recently, DDFlow [26] proposes

a data distillation approach to learning the optical flow of

occluded pixels, which works particularly well for pixels

near image boundaries. Nonetheless, all these unsupervised

learning methods only handle specific cases of occluded

pixels. They lack the ability to reason about the optical

flow of all possible occluded pixels. In this work, we ad-

dress this issue by a superpixel-based occlusion hallucina-

tion technique.

Self-Supervised Learning. Our work is closely related to

the family of self-supervised learning methods, where the

supervision signal is purely generated from the data itself. It

is widely used for learning feature representations from un-

labeled data [21]. A pretext task is usually employed, such

as image inpainting [34], image colorization [24], solving
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Figure 3. Data flow for self-training with multiple-frame. To esti-

mate occlusion map for three-frame flow learning, we use five im-

ages as input. This way, we can conduct a forward-backward con-

sistency check to estimate occlusion maps between It and It+1,

between It and It−1 respectively.

Jigsaw puzzles [32]. Pathak et al. [33] propose to explore

low-level motion-based cues to learn feature representations

without manual supervision. Doersch et al. [9] combine

multiple self-supervised learning tasks to train a single vi-

sual representation. In this paper, we make use of the do-

main knowledge of optical flow, and take reliable predic-

tions of non-occluded pixels as the self-supervision signal

to guide our optical flow learning of occluded pixels.

3. Method

In this section, we present our self-supervised approach

to learning optical flow from unlabeled data. To this end,

we train two CNNs (NOC-Model and OCC-Model) with

the same network architecture. The former focuses on accu-

rate flow estimation for non-occluded pixels, and the latter

learns to predict optical flow for all pixels. We distill re-

liable non-occluded flow estimations from NOC-Model to

guide the learning of OCC-Model for those occluded pix-

els. Only OCC-Model is needed at testing. We build our

network based on PWC-Net [43] and further extend it to

multi-frame optical flow estimation (Figure 2). Before de-

scribing our approach in detail, we first define our notations.

3.1. Notation

Given three consecutive RGB images It−1, It, It+1, our

goal is to estimate the forward optical flow from It to It+1.

Let wi→j denote the flow from Ii to Ij , e.g., wt→t+1 de-

notes the forward flow from It to It+1, wt→t−1 denotes

the backward flow from It to It−1. After obtaining opti-

cal flow, we can backward warp the target image to recon-

struct the reference image using Spatial Transformer Net-

work [17, 46]. Here, we use Iwj→i to denote warping Ij to

Ii with flow wi→j . Similarly, we use Oi→j to denote the

occlusion map from Ii to Ij , where value 1 means the pixel

in Ii is not visible in Ij .

In our self-supervised setting, we create the new target

image Ĩt+1 by injecting random noise on superpixels for

occlusion generation. We can inject noise to any of three

consecutive frames and even multiple of them as shown in

Figure 1. For brevity, here we choose It+1 as an example.
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(a) Reference Image (b) GT Flow (c) Our Flow (d) GT Occlusion (e) Our Occlusion

Figure 4. Sample unsupervised results on Sintel and KITTI dataset. From top to bottom, we show samples from Sintel Final, KITTI 2012

and KITTI 2015. Our model can estimate both accurate flow and occlusion map. Note that on KITTI datasets, the occlusion maps are

sparse, which only contain pixels moving out of the image boundary.

If we let It−1, It and Ĩt+1 as input, then w̃, Õ, Ĩw represent

the generated optical flow, occlusion map and warped image

respectively.

3.2. CNNs for Multi­Frame Flow Estimation

In principle, our method can utilize any CNNs. In our

implementation, we build on top of the seminar PWC-

Net [43]. PWC-Net employs pyramidal processing to in-

crease the flow resolution in a coarse-to-fine manner and

utilizes feature warping, cost volume construction to esti-

mate optical flow at each level. Based on these principles,

it has achieved state-of-the-art performance with a compact

model size.

As shown in Figure 2, our three-frame flow estimation

network structure is built upon two-frame PWC-Net with

several modifications to aggregate temporal information.

First, our network takes three images as input, thus pro-

duces three feature representations Ft−1, Ft and Ft+1. Sec-

ond, apart from forward flow wt→t+1 and forward cost vol-

ume, out model also computes backward flow wt→t−1 and

backward cost volume at each level simultaneously. Note

that when estimating forward flow, we also utilize the ini-

tial backward flow and backward cost volume information.

This is because past frame It−1 can provide very valuable

information, especially for those regions that are occluded

in the future frame It+1 but not occluded in It−1. Our net-

work combines all this information together and therefore

estimates optical flow more accurately. Third, we stack

initial forward flow ẇ
l
t→t+1, minus initial backward flow

−ẇ
l
t+1→t, feature of reference image F l

t , forward cost vol-

ume and backward cost volume to estimate the forward flow

at each level. For backward flow, we just swap the flow and

cost volume as input. Forward and backward flow estima-

tion networks share the same network structure and weights.

For initial flow at each level, we upscale optical flow of the

next level both in resolution and magnitude.

3.3. Occlusion Estimation

For two-frame optical flow estimation, we can swap two

images as input to generate forward and backward flow,

then the occlusion map can be generated based on the

forward-backward consistency prior [44, 29]. To make this

work under our three-frame setting, we propose to utilize

the adjacent five frame images as input as shown in Fig-

ure 3. Specifically, we estimate bi-directional flows be-

tween It and It+1, namely wt→t+1 and wt+1→t. Similarly,

we also estimate the flows between It and It−1. Finally,

we conduct a forward and backward consistency check to

reason the occlusion map between two consecutive images.

To check forward-backward consistency, we consider

one pixel as occluded when the mismatch between the for-

ward flow and the reversed forward flow is too large. Take

Ot→t+1 as an example, we can first compute the reversed

forward flow as follows,

ŵt→t+1 = wt+1→t(p + wt→t+1(p)), (1)

A pixel is considered occluded whenever it violates the fol-

lowing constraint:

|wt→t+1 + ŵt→t+1|
2 < α1(|wt→t+1|

2 + |ŵt→t+1|
2) +α2,

(2)

where we set α1 = 0.01, α2 = 0.05 for all our experiments.

Other occlusion maps are computed in the same way.

3.4. Occlusion Hallucination

During our self-supervised training, we hallucinate oc-

clusions by perturbing local regions with random noise. In

a newly generated target image, the pixels corresponding

to noise regions automatically become occluded. There

are many ways to generate such occlusions. The most
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Method
Sintel Clean Sintel Final KITTI 2012 KITTI 2015

train test train test train test test(Fl) train test(Fl)

U
n

su
p

er
v

is
ed

BackToBasic+ft [20] – – – – 11.3 9.9 – – –

DSTFlow+ft [37] (6.16) 10.41 (6.81) 11.27 10.43 12.4 – 16.79 39%

UnFlow-CSS [29] – – (7.91) 10.22 3.29 – – 8.10 23.30%

OccAwareFlow+ft [46] (4.03) 7.95 (5.95) 9.15 3.55 4.2 – 8.88 31.2%

MultiFrameOccFlow-None+ft [18] (6.05) – (7.09) – – – – 6.65 –

MultiFrameOccFlow-Soft+ft [18] (3.89) 7.23 (5.52) 8.81 – – – 6.59 22.94%

DDFlow+ft [26] (2.92) 6.18 3.98 7.40 2.35 3.0 8.86% 5.72 14.29%

Ours (2.88) 6.56 (3.87) 6.57 1.69 2.2 7.68% 4.84 14.19%

S
u

p
er

v
is

ed

FlowNetS+ft [10] (3.66) 6.96 (4.44) 7.76 7.52 9.1 44.49% – –

FlowNetC+ft [10] (3.78) 6.85 (5.28) 8.51 8.79 – – – –

SpyNet+ft [35] (3.17) 6.64 (4.32) 8.36 8.25 10.1 20.97% – 35.07%

FlowFieldsCNN+ft [2] – 3.78 – 5.36 – 3.0 13.01% – 18.68 %

DCFlow+ft [49] – 3.54 – 5.12 – – – – 14.83%

FlowNet2+ft [15] (1.45) 4.16 (2.01) 5.74 (1.28) 1.8 8.8% (2.3) 11.48%

UnFlow-CSS+ft [29] – – – – (1.14) 1.7 8.42% (1.86) 11.11%

LiteFlowNet+ft-CVPR [14] (1.64) 4.86 (2.23) 6.09 (1.26) 1.7 – (2.16) 10.24%

LiteFlowNet+ft-axXiv [14] (1.35) 4.54 (1.78) 5.38 (1.05) 1.6 7.27% (1.62) 9.38%

PWC-Net+ft-CVPR [43] (2.02) 4.39 (2.08) 5.04 (1.45) 1.7 8.10% (2.16) 9.60%

PWC-Net+ft-axXiv [42] (1.71) 3.45 (2.34) 4.60 (1.08) 1.5 6.82% (1.45) 7.90%

ProFlow+ft [27] (1.78) 2.82 – 5.02 (1.89) 2.1 7.88% (5.22) 15.04%

ContinualFlow+ft [31] – 3.34 – 4.52 – – – – 10.03%

MFF+ft [36] – 3.42 – 4.57 – 1.7 7.87% – 7.17%

Ours+ft (1.68) 3.74 (1.77) 4.26 (0.76) 1.5 6.19% (1.18) 8.42%

Table 1. Comparison with state-of-the-art learning based optical flow estimation methods. Our method outperforms all unsupervised

optical flow learning approaches on all datasets. Our supervised fine-tuned model achieves the highest accuracy on the Sintel Final dataset

and KITTI 2012 dataset. All numbers are EPE except for the last column of KITTI 2012 and KITTI 2015 testing sets, where we report

percentage of erroneous pixels over all pixels (Fl-all). Missing entries (-) indicate that the results are not reported for the respective method.

Parentheses mean that the training and testing are performed on the same dataset.

straightforward way is to randomly select rectangle regions.

However, rectangle occlusions rarely exist in real-world se-

quences. To address this issue, we propose to first gener-

ate superpixels [1], then randomly select several superpix-

els and fill them with noise. There are two main advantages

of using superpixel. First, the shape of a superpixel is usu-

ally random and superpixel edges are often part of object

boundaries. The is consistent with the real-world cases and

makes the noise image more realistic. We can choose sev-

eral superpixels which locate at different locations to cover

more occlusion cases. Second, the pixels within each su-

perpixel usually belong to the same object or have similar

flow fields. Prior work has found low-level segmentation is

helpful for optical flow estimation [49]. Note that the ran-

dom noise should lie in the pixel value range.

Figure 1 shows a simple example, where only the dog

extracted from the COCO dataset [25] is moving. Initially,

the occlusion map between It and It+1 is (g). After ran-

domly selecting several superpixels from (e) to inject noise,

the occlusion map between It and Ĩt+1 change to (h). Next,

we describe how to make use of these occlusion maps to

guide our self-training.

3.5. NOC­to­OCC as Self­Supervision

Our self-training idea is built on top of the classical pho-

tometric loss [29, 46, 18], which is highly effective for non-

occluded pixels. Figure 1 illustrates our main idea. Suppose

pixel p1 in image It is not occluded in It+1, and pixel p′1 is

its corresponding pixel. If we inject noise to It+1 and let

It−1, It, Ĩt+1 as input, p1 then becomes occluded. Good

news is we can still use the flow estimation of NOC-Model

as annotations to guide OCC-Model to learn the flow of p1
from It to Ĩt+1. This is also consistent with real-world oc-

clusions, where the flow of occluded pixels can be estimated

based on surrounding non-occluded pixels. In the example

of Figure 1, self-supervision is only employed to (i), which

represents those pixels non-occluded from It to It+1 but be-

come occluded from It to Ĩt+1.

3.6. Loss Functions

Similar to previous unsupervised methods, we first apply

photometric loss Lp to non-occluded pixels. Photometric
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Reference Image (training) Ground Truth W/O Occlusion W/O Self-Supervision

Rectangle Two-frame Superpixel Superpixel Finetune

Reference Image (testing) Target image W/O Occlusion W/O Self-Supervision

Rectangle Two-frame Superpixel Superpixel Finetune

Figure 5. Qualitative comparison of our model under different settings on Sintel Clean training and Sintel Final testing dataset. Occlusion

handling, multi-frame formulation and self-supervision consistently improve the performance.

loss is defined as follows:

Lp =
∑

i,j

∑
ψ(Ii − Iwj→i)⊙ (1−Oi)∑

(1−Oi)
(3)

where ψ(x) = (|x|+ǫ)q is a robust loss function, ⊙ denotes

the element-wise multiplication. We set ǫ = 0.01, q = 0.4
for all our experiments. Only Lp is necessary to train the

NOC-Model.

To train our OCC-Model to estimate optical flow of oc-

cluded pixels, we define a self-supervision loss Lo for those

synthetic occluded pixels (Figure 1(i)). First, we compute a

self-supervision mask M to represent these pixels,

Mi→j = clip(Õi→j −Oi→j , 0, 1) (4)

Then, we define our self-supervision loss Lo as,

Lo =
∑

i,j

∑
ψ(wi→j − w̃i→j)⊙Mi→j∑

Mi→j

(5)

For our OCC-Model, we train with a simple combination of

Lp + Lo for both non-occluded pixels and occluded pixels.

Note our loss functions do not rely on spatial and tempo-

ral consistent assumptions, and they can be used for both

classical two-frame flow estimation and multi-frame flow

estimation.

3.7. Supervised Fine­tuning

After pre-training on raw dataset, we use real-world an-

notated data for fine-tuning. Since there are only annota-

tions for forward flow wt→t+1, we skip backward flow esti-

mation when computing our loss. Suppose that the ground

truth flow is w
gt
t→t+1, and mask V denotes whether the pixel

has a label, where value 1 means that the pixel has a valid

ground truth flow. Then we can obtain the supervised fine-

tuning loss as follows,

Ls =
∑

(ψ(wgt
t→t+1 − wt→t+1)⊙ V )/

∑
V (6)

During fine-tuning, We first initialize the model with the

pre-trained OCC-Model on each dataset, then optimize it

using Ls.

4. Experiments

We evaluate and compare our methods with state-

of-the-art unsupervised and supervised learning methods

on public optical flow benchmarks including MPI Sin-

tel [7], KITTI 2012 [11] and KITTI 2015 [30]. To

ensure reproducibility and advance further innovations,

we make our code and models publicly available at

https://github.com/ppliuboy/SelFlow.

4.1. Implementation Details

Data Preprocessing. For Sintel, we download the Sintel

movie and extract ∼ 10, 000 images for self-training. We

first train our model on this raw data, then add the official

Sintel training data (including both ”final” and ”clean” ver-

sions). For KITTI 2012 and KITTI 2015, we use multi-view

extensions of the two datasets for unsupervised pre-training,

similar to [37, 46]. During training, we exclude the image

pairs with ground truth flow and their neighboring frames

(frame number 9-12) to avoid the mixture of training and

testing data.
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Reference Image (training) Ground Truth W/O Occlusion W/O Self-Supervision

Rectangle Two-frame Superpixel Superpixel Finetune

Reference Image (testing) Target image W/O Occlusion W/O Self-Supervision

Rectangle Two-frame Superpixel Superpixel Finetune

Figure 7. Qualitative comparison of our model under different settings on KITTI 2015 training and testing dataset. Occlusion handling,Figure 6. Qualitative comparison of our model under different settings on KITTI 2015 training and testing dataset. Occlusion handling,

multi-frame formulation and self-supervision consistently improve the performance.

We rescale the pixel value from [0, 255] to [0, 1] for

unsupervised training, while normalizing each channel to

be standard normal distribution for supervised fine-tuning.

This is because normalizing image as input is more robust

for luminance changing, which is especially helpful for op-

tical flow estimation. For unsupervised training, we apply

Census Transform [50] to images, which has been proved

robust for optical flow estimation [12, 29].

Training procedure. We train our model with the Adam

optimizer [23] and set batch size to be 4 for all experiments.

For unsupervised training, we set the initial learning rate to

be 10−4, decay it by half every 50k iterations, and use ran-

dom cropping, random flipping, random channel swapping

during data augmentation. For supervised fine-tuning, we

employ similar data augmentation and learning rate sched-

ule as [10, 15].

For unsupervised pre-training, we first train our NOC-

Model with photometric loss for 200k iterations. Then, we

add our occlusion regularization and train for another 500k

iterations. Finally, we initialize the OCC-Model with the

trained weights of NOC-Model and train it with Lp+Lo for

500k iterations.Since training two models simultaneously

will cost more memory and training time, we just gener-

ate the flow and occlusion maps using the NOC-Model in

advance and use them as annotations (just like KITTI with

sparse annotations).

For supervised fine-tuning, we use the pre-trained OCC-

Model as initialization, and train the model using our su-

pervised loss Ls with 500k iterations for KITTI and 1, 000k

iterations for Sintel. Note we do not require pre-training

our model on any labeled synthetic dataset, hence we do

not have to follow the specific training schedule (Fly-

ingChairs [10]→ FlyingThings3D [28]) as [15, 14, 43].

Evaluation Metrics. We consider two widely-used metrics

to evaluate optical flow estimation: average endpoint error

(EPE), percentage of erroneous pixels (Fl). EPE is the rank-

ing metric on the Sintel benchmark, and Fl is the ranking

metric on KITTI benchmarks.

4.2. Main Results

As shown in Table 1, we achieve state-of-the-art results

for both unsupervised and supervised optical flow learn-

ing on all datasets under all evaluation metrics. Figure 4

shows sample results from Sintel and KITTI. Our method

estimates both accurate optical flow and occlusion maps.

Unsupervised Learning. Our method achieves the high-

est accuracy for unsupervised learning methods on leading

benchmarks. On the Sintel final benchmark, we reduce the

previous best EPE from 7.40 [26] to 6.57, with 11.2% rel-

ative improvements. This is even better than several fully

supervised methods including FlowNetS, FlowNetC [10],

and SpyNet [35].

On the KITTI datasets, the improvement is more signif-

icant. For the training dataset, we achieve EPE=1.69 with

28.1% relative improvement on KITTI 2012 and EPE=4.84
with 15.3% relative improvement on KITTI 2015 com-

pared with previous best unsupervised method DDFlow. On

KITTI 2012 testing set, we achieve Fl-all=7.68%, which

is better than state-of-the-art supervised methods includ-

ing FlowNet2 [15], PWC-Net [43], ProFlow [27], and

MFF [36]. On KITTI 2015 testing benchmark, we achieve

Fl-all 14.19%, better than all unsupervised methods. Our

unsupervised results also outperform some fully supervised

methods including DCFlow [49] and ProFlow [27].

Supervised Fine-tuning. We further fine-tune our unsuper-

vised model with the ground truth flow. We achieve state-

of-the-art results on all three datasets, with Fl-all=6.19% on

KITTI 2012 and Fl-all=8.42% on KITTI 2015. Most im-

portantly, our method yields EPE=4.26 on the Sintel final

dataset, achieving the highest accuracy on the Sintel bench-

mark among all submitted methods. All these show that

our method reduces the reliance of pre-training with syn-
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Occlusion Multiple Self-Supervision Self-Supervision Sintel Clean Sintel Final KITTI 2012 KITTI 2015

Handling Frame Rectangle Superpixel ALL NOC OCC ALL NOC OCC ALL NOC OCC ALL NOC OCC

✗ ✗ ✗ ✗ (3.85) (1.53) (33.48) (5.28) (2.81) (36.83) 7.05 1.31 45.03 13.51 3.71 75.51

✗ ✓ ✗ ✗ (3.67) (1.54) (30.80) (4.98) (2.68) (34.42) 6.52 1.11 42.44 12.13 3.47 66.91

✓ ✗ ✗ ✗ (3.35) (1.37) (28.70) (4.50) (2.37) (31.81) 4.96 0.99 31.29 8.99 3.20 45.68

✓ ✓ ✗ ✗ (3.20) (1.35) (26.63) (4.33) (2.32) (29.80) 3.32 0.94 19.11 7.66 2.47 40.99

✓ ✗ ✗ ✓ (2.96) (1.33) (23.78) (4.06) (2.25) (27.19) 1.97 0.92 8.96 5.85 2.96 24.17

✓ ✓ ✓ ✗ (2.91) (1.37) (22.58) (3.99) (2.27) (26.01) 1.78 0.96 7.47 5.01 2.55 21.86

✓ ✓ ✗ ✓ (2.88) (1.30) (22.06) (3.87) (2.24) (25.42) 1.69 0.91 6.95 4.84 2.40 19.68

Table 2. Ablation study. We report EPE of our unsupervised results under different settings over all pixels (ALL), non-occluded pixels

(NOC) and occluded pixels (OCC). Note that we employ Census Transform when computing photometric loss by default. Without Census

Transform, the performance will drop.

Unsupervised Pre-training Sintel Clean Sintel Final KITTI 2012 KITTI 2015

Without 1.97 2.68 3.93 3.10

With 1.50 2.41 1.55 1.86

Table 3. Ablation study. We report EPE of supervised fine-tuning

results on our validation datasets with and without unsupervised

pre-training.

thetic datasets and we do not have to follow specific training

schedules across different datasets anymore.

4.3. Ablation Study

To demonstrate the usefulness of individual technical

steps, we conduct a rigorous ablation study and show the

quantitative comparison in Table 2. Figure 5 and Figure 6

show the qualitative comparison under different settings,

where “W/O Occlusion” means occlusion handling is not

considered, “W/O Self-Supervision” means occlusion han-

dling is considered but self-supervision is not employed,

“Rectangle” and “Superpixel” represent self-supervision

is employed with rectangle and superpixel noise injec-

tion respectively. “Two-Frame Superpixel” means self-

supervision is conducted with only two frames as input.

Two-Frame vs Multi-Frame. Comparing row 1 and row

2, row 3 and row 4 row 5 and row 7 in Table 2, we can see

that using multiple frames as input can indeed improve the

performance, especially for occluded pixels. It is because

multiple images provide more information, especially for

those pixels occluded in one direction but non-occluded in

the reverse direction.

Occlusion Handling. Comparing the row 1 and row 3, row

2 and row 4 in Table 2, we can see that occlusion handling

can improve optical flow estimation performance over all

pixels on all datasets. This is due to the fact that brightness

constancy assumption does not hold for occluded pixels.

Self-Supervision. We employ two strategies for our occlu-

sion hallucination: rectangle and superpixel. Both strate-

gies improve the performance significantly, especially for

occluded pixels. Take superpixel setting as an example,

EPE-OCC decrease from 26.63 to 22.06 on Sintel Clean,

from 29.80 to 25.42 on Sintel Final, from 19.11 to 6.95

on KITTI 2012, and from 40.99 to 19.68 on KITTI 2015.

Such a big improvement demonstrates the effectiveness of

our self-supervision strategy.

Comparing superpixel noise injection with rectangle

noise injection, superpixel setting has several advantages.

First, the shape of the superpixel is random and edges are

more correlated to motion boundaries. Second, the pixels in

the same superpixel usually have similar motion patterns.

As a result, the superpixel setting achieves slightly better

performance.

Self-Supervised Pre-training. Table 3 compares super-

vised results with and without our self-supervised pre-

training on the validation sets. If we do not employ self-

supervised pre-training and directly train the model using

only the ground truth, the model fails to converge well due

to insufficient training data. However, after utilizing our

self-supervised pre-training, it converges very quickly and

achieves much better results.

5. Conclusion

We have presented a self-supervised approach to learn-

ing accurate optical flow estimation. Our method injects

noise into superpixels to create occlusions, and let one

model guide the another to learn optical flow for occluded

pixels. Our simple CNN effectively aggregates temporal

information from multiple frames to improve flow predic-

tion. Extensive experiments show our method significantly

outperforms all existing unsupervised optical flow learning

methods. After fine-tuning with our unsupervised model,

our method achieves state-of-the-art flow estimation accu-

racy on all leading benchmarks. Our results demonstrate it

is possible to completely reduce the reliance of pre-training

on synthetic labeled datasets, and achieve superior perfor-

mance by self-supervised pre-training on unlabeled data.
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