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Abstract—Logs are imperative in the development and main-
tenance process of many software systems. They record detailed
runtime information that allows developers and support engi-
neers to monitor their systems and dissect anomalous behaviors
and errors. The increasing scale and complexity of modern
software systems, however, make the volume of logs explodes.
In many cases, the traditional way of manual log inspection
becomes impractical. Many recent studies, as well as industrial
tools, resort to powerful text search and machine learning-based
analytics solutions. Due to the unstructured nature of logs, a first
crucial step is to parse log messages into structured data for
subsequent analysis. In recent years, automated log parsing has
been widely studied in both academia and industry, producing a
series of log parsers by different techniques. To better understand
the characteristics of these log parsers, in this paper, we present
a comprehensive evaluation study on automated log parsing and
further release the tools and benchmarks for easy reuse. More
specifically, we evaluate 13 log parsers on a total of 16 log
datasets spanning distributed systems, supercomputers, operating
systems, mobile systems, server applications, and standalone soft-
ware. We report the benchmarking results in terms of accuracy,
robustness, and efficiency, which are of practical importance
when deploying automated log parsing in production. We also
share the success stories and lessons learned in an industrial
application at Huawei. We believe that our work could serve as
the basis and provide valuable guidance to future research and
deployment of automated log parsing.

Index Terms—Log management, log parsing, log analysis,
anomaly detection, AIOps

I. INTRODUCTION

Logs play an important role in the development and main-

tenance of software systems. It is a common practice to record

detailed system runtime information into logs, allowing devel-

opers and support engineers to understand system behaviours

and track down problems that may arise. The rich information

and the pervasiveness of logs enable a wide variety of system

management and diagnostic tasks, such as analyzing usage

statistics [1], ensuring application security [2], identifying

performance anomalies [3], [4], and diagnosing errors and

crashes [5], [6].

Despite the tremendous value buried in logs, how to analyze

them effectively is still a great challenge [7]. First, modern

*Part of the work was done when the author was an intern at Huawei.

/*  A logging code snippet extracted from: 
    hadoop/hdfs/server/datanode/BlockReceiver.java */   

LOG.info("Received block " + block + " of size "
    + block.getNumBytes() + " from " + inAddr); 

TIMESTAMP  2015-10-18 18:05:29,570

LEVEL 

COMPONENT

 INFO
 dfs.DataNode$PacketResponder

EVENT 
TEMPLATE

PARAMETERS

 Received block <*> of size <*> from /<*>

 [“blk_-562725280853087685”, “67108864”, “10.251.91.84”]

Structured Log

A Log Message
 2015-10-18 18:05:29,570 INFO dfs.DataNode$PacketResponder: Received
 block blk_-562725280853087685 of size 67108864 from /10.251.91.84

Log Message

Fig. 1. An Illustrative Example of Log Parsing

software systems routinely generate tons of logs (e.g., about

gigabytes of data per hour for a commercial cloud applica-

tion [8]). The huge volume of logs makes it impractical to

manually inspect log messages for key diagnostic information,

even provided with search and grep utilities. Second, log

messages are inherently unstructured, because developers usu-

ally record system events using free text for convenience and

flexibility [9]. This further increases the difficulty in automated

analysis of log data. Many recent studies (e.g., [10]–[12]),

as well as industrial solutions (e.g., Splunk [13], ELK [14],

Logentries [15]), have evolved to provide powerful text search

and machine learning-based analytics capabilities. To enable

such log analysis, the first and foremost step is log parsing [9],

a process to parse free-text raw log messages into a stream of

structured events.

As the example illustrated in Fig.1, each log message

is printed by a logging statement and records a specific

system event with its message header and message content.

The message header is determined by the logging frame-

work and thus can be relatively easily extracted, such as

timestamp, verbosity level (e.g., ERROR/INFO/DEBUG), and

component. In contrast, it is often difficult to structurize

the free-text message content written by developers, since
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it is a composition of constant strings and variable
values. The constant part reveals the event template of a log

message and remains the same for every event occurrence.

The variable part carries dynamic runtime information (i.e.,

parameters) of interest, which may vary among different event

occurrences. The goal of log parsing is to convert each log

message into a specific event template (e.g., “Received
block <*> of size <*> from /<*>”) associated with

key parameters (e.g., [“blk_-562725280853087685”,

“67108864”, “10.251.91.84”]). Here, “<*>” denotes the

position of each parameter.

The traditional way of log parsing relies on handcrafted

regular expressions or grok patterns [16] to extract event

templates and key parameters. Although straightforward, man-

ually writing ad-hoc rules to parse a huge volume of logs is

really a time-consuming and error-prone pain (e.g., over 76K

templates in our Android dataset). Especially, logging code

in modern software systems usually update frequently (up to

thousands of log statements every month [17]), leading to the

inevitable cost of regularly revising these handcrafted parsing

rules. To reduce the manual efforts in log parsing, some

studies [18], [19] have explored the static analysis techniques

to extract event templates from source code directly. While

it is a viable approach in some cases, source code is not

always accessible in practice (e.g., when using third-party

components). Meanwhile, non-trivial efforts are required to

build such a static analysis tool for software systems developed

across different programming languages.

To achieve the goal of automated log parsing, many data-

driven approaches have been proposed from both academia

and industry, including frequent pattern mining (SLCT [20],

and its extension LogCluster [21]), iterative partitioning

(IPLoM [22]), hierarchical clustering (LKE [23]), longest

common subsequence computation (Spell [24]), parsing tree

(Drain [25]), etc. In contrast to handcrafted rules and source

code-based parsing, these approaches are capable of learning

patterns from log data and automatically generating common

event templates. In our previous work [9], we have conducted

an evaluation study of four representative log parsers and made

the first step towards reproducible research and open-source

tools for automated log parsing. This, to some extent, facili-

tates some recent developments of tools such as LenMa [26],

LogMine [27], Spell [24], Drain [25], and MoLFI [28]. Even

more, automated log parsing lately becomes an appealing

selling point in some trending log management solutions (e.g.,

Logentries [15] and Loggly [29]).

In this paper, we present a more comprehensive study on

automated log parsing and further publish a full set of tools

and benchmarks to researchers and practitioners. In reality,

companies are usually reluctant to open their system logs due

to confidential issues, leading to the scarcity of real-world log

data. With close collaborations with our industrial partners,

as well as some pioneer researchers (authors from [10],

[18], [30]), we collect a large set of logs (over 77GB in

total) produced by 16 different systems spanning distributed

systems, supercomputers, operating systems, mobile systems,

server applications, and standalone software. Since the first

release of these logs [31], they have been requested by over

150 organizations from both industry and academia.

Meanwhile, the lack of publicly-available tools hinders the

adoption of automated log parsing. Therefore, we release an

easy-to-use, open-source toolkit1, with a total of 13 recently-

published log parsing methods. We evaluate them thoroughly

on 16 different log datasets and report the results in terms

of accuracy, robustness, and efficiency. The benchmarking

results could help users better understand the characteristics of

different log parsers and guide the deployment of automated

log parsing in production. We also share the success stories

and lessons learned in an industrial application at Huawei. We

believe that the availability of tools and benchmarks, as well

as the industrial experiences shared in this study, would benefit

future research and facilitate wide adoption of automated log

parsing in industry.

The remainder of the paper is organized as follows. Sec-

tion II reviews the state-of-the-art log parsers. Section III

reports the benchmarking results. We share our industrial

deployment in Section IV, and summarize the related work

in Section V. Finally, we conclude the paper in Section VI.

II. LOG PARSING

In this section, we present some motivating applications of

log parsing, review the characteristics and techniques of ex-

isting log parsers, and then describe our tool implementation.

A. Motivating Applications

Log parsing typically serves as the first step towards down-

stream log analysis tasks. Parsing textual log messages into a

structured format enables efficient search, filtering, grouping,

counting, and sophisticated mining of logs. To illustrate, we

provide a list of sample industrial applications here, which

have been widely studied by researchers and practitioners.

• Usage analysis. Employing logs for usage analysis is a

common task during software development and mainte-

nance. Typical examples include user behaviour analysis

(e.g., Twitter [1]), API profiling, log-based metrics count-

ing (e.g., Google Cloud [32]), and workload modeling

(e.g., Microsoft [33]). These applications typically require

structured events as inputs.

• Anomaly detection. Anomaly detection nowadays plays a

central role in system monitoring. Logs record detailed

execution information and thus serve as a valuable data

source to detect abnormal system behaviours. Some re-

cent work has investigated the use of machine learning

techniques (e.g., PCA [18], invariant mining [34], and

deep learning [10]) for anomaly detection. In such cases,

log parsing is a necessary data preprocessing step to train

machine learning models.

• Duplicate issue identification. In practice, system issues

(e.g., disk error, network disconnection) often recur or

can be repeatedly reported by different users, leading

1https://github.com/logpai/logparser
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TABLE I
SUMMARY OF INDUSTRIAL LOG MANAGEMENT TOOLS AND SERVICES

Property Splunk VMWare
Log Insight

Azure Log
Analytics

ELK Graylog Logentries Loggly Logz.io Sumo
Logic

Insight
finder

Founded Year 2003 N/A N/A 2010 2012 2010 2009 2014 2010 2015

Product Type On-Premises
/SaaS

SaaS SaaS On-Premises
/SaaS

On-Premises SaaS SaaS SaaS SaaS On-Premises
/SaaS

Automated Log
Parsing

Custom Parsing Regex N/A Parse operator Grok Regex Regex Regex Grok Regex N/A
ML Anaytics N/A N/A

TABLE II
SUMMARY OF AUTOMATED LOG PARSING TOOLS

Log Parser Year Technique Mode Efficiency Coverage Preprocessing Open
Source

Industrial
Use

SLCT 2003 Frequent pattern mining Offline High
AEL 2008 Heuristics Offline High

IPLoM 2012 Iterative partitioning Offline High
LKE 2009 Clustering Offline Low
LFA 2010 Frequent pattern mining Offline High

LogSig 2011 Clustering Offline Medium
SHISO 2013 Clustering Online High

LogCluster 2015 Frequent pattern mining Offline High
LenMa 2016 Clustering Online Medium

LogMine 2016 Clustering Offline Medium
Spell 2016 Longest common subsequence Online High
Drain 2017 Parsing tree Online High
MoLFI 2018 Evolutionary algorithms Offline Low

to many duplicate issues. It is crucial to automatically

identify duplicate issues to reduce the efforts of develop-

ers and support engineers. Microsoft has reported some

studies [11], [35], [36] on this task, in which structured

event data are required.

• Performance modeling. Facebook has recently reported

a use case [3] to apply logs as a valuable data source

to performance modeling, where potential performance

improvements can be quickly validated. A prerequisite

to this approach is to extract all possible event templates

from the logs. The performance model construction takes

event sequences as inputs.

• Failure diagnosis. Manual failure diagnosis is a time

consuming and challenging task since logs are not only

of huge volume but also extremely verbose and messy.

Some recent progress [4], [37] has been made to automate

root cause analysis based on machine learning techniques.

Likewise, log parsing is deemed as a prerequisite.

B. Characteristics of Log Parsers

As an important step in log analysis, automated approaches

of log parsing have been widely studied, producing an abun-

dance of log parsers ranging from research prototypes to

industrial solutions. To gain an overview of existing log

parsers, we summarize the key characteristics of them.

1) Industrial Solutions. Table I provides a summary of

some industrial log analysis and management tools. With

the upsurge of big data, many cloud providers as well as

startup companies provide on-premise or software-as-a-service

(SaaS) solutions for log management. They enable powerful

log search, visualization, and machine learning (ML) analytics

capabilities. To illustrate, we list 10 representative products

in the market, including both well-established ones (e.g.,

Splunk [13]) and newly-started ones (e.g., Logz.io [38]). As

a key component, automated log parsing has recently risen as

a appealing selling point in some products [39]–[41]. Current

solutions of automated log parsing, however, are realized with

built-in parsing support for common log types, such as Apache

and Nginx logs [39]. For other types of logs, they have to rely

on users to perform custom parsing with regex scripts, grok

patterns [16], or a parsing wizard. Current industrial parsing

solutions require deep domain knowledge, and thus fall out of

the scope of this study.

2) Research Studies. Table II provides a summary of 13

representative log parsers proposed in the literature, which are

the main subjects of our study. These log parsers are all aimed

for automated log parsing, but may differ in quality. After

reviewing the literature, we list some key characteristics for

log parsers that are of practical importance.

Technique. Different log parsers may adopt different log

parsing strategies. We categorize them into 7 types of strate-

gies, including frequent pattern mining, clustering, iterative

partitioning, longest common subsequence, parsing tree, evolu-

tionary algorithms, and other heuristics. We will present more

details of these log parsing methods in Section II-C.

Mode. According to different scenarios of log parsing, log

parsers can be categorized to two main modes, i.e., offline

and online. Offline log parsers are a type of batch processing
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and require that all the log data are available before parsing.

On the contrary, online log parsers process log messages one

by one in a streaming manner, which is often more practical

when logs are collected as a stream.

Efficiency. Efficiency is always a major concern for log

parsing in practice, considering the large volume of logs.

An inefficient log parser can greatly hinder subsequent log

analysis tasks that have low latency requirements in cases such

as real-time anomaly detection and performance monitoring.

In Table II, the efficiency of current tools has been categorized

into three levels: high, medium and low.

Coverage. Coverage denotes the capability of a log parser to

successfully parse all input log messages. If yes, it is marked as

“�”. “�” indicates that a log parser can only structurize part of

the logs. For example, SLCT can extract frequently-occurring

event templates by applying frequent pattern mining, but fails

to handle rare event templates precisely. A high-quality log

parser should be able to process all input log messages, since

ignoring any important event may miss the opportunity for

anomaly detection and root cause identification.

Preprocessing. Preprocessing is a step to remove some

common variable values, such as IP address and numbers,

by manually specifying simple regular expressions. The pre-

processing step is straightforward, but require some additional

manual work. We mark “�” if a preprocessing step is explicitly

specified in a log parsing method, and “�” otherwise.

Open-source. An open-source log parser can allow re-

searchers and practitioners to easily reuse and further improve

existing log parsing methods. This can not only benefit related

research but also facilitate wide adoption of automated log

parsing. However, current open-source tools for log parsing

are still limited. We mark “�” if an existing log parser is

open-source, and “�” otherwise.

Industrial use. A log parser has more practical value and

should be more reliable if it has been deployed in production

for industrial use. We mark “�” if a log parser has been

reported on use in an industrial setting, and “�” otherwise.

C. Techniques of Log Parsers

In this work, we have studied a total of 13 log parsers. We

briefly summarize the techniques used by these log parsers

from the following aspects:

1) Frequent Pattern Mining: A frequent pattern is a set

of items that occurs frequently in a data set. Likewise, event

templates can be seen as a set of constant tokens that occurs

frequently in logs. Therefore, frequent pattern mining is an

straightforward approach to automated log parsing. Examples

include SLCT [20], LFA [42], and LogCluster [21]. All the

three log parsers are offline methods and follow a similar

parsing procedure: 1) traversing over the log data by several

passes, 2) building frequent itemsets (e.g., tokens, token-

position pairs) at each traversal, 3) grouping log messages

into several clusters, and 4) extracting event templates from

each cluster. SLCT, to our knowledge, is the first work that

applies frequent pattern mining to log parsing. Furthermore,

LFA considers the token frequency distribution in each log

message instead of the whole log data to parse rare log

messages. LogCluster is an extension of SCLT, and can be

robust to shifts in token positions.

2) Clustering: Event template forms a natural pattern of a

group of log messages. From this view, log parsing can be

modeled as a clustering problem of log messages. Examples

that apply the clustering algorithms for log parsing include 3

offline methods (i.e., LKE [23], LogSig [43], and LogMine

[27]) and 2 online methods (i.e., SHISO [44], and LenMa

[26]). Specifically, LKE employs the hierarchical clustering

algorithm based on weighted edit distances between pairwise

log messages. LogSig is a message signature based algorithm

to cluster log messages into a predefined number of clus-

ters. LogMine can generate event templates in a hierarchical

clustering way, which groups log messages into clusters from

bottom to top. SHISO and LenMa are both online methods,

which parse logs in a similar streaming manner. For each

newly coming log message, the parsers first compute its

similarity to representative event templates of existing log

clusters. The log message will be added to an existing cluster

if it is successfully matched, otherwise a new log cluster will

be created. Then, the corresponding event template will be

updated accordingly.

3) Heuristics: Different from general text data, log mes-

sages have some unique characteristics. As such, some work

(i.e., AEL [45], IPLoM [22], Drain [25]) proposes heuristics-

based log parsing methods. Specifically, AEL separates log

messages into multiple groups by comparing the occurrences

between constant tokens and variable tokens. IPLoM employs

an iterative partitioning strategy, which partitions log messages

into groups by message length, token position and mapping

relation. Drain applies a fixed-depth tree structure to represent

log messages and extracts common templates efficiently. These

heuristics make use of the characteristics of logs and perform

quite well in many cases.

4) Others: Some other methods exist. For example, Spell

[24] utilizes the longest common subsequence algorithm to

parse logs in a stream manner. Recently, Messaoudi et al.

[28] propose MoLFI, which models log parsing as a multiple-

objective optimization problem and solves it using evolution-

ary algorithms.

D. Tool Implementation

Although automated log parsing has been studied for several

years, it is still not a well-received technique in industry. This

is largely due to the lack of publicly available tools that are

ready for industrial use. For operation engineers who often

have limited expertise in machine learning techniques, im-

plementing an automated log parsing tool requires non-trivial

efforts. This may exceed the overhead for manually crafting

regular expressions. Our work aims to bridge this gap between

academia and industry and promote the adoption for automated

log parsing. We have implemented an open-source log parsing

toolkit, namely logparser, and released a large benchmark

set as well. As a part-time project, the implementation of

logparser takes over two years and have 11.7K LOC in Python.
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TABLE III
SUMMARY OF LOGHUB DATASETS

Dataset Description Time Span Data Size #Messages #Templates (total) #Templates (2k)
Distributed system logs

HDFS Hadoop distributed file system log 38.7 hours 1.47 GB 11,175,629 30 14

Hadoop Hadoop mapreduce job log N.A. 48.61 MB 394,308 298 114

Spark Spark job log N.A. 2.75 GB 33,236,604 456 36

ZooKeeper ZooKeeper service log 26.7 days 9.95 MB 74,380 95 50

OpenStack OpenStack software log N.A. 60.01 MB 207,820 51 43

Supercomputer logs

BGL Blue Gene/L supercomputer log 214.7 days 708.76 MB 4,747,963 619 120

HPC High performance cluster log N.A. 32.00 MB 433,489 104 46

Thunderbird Thunderbird supercomputer log 244 days 29.60 GB 211,212,192 4,040 149

Operating system logs

Windows Windows event log 226.7 days 26.09 GB 114,608,388 4,833 50

Linux Linux system log 263.9 days 2.25 MB 25,567 488 118

Mac Mac OS log 7.0 days 16.09 MB 117,283 2,214 341

Mobile system logs

Android Android framework log N.A. 3.38 GB 30,348,042 76,923 166

HealthApp Health app log 10.5 days 22.44 MB 253,395 220 75

Server application logs

Apache Apache server error log 263.9 days 4.90 MB 56,481 44 6

OpenSSH OpenSSH server log 28.4 days 70.02 MB 655,146 62 27

Standalone software logs

Proxifier Proxifier software log N.A. 2.42 MB 21,329 9 8

Currently, logparser contains a total of 13 log parsing methods

proposed by researchers and practitioners. Among them, five

log parsers (i.e., SLCT, LogCluster, LenMa, Drain, MoLFI)

are open-source from existing research work. However, they

are implemented in different programming languages and have

different input/output formats. Examples and documents are

also missing or incomplete, making it difficult for a trial. For

ease of use, we define a standard and unified input/output

interface for different log parsing methods and further wrap

up the existing tools into a single Python package. Logparser

requires a raw log file with free-text log messages as input,

and finally outputs a structured log file and an event template

file with aggregated event counts. The outputs can be easily

fed into subsequent log mining tasks. Our logparser toolkit can

help engineers quickly identify the strengths and weaknesses

of different log parsing methods and evaluate their possibility

for industrial use cases.

III. EVALUATION

In this section, we evaluate 13 log parsers on 16 benchmark

datasets, and report the benchmarking results in terms of ac-

curacy, robustness, and efficiency. They are three key qualities

of interest when applying log parsing in production.

• Accuracy measures the ability of a log parser in distin-

guishing constant parts and variable parts. Accuracy is

one main focus of existing log parsing studies, because an

inaccurate log parser could greatly limit the effectiveness

of the downstream log mining tasks [9].

• Robustness of a log parser measures the consistency of

its accuracy under log datasets of different sizes or from

different systems. A robust log parser should perform

consistently across different datasets, and thus can be

used in the versatile production environment.

• Efficiency measures the processing speed of a log parser.

We evaluate the efficiency by recording the time that a

parser takes to parse a specific dataset. The less time a

log parser consumes, the higher efficiency it provides.

A. Experimental Setup

Dataset. Real-world log data are currently scarce in public

due to confidential issues, which hinders the research and

development of new log analysis techniques. In this work, we

have released, on our loghub data repository [31], a large col-

lection of logs from 16 different systems spanning distributed

systems, supercomputers, operating systems, mobile systems,

server applications, and standalone software. Table III presents

a summary of the datasets. Some of them (e.g., HDFS [18],

Hadoop [11], BGL [30]) are production logs released by

previous studies, while the others (e.g., Spark, Zookeeper,

HealthApp, Android) are collected from real-world systems in

our lab. Loghub contains a total of 440 million log messages

that amounts to 77 GB in size. To the best of our knowledge,

it is the largest collection of log datasets. Wherever possible,

the logs are not sanitized, anonymized or modified in any way.

They are freely accessible for research purposes. At the time

of writing, our loghub datasets have been downloaded over

1000 times by more than 150 organizations from both industry

(35%) and academia (65%).

In this work, we use the loghub datasets as benchmarks to

evaluate all existing log parsers. The large size and diversity
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TABLE IV
ACCURACY OF LOG PARSERS ON DIFFERENT DATASETS

Dataset SLCT AEL IPLoM LKE LFA LogSig SHISO LogCluster LenMa LogMine Spell Drain MoLFI Best

HDFS 0.545 0.998 1* 1* 0.885 0.850 0.998 0.546 0.998 0.851 1* 0.998 0.998 1
Hadoop 0.423 0.538 0.954 0.670 0.900 0.633 0.867 0.563 0.885 0.870 0.778 0.948  0.957* 0.957
Spark 0.685 0.905 0.920 0.634  0.994* 0.544 0.906 0.799 0.884 0.576 0.905 0.920 0.418 0.994

Zookeeper 0.726 0.921 0.962 0.438 0.839 0.738 0.660 0.732 0.841 0.688 0.964   0.967* 0.839 0.967
OpenStack 0.867 0.758  0.871* 0.787 0.200 0.200 0.722 0.696 0.743 0.743 0.764 0.733 0.213 0.871

BGL 0.573 0.758 0.939 0.128 0.854 0.227 0.711 0.835 0.69 0.723 0.787   0.963* 0.960 0.963
HPC 0.839   0.903* 0.824 0.574 0.817 0.354 0.325 0.788 0.830 0.784 0.654 0.887 0.824 0.903

Thunderb. 0.882 0.941 0.663 0.813 0.649 0.694 0.576 0.599 0.943 0.919 0.844   0.955* 0.646 0.955
Windows 0.697 0.690 0.567 0.990 0.588 0.689 0.701 0.713 0.566 0.993 0.989   0.997* 0.406 0.997

Linux 0.297 0.673 0.672 0.519 0.279 0.169 0.701 0.629  0.701* 0.612 0.605 0.690 0.284 0.701
Mac 0.558 0.764 0.673 0.369 0.599 0.478 0.595 0.604 0.698  0.872* 0.757 0.787 0.636 0.872

Android 0.882 0.682 0.712 0.909 0.616 0.548 0.585 0.798 0.880 0.504   0.919* 0.911 0.788 0.919
HealthApp 0.331 0.568  0.822* 0.592 0.549 0.235 0.397 0.531 0.174 0.684 0.639 0.780 0.440 0.822

Apache 0.731 1* 1* 1* 1* 0.582 1* 0.709 1* 1* 1* 1* 1* 1
OpenSSH 0.521 0.538 0.802 0.426 0.501 0.373 0.619 0.426   0.925* 0.431 0.554 0.788 0.500 0.925
Proxifier 0.518 0.518  0.515 0.495 0.026   0.967* 0.517 0.951 0.508 0.517 0.527 0.527 0.013 0.967
Average 0.637 0.754 0.777 0.563 0.652 0.482 0.669 0.665 0.721 0.694 0.751  0.865* 0.605 N.A.

of loghub datasets can not only measure the accuracy of log

parsers but also test the robustness and efficiency of them.

To allow easy reproduction of the benchmarking results, we

randomly sample 2000 log messages from each dataset and

manually label the event templates as ground truth. Specif-

ically, in Table III, “#Templates (2k sample)” indicates the

number of event templates in log samples, while “#Templates

(total)” shows the total number of event templates generated

by a rule-based log parser.

Accuracy Metric. To quantify the effectiveness of auto-

mated log parsing, as with [24], we define the parsing accuracy

(PA) metric as the ratio of correctly parsed log messages over

the total number of log messages. After parsing, each log

message has an event template, which in turn corresponds to

a group of messages of the same template. A log message is

considered correctly parsed if and only if its event template

corresponds to the same group of log messages as the ground

truth does. For example, if a log sequence [E1, E2, E2] is

parsed to [E1, E4, E5], we get PA=1/3, since the 2nd and

3rd messages are not grouped together. In contrast to standard

evaluation metrics that are used in previous studies, such as

precision, recall, and F1-measure [9], [22], [28], PA is a more

rigorous metric. In PA, partially matched events are considered

incorrect.

The parameters of all the log parsers are fine tuned through

over 10 runs and the best results are reported to avoid bias

from randomization. All the experiments were conducted on a

server with 32 Intel(R) Xeon(R) 2.60GHz CPUs, 62GB RAM,

and Ubuntu 16.04.3 LTS installed.

B. Accuracy of Log Parsers

In this part, we evaluate the accuracy of log parsers. We

found that some log parsers (e.g., LKE) cannot handle the

original datasets in reasonable time (e.g., even in days). Thus,

for fair comparison, the accuracy experiments are conducted

on sampled subsets, each containing 2,000 log messages.

The log messages are randomly sampled from the original

log dataset, yet retains the key properties, such as event

redundancy and event variety.

Table IV presents the accuracy results of 13 log parsers

evaluated on 16 log datasets. Specifically, each row denotes

the parsing accuracy of different log parsers on one dataset,

which facilitates comparison among different log parsers. Each

column represents the parsing accuracy of one log parser over

different datasets, which helps identify its robustness across

different types of logs. In particular, we mark accuracy values

greater than 0.9 in boldface since they indicate high accuracy

in practice. For each dataset, the best accuracy is highlighted

with a asterisk “*” and shown in the column “Best”. We

can observe that most of the datasets are accurately (over

90%) parsed by at least one log parser. Totally, 8 out of

13 log parsers attatin the best accuracy on at least two log

datasets. Even more, some log parsers can parse the HDFS and

Apache datasets with 100% accuracy. This is because HDFS

and Apache error logs have relatively simple event templates

and are easy to identify. However, several types of logs (e.g.,

OpenStack, Linux, Mac, HealthApp) still could not be parsed

accurately due to their complex structure and abundant event

templates (e.g., 341 templates in Mac logs). Therefore, further

improvements should be made towards better parsing those

complex log data.

To measure the overall effectiveness of log parsers, we

compute the average accuracy of each log parser across

different datasets, as shown in the last row of Table IV. We can

observe that, on average, the most accurate log parser is Drain,

which attains high accuracy on 9 out of 16 datasets. The other

top ranked log parsers include IPLoM, AEL, and Spell, which

achieve high accuracy on 6 datasets. In contrast, the four log

parsers that have the lowest average accuracy are LogSig, LFA,

MoLFI, and LKE. Therefore, we can briefly conclude that log
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Fig. 2. Accuracy Distribution of Log Parsers across Different Types of Logs

parsers should take full advantage of the inherent structure

and characteristics of log messages to achieve good parsing

accuracy, instead of directly applying standard algorithms such

as clustering and frequent pattern mining.

One may have noticed that the above accuracy results

are lower than what have been reported by previous papers

(e.g., [25], [27]). The reasons are as follows: 1) We use a

more rigorous accuracy metric which rejects partially matched

events. 2) For fairness of comparison, we apply the same

preprocessing rules (e.g., IP or number replacement) to each

log parser, which are much less than those reported before.

C. Robustness of Log Parsers

Robustness is crucial to the practical use of a log parser

in production environments. In this part, we evaluate the

robustness of log parsers from two aspects: 1) robustness

across different types of logs and 2) robustness on different

volumes of logs.

Figure 2 shows a boxplot that indicates the accuracy distri-

bution of each log parser across the 16 log datasets. For each

box, the horizontal lines from bottom to top correspond to the

minimum, 25-percentile, median, 75-percentile and maximum

accuracy values. The diamond mark denotes an outlier point,

since LenMa only has an accuracy of 0.174 on HealthApp

logs. From left to right in the figure, the log parsers are

arranged in ascending order of the average accuracy shown in

Table IV. That is, LogSig has the lowest accuracy and Drain

obtains the highest accuracy on average. A good log parser

should be able to parse many different types of logs for general

use. However, we can observe that, although most log parsers

achieve the maximal accuracy over 0.9, they have a large

variance over different datasets. There is still no log parser

that performs well on all log data. Therefore, we suggest users

to try different log parsers on their own logs first. Currently,

Drain performs the best among all the 13 log parsers under

study. It not only attains the highest accuracy on average, but

also shows the smallest variance.

In addition, we evaluate the robustness of log parsers on

different volumes of logs. In this experiment, we select six

log parsers, i.e., MoLFI, Spell, LenMa, IPLoM, AEL, and

Drain. They have achieved high accuracy (over 90%) on more

than four log datasets, as shown in Table IV. Meanwhile,

MoLFI is the most recently published log parser, and the

other five log parsers are ranked in the top in Figure 2.

We also choose three large datasets, i.e., HDFS, BGL, and

Android. The raw logs have a volume of over 1GB each,

and the groundtruth templates are readily available for ac-

curacy computation. HDFS and BGL have also been used

as benchmarks datasets in the previous work [22], [24]. For

each log dataset, we vary the volume from 300 KB to 1

GB, while fix the parameters of log parsers that were fine

tuned on 2k log samples. Specifically, 300KB is roughly the

size of each 2k log sample. We truncate the raw log files

to obtain samples of other volumes (e.g., 1GB). Figure 3

shows the parsing accuracy results. Note that some lines are

incomplete in the figure, because methods like MoLFI and

LenMa cannot finish parsing within reasonable time (6 hours

in our experiment). A good log parser should be robust to such

changes of log volumes. However, we can see that parameters

tuned on small log samples cannot fit well to large log data. All

the six best performing log parsers have a drop in accuracy or

show obvious fluctuations as the log volume increases. The

log parsers, except IPLoM, are relatively stable on HDFS

data, achieving an accuracy over 80%. Drain and AEL also

show relatively stable accuracy on BGL data. However, on

Android data, all the parsers have a large degradation on

accuracy, because Android logs have quite a large number

of event templates and are more complex to parse. Compared

to other log parsers, Drain achieves relatively stable accuracy

and shows its robustness when changing volumes of logs.

D. Efficiency of Log Parsers

Efficiency is an important aspect of log parsers to consider

in order to handle log data in large scale. To measure the

efficiency of a log parser, we record the running time it needs

to finish the entire parsing process. Similar to the setting of

the previous experiment, we evaluate six log parsers on three

log datasets.

The results are presented in Figure 4. It is obvious that

the parsing time increases with the raising of log size on all

the three datasets. Drain and IPLoM have better efficiency,

which scales linearly with the log size. Both methods can
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(a) HDFS (b) BGL (c) Android

Fig. 3. Accuracy of Log Parsers on Different Volumes of Logs

(a) HDFS (b) BGL (c) Android

Fig. 4. Efficiency of Log Parsers on Different Volumes of Logs

finish parsing 1GB of logs within tens of minutes. AEL also

performs well except on large BGL data. It is because AEL

needs to compare with every log message in a bin, yet BGL

has a large bin size when the dataset is large. Other log parsers

do not scale well with the volume of logs. Especially, LenMa

and MoLFI cannot even finish parsing 1GB of BGL data or

Android data within 6 hours. The efficiency of a log parser

also depends on the type of logs. When the log data is simple

and has a limited number of event templates, log parsing is

often an efficient process. For instance, HDFS logs contain

only 30 event templates, thus all the log parsers can process

1GB of data within an hour. However, the parsing process

would become slow for logs with a large number of event

templates (e.g., Android).

IV. INDUSTRIAL DEPLOYMENT

In this section, we share our experiences of deploying

automated log parsing in production at Huawei. System X

(anonymized name) is one of the popular products of Huawei.

Logs are collected during the whole product lifecycle, from de-

velopment, testing, beta testing, to online monitoring. They are

used as a main data source to failure diagnosis, performance

optimization, user profiling, resource allocation, and some

other tasks for improving product quality. When the system is

still in a small scale, many of these analysis tasks are able to be

performed manually. However, after a rapid growth in recent

years, System X nowadays produces over terabytes of log data

daily. It becomes impractical for engineers to manually inspect

logs for diagnostic information, which requires not only non-

trivial efforts but also deep knowledge of the logs. In many

cases, event statistics and correlations are valuable hints to

help engineers make informed decisions.

To reduce the efforts of engineers, a LogKit platform has

been built to automate the log analysis process, including

log search, rule-based diagnosis, and dashboard reporting of

event statistics and correlations. A key feature of this platform

is to parse logs into structured data. At first, log parsing

was done in an ad-hoc way by writing regular expressions

to match the events of interest. However, the parsing rules

become unmanageable quickly. First, existing parsing rules

cannot cover all types of logs, since it is time-consuming

to write the parsing rules one by one. Second, System X is

evolving quickly, leading to frequent changes of log structures.

Maintenance of such a rule base for log parsing has become

a new pain point. As a result, automated log parsing is a high

demand.

Success stories. With close collaboration with the product

team, we have successfully deployed automated log parsing

in production. After detailed comparisons of different log

parsers as described in Section III, we choose Drain because

of its superiority in accuracy, robustness, and efficiency. In

addition, by taking advantage of the characteristics of the

logs of System X, we have optimized the Drain approach

from the following aspects. 1) Preprocessing. The logs of

System X have over ten thousand event templates as well as a

wide range of parameters. As we have done in [9], we apply
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a simple yet effective preprocessing step to filter common

parameters, such as IP, package name, number, and file path.

This greatly simplifies the problem for subsequent parsing.

Especially, some of the preprocessing scripts are extracted

from the original parsing rule base, which is already available.

2) Deduplication. Many log messages comprise only constant

string, with no parameters inside (e.g., “VM terminated.”).

Recurrences of these log messages result in a large number of

duplicate messages in logs. Meanwhile, the preprocessing step

produce a lot of duplicate log messages as well (e.g., “Con-

nected to <IP>”), in which common parameters have been

removed. We perform deduplication of these duplicate log

messages to reduce the data size, which significantly improves

the efficiency of log parsing. 3) Partitioning. The log message

header contains two fields: verbosity level and component.

In fact, log messages of different levels or components are

always printed by different logging statements (e.g., DEBUG

vs. INFO). Therefore, it is beneficial to partition log messages

into different groups according to the level and component

information. This naturally divides the original problem into

independent subproblems. 4) Parallelization. The partitioning

of logs can not only narrow down the search space of event

templates, but also allow for parallelization. In particular, we

extend Drain with Spark and naturally exploit the above log

data partitioning for quick parallelization. By now, we have

successfully run Drain in production for more than one year,

which attains over 90% accuracy in System X. We believe that

the above optimizations are general and can be easily extended

to other similar systems as well.

Potential improvements. During the industrial deployment

of Drain, we have observed some directions that need further

improvements. 1) State identification. State variables are of

significant importance in log analysis (e.g., “DB connection

ok” vs. “DB connection error”). However, current log parsers

cannot distinguish state values from other parameters. 2) Deal-
ing with log messages with variable lengths. A single logging

statement may produce log messages with variable lengths

(e.g., when printing a list). Current log parsers are length-

sensitive and fail to deal with such cases, thus resulting in

degraded accuracy. 3) Automated parameters tuning. Most of

current log parsers apply data-driven approaches to extracting

event templates and some model parameters need to be tuned

manually. It is desirable to develop a mechanism for automated

parameters tuning. We call for research efforts to realize

the above potential improvements, which would contribute to

better adoption of automated log parsing.

V. RELATED WORK

Log parsing is only a small part of the broad problem of

log management. In this section, we review the related work

from the aspects of log quality, log parsing, and log analysis.

Log quality. The effectiveness of log analysis is directly

determined by the quality of logs. To enhance log quality,

recent studies have been focused on providing informative

logging guidance or effective logging mechanisms during de-

velopment. Yuan et al. [46] and Fu et al. [47] report the logging

practices in open-source and industrial systems, respectively.

Zhu et al. [48] propose LogAdvisor, a classification-based

method to make logging suggestions on where to log. Zhao

et al. [49] further provide an entropy metric to determine

logging points with maximal coverage of a control flow. Yuan

et al. [50] design LogEnhancer to enhance existing logging

statements with informative variables. Recently, He et al. [51]

have conducted an empirical study on the natural language

descriptions of logging statements. Ding et al. [52] provide a

cost-effective way for dynamic logging with limited overhead.

Log parsing. Log parsing has been widely studied in recent

years, which can be categorized into rule-based, source code-

based, and data-driven parsing. Most current log manage-

ment tools support rule-based parsing (e.g., [40], [41]). Some

studies [18], [19] make use of static analysis techniques for

source code-based parsing. Data-driven log parsing approaches

are the main focus of this paper, most of which have been

summarized in Section II. More recently, He et al. [53] have

studied large-scale log parsing through the parallelization on

Spark. Thaler et al. [54] model textual log messages with

deep neural networks. Gao et al. [55] apply an optimization

algorithm to discover multi-line structures from logs.

Log analysis. Log analysis is a research area that has been

studied for decades due to its practical importance. There are

an abundance of techniques and applications of log analysis.

Typical applications include anomaly detection [12], [18],

[23], [56], problem diagnosis [4], [5], runtime verification

[57], performance modeling [3], etc. To address the challenges

involved in log analysis, many data analytics techniques have

been developed. For example, Xu et al. [18] apply the principle

component analysis (PCA) to identify anomaly issues. Du et

al. [10] investigate the use of deep learning to model event

sequences. Lin et al. [11] develop a clustering algorithm to

group similar issues. Our work on log parsing serves as the

basis to perform such analysis and can greatly reduce the

efforts for the subsequent log analysis process.

VI. CONCLUSION

Log parsing plays an important role in system maintenance,

because it serves as the the first step towards automated log

analysis. In recent years, many research efforts have been

devoted towards automated log parsing. However, there is a

lack of publicly available log parsing tools and benchmark

datasets. In this paper, we implement a total of 13 log

parsing methods and evaluate them on 16 log datasets from

different types of software systems. We have opened source

our toolkit and released the benchmark datasets to researchers

and practice for easy reuse. Moreover, we share our experience

of deploying automated log parsing at Huawei. We hope our

work, together with the released tools and benchmarks, could

facilitate more research on log analysis.
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