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Abstract—Ensuring the reliability of cloud systems is critical
for both cloud vendors and customers. Cloud systems often
rely on virtualization techniques to create instances of hardware
resources, such as virtual machines. However, virtualization hin-
ders the observability of cloud systems, making it challenging to
diagnose platform-level issues. To improve system observability,
we propose to infer functional clusters of instances, i.e., groups
of instances having similar functionalities. We first conduct a
pilot study on a large-scale cloud system, i.e., Huawei Cloud,
demonstrating that instances having similar functionalities share
similar communication and resource usage patterns. Motivated
by these findings, we formulate the identification of functional
clusters as a clustering problem and propose a non-intrusive
solution called Prism. Prism adopts a coarse-to-fine clustering
strategy. It first partitions instances into coarse-grained chunks
based on communication patterns. Within each chunk, Prism
further groups instances with similar resource usage patterns to
produce fine-grained functional clusters. Such a design reduces
noises in the data and allows Prism to process massive instances
efficiently. We evaluate Prism on two datasets collected from
the real-world production environment of Huawei Cloud. Our
experiments show that Prism achieves a v-measure of ∼0.95,
surpassing existing state-of-the-art solutions. Additionally, we
illustrate the integration of Prism within monitoring systems for
enhanced cloud reliability through two real-world use cases.

Index Terms—functional clusters, cloud observability, in-
stances, cloud systems, software reliability

I. INTRODUCTION

Cloud providers such as Amazon AWS, Microsoft Azure,

and Google Cloud Platform (GCP) have provided a wide range

of services and ensure availability 24/7 to their customers

worldwide. Guaranteeing the reliability of a cloud system is

crucial since even a brief downtime could result in significant

financial losses for cloud vendors and their customers [1], [2].

Cloud systems typically leverage virtualization techniques

to abstract hardware resources, such as computation, storage,

and networks, into instances (e.g., virtual machines), serving as

basic components of cloud services [3]–[5]. Such architecture

provides flexibility and elasticity for tenants to subscribe

various instances to run services with different functionalities

e.g., machine learning and database services. This, in turn,

enables them to create complex and customizable applications.

∗Both authors make equal contribution to this paper.
∗∗Zhuangbin Chen is the corresponding author.

However, just as each coin has two sides, such practice

makes it more challenging to ensure the reliability of cloud

systems. In particular, virtualization degrades the observability

of the system, i.e., the ability to understand the system internal

execution state. Virtualization introduces an additional layer of

abstraction between the underlying hardware and the running

applications, making it difficult to correlate the problems

across different layers [6]. For example, an issue at the

application layer may be caused by problems either within

the instance itself or with the underlying hardware.

To enhance system observability, a common practice for

cloud vendors is deploying a variety of monitors to collect

runtime information of each instance [7]–[10], which record

only data related to reliability issues without touching users’

privacy. The monitoring data are then utilized for downstream

maintenance tasks. For example, communication traces, which

record network packet transmissions between instances (e.g.,
the source and destination IP addresses and port numbers),

are often used to identify abnormal network behaviors, such

as network attacks and excessive traffics [11]–[15]. On the

other hand, performance metrics, such as CPU utilization and

memory usage, are commonly utilized for detecting anomalies

and localizing faults [16]–[18].

The monitoring data have provided valuable insights to

ensure the reliability of individual instances. However, cloud

vendors still view instances as distributed black boxes without

knowing how an application is deployed across the infrastruc-

ture [19]. Consequently, it can be challenging to assess the

impact of issues at the platform level (such as instance or

hardware problems) on applications that are deployed on top

of them. For example, packet losses in individual instances

are commonplace in cloud systems and are generally ignored,

as they seldom impact customer applications. However, when

multiple instances, all supporting the same application, con-

currently experience packet losses, it likely indicates a more

significant issue that users may encounter, such as interrup-

tions due to network disconnections. The limited awareness

of relationships between instances complicates the detection

of such problems, thereby impeding timely mitigation efforts.

To bridge this gap and improve the system observability, we

propose to infer functional clusters of instances, where each
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cluster contains the instances having similar functionalities.

With this additional knowledge, cloud vendors can enhance

the reliability of the cloud by improving various downstream

management and maintenance tasks (to be detailed in §V).

However, there are two major challenges that we need to

overcome to achieve this goal. The first challenge is that only

limited information is available. As mentioned before, cloud

vendors cannot access tenants’ private data, including logs and

source codes. A non-intrusive solution that relies solely on

external data (e.g., traces and metrics) is required. The second

challenge is the large scale of instances in cloud systems.

A typical cloud system can consist of millions of instances

in total [19], resulting in an enormous amount of data for

analysis. Valuable insights are concealed within the vast and

noisy data of cloud systems, making it difficult to reveal the

hidden function clusters.

To tackle the first challenge and explore a feasible non-

intrusive solution, we first conduct a pilot study on the services

deployed in Huawei Cloud. For privacy reasons, we only use

internal services of Huawei Cloud without touching tenants’

instances. Specifically, we utilize a total of 3,062 internal

instances covering services with 397 types of functionalities

and study whether different functionalities can be identified

simply based on external monitoring data. Our study uncovers

that instances having similar functionalities share similar com-
munication and resource usage patterns. Communication pat-

terns mean that instances with similar purposes may frequently

communicate with the same set of destinations, reflected in

their communication traces. We find that 75% of instances

within the same functional clusters have a high overlap (≥
0.7) in their communicated destinations. Conversely, for 92%

of instances with different functionalities, the overlap is only

less than 0.2. Additionally, despite the large scale of instances,

99.1% of instances communicated with a limited number

of destinations (fewer than 50), indicating a strong locality

in communication patterns. Resource usage patterns, on the

other hand, denote that instances with similar functionalities

would demonstrate comparable resource consumption, which

is reflected in their metrics. For example, a machine learn-

ing service is expected to exhibit greater CPU usage, while

instances running an in-memory database like Redis would

primarily require more memory. We find that most (∼75%) of

instance pairs with the same functionalities have high metric-

based similarities (≥ 0.8), while the similarities decrease for

those instances having different functionalities.

Motivated by the two kinds of inherent patterns of the

instances, we formulate the identification of functional clus-

ters as a clustering problem. Intuitively, we aim to cluster

the instances by harmoniously integrating the communication

patterns and resource usage patterns. To achieve this goal

and alleviate noises within the tremendous data, we propose

Prism, which adopts a coarse-to-fine clustering strategy. Prism

consists of two components, i.e., trace-based partitioning and

metric-based clustering. In the trace-based partitioning step,

we leverage the communication patterns to coarsely divide

the entire large set of instances into smaller chunks. This

Hardware
resources

Tenants
deploy

virtualize

Functionalities ML

Instances

Cloud 
vendors

support

virtualize

Fig. 1. The hierarchical structure of cloud systems

step helps limit the comparison space within each chunk, thus

reducing the complexity of the subsequent clustering process

and eliminating noises introduced by instances from other

clusters. In the metric-based clustering step, we perform fine-

grained clustering by comparing the resource usage patterns of

instances in a pairwise manner. This step allows us to carefully

group instances within the same functional cluster.

To evaluate Prism, we conduct extensive experiments on two

datasets collected from the production environment of Huawei

Cloud, a top-tier cloud provider serving global customers. To

evaluate the generality of Prism, these datasets were procured

from two regions of Huawei Cloud, each covering a diverse

set of functionalities. The experimental results show that

Prism achieves a v-measure of ∼0.95, surpassing existing

state-of-the-art solutions, and is robust to parameter changes.

Moreover, Prism is both scalable and efficient, with a linear

time complexity, enabling it to handle a substantial number

of instances. Furthermore, we have deployed Prism in Huawei

Cloud, and we share two real-world use cases to demonstrate

the usefulness of functional clusters in maintaining Huawei

Cloud. In the first case, functional clusters showcase the ability

to detect vulnerable application deployments that may be at

risk of disruption due to hardware failures. The second case

shows how functional clusters can aggregate minor packet loss

errors across instances, thus enabling identification of latent

issues that are not observable at either the instance or region

level. We summarize our contributions as follows:

• We conduct a pilot study to understand the characteristics

of functional clusters across over 3,000 instances based on a

real-world cloud system, Huawei Cloud (§II). Our findings

reveal two clues for identifying functional clusters (i.e.,
communication patterns and resource usage patterns).

• We design a non-intrusive solution called Prism to identify

functional clusters in large-scale cloud systems, which is

able to effectively capture and integrate the inherent commu-

nication and resource usage patterns among instances (§III).

• Extensive experiments are conducted on two real-world

industrial datasets (§IV). Our results demonstrate that Prism

is effective, efficient and practically useful in identifying

functional clusters in industrial cloud systems. Our dataset

and code are made public to benefit the community on

https://github.com/OpsPAI/Prism.

II. BACKGROUND AND PILOT STUDY

In this section, we first discuss the background of cloud

systems and clarify the terminologies used. Then, we present

269

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:00:34 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Results of the study on communication and resource usage patterns.

a pilot study to understand the characteristics of instances that

can facilitate the identification of functional clusters.

A. Background

1) Cloud System Structure

Modern cloud systems are complex and highly distributed,

consisting of multiple layers of hardware and software com-

ponents that work together to provide on-demand computing

resources to tenants. Fig. 1 shows the hierarchical structure

of a typical cloud system. At the lowest layer, hardware

resources such as physical machines, storage, and networking

equipment form the underlying infrastructure. These resources

are virtualized into environments known as instances (e.g.,
virtual machines), which can be dynamically created, scaled,

and terminated as needed, forming a layer of virtualization. On

top of these instances, tenants can deploy services with a broad

range of functionalities that run in different programming lan-

guages and frameworks. These functionalities can either serve

as standalone applications or be combined to form complex

applications. For example, an online shopping application may

consist of services offering interdependent functionalities like

load balancing, user authentication and databases. To ensure

scalability and fault tolerance, multiple copies (or replicas) of

the same service are typically created and distributed across

the cloud environment to support a single functionality. This

approach enables handling user traffic spikes while guaran-

teeing high availability of the system in case of instance

failures. It is crucial to timely detect potential issues in

the services with various functionalities that constitute the

application in order to ensure its overall availability. This

paper focuses on discovering functional clusters containing

instances with similar functionalities, which are smaller and

more manageable units than complex applications. With this

information, operators are allowed to build more actionable

monitoring metrics for safeguarding each functionality.

2) Cloud System Monitoring

Monitoring is a common practice for top-tier cloud vendors,

such as AWS CloudWatch [20], Azure Monitor [21] and

Google Cloud Monitoring [22]. Monitoring tools are used to

collect various types of data about the system’s performance

and behavior. Two key types of data are commonly collected

for each instance: communication traces and performance

metrics. Communication traces data, are records of network

transmissions between instances in a cloud environment. These

traces are typically generated by network monitoring tools

(e.g., flow logs [23]–[25]) and capture metadata about the net-

work traffic, such as the source and destination IP addresses,

port numbers, and protocol types. By collecting and analyzing

these types of data, cloud system operators can take proactive

measures to ensure system security and reliability [11]–[15].

Performance metrics, on the other hand, includes information

such as memory usage and network throughput organized in

the form of time series, which are used to detect and diagnose

system performance issues [16], [17].

As shown in Fig. 1, tenants mostly focus on the func-

tionalities of services they deploy, rather than delving into

infrastructure-level details. On the other hand, due to privacy

concerns, cloud vendors only possess runtime information

about instances and hardware resources, lacking knowledge

about how customers deploy services with various func-

tionalities across these instances. While cloud providers do

possess some metadata about these instances, such as which

customers subscribe to particular instances, this information is

often too coarse-grained. For example, thousands of instances

belonging to the same enterprise customer could share the

same tenant ID [19], and these instances may host a diverse

range of functionalities. This paper aims to empower cloud

providers with insights into more fine-grained structure of the

functionalities by learning from instance data visible to them.

This would facilitate building an enhanced monitoring system

to improve the reliability of cloud systems (will show in §V).

B. A Pilot Study

In the following, we conduct a pilot study across over three
thousand internal instances in Huawei Cloud, aiming to find

clues to uncover the valuable functional clusters. We conduct

manual inspections in collaboration with the corresponding

teams within Huawei Cloud to understand their functionalities.

We obtain services covering 397 types of functionalities in

total, and more details about this dataset are in §IV-A.

1) Communication Pattern

The communication pattern serves as an indicator that

instances within the same functional cluster tend to exhibit

comparable network behaviors, as evidenced by the commu-

nication traces they generate. As inspired by [19], instances

within the same functional clusters might communicate with

similar destinations. To investigate this, we combine every two

instances and compute the overlap of their destinations through

Jaccard similarity [26]. Then, we compare the similarities

within the same clusters and across different clusters.
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Fig. 3. The overall workflow of Prism

Fig. 2-(a) presents the comparison results of communication

pattern similarities within or across clusters, where we can ob-

serve a significant difference between them. When examining

instances within the same cluster, we find that 50% of the

instance pairs demonstrate more than 0.8 similarity and over

75% of them exhibit more than 0.6 similarity. In contrast,

when comparing instance pairs from different clusters, over

75% of the pairs exhibit a similarity score of 0, indicating no

overlap between their destinations. Additionally, 96% of the

pairs have a similarity score of <0.4, indicating that instances

from different clusters rarely communicate with the same

destinations. However, for some cross-cluster instances, there

are still a little overlap in their destinations. These destinations

are usually common services such as network gateway and

authentication that are shared by multiple applications.

To further understand the communication patterns, we study

how many different destinations one instance can frequently

communicate with. Fig. 2-(b) shows the results. We can find

that even though there are thousands of instances in total,

the majority of the instances only communicate with a small

number of destinations. For example, 84.3% of instances

communicate with 1 to 5 instances, and 99.1% of instances

communicate with less than 50 instances. This suggests a

strong locality of instances, i.e., most instances tend to com-

municate with a small set of other instances frequently.

2) Resource Usage Pattern

Intuitively, instances within the same functional cluster

should observe similar patterns in their resource consumption

(i.e., resource usage patterns). To investigate whether resource

usage patterns can be utilized to uncover functional clusters,

we analyze the similarities in the metric data among instances,

either within the same functional cluster or across different

clusters. Thus, we compare the multivariate metric similarity

on two instances using the multivariate dynamic time warping

(DTW) distances [27], a distance metric to compare a pair of

time series that may vary in timing (more details in §III).

Fig. 2-(c) shows the distribution of resource usage pattern

similarities among instances, either within or across functional

clusters. We can observe that the similarities of instance pairs

within clusters are generally large, with over 75% of such pairs

exhibiting 0.7 similarity or higher. In contrast, instance pairs

across clusters display smaller similarities, with 92% of pairs

across different clusters possessing less than 0.2 similarity.

However, it is worth noting that there is a small portion

(≤10%) of cross-cluster instance pairs that have high metric-

based similarities, with a value of ≥0.8. This is reasonable

since instances having different functionalities could behave

similarly, e.g., have a high CPU utilization. Nevertheless, it

still suggests that leveraging the similarities between instance

metrics is promising in distinguishing their functional clusters.
Summary. We summarize our findings as follows.

• Instances that belong to the same functional cluster exhibit

comparable communication patterns, as evidenced by the

considerable overlap in their communication destinations.

Furthermore, the analysis reveals that the majority of in-

stances interacted with a limited number of other instances,

indicating a strong locality of instances.

• Instances within clusters generally exhibit high similarities

in their resource usage patterns, while instance pairs across

clusters show smaller similarities.

• While communication and resource usage patterns provide

valuable insights, they are not entirely reliable indicators

for distinguishing between different functional clusters, as

some noises in the form of cross-cluster instances with high

similarities in both patterns are observed.

III. METHODOLOGY

A. Overview
The goal of this paper is to design a non-intrusive solution

to discover functional clusters among massive instances in a

large-scale cloud system. The input is an entire set of instances

and their associated monitoring data, i.e., communication

traces and performance metrics. The output of our approach

is multiple clusters, where each cluster represents a functional

cluster consisting of instances that have similar functionalities.
To achieve this goal, we propose Prism, an automated

approach that can effectively discover functional clusters based

on both the communication patterns and resource usage of in-

stances. Fig. 3 illustrates the overall workflow of Prism, which

comprises two main components: trace-based partitioning
and metric-based clustering. Given a set of instances, Prism

adopts a two-stage clustering process, which progressively

divides the entire set of instances to coarse-grained chunks,

then fine-grained functional clusters. Specifically, the trace-
based partitioning step is inspired by the strong locality

of communication patterns, as shown in §II-B1. Based on

communication patterns, Prism first separates all instances

into different chunks. Instances in the same chunk share

similar communication destinations. By dividing the complete

instances set into multiple small chunks, we can reduce the

noises introduced from other instances during the subsequent

fine-grained clustering step. For each chunk, metric-based
clustering is then applied to generate fine-grained clusters by
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measuring the similarities of monitoring metrics of instances.

Finally, instances belonging to the same resultant cluster are

considered to have similar functionalities. Such a coarse-to-

fine design avoids pairwise comparisons between a large num-

ber of instances and reduces noises between instances, making

Prism salable and practical for large-scale cloud systems.

It is important to note that Prism relies solely on external

monitoring data and does not access any of the tenants’ private

data, which ensures that there are no privacy concerns. While

we can infer which instances have similar functionalities, we

cannot identify the specific type of the functionalities in use.

This approach maintains our tenants’ confidentiality.

B. Trace-based partitioning

As studied in §II-B1, instances sharing the same functional

clusters are more likely to communicate with a similar set of

destination hosts. Thus, the trace-based partitioning of Prism

measures the communication pattern similarity and divides

instances into coarse-grained chunks.

Data Preprocessing. Let xi represent an instance in the cloud

system. Communication traces can be represented as tuples

of the form (xsrc, xdst), where xsrc and xdst represent the

instances that communicate with each other. By analyzing the

communication traces, we can obtain the destination set of

each instance, denoted by Si = (x1, x2, x3, ...), which contains

all the instances that have communicated with xi. However,

as demonstrated in §II-B1, instances with dissimilar func-

tionalities may share common destinations, such as network

gateways, which can introduce noise when comparing the

communication patterns between instances. To mitigate this

issue, we remove instances that interact with more than 100

different instances, which is rare as shown in Fig. 2-(b).

Jaccard Similarity-based Partitioning. Next, we divide all

instances into chunks by measuring how much their destina-

tion sets overlap. To achieve this, a straightforward solution is

to calculate the Jaccard similarity [28] of destination sets of ev-

ery pair of instances, which is denoted as J(xi, xj) =
|Si∩Sj |
|Si∪Sj | ,

i.e., the ratio of the size of their intersection to the size of their

union. However, it requires conducting pairwise comparisons

between millions of instances in a large-scale cloud system.

This process can be extremely time-consuming and may render

the approach unfeasible in practice.

To address this issue, we propose to leverage locality-

sensitive hashing (LSH) [29] to enable efficient partitioning.

LSH is a technique developed for identifying similar items in

large datasets. Its idea involves hashing the items into signa-

tures such that similar items are more likely to be assigned to

the same bucket. Given a query, LSH can efficiently return

similar items with a sub-linear time cost without pairwise

comparison with the entire instance set. In our context, we

combine LSH with the MinHash function, which allows items

with high Jaccard similarities put into the same buckets [30].

Algorithm 1 describes the trace-based partitioning process.

First, we extract the destination sets S of each instance from

historical communication traces (lines 1-5). Second, for each

instance xi, we apply MinHash function to its destination

Algorithm 1: Trace-based Partitioning

Input: List of instances: X = {x1, x2, ..., xl};
Communication trace records: R = {r1, r2, ..., rt};
Similarity threshold: θLSH

Output: Multiple instance chunks: C = {C1, C2, ...}
Init: S ← Empty list of feature sets; MLSH ← empty LSH

model; U ← Disjoint-set data structure
1 // (1) Construct feature sets
2 for i← 1 to t do
3 xsrc, xdst ← ri
4 S[xsrc].insert(xdst)
5 end
6 // (2) Build the LSH model
7 for each instance xi ∈ X do
8 Si ← S[xi]
9 MLSH .insert(MinHash(Si))

10 end
11 // (3) Search neighbors and build chunks
12 for each instance xi ∈ X do
13 Si ← S[xi]
14 Ni = MLSH .search(Si, θLSH ) // find neighbors
15 for each instance xj ∈ Ni do
16 if U .findSet(xi) != U .findSet(xj) then
17 U .unionSet(xi, xj) // merge xi and neighbors
18 end
19 end
20 end
21 C ← U.getAllSets()

set Si to obtain the hash signature. The hash signature is

then inserted into the LSH model (lines 7-10), which assigns

the item to a bucket. Third, for each instance xi, we search

its nearest neighbors Ni within the buckets produced by the

LSH model (lines 12-14). Here, a manual-defined threshold

θLSH ∈ [0, 1] is included, where a smaller θLSH value allows

more dissimilar neighbors to be included. After that, we group

the instance xi with its neighbors Ni based on the Disjoint-set

data structure U (lines 15-19). This data structure U provides

two efficient operations, i.e., U.findSet that find the set that

contains a specific item and U.unionSet that merge two

disjoint sets. If we find the sets containing xi and containing xj

are disjoint (line 16), we merge these two sets (line 17) since

xi and xj are similar. In this way, we progressively divide the

entire set of instances into multiple disjoint sets (i.e., chunks)

managed by U . Finally, we can obtain all the instance chunks

C by enumerating the records in U (line 21).

The trace-based partitioning algorithm is highly efficient

for two reasons. First, we bypass the expensive pairwise

similarity computation for all the instances by using LSH with

MinHash. Secondly, we leverage the disjoint-set data structure

to merge similar instances into chunks efficiently. The findSet
and unionSet operations of the disjoint-set data structure can be

completed within nearly constant time complexity, which fur-

ther ensures the efficiency of the merging process. Moreover,

the number of neighbors Ni (line 14) is generally fewer than

50, which is much smaller than the total instance number X
(line 12) due to the locality of communication patterns (Fig. 2-

(b)), which improves Prism’s scalability, making it feasible for

large-scale cloud systems like Huawei Cloud.
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C. Metric-based Clustering

Trace-based partitioning tends to group as many instances

as possible together, which can inevitably include instances

with different functionalities to the same chunk. The reason is

that instances from different clusters can still communicate to

the same destinations (as studied in §II-B1), and this leads to

overlap of the destination sets of these instances, which may

be wrongly grouped together.

To address this problem, we further group these instances

by utilizing more fine-grained monitoring metrics that record

detailed runtime information of instances (i.e., resource usage

patterns as studied in §II-B2). Each instance is monitored

via multiple dimensions to ensure its reliability, producing

multivariate metrics, including CPU utilization rate, network

incoming/outgoing bytes rate, disk read/write request rate, and

disk read/write bytes rate. In the following, we aim to calculate

a metric-based distance for each pair of instances. Then, we

can cluster those instances that are close to each other.

Data Preprocessing. We apply the following preprocessing

techniques to the raw metric data collected to remove noises

and normalize the data within a comparable scale. First, we

regard apparent extreme values as anomalous noises within

the metric data because these values can bias the subsequent

distance computation step. For each metric, we replace the data

points that are out of the three-sigma range with the average

value of the nearest ten points. Next, since the amplitude

scales of different metrics are different, e.g., network-related

metrics are highly variable and may range from tens of bytes

to millions of bytes. This can make the produced distances

incomparable between instances with different network traffic

volumes. To address this issue, we apply natural logarithm

to these metrics following [19] to make it more robust to

its variance. The logarithm only solves the issue of highly

variable amplitudes but does not ensure that the data points

fall within the same range. Therefore, finally, we apply min-

max normalization to scale each of the metrics to the range of

0-1, allowing comparison across different metrics. Formally,

using y to denote a metric time series, the normalized values

can be calculated as y′ = y−min(y)
max(y)−min(y) .

Metric-based Distance Calculation. For an instance x, its

preprocessed monitoring metrics form a group of multivariate

time series represented as a matrix Mi ∈ R
n×k, where n is the

number of timestamps and k is the number of metrics used.

We measure the metric-based similarity of two instances using

a distance that simultaneously considers all the multivariate

metrics of them. To achieve this, we first compare each metric,

then aggregate the distances to produce an overall distance.

Specifically, we adopt dynamic time warping (DTW) dis-

tances [27] for distance measurement. The reason we use

DTW is to overcome the problem that the monitoring metrics

of different instances can have time shifts, namely, these time

series may not be aligned in terms of the collection times-

tamps, making traditional distance measures such as Euclidean

distance ineffective. In contrast, DTW allows for flexible

matching of similar patterns in the time series, even when they

occur at different timestamps. Based on the DTW calculation,

the overall distance d(xi, xj) between two instances xi and

xj can be formulated as follows:

d(xi, xj) =

k∑

u=1

ω(i, j)u ×DTW
(
Mi(:, u),Mj(:, u)

)
, (1)

ω(i, j)u =
ω(i, j)′u∑k
v=1 ω(i, j)

′
v

, (2)

ω(i, j)′u =
1

2

(
σ(Mi(:, u)) + σ(Mj(:, u))

)
, (3)

where u denotes the metric in concern, Mi/j(: .u) is the uth

column of the corresponding metric matrix. In particular, we

use ω(i, j)u as a weight associated with the uth metric to mea-

sure the importance of each metric. Each weight is calculated

as the average of the standard deviation (i.e., σ(·)) of the two

metrics of corresponding instances as shown in Equation 3,

which is normalized to the range of 0 to 1 across different

metrics using Equation 2. In doing this, we reduce the weight

of the metrics that barely fluctuate (e.g., two instances keep the

CPU utilization rate around 80%), since these metrics are less

informative in representing the characteristics of instances. In

contrast, if two metrics are simultaneously changing following

the same trend, they are more likely to indicate instances

performing the same functionalities.

Clustering Algorithm. We then apply a clustering algorithm

in each chunk based on the metric-based distances to produce

more fine-grained clusters (i.e., functional clusters). Specif-

ically, we choose the hierarchical agglomerative clustering

(HAC) [31] algorithm because it allows us to adjust the

number of produced clusters via setting a distance threshold,

i.e., θHAC . The clustering algorithm starts by considering each

instance as a single cluster and then iteratively merges the

closest pairs of clusters until a user-defined threshold θHAC

is reached. In this process, we use complete linkage [32] to

find the closest pair of clusters, i.e., the distance between two

clusters is defined as the maximum DTW distance between

any pair of instances in the two clusters.

While HAC requires the computation of distances between

instances in a pairwise manner, it is still efficient since HAC

is applied separately in each chunk. Recall that chunks are

produced by the trace-based partitioning step, and each chunk

only contains tens of instances because of the locality of

communication patterns (as shown in §II-B1). Therefore, the

computation within each small chunk can significantly reduce

the computation cost, making our framework scalable to a

large number of instances in cloud systems.

IV. EVALUATION

We evaluate Prism by answering the following research

questions (RQs):

• RQ1: How effective is Prism in clustering instances having

similar functionalities?

• RQ2: How does each component contribute to the overall

performance of Prism?

• RQ3: What is the parameter sensitivity of Prism?

• RQ4: What is the efficiency of Prism?
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TABLE I
DATASET STATISTICS

Datasets # Functionalities # Instances # Traces # Metrics

Dataset A 292 2,035 100.2 M 7.25 M

Dataset B 105 1,027 121.6 M 3.71 M

Total 397 3,062 212.6 M 10.96 M

A. Experimental Setup

Dataset. We evaluate Prism using two datasets collected from

the production environment of Huawei Cloud. To evaluate

the generalizability of Prism, the two datasets (A and B) are

collected from two different geographically isolated regions

with different numbers of users. The detailed statistics of

the two datasets are listed in Table I. These datasets only

include instances that are subscribed by internal customers,

where we are able to manually inspect their functionalities

by collaborating with corresponding teams. We select the

instances running on our production environment that are most

frequently invoked according to their communication traces.

Then, we reach the owners of these instances to figure out

the concrete functionalities these instances support, and we

finally obtain 3,062 labeled instances. Although we are unable

to fully cover all instances within the Huawei Cloud due to

the manual effort required, our datasets encompass a diverse

range of functionalities (397 types in total), such as databases,

disaggregated memory, authentication servers, search engines,

and machine learning algorithms. Such diversity would help

evaluate whether a clustering algorithm can generalize to

different functionalities. Additionally, these functionalities can

belong to different applications. For example, while vari-

ous applications may each have their own databases, these

database functionalities are distinguished from one another in

our datasets since they are utilized by distinct applications

that serve diverse workloads (e.g., databases of an online

shopping application and a face recognition application). For

the monitoring data, traces are extracted from the network

packet transmission records, while metrics are collected at

five-minute intervals. Given the extensive usage and frequent

communication of instances, we ultimately collect hundreds

of millions of traces. In terms of metrics, the total number of

points is 10.96 million for all instances. We have made our

datasets publicly available in our GitHub repository. However,

due to confidentiality concerns, the actual functionality names

have been anonymized and are represented as “cluster ID”.

Evaluation Metrics. We use the metrics homogeneity, com-
pleteness and V-measure to evaluate the effectiveness of Prism

in grouping the instances within the same functional cluster.

These metrics have been widely adopted in evaluating the

quality of clustering results in previous studies. Homogeneity

measures the proportion of instances in the same cluster that

share the same ground truth labels. Completeness, on the other

hand, measures the proportion of instances with the same

ground truth labels that are grouped into a single predicted

cluster. V-measure is a harmonic mean of homogeneity and

completeness, providing an overall indicator for clustering per-

TABLE II
EFFECTIVENESS OF FUNCTIONAL CLUSTER DISCOVERY

Methods
Dataset A Dataset B

Homo. Comp. V Meas. Homo. Comp. V Meas.

OSImage 0.238 0.894 0.376 0.258 0.889 0.400
CloudCluster 0.346 0.748 0.473 0.369 0.753 0.495

ROCKA 0.831 0.882 0.856 0.875 0.900 0.887
OmniCluster 0.932 0.862 0.896 0.944 0.877 0.909

Prism 0.976 0.916 0.945 0.979 0.922 0.950

formance considering the trade-off between these two metrics.
Competitors. We select the competitors from recent studies:
• OSImage is a basic baseline that uses the name of the oper-

ating system (OS) image to differentiate between instances.

Cloud providers offer various pre-installed OS images to

cater to diverse customer needs. For example, an OS image

named deeplearning-pytorch-2.0 implies that the instance is

designed for executing deep learning applications.

• CloudCluster [19] clusters instances based on their pairwise

traffic matrix in cloud projects to determine the functional

structure of the cloud service. It normalizes each row of

the traffic matrix by feature scaling, then reduces its dimen-

sionality through low-rank approximation. Finally, HCA is

employed to group all instances.

• ROCKA [33] aims to cluster instances by using their moni-

toring metrics. ROCKA first normalizes the metrics to elimi-

nate amplitude differences. It then uses shape-based distance

(SBD) as a distance measure, which is robust to phase shift

and efficient for high-dimensional time series data. Then,

clusters are created based on DBSCAN algorithm.

• OmniCluster [34] clusters instances based on multivariate

metrics of each instance. It employs a one-dimensional

convolutional autoencoder (1D-CAE) to extract the low-

dimensional features of all metrics. These features are

selected based on their periodicity and redundancy. Finally,

it uses HAC to divide all instances into different clusters.

B. RQ1: Effectiveness in functional cluster Discovery
In this RQ, we evaluate the accuracy of the functional

clusters discovered by Prism in comparison with state-of-the-

art baseline methods. To achieve this, we apply Prism and

baseline methods to cluster instances in the dataset of A and

B. We present the results of our experiments in terms of

homogeneity (Homo.), completeness (Comp.), and v-measure

(V Meas.) in Table IV-A, where we highlight the best V Meas.

with boldface and the second-best ones with underline.
It can be observed that Prism outperforms three state-of-

the-art baseline methods, namely CloudCluster, ROCKA, and

OmniCluster, by a significant margin, achieving V-measures

of 0.945 and 0.950 on datasets A and B, respectively. These

results indicate that Prism can achieve the best balance be-

tween homogeneity and completeness. This can be attributed

to the fact that Prism effectively integrates communication and

resource usage patterns to discover functional clusters. Unlike

Prism, baseline methods typically focus on either trace or met-

ric data, leading to worser performance. Specifically, OSImage

exhibits low homogeneity but high completeness, as using only

image names to separate instances can overly group instances
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TABLE III
CONTRIBUTION OF DIFFERENT COMPONENTS IN PRISM

Methods
Dataset A Dataset B

Homo. Comp. V Meas. Homo. Comp. V Meas.

Prism 0.976 0.916 0.945 0.979 0.922 0.950
Prism w/o Metrics 0.462 0.920 0.615 0.463 0.949 0.622
Prism w/o Traces 0.949 0.869 0.907 0.915 0.893 0.904

with different functionalities that share the same images. While

CloudCluster outperforms OSImage in v-measure, it falls short

of other metric-using baseline methods, suggesting that metric

similarities are more effective in distinguishing functionalities

than communication trace similarities.

Answer to RQ1: Prism outperforms all state-of-the-art

comparative methods in revealing the functional clusters

across two different datasets, achieving a v-measure of 0.945

and 0.950 in dataset A and B.

C. RQ2: Contribution of Each Component

In this RQ, we evaluate each component’s contribution to

Prism’s overall performance. We created two Prism variants

and compared them with the original approach across datasets

A and B. The first, Prism w/o metrics, eliminates metric-

based clustering, relying solely on communication destination

similarity. The second, Prism w/o traces, omits trace-based

partitioning, directly applying the HAC algorithm to cluster

instances based on resource usage patterns.

We present the comparison results in Table IV-B, from

which we make the following observations. (1) Removing

either of the two components can adversely affect the per-

formance of Prism, underscoring the necessity of integrating

both communication and resource usage patterns. (2) The

V-measure of Prism w/o metrics is significantly lower than

that of Prism and Prism w/o traces, primarily due to its low

homogeneity. This suggests that the trace-based partitioning

step over-clusters many instances that should be separated. The

communication pattern alone is not distinctive enough because

instances having different functionalities should still commu-

nicate with some common instances, such as network gateway

and proxy services (as illustrated in Fig. 2-(a)). Nonetheless,

the use of solely communication patterns achieves the best

completeness score, implying that it barely separates clusters

that should be grouped. (3) Prism w/o traces has the lowest

completeness score, indicating that it can overly split clus-

ters apart, but it has a considerably high homogeneity. This

observation implies that Prism harnesses the benefits of both

performance metrics and communication traces, achieving the

optimal balance between homogeneity and completeness.

Answer to RQ2: The variants, Prism w/o metrics and

Prism w/o traces, each sacrifice either homogeneity or com-

pleteness. Yet, Prism effectively combines communication

traces and metric data, yielding the highest v-measure, i.e.,
a balanced performance in completeness and homogeneity.

D. RQ3: Parameter Sensitivity

In the design of Prism, we identify the following two

parameters that are manually selected and potentially affect the

(a) Impact of θLSH (b) Impact of θHAC

Fig. 4. Parameter Sensitivity of Prism

performance of Prism. For clarity, we present the evaluation

results in Dataset B; similar results are obtained in dataset A.

1) LSH threshold (θLSH )

In §III-B, we utilize LSH algorithm to perform a search for

similar neighbors during the trace-based partitioning step. The

LSH algorithm groups similar items together into the same

bucket with high probability, but it cannot guarantee that all

items in the same bucket are actually similar; therefore, θLSH

is utilized to filter dissimilar items within each bucket.

We varied the value of θLSH from 0 to 1 with a step

size of 0.1 and evaluated the performance of Prism. The

results, shown in Fig. 4(a), indicate that the V-measure remains

stable with only a slight decrease as θLSH increases, which is

primarily due to the decrease in completeness. This is because

the LSH algorithm has already grouped similar items together

into different buckets. Furthermore, since the communication

patterns of most instances are distinct from one another, as

depicted in Fig. 2-(a), there are only a small number of

dissimilar items in the same bucket. As a result, adjusting

θLSH does not significantly affect the clustering results.

2) HAC threshold (θHAC)

In §III-C, HAC is used for clustering instances within each

chunk, where the parameter θHAC controls the granularity

of clustering: a smaller value of results in more fine-grained

clusters, while a larger value results in fewer, coarser clusters.

We enumerated the value of θHAC from 0 to 1 with a step

size of 0.1 and evaluated the performance of Prism. The results

are shown in Fig. 4(b). We observed that increasing θHAC can

increase completeness and decrease the homogeneity. This is

because larger clusters are generated when θHAC is larger.

The best v-measure is achieved when θHAC is around 0.4.

Subsequently, there is a slight decrease in homogeneity, while

the v-measure remained stable. This decline in homogeneity is

due to the inclusion of more dissimilar instances in a cluster,

thereby reducing its homogeneity. Nevertheless, the preceding

trace-based partitioning step groups similar instances together,

resulting in a limited number of dissimilar instances. Hence,

the overall performance is not significantly affected.

Answer to RQ3: Prism is not significantly sensitive to the

parameters θLSH and θHAC . This is because the trace-based

partitioning step already groups similar instances together

and separates dissimilar instances based on their communi-

cation patterns. Thus, adjusting these two parameters only

has a minor effect on the clustering results.
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TABLE IV
EFFICIENCY COMPARISON WITH INCREASING SCALES OF INSTANCES

Methods
# Instances

1,000 5,000 10,000 50,000 100,000

CloudCluster 0.9 23.87 78.65 1768.7 5585.7
ROCKA 80.7 1981.8 7850.3 - -

OmniCluster 31.7 264.6 1048.6 26531.8 -

Prism w/o Metrics 3.9 19.1 40.2 195.1 392.4
Prism w/o Traces 80.3 2066.1 8232.3 - -

Prism 18.2 89.4 183.9 929.2 1912.7

E. RQ4: Efficiency of Prism
In this section, we assess the efficiency of Prism in the

context of large-scale cloud systems with millions of instances

that are frequently created, deleted or updated. To this end,

we apply them to 1,000 / 5,000 / 10,000 / 50,000 / 100,000

instances and record the time needed (in seconds) to complete

the clustering process.
Table IV-E presents the results, from which we can make the

following observations: (1) ROCKA, OmniCluster, and Prism

w/o Traces require increasingly more time as the number of

instances increases, and they cannot complete the clustering

process within a reasonable time when clustering 100,000

instances. This is mainly because these methods require pair-

wise similarity computation based on instance metrics, result-

ing in a quadratic growth in time complexity as the number

of instances increases. OmniCluster mitigates this issue by

reducing the dimensionality of metrics, requiring less time than

the other two methods. (2) CloudCluster and Prism w/o Met-

rics are more efficient than other baseline methods. Prism w/o

Metrics is more efficient because we optimize efficiency using

pair-wise comparison with LSH and MinHash, as described

in §III-B. (3) Prism is less efficient than Prism w/o Metrics

since it requires an additional metric-based clustering step. In

addition, when the number of instances is fewer than 10,000,

CloudCluster outperforms Prism because the time required by

Prism to build the LSH index is dominant. However, as the

number of instances increases to 100,000, Prism’s efficiency

becomes superior to other baselines, being four times faster

than CloudCluster. This is attributed to the coarse-to-fine

clustering process, which limits pairwise distance computation

within small chunks. Therefore, the time cost of Prism only

increases linearly with the instance numbers.

Answer to RQ4: Compared with state-of-the-art solutions,

Prism is the most efficient solution when processing a large

number of instances (e.g., 100,000). Moreover, thanks to

the coarse-to-fine strategy of Prism, its time cost increases

linearly with an increasing number of instances, making it

scalable for handling massive instances in cloud systems.

V. INDUSTRIAL EXPERIENCE

In this section, we share our experience in applying Prism to

a real-world cloud system (i.e., Huawei Cloud), which aims

to demonstrate the practical usefulness of Prism. Generally,

customers usually subscribe instances from Huawei Cloud in

a batch manner, e.g., thousands of instances. These customers

Black-box View
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Fig. 5. Case I: vulnerable deployment identification

can then concentrate on the development and deployment of

a variety of services across these instances, while the cloud

providers handle the often tedious tasks of maintenance and

operation to ensure system reliability. Due to privacy concerns,

on-site engineers from Huawei Cloud can only rely on limited

runtime information of these instances (e.g., network packet

drop rate) to monitor their health states [8], [10], [35]. How-

ever, without knowing how customers’ applications are orga-

nized in these instances, we observe that some potential threats

in the deployment or underlining errors may be missed, which

may later cause service interruptions, consequently impacting

the overall availability of the deployed applications [19]. To

address this problem, in Huawei Cloud, we adopt Prism to

reveal functional clusters in the massive instances hosted by

Huawei Cloud. These functional clusters provide additional in-

formation regarding the structure of service deployment across

the instances, thus enabling us to conduct more comprehensive

and fine-grained monitoring of the cloud system. We present

two primary usage scenarios of functional clusters within

Huawei Cloud: vulnerable deployment identification and latent
issue discovery.

A. Vulnerable Deployment Identification

Functional clusters can help cloud providers identify in-

stances with vulnerable deployments. Specifically, a vulnerable

deployment refers to a scenario where all instances, having

the same functionalities, are deployed on the same physi-

cal machines. In such case, once a failure happens on this

physical machine (e.g., disk failure [36]), the entire function-

ality can be interrupted. In contrast, if these instances were

distributed across different physical machines, only a subset

of the instances would be affected in the event of a failure,

thereby preventing a complete shutdown of the functionality.

However, due to the abstraction of physical resources into

instances, customers often deploy their applications within

these instances without understanding how these instances are

distributed across actual physical machines. On the other hand,

cloud vendors possess knowledge of the mapping between

instances and physical machines; yet, they are often unaware

of the organization of functionalities across these instances

due to privacy concerns. Given the vast number of instances in

a cloud system, manually identifying vulnerable deployments

poses a significant challenge for on-site engineers.

To fill in this gap, we apply Prism to identify functional

clusters to help detect potentially vulnerable deployments.

Fig. 5 provides a concrete example. The left-hand side presents

a black-box view of instance deployment from a cloud ven-
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Fig. 6. Case II: latent issue discovery

dor’s perspective, where only the information about which

instances are deployed on which physical machines is known.

In contrast, the right-hand side displays instances with func-

tional clusters. With this knowledge, we can identify three

functionalities: a functionality including A and B (marked as

yellow), a functionality including D and E (marked as red),

and a functionality including C, F, and G (marked as green).

The deployment of the yellow functionality is potentially

vulnerable because both A and B are deployed on physical

machine P1. In contrast, the other two functionalities are

more reliable since their instances are deployed across two

different physical machines, making them resilient to the

failure of either machine. It is worth noting that although

Prism can hardly pinpoint what specific functionality of an

instance serves, it can identify the instance group having the

same functionalities, which facilitates automatic vulnerable

deployment identification without violating privacy policies.

We have applied Prism in Huawei Cloud to discover func-

tional clusters for around 3,000 internal instances and identi-

fied eight cloud services with vulnerable deployments. We then

contacted the corresponding teams, confirmed the existence

of the vulnerable deployments, and assisted in migrating the

instances across different physical machines for improved

resilience. In the future, our goal is to broaden the adoption

of Prism to benefit a wider group of users and help enhance

the reliability of their application deployment.

B. Latent Issue Discovery

The second typical use case of Prism in Huawei Cloud is

to identify latent network issues that may not be discovered

by traditional monitoring methods. Modern cloud providers

have been equipped with various monitoring tools to ensure

the quality of their network services (e.g., flow logging of

AWS [24]). It is essential for such monitoring tools to compre-

hensively discover underlining problems in the cloud systems

that can affect user experience, but without firing too many

false alarms to distract the on-site engineers.

One crucial type of network monitoring is to monitor the

packet loss of each instance. Packet loss, which denotes

network packets that are accidentally dropped, can usually

occur in any instance of a cloud system. However, they may

not necessarily indicate a problem, as these errors could be

caused by transient network congestion and may not affect

users’ experience. Considering the vast number of instances

in a large-scale cloud system, a significant number of packets

could be lost every minute. This presents a challenge for cloud

vendors in converting this fragmented packet loss data into

actionable alarms for on-site engineers.

To address this problem, we resort to the aggregation of

packet loss data from a selected group of instances, using an

appropriate granular approach to identify potential problems.

The underlying assumption here is that simultaneous packet

losses occurring within a group of instances are more likely

to impact user applications. For instance, if all instances within

a region experience packet loss within a short time frame, it

strongly suggests a regional network issue. However, one large

region can contain millions of instances, and consequently,

grouping by a region might fail to reveal local issues for a

particular application. Another possible solution is to utilize

the metadata (e.g., the TenantID of the customer) to group

instances. Nonetheless, there could still be tens of thousands

of instances associated with the same identifiers [19]. For

example, all instances subscribed to by the same enterprise

customer would share the same identifier.

Prism enables a more effective approach, which is to ag-

gregate lost packets in the granularity of the (approximated)

functional clusters, which can reveal latent issues that may not

be visible at neither a coarser level (e.g., regional level) nor a

finer level (e.g., instance level). Fig. 6 shows the changes in

the number of lost packets (normalized) calculated at either the

region grain (left-hand side) or functionality grain (right-hand

side). We can observe that while the numbers of packet loss

barely change for the whole region, some functionalities (i.e.,
Cluster-1 and Cluster-2) experience sudden increases in packet

loss. This indicates that there may be latent issues affecting

the performance of those specific functionalities, which are

unnoticed if monitored at the region level. We then contact the

corresponding teams and confirm that Cluster-1 and Cluster-

2 correspond to machine learning and storage functionalities,

respectively. We then validate these latent issues, and both

functionalities experience interruption due to unstable network

states, as evidenced in their log messages shown in Fig. 6.

This highlights the potential of Prism in facilitating identifying

issues that customers are experiencing without accessing their

private data, which allows cloud vendors to provide more

comprehensive monitoring to enhance the reliability of the

cloud systems.

Enhanced Cloud Monitoring Based on Prism. To summa-

rize, these two use cases demonstrate that functional clusters

can be utilized with existing monitoring tools and enable

identifying vulnerable deployment and discovering latent is-

sues automatically. Prism plays a crucial role to provide

comprehensive and precise functional clusters for large-scale

instances. With the significant growth of modern cloud sys-

tems, instances experience frequent dynamic changes, includ-

ing creation, deletion, and migration. In this context, Prism can

be utilized to efficiently capture relations between instances.

Unlike using pre-defined and rule-based monitoring [35], [37],

Prism is adaptive to the frequent evolution of cloud appli-

cations. By continuously monitoring metrics like packet loss

and the distribution of instance deployments, the monitoring

system can effectively detect anomalies, such as sudden spikes
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in packet loss or scenarios indicating vulnerable deployments.

This enables prompt alerts to the on-site engineers of relevant

teams, resulting in shorter response time and more efficient

issue resolution. Overall, the effectiveness and efficiency of

Prism significantly contribute to improving the overall moni-

toring and management of instances in modern cloud systems.

VI. THREATS TO VALIDITY

External Validity. The primary external threat of this study

is the investigated object. The datasets are collected from

Huawei Cloud, as there are no publicly available datasets that

include both instance data and corresponding functionality

labels. However, Huawei Cloud is a world-leading cloud

provider with a vast scale. The data collected from the

production environment records real behaviors of instances

and covers a broad range of functionalities from two large

regions as detailed in §IV-A. Therefore, the Huawei Cloud

evaluation is representative and convincing. The data used by

Prism, which includes traces and metrics, is typically collected

by modern cloud vendors like AWS [20] and GCP [22]. This

suggests that our solution could be applied to similar cloud

systems, potentially benefiting cloud customers globally.

Internal Validity. The primary internal factors that could

potentially compromise validity are implementation and pa-

rameter setting. To address the implementation threat, we

closely followed the original papers for baseline approaches

that lacked open-sourced code and re-implemented them ac-

cordingly. To minimize this threat further, we utilized several

mature libraries (e.g., scikit-learn) for implementing the core

algorithms. Moreover, both our proposed methods and the

baseline methods were subject to rigorous peer code review. To

mitigate the parameter setting threat, we fine-tuned the base-

line methods utilizing a grid-search approach, subsequently

selecting the most optimal results.

VII. RELATED WORK

A. Instance Clustering

Communication traces are usually modeled as a communi-

cation graph for clustering instances. Xu et al [14] perform

network-aware clustering for end hosts with the same net-

work prefixes by using bipartite communication graphs. [11]

[12] [13] attempt to mine the pattern of instance-to-instance

communication, then detect abnormal traces to safeguard

the instances. Pang et al. [19] propose CloudCluster, which

uses a novel combination of feature scaling, dimensionality

reduction, and hierarchical clustering to cluster a large scale

of instances. Another line of work utilizes various technologies

to model multivariate metric data of instances. For example,

Kane et al. [38] employ Principal Component Analysis (PCA)

to transform multivarite metric data to univariate time series

before clustering. The most recent work, ROCKA [33] adopts

shape-based distance (SBD) [39] as a robust distance mea-

surement for clustering. OmniCluster [34] adopts hierarchical

agglomerative clustering to cluster instances represented by

low-dimension representations. Contrary to previous studies,

Prism effectively combines communication traces and mul-

tivariate metric data, surpassing state-of-the-art solutions by

utilizing both data types, as shown in Section IV.

B. Reliability of Cloud Systems

Extensive efforts have been made to examine and un-

derstand the important factors contributing to cloud system

reliability. For example, Chen et al. [7] extensively studied

large-scale public cloud incidents, analyzing disruptions and

failures to pinpoint reliability issues. Similarly, Huang et al.

[40] explored the effects of gray failures in cloud systems. In

addition, other studies [9], [36], [41], [42] reviewed public

or internal postmortem reports and summarized the causes

of outages in cloud systems. These studies underscore the

need for enhanced understanding and observability of interde-

pendent cloud system components. Furthermore, researchers

have explored automated solutions for timely incident detec-

tion [35], [37], [43], [44] and failure mitigation [6], [10],

[45]–[47] in cloud systems. Despite the promising results of

these solutions in improving cloud system reliability, most [6],

[44], [47] rely on well-abstracted incident descriptions and

clear system topologies, often unavailable or incomplete to

cloud providers [10]. In contrast, Prism’s functional clusters

can supplement these methods and provide insights to enhance

these tasks, as shown in §V.

VIII. CONCLUSION

This paper presents an approach to enhance the observability

of cloud systems by inferring functional clusters of instances.

To achieve this, we conduct a pilot study based on the real-

world datasets collected in Huawei Cloud, indicating that

communication patterns and resource usage patterns are two

essential indicators for revealing functional clusters. Motivated

by our findings, we propose a non-intrusive, coarse-to-fine

clustering method, Prism, which effectively integrates both

communication and resource usage patterns. Experiments on

two industrial datasets are conducted to evaluate Prism. Our

results show that Prism outperforms state-of-the-art solutions

with a v-measure of 0.95; and Prism can efficiently process

massive instances. Furthermore, we share our experiences in

applying Prism in Huawei Cloud. Two cases, i.e., vulnerable

deployment identification and latent issue discovery, demon-

strate the usefulness of Prism in improving the reliability of

Huawei Cloud.
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